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Plan of the talk

Plan of the talk

1 Motivation (paradigmatic example).

2 (Co)completeness of and in 2-categories.

3 Main theme: extensions of representations.

4 Kleisli and Eilenberg-Moore objects in 2-category of monoidal
objects and lax monoidal functors.

5 Kleisli and Eilenberg-Moore objects in 2-category of actions of
monoidal objects.

6 Examples.

7 A construction of opetopic sets via Burroni fibration.

8 More examples.
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Motivation
Representation of the category of signatures

Motivating example
The category Set/ω of untyped algebraic signatures with the
substitution tensor

{An}n ⊗ {Bn}n = {
∐

k,m1,...,mk∈ω;
∑k

i=1 mi=n

Ak × Bm1 × . . .Bmk
}n

is a monoidal category. It acts on Set

∗ : Set/ω × Set −→ Set

〈{An}n,X 〉 7→
∐
n

An × X n

... and by exponential adjunction we get a strong monoidal functor

r : Set/ω −→ End(Set)

that has a (lax monoidal) right adjoint (U(H) = {H(n)}n∈ω), for
H : Set → Set.
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Motivation

Fact

1 The closure under isomorphism in End(Set) of the ‘image’ of

r : Set/ω −→ End(Set)

is the category Poly of (finitary) polynomial endo-functors
and cartesian natural transformations.

2 The closure under reflexive coequalizers Poly in End(Set) is
the category An of (finitary) analytic endo-functors and
weakly cartesian natural transformations.
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Motivation

NB. Both classes of functors have abstract characterizations:

1 polynomial endofunctor on Set are finitary wide pullback
preserving functors;

2 analytic endofunctor on Set are finitary weak wide pullback
preserving functors.
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Motivation
Analytic (endo)functors on Set

We can describe the analytic functors on Set as follows.

A symmetric signature (A, α) is a graded set {An : n ∈ ω}
equipped with (right) actions of symmetric groups
αn : An × Sn → An, for n ∈ ω.

A morphism of symmetric sets f : (A, α)→ (B, β) is a family of
morphisms of actions fn : (An, αn)→ (Bn, βn), for n ∈ ω.
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Motivation
Analytic (endo)functors on Set

On the category of symmetric signatures we can also define a
substitution tensor but it is more complicated since we need to
take actions of symmetric groups into account.

Notation. We write a ∈ A to mean that a ∈
∐

n An and if a ∈ A,
then we write |a| = n to mean that a ∈ An. Thus, for a ∈ A, we
have a ∈ A|a|.
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Motivation
Analytic (endo)functors on Set

The substitution tensor product on symmetric signatures

Let (A, α), (B, β) be two symmetric signatures. The tensor
product

(A, α)⊗O (B, β) = (A⊗ B, α⊗ β)

is defined as follows

(A⊗O B)n =

= {〈a, 〈bi 〉i∈(|a|], σ〉 :
∑
i

|bi | = n, bi ∈ B, a ∈ A, for i ∈ (|a|], σ ∈ Sn}/∼

where the equivalence relation ∼ is defined as follows:

〈a · τ ; 〈bτ(i) · στ(i)〉i ;σ〉 ∼ 〈a, 〈bi 〉i , τ ∗ (στ(1), . . . , στ(|a|)) ◦ σ〉
where τ ∈ S|a|, σi ∈ S|bi |, σ ∈ S∑

i |bi |, ∗ is the composition in the
operad of symmetries, and ◦ is the usual composition of
permutations.
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Motivation
Analytic (endo)functors on Set

The equivalence class of the element 〈a, 〈bi 〉i∈(|a|], σ〉 with be
denoted by [〈a, 〈bi 〉i∈(|a|], σ〉]∼.

The action (A⊗ B, α⊗ β) is defined in the obvious way

[〈a, 〈bi 〉i∈(|a|], σ〉]∼ · τ = [〈a, 〈bi 〉i∈(|a|], σ ◦ τ〉]∼.
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Motivation
Analytic (endo)functors on Set

The category of symmetric signatures SigS acts also on the
category Set

∗̈ : SigS × Set −→ Set

〈{An}n,X 〉 7→
∐
n

(An × X n)∼n

where ∼n is an equivalence relation such that for n ∈ ω, a ∈ An

and ~x : {1, . . . , n} → X , and σ ∈ Sn we have

〈a, ~x〉 ∼ 〈a · σ, ~x ◦ σ〉

... and by exponential adjunction we get again a strong monoidal
functor

r̈ : SigS −→ End(Set).

In fact the substitution tensor product on SigS was so defined to
make the fact true.
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Motivation
Monoidal categories and categories of monoids

(Set/ω)S Set/ω

mon((Set/ω)S , ⊗̇) mon(Set/ω,⊗)

?

U ⊗̇

?

U⊗

� mon(FS)

� FS
SetS/ω

mon(SetS/ω, ⊗̈)

?

U ⊗̈

-mon(FS)

-FS

(⊗,I )(⊗̇,İ ) (⊗̈,Ï )

WPb(Set) ↪→ End(Set)

r a U

S = U ◦ r - symmetrization monad

PPPPPPPPPPPPPPPPPPPPq

ṙ

J
J
J
J
J
JĴ

r

�
�

�
�

�
�
�

�
��+

r̈

mon(WPb(Set))

PPPPPPPPPPPPPPPPPPPPq

J
J
J
J
J
JĴ

�
�

�
�

�
�
�

�
��+

?

U

�
@
@
@
@R

S

U

J
J
J
J
J
J]
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Motivation
Monoidal categories and categories of monoids
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PPPPPPPPPPPPPPPPPPPPq

ṙ

J
J
J
J
J
JĴ

r

�
�

�
�

�
�
�

�
��+

r̈

mon(WPb(Set))

PPPPPPPPPPPPPPPPPPPPq

J
J
J
J
J
JĴ

�
�

�
�

�
�
�

�
��+

?

U

�
@
@
@
@R

S

U

J
J
J
J
J
J]

Structure
Image in WPb(Set)

Operads nsa
Polynomial monads

Symmetric Operads
Analytic monads

Signatures nsa
Polynomial functors

Symmetric signatures
Analytic functors

nsa - with non-standard amalgamation
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Motivation
Monoidal categories and categories of monoids

The functor U⊗ : mon((Set/ω) −→ Setω has a left adjoint
F⊗ ` U⊗ and the resulting monad T⊗ of free monoids distributes
over symmetrization monad S. The distributive law is, what Baez
and Dolan call combing trees. This I will explain on a picture:

NB. The functors U ⊗̇, U ⊗̈ are also monadic.
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Motivation
Actions of monoidal categories and categories of actions of monoids

(Set/ω)S × Set Set/ω × Set

act(∗̇) act(∗)

?

V̇ V

?

� act(FS)

� FS × 1
SetS/ω × Set

act(∗̈)

?

V̈

-act(FS)

FS × 1 -

(⊗,I )(⊗̇,İ ) (⊗̈,Ï )

act(ev)

PPPPPPPPPPPPPPPPPPPPq

J
J
J
J
J
JĴ

�
�
�

�
�
�

�
�
��+

?

U

End(Set)× Set

PPPPPPPPPPPPPPPPPPPPq

ṙ × 1

J
J
J
J
J
JĴ

r × 1
�

�
�

�
�
�

�
�
��+

r̈ × 1

Set

?

∗

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
ZZ~

∗̇
��

���
���

���
����

∗̈
�
�
�
��

ev
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2-categories: global (co)completeness and exactness

Some limits and colimits in 2-categories
Let A be a 2-category with finite products. We will consider the
following weighted limits and colimits in A

1 Kleisli and Eilenberg-Moore objects (for monads in A);

2 objects of monoids (for monoidal objects in A);

3 objects of actions along actions (for actions of monoidal
objects of A on 0-cells of A);

Marek Zawadowski
Polynomial and analytic monads, revisited
15 / 57



2-categories: global (co)completeness and exactness

...and moreover we ask for exactness properties:

1 Kleisli objects commute with finite products;

2 Comparison morphisms from Kleisli objects are full and faithful

C D-F

CR

FR
@
@
@R

K
�
�
��

F a U

R = UF

We do not assume A has all of these (co)limits but just in some
interesting cases.
Concerning the exactness properties, we expect them to hold
whenever the constructions are available.
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2-categories: colimits in 0-cells

Reflexive coequalizers in 0-cells A 0-cell C in a 2-category A has
reflexive coequalizer (or is rc) if for any 0-cell X of A the category
A(X , C) has coequalizers of reflexive pairs of morphisms and for
any 1-cell H : Y → X the functor

A(H, C) : A(X , C) −→ A(Y, C)

preserves them.
A 1-cell F : C → D in A preserves reflexive coequalizers (or is rc) if
for any X in A the functor

A(X ,F ) : A(X , C) −→ A(X ,D)

preserves coequalizers of reflexive pairs of morphisms.
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Extensions of representations

Extensions of representations
In a 2-category A:
r representation 1-cell (faithful, conservative), i.e.,
C - ‘abstract’, M - ‘concrete’ and rc.

C

?

r

M

1

2
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Extensions of representations

Extensions of representations
In a 2-category A:
r representation 1-cell (faithful, conservative), i.e.,
C - ‘abstract’, M - ‘concrete’ and rc.

C

?

r

M

��������
R

CR
� FR

-
UR

ṙ

HH
HHH

HHHj

CR
-FR

�
UR

K

�
��

�
��

��*

r̈

�
���

�����
r̈ a K

1 ṙ is full and faithful;

2 r̈ is also expected to be full and faithful with CR keeping some
nice properties of C.
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Kleisli and Eilenberg-Moore monoidal objects

Kleisli and Eilenberg-Moore monoidal objects
A - 2-category with finite products.

Monl(A) - 2-category:

0-cells: monoidal objects in A;

1-cells: lax monoidal 1-cells in A;

2-cells: monoidal 2-cells in A.
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Kleisli and Eilenberg-Moore monoidal objects

Theorem

Let R be an rc-lax monoidal monad on an rc-monoidal category
(C ,⊗, I , α, λ, %) in A (C and ⊗ are rc). If R admits both Kleisli
and Eilenberg-Moore objects for monads in A, then R admits both
Kleisli and Eilenberg-Moore objects in Monl(A) and they are both
standard. The tensor in CR is given by Linton’s formula.

CR C� FR CR�
UR

(⊗,I )

��������R

Contributors to this result: F. Linton (1969), R. Guitar, I.
Moerdijk, P. McCrudden, S. Szawiel, MZ, G. Seal.
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Kleisli and Eilenberg-Moore monoidal objects

(C,⊗, I , α, λ, %) rc-monoidal object in A (C and ⊗ are rc),

X an exponentiable rc-0-cell in A, and

C × X X ,-(?, ψ)

(strong) action of C on X . By exponential adjunction we get a
strong monoidal representation

C XX ,-(r, φ)

which can have a (lax) monoidal right adjoint (r a U)

C XX ,
� U

-
r

inducing a lax monoidal monad R = Ur on C.
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Kleisli and Eilenberg-Moore monoidal objects

Thus we have a situation

� FR
CR C-

UR

-FR

�
UR

CR
(⊗,I )

(⊗̇,İ ) (⊗̈,Ï )

XX

PPPPPPPPPPPPPPPPPPPPq

ṙ

J
J
J
J
J
JĴ

r

J
J
J
J
J
JJ]

U

�
�
�

�
�
�

�
�
��+

r̈

�
�
�
�
�
�
�
�
��3

K

��������R

If free ⊗-monoids exist, i.e., U⊗ has a left adjoint, then the induced
monad T ⊗ on C distributes over R, i.e., we have a distributive law:

κ : T ⊗R −→ RT ⊗
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Kleisli and Eilenberg-Moore monoidal objects

Thus we have a situation

mon(CR, ⊗̇) mon(C,⊗)

?

U ⊗̇

?

U⊗

� F̃R
-

ŨR

mon(CR, ⊗̈)

?

U ⊗̈

-F̃R
�

ŨR

mon(XX )

PPPPPPPPPPPPPPPPPPPPq
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J
JĴ
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J
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�
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�
�

�
�
��+
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�
�
�
�
�
�
�
��3
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?
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� FR
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�
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Kleisli and Eilenberg-Moore actions of monoidal objects

All the above lifts to actions of monoidal objects. First we lift the
Kleisli and Eilenberg-Moore objects to the lax slice Monl(A)/lXX

CR C� FR
-

UR
CR

-FR
�

UR(⊗,I )(⊗̇,İ ) (⊗̈,Ï )

XX

PPPPPPPPPPPPPPPPPPPPq

ṙ

J
J
J
J
J
JĴ

r

J
J
J
J
J
JJ]

U

�
�

�
�

�
�
�

�
��+

r̈

�
�
�
�
�
�
�
�
��3

K

XX
?

r

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
ZZ~

ṙ

�
���

���
���

�����

r̈

�
�
�
��

id
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Kleisli and Eilenberg-Moore actions of monoidal objects

Then we move this diagram to the isomorphic 2-category of
actions ActlMonl(A,X ) of monoidal objects in A on X

CR ×X C × X� FR × 1
-

UR × 1
CR ×X

-FR × 1
�

UR × 1

XX ×X

PPPPPPPPPPPPPPPPPPPPq

ṙ × 1

J
J
J
J
J
JĴ

r × 1

J
J
J
J
J
JJ]

U × 1

�
�

�
�

�
�
�

�
��+

r̈ × 1

�
�
�
�
�
�
�
�
��3

K × 1

X
?

∗

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
ZZ~

∗̇
�
���

���
���

�����

∗̈
�
�
�
��

evX
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Kleisli and Eilenberg-Moore actions of monoidal objects

Finally, we can take the objects of actions along actions

CR ×X C × X

act(∗̇) act(∗)

?

V
V̇

?

� F̃R
-

ŨR

� FR × 1
-

UR × 1
CR ×X

act(∗̈)

?

V̈

-F̃R
�

ŨR

FR × 1 -

UR × 1
-

(⊗,I )(⊗̇,İ ) (⊗̈,Ï )

act(ev)

PPPPPPPPPPPPPPPPPPPPq
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JĴ
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JJ]

U
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�
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�
�
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�
�
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˜̈̃
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�
�
�
�
�
�
�
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U
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�
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Examples: Joyal

Analytic and polynomial endofunctors on slices of Set
2-category Fib/Set :

0-cells: fibrations over Set,

1-cells: functors commuting over the base
(Fact of life: substitution tensor is NOT cartesian!),

2-cells: vertical natural transformations.

Burroni fibration of signatures

Gph(M)

Set
?

pM

O M(O)

A

γ
�

�
�	

δ
@
@
@R

O
?

M - is the free monoid monad on Set.
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Examples: Joyal

The tautologous action of Burroni fibration of signatures

Gph(M)×Set Set
→ Set→-?

Set

@
@
@R

cod
�

�
�	

is defined on objects by

O M(O)

A

γ
�

�
�	

δ
@
@
@R

X

O
?
d

A ? X

O
?

-

where the right vertical arrow in the above diagram is the
composite of the upper horizontal arrows in the following diagram

M(O) M(X )�
M(d)

A A ? X�

?
δ

?

O �
γ

in which the square is a pullback.
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Examples: Joyal
Images of the extensions

By the exponential adjunction, we get a strong monoidal morphism
of (lax) monoidal fibrations

Gph(M) Exp(Set→)-r

Set

pM
@
@
@R

pexp
�

�
�	

with r conservative but not full even on isomorphisms. r has a
right adjoint U (in Fib/Set) and the induced monad F is

F(A, ∂)n =
∐
m∈ω

F(m, n)× Am

for a signature (A, ∂) in Gph(M)O , n ∈ ω, n = {1, . . . , n}.
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Examples: Joyal

The monad F has various submonads including symmetrization
submonad S related to subcategory B (of finite sets and
bijections) of F.

S(A, ∂)n =
∐
m∈ω

B(m, n)× Am = Sn × An

Sn -symmetric group.
This monad gives a finer extension of the representation on the
category of signatures. It gives rise to polynomial (finitary)
functors with cartesian natural transformations as Kleisli extension
and analytic (finitary) functor with weakly cartesian natural
transformations as Eilenberg-Moore fibration.
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Opetopic sets through Burroni fibrations

Relative Burroni fibrations and relative T -categories
The construction of a lax monoidal fibration of T -graphs can be
performed even on a fibred monad on a fibration. Suppose
p : E → B is a fibration such that the fibres of p have pullbacks.
Moreover (T , η, µ) is a monad on the category E so that T
commutes over the base

E E-T

B

p@
@R

p�
�	

and η, µ are fibred natural transformations (i.e., their components
lie in the fibres of p).
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Opetopic sets through Burroni fibrations

Having such data we can repeat the construction of the category
of T -graphs but restricting the objects to such spans

O T (O)

A

γ �
�	 δ@

@R

that are in fibres of p (i.e., p(γ) = p(δ) = 1p(O)). The morphisms
are defined as before. In this way, we get a relative Burroni
fibration pT : Gph(T , p)→ E of T -graphs over p. Clearly, pT is a
lax monoidal fibration with the tensor structure defined as before.
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Opetopic sets through Burroni fibrations

Thus we have a fibration of monoids with a forgetful to Gph(T , p)
as in the diagram

Gph(T , p) Mon(T , p)� UT
��

���
�����?

pT

E

B
?

p

qT

of functors and categories. As for any category C, the functor
! : C −→ 1 into the terminal category 1 is a fibration, this
construction is a generalization of the previous one.
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Opetopic sets through Burroni fibrations

Remark We can also define a basic fibration cod : E→,p → E
relative to a fibration p : E → B, so that the objects of E→,p are
morphisms of E in fibres of p and morphisms are commuting
squares. Then, as previously for the Burroni fibrations, we have a
tautologous action the lax monoidal fibration pT : Gph(T , p)→ E
on a fibration cod : E→,p → E

Gph(T , p)×E E→,p E→,p-?(T ,p)

E

@
@
@
@R

cod
�

�
�
�	

If we take the exponential adjoint of this morphism, as before, we
obtain a (relative) representation of relative T -graphs and relative
T -categories.
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Opetopic sets through Burroni fibrations

Free relative T -categories
In his thesis T. Leinster has given a reasonable sufficient conditions
for a cartesian monads T so that the forgetful functor UT defined
above has a left adjoint and permitting to iterate the construction
in the terminal fiber.

NB. In fact this is a joint effort of at least J. Adamek, A. Burroni,
H.J. Baues, M. Jibladze, A.Tonks, and G. M. Kelly.

Below we give a characterization of those fibrations p and fibred
monads T on them for which one can iterate the process of taking
T -graphs over a fibration p. In the exposition we use ideas from all
the mentioned papers.
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Opetopic sets through Burroni fibrations

The notions of a suitable fibrations and a fibrewise suitable monad
are very much inspired by the notions of a suitable category and a
suitable monad, respectively, proposed by T. Leinster in his book.

The main difference of our approach with respect to that of T.
Leinster is that we iterate whole fibrations over fibrations and get
as a final result the category of opetopic sets, whereas T.
Leinster’s the construction is done fibre by fibre and gives the set
of opetopes as a result. From the perspective of our construction
this set of opetopes is the set of cells in the terminal opetopic set.
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Opetopic sets through Burroni fibrations

We say that a fibration p : E → B is suitable if and only if

1 p has fibred pullbacks, finite coproducts, and filtered colimits,

2 finite coproducts and filtered colimits are universal in fibres of
p,

3 filtered colimits commutes with pullbacks in fibres of p.
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Opetopic sets through Burroni fibrations

Let p : E → B be a fibration with fibred pullbacks. A monad
(T , η, µ) on E is cartesian relative to p if and only if (T , η, µ) is a
fibred monad over p (i.e., p ◦ T = p, p(η) = 1p = p(µ)) and the
restriction of the monad (T , η, µ) to every fibre of p is a cartesian
monad on this fibre.

Marek Zawadowski
Polynomial and analytic monads, revisited
37 / 57



Opetopic sets through Burroni fibrations

Let p : E → B be a suitable fibration. We say that a monad
(T , η, µ) on E is suitable relative to p if and only if (T , η, µ) is
cartesian relative to p and T preserves filtered colimits in the fibres
of p.

The following theorem is the key to the definition of the tower of
fibrations that defines the category of opetopic sets.
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Opetopic sets through Burroni fibrations

Theorem

Let (T , η, µ) be a suitable monad relative to a suitable fibration p : E → B. Then

1 the fibration pT over p is again suitable;

2 the forgetful functor UT is monadic;

3 the monad (T̃ , η̃, µ̃) induced by the adjunction FT a UT is suitable relative to pT .

Gph(T , p) Mon(T , p)� UT

��
���

�����?

pT

E

B

?

p

qT�� -
T

�� -
T̃
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Opetopic sets through Burroni fibrations

Using the above Theorem 1, and starting with any fibrewise
suitable monad T0 on a fibrewise suitable fibration p : E0 → B, we
can build a tower of (fibrewise suitable) lax monoidal fibrations and
fibrewise suitable monads as in the diagram below:

...
...

E3 = Gph(T2, pT1) Mon(T2, pT1)�
UT2

���
���

����?

pT2 qT2

�� -
T3 = T̃2

E2 = Gph(T1, pT0) Mon(T1, pT0)�
UT1

�
���

���
���?

pT1 qT1

�� -
T2 = T̃1

E1 = Gph(T0, p) Mon(T0, p)�
UT0

���
���

����?

pT0

E0

B
?

p

qT0�� -
T0

�� -
T1 = T̃0

by interation of the construction.
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Opetopic sets through Burroni fibrations

The identity monad 1Set on Set is of course a fibrewise suitable on
the fibrewise suitable fibration ! : Set → 1, where 1 is the terminal
category. Thus we can build a tower of fibrations, as above,
starting form this fibration. We obtain

...
...

O3 = Gph(T2, pT1) Mon(T2, pT1)�
UT2

�
���

���
���?

pT2 qT2

�� -
T3 = T̃2

O2 = Gph(T1, pT0) Mon(T1, pT0)�
UT1

��
���

�����?

pT1 qT1

�� -
T2 = T̃1

O1 = Gph(T0, !) Mon(T0, !)�
UT0

���
���

����?

pT0

O0 = Set

1
?

!

qT0�� -
T0 = 1Set

�� -
T1 = T̃0
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Opetopic sets through Burroni fibrations

An opetopic set is an infinite sequence of objects {An}n∈ω such
that

1 An is an object in On,

2 An+1 lies in the fibre over An, i.e., pTn(An+1) = An,

for n ∈ ω. A morphism of opetopic sets
{fn}n∈ω : {An}n∈ω −→ {Bn}n∈ω is a family of morphisms such
that

1 fn : An −→ Bn is a morphism in On

2 fn+1 lies in the fibre over fn, i.e., pTn(fn+1) = fn,

for n ∈ ω.
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Opetopic sets through Burroni fibrations

Unraveling this definition, we see that an opetopic set (in the
above sense) is an ∞-span as the diagram below:

...
...

A3 T3(A3)

?

γ2

?

δ2

@
@
@
@
@@R

�
�	

�
��

γ2 δ2

A2 T2(A2)

?

γ1

?

δ1

@
@
@
@
@@R

�
�	

�
��

γ1 δ1

A0 T0(A0)

A1 T1(A1)

?

γ0

?

δ0

@
@
@
@
@@R

�
�	

�
��

γ0 δ0

with

γn ◦ γn+1 = γn ◦ δn+1, δn ◦ γn+1 = δn ◦ δn+1

γn ◦ γn+1 = γn ◦ δn+1, δn ◦ γn+1 = δn ◦ δn+1

for n ∈ ω.
Marek Zawadowski

Polynomial and analytic monads, revisited
43 / 57



Opetopic sets through Burroni fibrations

To describe the terminal opetopic set A, we need to start with
A0 = 1 the terminal object in Set. Then choose An+1 as the
terminal object in the fibre of pTn over An. Thus A1 is 1 and An+1

for n > 0 can be taken as the limit in the following diagram:

An+1

?

γn

@
@
@
@
@@R

δn

An−1 Tn−1(An−1)

An Tn(An)

?

γn−1

?

δn−1

@
@
@
@
@@R

�
�	

�
��

γn−1 δn−1

The disjoint union of the sets {An}n∈ω is the set of opetopes in
the sense of T. Leinster.
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Opetopic sets through Burroni fibrations

Theorem

The category of opetopic sets so defined is equivalent to the
category of many-to-one polygraphs.

NB. This category of opetopic sets can defined as the limit of the
diagram of categories On.
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Examples: Fiore-Gambino-Hyland-Winskel

Analytic endofunctors on presheaf categories

Let M be the monad on Cat for strict monoidal categories.
(Modified) Burroni fibration of signatures over Cat

Gph(M)

Cat
?

pM

O M(O)

A

γ
�
�
�	

δ
@
@
@R

O
?

two-sided discrete bifibration
(A : Oop ×M(O)→ Set)

NB. M - preserves (op)fibrations and two-sided discrete fibration.
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Examples: Fiore-Gambino-Hyland-Winskel

The tautologous action of modified Burroni fibration of
signatures

Gph(M)×Cat DFib DFib-?

Cat

@
@
@R

cod
�

�
�	

is defined on objects (as before) by

O M(O)

A

γ
�

�
�	

δ
@
@
@R

X

O
?
d

A ? X

O
?

-

from the diagram

M(O) M(X )�
M(d)

A A ? X�

?
δ

?

O �
γ

NB. The fibres of cod : DFib → Cat presheaf categories.
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Examples: Fiore-Gambino-Hyland-Winskel
Images of the extensions

By the exponential adjunction, we get a strong monoidal morphism
of (lax) monoidal fibrations

Gph(M) Exp(DFib)-r

Cat

pM
@
@
@R

pexp
�

�
�	

with r conservative but not full even on isomorphisms. r has a
right adjoint U (in Fib/Cat).
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Examples: Fiore-Gambino-Hyland-Winskel

For H : Ô → Ô, U(H) is the two-sided discrete fibration

O M(O)

U(H)

γ
�

�
�	

δ
@
@
@R

corresponding to

H : Oop ×M(O) −→ Set

which is an adjoint to

M(O)
ιO−→ Ô

H−→ Ô
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Examples: Fiore-Gambino-Hyland-Winskel

The induced monad F = Ur is

F(A, γ, δ)(p, ~p) =
∐

m∈ω, σ:m→n, q1,...,qm∈O
A(p, ~q)×

∏
i∈m

O(qi , pσ(i))

for a signature (A, γ, δ) in Gph(M)O , where ~p = 〈p1, . . . , pn〉,
p, pi ∈ O.
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Examples: Fiore-Gambino-Hyland-Winskel

As before, the monad F has various submonads including
symmetrization submonad S related to subcategory B (of finite
sets and bijections) of F.
The induced monad F = Ur is

S(A, γ, δ)(p, ~p) =
∐

σ:n→n∈Sn, q1,...,qn∈O
A(p, ~q)×

∏
i∈m

Oiso(qi , pσ(i))

for a signature (A, γ, δ) in Gph(M)O , where ~p = 〈p1, . . . , pn〉,
p, pi ∈ O.
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Examples: Fiore-Gambino-Hyland-Winskel

The monad S gives, again, a finer extension of the representation
on the category of signatures. The image of the extended
representation r̈ consists of the analytic (endo)functors on presheaf
categories of Fiore-Gambino-Hyland-Winskel

Gph(M)S Gph(M)
� FS

-
US

Gph(M)S
-FS

�
US(⊗,I )(⊗̇,İ ) (⊗̈,Ï )

Exp(DFib)

PPPPPPPPPPPPPPPPPPPPq

ṙ

J
J
J
J
J
JĴ

r

J
J
J
J
J
JJ]

U

�
�

�
�

�
�
�

�
��+

r̈

�
�
�
�
�
�
�
�
��3

K

Cat

?

r

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
ZZ~

���
���

���
���

���

�
�
�
��
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More Examples

1 Batanin-like context: take the Burroni fibration for the strict
ω-category monad over the category of ω-graphs.
NB. Without additional modifications the notion of analytic
functor does not add anything new as the representation is
already full on isomorphisms.

2 Kock-Gambino: diagrams (defining polynomial functors) in a
lcc category C form a fibration over C that acts on basic
fibration over C. We get a representation by an exponential
adjoint...

3 Joyal-Gambino...
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The end

Thank You for Your Attention!
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