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References for the course

Most of the material is directly adapted from the HoTT book:

Homotopy Type Theory: Univalent Foundations of Mathematics

https://homotopytypetheory.org/book.

We also rely (Grothendieck equivalence, circle) on the excellent notes of
Hugo Moeneclaey:

Lecture notes on synthetic homotopy theory,

available from https://github.com/herbelin/LMFI-HoTT.
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What is type theory?

The origin is the work on solving the paradoxes in the foundations of
mathematics (beginning of the twentieth century):

{a | a 6∈ a}

leads to contradictions! Indeed let b be this set, and suppose b ∈ b. Then
by definition of b, b 6∈ b: contradiction!

Russell invented type theory to put discipline in this jungle. One can only
form sets of the form {a ∈ A | some property holds}. Here A is a type.

The modern forms of type theory start with Church (λ-calculus), until its
present form know as Martin-Löf dependent type theory (1970’s), for
which we provide an introduction in this course.
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Homotopy type theory

Dependent type theory has received a new impetus in the late 2000’s
under the influence of Fields medallist Voevodsky, who found an
interpretation of types as topological spaces.

This has led to Homotopy type theory, which we shall discuss in this
course.
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Some simple types known to the programmers

• nat is a type, and 3 : nat is an element of that type.

• nat× nat is a type, and (3, 4) is an element of this type.

• nat→ nat is a type and the function mapping x to 2×x is an element
of this type. Standard notations are

x 7→ 2×x (standard in mathematical texts)
λx .(2×x) (λ-calculus)

A function can be applied to an argument: (λx .(2×x)) 7 ≡ 14
More slowly. we have

(λx .(2×x)) 7 ≡ 2×7

and the rest is primary school mathematics!
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λ-calculus

The λ-calculus forms the core of functional programming languages like
OCaml and Haskell:

M ::≡ x || λx .M || MM

Definitional equality (oriented as reduction):

(λx .M)N → M[x ← N]

Warning: renaming of bound variables may be needed! Consider
M = λx .λy .x + y . Then the intended conversion/value of M y x is y + x .
But blind application of the conversion gives

My → λy .y + y and hence (My)x → (λy .y + y)x → x + x

The capture of the red occurrence of y should be avoided. The correct
reduction is (α-conversion):

(My)x → (λz .y + z)x → y + x
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The wildness of untyped λ-calculus

In λ-calculus too, strange things happen! Consider

∆ = λx .xx

(self-application is permitted!). Then we have ∆∆→ ∆∆! Slowly:

∆∆ ≡ (λx .xx)∆→ ∆∆

Hence computations may not terminate, or may not even produce some
interesting infinite value....

To solve this problem, Church has introduced typed λ-calculi. For
example, to type xx , we need to give a type A→ B to x and a type A to x
The slogan is that well-typing guarantees termination!
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Examples of dependent types

The type Fin(n) (defined in the second lecture) is the type of finite sets of
cardinal n. For example,

Can(n) :≡ {0n, . . . (n − 1)n} : Fin(n)

and we can define the map max := n 7→ nn+1. We have

max : Πn:N Can(n + 1)

We also have the type Σn:N Can(n + 1), whose elements are pairs of a
number n and an element of Can(n + 1). For example:

(4, 25) : Σn:N Can(n + 1)

Other example: List(n,A) (lists of length n of elements of A), with

nil : List(0,A) and cons : A× List(n,A)→ List(n + 1,A)
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Σ-types versus product types, Π-types versus function types

If B does not depend on A, then Σx :AB is A× B

(think of A× B as B + B + . . .+ B for cardinal of A copies of B).

If B does not depend on A, then Πx :AB is A→ B, also written BA

(think of BA as B × B × . . .× B for cardinal of A copies of B).
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The star of (homotopy) type theory

The most important example of dependent type in Martin-Löf type theory
is the identity type. If x : A and y : A, then

IdA(x , y) , also written x =A y , is a type

When x = y , there is a term (constructor) of this type:

refl(x) : x =A x

When x =A y is inhabited (i.e., there exists p : x =A y), we say that x
and y are propositionally equal.

One can think of the identity type as the equality predicate in first order
logic. But the identity type is best understood in the homotopy
interpretation of type theory:

• Types are spaces,
• a : A is a point in space A,
• p : a =A b is a path from a to b,
• h : p =a=A b q is a “path”, or homotopy between the paths p and
q.
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Homotopical reading of identity types
Homotopieal heading of identify types

A

Ë y

p : x -Af

H :p = x=Ay9

\

p, q : x =A y
H : p =x=Ay q
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The judgments of type theory

• The main judgment is a : A.
A type A is itself an element of a very large type, called U = U0, for the
universe. But U is also an element of an even larger type U1, etc., so there
is a hierarchy of universes. (Setting U : U would lead back to paradoxes!)

• Actually, judgments are in context, like for example

x : N ` (2× x) : N

A context is a list of type declarations. In the setting of dependent types,
the order of these declarations matters, as types may depend on the
previously declared variables, for example,

x : N, y : Fin(x) ctx

(meaning that it is a valid context), while y : Fin(x), x : N does not make
sense.

• Finally, definitional (or judgmental) equality is also typed:

Γ ` a ≡ b : A
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Informal conventions

In summary, there are three judgments:

Γ ctx Γ ` a : A Γ ` a ≡ b : A

We often omit Γ (or rather its “dummy” part that is not relevant for the
discussion), and we also write a : A for ` a : A.

We also often write A to mean that there exists a : A: think of A as a
(provable) formula, and of a as a proof of A.
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Some typing rules

Judgments are the base of the formal typing system of type theory. One
derives judgments from other judgments. They are like phrases, while
types or terms are more like nouns or verbs...

Γ ` A : U
Γ, x : A ctx

Γ ` a : A Γ ` A ≡ B : U
Γ ` a : B

(i < j)

Ui : Uj

A : Ui
A : Ui+1

14 / 131



Two kinds of equality

We have seen

• The definitional equality, for which the notation is ≡. In these
lectures, we also use the symbol :≡, which stresses more the
definitional side, especially when defining macros.

• The propositional equality a =A b.

Let us stress the difference:

• The definitional equality is set up at the level of judgments:

Γ ` a ≡ b : A

This is why it is also called judgmental.

• The propositional equality is set up at the level of types:

x : A, y : A ` (x =A y) : U

Definitional equality is stronger, since if a ≡ b, then (a =A b) ≡ (a =A a),
and hence refl(a) : a =A b.
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How to prove equalities

• Definitional equality a ≡ b : A: Usual business of equational reasoning:
go from a to b by a sequence of definitional equalities as provided by the
various type formers (starting with the β-rules and the definitional
equalities associated with induction operators, see below)

• Propositional equality a =A b: Produce a term (or proof, or witness)
p : (a =A b). Such a witness is often obtained by applying an adequate
induction operator to an adequate type family of equality types (see the
emblematic case of surjective pairing below).
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Families of types

Fin(n) is a family of types, over N. More precisely, we have

n : N ` Fin(n) : U
We can also write

Fin : N→ U
Successive dependencies: if A : U and B : A→ U , the type of a family C
depending on A and B is

C : Πx :A (B(x)→ U)

We have:

x : A , y : Bx ` Cxy : U and hence x : A , y : Bx , z : Cxy ctx

Alternatively, we can type C as

C : ΠΣx :A(B(x) U
(cf curryfication in functional programming:

A→ (B → C ) versus (A× B)→ C
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The Π-type

This is the dependent version of the function type.

• If A : U and B : A→ U , then Πx :AB x : U .

• If x : A ` b : B x , then λx .b : Πx :AB x .

• if a : A and b : Πx :AB, then b a : B a

• We require the definitional equality (λx .b)a ≡ b[x ← a]

For A : U and B : U , we define

A→ B :≡ Πx :A(λx .B)x ≡ Πx :AB
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The swap function

Let

• A : U , B : U , C : A→ B → U ,

• h : Πx :AΠy :B .Cxy

We want
swapAB C h

to swap the arguments of h (which is possible, because neither B depends
on A nor A depends on B).

We set

swap :≡ λAλBλCλhλyλx .h x y :
ΠA:UΠB:UΠC :A→B→U ((Πx :AΠy :B C x y)→ (Πy :BΠx :A C x y))

Such a function is called polymorphic.
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The coproduct type

• If A : U and B : U , then A + B : U .

• If a : A (resp. b : B), then inl a : A + B (resp. inr b : A + B).

Induction operator: We postulate

indA+B : ΠC :(A+B)→U (Πa:AC (inl a))→ (Πb:BC (inr b))→ Πz:A+BC z

(intuition: every inhabitant of A + B comes from A or B).

• We require the definitional equalities

indA+B C f g (inl a) ≡ f a indA+B C f g (inr b) ≡ g b
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The type of booleans

It is the special case 1 + 1. It can be introduced directly:

• 2 : U
• The constructors are 02 : 2 and 12 : 2.

• Induction operator:

ind2 : ΠC :2→U (C 02)→ (C 12)→ Πz:2C z

(intuition: every boolean is either 02 or 12).

• We require the definitional equalities

ind2 C c0 c1 02 ≡ c0 ind2 C c0 c1 12 ≡ c1

We also spell out the recursion operator:

rec2 : ΠC :U C → C → (2→ C )

rec2 C c0 c1 02 ≡ c0 rec2 C c0 c1 12 ≡ c1
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The Σ-type

This is the dependent version of the product type.

• If A : U and B : A→ U , then Σx :AB x : U .
• If a : A and b : B a, then (a, b) : Σx :AB x .
We bootstrap the induction operator:

recA×B : ΠC :U (A→ B → C )→ ((A× B)→ C )
indA×B : ΠC :(A×B)→U (Πx :A,y :BC (x , y))→ Πz:A×BC z
indΣx :AB x : ΠC :(Σx :AB x)→U (Πx :A,y :B xC (x , y))→ Πz:Σx :AB xC z

(intuition: every inhabitant of Σx :AB x is a pair)
• We require the definitional equality indΣx :AB C f (a, b) ≡ f a b.

For A : U and B : U , we define

A× B :≡ Σx :A(λx .B)x ≡ Σx :AB

We can complete the list by spelling out the non dependent version of
indΣx :AB x :

recΣx :AB x : ΠC :U (Πx :A(Bx → C ))→ ((Σx :AB x)→ C )
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Projections associated with Σ-types

We set

pr1 : (Σx :ABx)→ A pr1 :≡ indΣx :ABx (λz .A) (λxλy .x)
pr2 : Πa:Σx :ABxB(pr1a) pr2 :≡ indΣx :ABx (λz .B (pr1z)) (λxλy .y)

Slowly, setting C :≡ λz .B (pr1z), indΣx :ABx (λz .B (pr1z)) expects an
argument of type Πx :AΠy :BxC (x , y) ≡ Πx :AΠy :BxBx , so that the definition
of pr2 type-checks.

The following definitional equalities hold:

pr1(x , y) ≡ x pr2(x , y) ≡ y

Another equality that we could hope for is the equality between
(pr1z , pr2z) and z (for z : Σx :ABx): it holds, but only propositionally
(surjective pairing) .
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Surjective pairing

Let
C :≡ λz . ((pr1z , pr2z) =Σx :ABx z)

We have, for x : A and y : Bx , that refl((x , y)) : (x , y) =Σx :ABx (x , y).

But we have (x , y) ≡ (pr1(x , y), pr2(x , y)). Hence refl((x , y)) : C (x , y).

We set

surjpair :≡ indΣx :ABxC (λx y .refl((x , y))) : Πz:Σx :ABxCz

We have:
surjpair(z) : (pr1z , pr2z) =Σx :ABx z
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The types 1 and 0

They are the 0-ary versions of the product and coproduct constructors,
respectively.

• 1 : u, ? : 1, and the induction operator

ind1 : ΠC :1→U (C ?)→ Πz:1(C z)

• 0 : u, there is no constructor, and there is an induction operator

ind0 : ΠD:0→UΠx :0(D x)

.

As an illustration, we see that

x : 0, y : 0 ` ind0D x : x =0 y

where D x :≡ (x =0 y) (y fixed). With anticipation, this says that 0 is a
proposition.
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The type of natural numbers

• N : U
• The constructors are given by 0 : N and succ : N→ N
• Induction operator:

indN : ΠC :N→U (C 0)→ (Πn:N(C n→ C (succ n)))→ Πn:NC z

We require the definitional equalities

indN C c0 cs 0 ≡ c0 indN C c0 cs (succ n) ≡ cs n (indN C c0 cs n)

• Non dependent version (primitive recursion):

recN : ΠC :U C → (N→ (C → C ))→ (N→ C )

• There is also the (seemingly) more rudimentary iteration:

iter : ΠC :U C → (C → C )→ (N→ C )

with iterC c0 cs (succ n) ≡ cs(iterC c0 cs n).

• There is also dependent iteration, which is to iter what indN is to
recN.
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Defining n-ary functions by primitive recursion

Primitive recursive functions have typically n arguments. For n = 2, one
would like to have (with g : N→ C and h : (N× C × N)→ C ):

f :≡ recN×N C g h : N× N→ C

such that
f (0,m) :≡ g m
f (succn,m) :≡ h(n, f (n,m),m)

This can be encoded by the unary version. The trick is to define
recN×N C g h as a function from N to C ′ :≡ N→ C :

recN×N C g h :≡ recN C ′ g (λnλf λm.h(n, fm,m))
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Encoding recursion from iteration (propositionally)

We have, for c ′0 : D and c ′s : D → D: iterD c ′0 c
′
s : N→ D. The trick to

encode recN c0 cs , with c0 : C and cs : N→ C → C , is to gather all the
functions (cs n) into a single function. So we set:

D :≡ N× C c ′0 :≡ (0, cO) c ′s(n, c) :≡ (succ(n), cs n c)

We define recN C c0 cs n :≡ pr2(iterD c ′0 c
′
s n).

• One checks easily that recC c0 cs 0 ≡ c0.

• But the other equation holds only propositionally. One establishes:

pr1(c ′sz) = succ(pr1z) (product induction)
pr1(iterD c ′0 c

′
s n) = n (non dependent iteration)

We set a :≡ iterD c ′0 c
′
s n. We get (using surjective pairing):

recN C c0 cs (succ(n)) ≡ pr2(c ′sa)
=C pr2(c ′s(n, pr2a))
≡ pr2(succ(n), cs n (pr2a))
≡ cs n (pr2a)
≡ cs(n, recN C c0 cs n)) 28 / 131



The identity type

• If A : U , then x : A, y : A ` (x =A y) : U .

• Constructor: if a : A, then (refl(a)) : (a =A a).

• Induction operator (path induction):

ind=A
: ΠC :Πx,y :A((x=Ay)→U) (Πx :AC x x refl(x))→ (Πx ,y :AΠp:x=AyC x y p)

(intuition: the only generic element of the identity type is refl).

We require the definitional equality

ind=A
C c x x (refl(x)) ≡ c x
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Path induction (slowly)

• In English, given a family of types C x y p, in order to define a
dependent function in Πx ,y :AΠp:x=AyC x y p, all we need to have is its
restriction to inputs of the form (x , x , refl(x)).
Here it is important to have both x , y variables. Think of x and y sliding
toward each other along p.

• This game of sliding also works if x is fixed (think then of y sliding all
the way to x along p), giving rise to the following other induction principle
(based path induction):

ind′=A
: Πx :AΠD:Πy :A(x=Ay)→U D x (refl(x))→ Πy :AΠp:x=AyD y p

Definitional equality: ind′=A
aD u a (refl(a)) ≡ u.

In English, suppose a : A in A is fixed, and that a family of types D y p
(p : a =A y) is given. In order to define a dependent function in
Πy :AΠp:x=AyD y p, all we need to have is its value u at (a , a , refl(a)).

• If x and y are fixed, then no sliding is possible! At least one must be
variable.
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The interdefinability of ind=A
and ind′=A

ind=A
: ΠC :Πx,y :A(x=Ay)→UΠx :A C x x refl(x)→ Πx ,y :AΠp:x=AyC x y p

ind′=A
: Πx :AΠD:Πy :A(x=Ay)→U D x (refl(x))→ Πy :AΠp:x=AyD y p

One defines ind from ind′ by instantiation:

ind=A
C c x y p :≡ ind′=A

x (C x) (c x) y p

Conversely, in order to define ind′=A
aD d y p, one uses a polymorphic

trick (due to Christine Paulin) to get an appropriate instantiation of ind.
We set

C :≡ λxλyλp.ΠE :Πz:A(x=Az)→UE x (refl(x))→ E y p

and then

ind′=A
aD d y p :≡ ind=A

C (λxλEλe. e) a y p D d
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The general pattern for type constructors

• Formation rules for the new type.

• Introduction rules for the new type, featuring the new constructors:

λx .a (a, b) inl(a) inr(a) 02 12 refl(x)

• Rules specifying how the type is used: application, induction
operators (when the induction operator is applied to a constant type
family, we call it recursion operator).

• Associated definitional (or propositional) equalities.

• Sometimes a uniqueness principle holds (or is assumed)
propositionally: for example surjective pairing, or λx .ax = a.
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Induction principles in a nutshell

indΣx :AB x : ΠC :(Σx :AB x)→U (Πx :A,y :B xC (x , y))→ Πz:Σx :AB xC z

indA+B : ΠC :(A+B)→U (Πa:AC (inl a))→ (Πb:BC (inr, b))→ Πz:A+BC z

ind2 : ΠC :2→U (C 01)→ (C 12)→ Πz:2C z

indN : ΠC :N→U (C 0)→ (Πn:N(N→ (C n)→ (C (succ n))))→ Πn:NC z

ind=A
: ΠC :Πx,y :A(x=Ay)→UΠx :A C x x refl(x)→ Πx ,y :AΠp:x=AyC x y p

ind′=A
: Πx :AΠD:Πy :A(x=Ay)→U D x (refl(x))→ Πy :AΠp:x=AyD y p
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Elementary properties involving identity types

The following properties are easy applications of path induction:

• Paths can be composed (or concatenated) (notation p · q) and inverted
(notation p−1).

• These operations have the structure of a weak groupoid, with refl as
identity:

refl·p = p = p·refl (p·q)·r = p·(q·r) p·p−1 = refl p−1·p = refl

• Functions are functors: if A : U ,B : U , if f : A→ B, and if x , y : A and
p : (x =A y), then we can define

ap f x y p : ((f x) =B (f y)) (abbreviated as (ap f p) or f (p))

by path induction, setting ap f x x (refl(x)) :≡ refl(f x).

But what if f : Πx :A(B x) is a dependent function? We have that
(f x) : (B x) and (f y) : (B y) do not live in the same type... So we must
do something first.
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Composition, inversion, group laws, slowly

Concatenation: For p : x =A y and q : y =A z , to define p · q, we can
apply path induction to p, so that we are left to define refl(x) · q for
q : x =A z . We then apply induction on q, so that we are left to define
refl(x) · refl(x) :≡ refl(x).

Inversion: By path induction on p, we are left to define
(refl(x))−1 :≡ refl(x).

Group laws: Again, by path induction! For example, to prove p · refl = p,
it is enough to exhibit an inhabitant of (refl · refl = refl): take
refl(refl).

Remark on composition We could have defined right away refl · q :≡ q
(rather than starting a new induction on q), and it works, but it is not
symmetric in p, q in that one can only prove p · refl = p (propositional,
not definitional). In summary, we can define composition in three ways,
leading to propositionally equal definitions satisfying differents definitional
equalities:

refl(x) · refl(x) ≡ refl(x) or refl · q :≡ q or p · refl ≡ p

All three definitions are OK!
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Transport

This is probably the most ubiquitous application of path induction.
Consider a type family C : A→ U . We can define the type family

D x y p :≡ (C x)→ (C y)

Then

transportC :≡ (ind=A
D (λx .id(C x))) : Πx ,y :AΠp:(x=Ay)(C x)→ (C y)

We shall write (transportC p) for (transportC x y p).

In English, given p : (x =A y) and u : (C x), (transport p u) transports
u from (C x) to (C y).

We can then define, for f : Πx :A(C x), x , y : A and p : (x =A y):

apd f x y p : ((transport p (f x)) =By (f y))

by apd f x x refl(x) :≡ refl(f x).
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Equivalence of types

We set (pointwise equality)

f ∼A→B g :≡ Πx :A(f x =B g x)

An inhabitant of f ∼A→B g is called a homotopy from f to g .
We say that A,B are equivalent via f : A→ B if there is an inhabitant in
qinv(f ), where

qinv(f ) :≡ Σg :B→A (f ◦ g ∼ id)× (g ◦ f ∼ id)

The function g : B → A is called a quasi-inverse of f . We use the
(personal) notation A

∼←→ B for this.

We shall also consider a weaker notion: two types A and B are logically
equivalent (notation A←→ B) if we can exhibit f : A→ B (written a
A −→ B) and g : B → A.
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Some properties of transport

• We have, by definition, for C : A→ U , x : A and u : (C x):

(transportC (refl(x)) u) ≡ u

One shows by path induction that transport respects composition of paths:

(transportC q) ◦ (transportC p) ∼ (transportC (p · q))

• If C : B → U , f : A→ B, p : (a1 =A a2) and u : (C (f a1)), then

transportC (f (p)) u = tansportC◦f p u

• If A : U and C : A→ U is defined by C x :≡ (a1 =A x) (a1 fixed), then,
for p : (a2 =A a3) and q : (C a2), we have:

transportC p q = q · p
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ap versus apd

If we apply apd for a constant family λx : A.B, then, for f : A→ B and
p : x =A y , apd f p and ap f p do not have the same type:

ap f p : (fx =B fy) apd f x : ((transportλx :A.B p (fx)) =B fy)

But they are related.

• For all b : B x , y : A and p : x =A y , there exists a path

transportconstλx :A.B
p (b) : (transportλx :A.B p b) =B b

This is clear by path induction: since transportλx :A.B refl(x) b ≡ b, we
can choose refl(b).

• we have apd f p = transportconstλx :A.B
p (fx) · ap f p.

We prove this by path induction. We are reduced to prove

apd f refl(x) = transportconstλx :A.B
refl(x)(fx) · ap f refl(x)

which by definition is exactly

refl(f (x)) = (refl(f (x)) · refl(f (x))) ≡ refl(f (x)),

so that we can choose refl(refl(f (x))) as witness. 39 / 131



Some properties of the types f ∼ g

•. Homotopy is an equivalence relation. We show transitivity. Let
H : (f ∼ g) and K : (g ∼ h). Then

λx .((H x) · (K x)) : (f ∼ h) (using path concatenation)

• If H : (f ∼A→B g) and k : A′ → A. Then

H ◦ k :≡ λx ′.H(k x ′) : (f ◦ k ∼A′→B g ◦ k)

• If H : (f ∼A→B g) and h : B → B ′. Then

λx .h(Hx) : (h ◦ f ∼A→B′ h ◦ g)
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An example of logical equivalence

We set

biinv(f ) :≡ (Σg :B→A(f ◦ g ∼ id))× (Σh:B→A(h ◦ f ∼ id))

We have
qinv(f )←→ biinv(f )

Proof: In one direction, if g is a quasi-inverse, then take g , h to be both g .
Conversely, we note that if f ◦ g ∼ id and h ◦ f ∼ id, then (using the
properties listed in the previous slide)

g ∼ (h ◦ f ) ◦ g ∼ h ◦ (f ◦ g) ∼ h,

and hence g ◦ f ∼ h ◦ f ∼ id, establishing (qinv f ) via g .
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Characterising =A×B
We have:

(x =A×B y)
∼←→ ((pr1 x =A pr1 y)× (pr2 x =B pr2 y))

We have

λp.(pr1(p), (pr2(p)) : (x =A×B y)→ (pr1 x =A pr1 y)×(pr2 x =B pr2 y)

For defining a map pair= in the other direction, we use induction for
cartesian products at two levels:

• assume that x ≡ (a, b) and y ≡ (a′, b′),

• assume that we have p : (a =A a′) and q : (b =B b′),

and then path induction: we can assume p, q to be refl, and set

(pair=) ((refl(a)), (refl(b))) :≡ refl(a, b)

And one needs to show that pair= is a quasi inverse of
λp.((appr1 p), (ap pr2 p)): do path inductions in the right order!
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Characterising =Σx :AB x

We have similarly an equivalence between (w =Σx :A(B x) w
′) and

Σp:(pr1 w) =A (pr1w
′)((transport p (pr2 w)) =B (pr1 w

′) (pr2 w
′))

We write again pair= for the quasi-inverse.
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Characterising =1

We have
(x =1 y)

∼←→ 1

Let x : 1, y : 1. We have λp.? : (x =1 y)→ 1. In the converse direction,
let B : 1→ U be the constant family defined by (B z) :≡ (x =1 y). (x , y
fixed). Then, by induction on 1, all we need is an inhabitant �1 : (x =1 y).

For this, we need to be generic in x , y . We shall exhibit an inhabitant
�2 : Πx ,y :1(x =1 y).

We set (C x) :≡ Πy :1(x =1 y). By induction on 1, all we need is an
inhabitant �3 : (C ?) ≡ Πy :1(? =1 y).

We set D y :≡ (? =1 y). By induction on 1, we can set

�3 :≡ (ind1D (refl ?))
�2 :≡ (ind1 C �3)
�1 :≡ (�2 x y)

Finally (ind1 B �1) : 1→ (x =1 y) is the desired inverse.
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Function extensionality and univalence

We would like to characterise the equality for function types (and Π-types)
and for universes. For this, we need additional axioms, which are:

• Function extensionality: We assume

(f =A→B g)
∼←→ (f ∼A→B g)

• Univalence: We set

A ∼= B :≡ Σf :A→B biinv(f )

and write witnesses of this type as (f , g , h, ε, η). Then we assume

(A =U B)
∼←→ (A ∼= B)

where in both cases the equivalence is via the canonical morphism from
the equality type to its characterisation.

Note that we used biinv and not qinv in the definition of A ∼= B. More
on this later.
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Canonical morphisms (function extensionality, univalence)

• The family happly(f , g) of canonical morphisms from (f =A→B g) to
(f ∼A→B g) is defined by path induction: when f and g coincide, then we
set

happly(f , f )(refl(f )) :≡ λx .refl(f (x)) : (f ∼A→B f )

• The canonical morphism idtoeqv : (A =U B)→ (A ∼= B) is defined
using transport for the family idU : U → U . Let p : (A =U B). We have

transportidU p : A→ B
transportidU p−1 : B → A
(transportidU p) ◦ (transportidU p−1) ∼ (transportidU refl)
(transportidU p−1) ◦ (transportidU p) ∼ (transportidU refl)

Therefore we can set idtoeqv p to be

((transportidU p), (transportidU p−1), (transportidU p−1), ε, η)

where ε, η witness the above two pointwise equalities (recall that
(transportidU refl) = id).
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Zoom on idtoeqv

Slowly, we establish

(transportidU p) ◦ (transportidU p−1) ∼ (transportidU refl)

in two steps:

- We have already established

(transportidU p) ◦ (transportidU p−1) ∼ (transportidU (p · p−1))

- We show that if p = q, then

(transport p) ∼ (transport q)

We fix p, x and define

C p q H :≡ (transport p x) = (transport q x)

By path induction, it is enough to find an element of (C p p refl):
take refl(transport p x).
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Two properties of ua

We recall that by definition of idtoeqv, we have, for p : A =U B:

transportidU p ≡ pr1(idtoeqv p)
transportidU p−1 ≡ pr2(idtoeqv p) ≡ pr3(idtoeqv p)

where pr1 and pr2 retrieve the two quasi-inverse fonctions (the second
one being repeated to get a term of biinv type). If follows that for all
e ≡ (f , g , h, ε, η) : A ∼= B we have

transportidU (ua e) = f
transportidU (ua e)−1 = g = h

Slowly, we have, e.g.:

transportidU (ua e) = pr1(idtoeqv (ua e)) = (pr1 e) = f
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An application of univalence

In usual mathematics, if f is a bijection from A to B, and if we have a
semigroup structure on A, with multiplication m : A× A→ A, we can
define a binary operation on B, by setting

m′(b1, b2) = f (m(f −1(b1), f −1(b2)))

We can then prove that m′ is associative, and hence that we have defined
a semigroup structure on B.

In univalent mathematics, the perspective is different. We define

SemigroupA :≡ Σm:(A×A→A)Πx ,y :A(m(m(x , y), z) =A m(x ,m(y , z)))

• If e : (A ∼= B) and (m, a) : (SemigroupA), then

transportSemigroup(ua e) (m, a)

is automatically a semigroup structure on B.

• We then need to do a bit of computation to unroll this structure,
and to discover that it is indeed equal to some (m′, a′) where m′ is
the one constructed above.
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Computing m′

We stress from the previous slide that rather than cooking up a definition
of m′, we derive its definition from general principles, and then compute it.
We define, for e ≡ (f , g , h, ε, η):

m′ :≡ pr1 (transportSemigroup(ua e) (m, a))

We have (with R :≡ λX .((X × X )→ X and Q :≡ λX .(X × X )):

m′(b1, b2)
= (transportR (ua e)m) (b1, b2) (using (‖) below)
= transportidU (ua e)m (transportQ (ua e)−1 (b1, b2))
= (f m (transportQ (ua e)−1 (b1, b2)))
= (f m ((transportidU (ua e)−1 b1), transportidU (ua e)−1 b2)))
= (f (m ((g b1), (g b2))))

where we have used the following property: of Cx :≡ Σy :C1x C2xy ,
x ,, x2 : A, p : x1 =A x2, a : C1x1 and b : C2x1a then

(‖) pr1(transportC p (a, b) = transportC1 p a

We also used the non-dependent version of Exercise 7. 50 / 131



Homotopy fibers

• Let f : X → Y . We define fibf (y) :≡ Σx :X (f (x) =Y y) and
fibf :≡ λy .fibf (y) : Y → U .

• Conversely, we can associate (Grothendieck construction) with an
arbitrary P : Y → U the function pr1 : Σy :Y Py → Y .

(†) The following holds: for all Y : U , P : Y → U and b : Y we have

fibpr1
(b)

∼←→ Pb

Proof: In one direction, for r : Pb, we set φ(r) :≡ ((b, r), refl(b)). For
the other direction, by induction on Σ-types, it is enough to define
ψ((y , r), q) for all y : Y , r : Py , and q : y =Y b, and in turn, by based
path induction, it is enough to set ψ((b, r), refl(b)) :≡ r . We have thus
ψ(φ(r)) ≡ r and hence a fortiori ψ ◦ φ ∼ id. For the other direction, we
use again based path induction: we have that

refl(((b, r), refl(b))) : φ(ψ((b, r), refl(b))) = ((b, r), refl(b))

since φ(ψ((b, r), refl(b))) ≡ ((b, r), refl(b))).
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Grothendieck equivalence

For Y : U , we define U/Y = ΣX :U (X → Y ). We have

(Y → U)
∼←→ U/Y

We define (as anticipated):

ψ(P) :≡ (Σy :Y Py , pr1)
φ(X , f ) :≡ fibf

We have φ(ψ(P)) ≡ fibpr1
, and we deduce φ(ψ(P)) = P by univalence

and by function extensionality from (†).

For the other direction, we need a charaterization of =U/Y , which itself
relies on the following property:

For p : A =U A′, f : A→ Y , f ′ : A′ → Y , we have

(transportλZ .Z→Y p f =A′→Y f ′)
∼←→ (f ∼ (f ′ ◦ pr1(idtoeqv(p))))

Proof: By path induction, it is enough to check this for refl(A), and it is
clear since (transportλZ .Z→Y refl(A) f ) ≡ f and
pr1(idtoeqv(refl(A))) ≡ idA.
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Characterising the equality in U/Y

(‡) Let A,A′,Y : U , f : A→ Y , f ′ : A′ → Y . Then we have

((A, f ) =U/Y (A′, f ′))
∼←→ Σe:A∼=A′ (f ∼ f ′ ◦ pr1(e))

Proof: We have

((A, f ) =U/Y (A′, f ′))
∼←→ Σp:A=UA′(transport

λZ .Z→Y p f =A′→Y f ′) (induction on Σ-types)
∼←→ Σp:A=UA′ (f ∼ f ′ ◦ pr1(idtoeqv(p))) (just proved above)
∼←→ Σe:A∼=A′ (f ∼ f ′ ◦ pr1(e)) (by univalence)

In other words, proving (A, f ) =U/Y (A′, f ′) consists in finding ε : A→ A′

such that
biinv(ε) and f ∼ f ′ ◦ ε
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Back to Grothendieck equivalence

We have ψ(φ(X , f )) ≡ (Σy :Y fibf (y), pr1), hence by (‡) we want

ε : X → Σy :Y fibf (y) such that biinv(ε) and pr1 ◦ ε ∼ f

We take
ε(x) :≡ (f (x), (x , refl(f (x))))

Since pr1 ◦ ε ≡ f , we get immediately pr1 ◦ ε ∼ f . We shall prove qinv(ε),
which a fortiori implies biinv(ε). We define α : Σy :Y fibf (y)→ X by

α(y , (x , r)) :≡ x

We have α(ε(x)) ≡ x by definition. For the converse direction, we use
induction on Σ-types. We have to prove, for all x , y , and r : (f (x) = y):

(y , (x , r)) = (f (x), (x , refl(f (x)))) ≡ ε(α(y , x , r))

We can leave x (and hence f (x)) fixed and conclude by based path
induction.
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Reflecting on Grothendieck equivalence

The theorem just proved says that any pair of (Z , f ) of a type Z and a
map f : Z → X is equal to a pair of the form (Σx :XPx , pr1), for a family
P : X → U of types depending on X .

Now, for an arbitrary P : X → U , the pair (Σx :XPx , pr1) enjoys a
remarkable property (typical of fibrations in topology and category theory):

($) For any a, b : X p : a =X b and u : Xa, we have a path

q : (a, u) =Σx :XPx (b, (transportP p u))

such that pr1(q) :≡ p.

The proof of ($) is obvious: take (p, refl(transportP p u)).

Thus, loosely speaking, by combining this remark with the Grothendieck
equivalence, we have that every map in type theory has a fibration-like
flavour.

These considerations justify the terminology of calling Σx :XPx the total
space of the family P.

55 / 131



Mere propositions, and contractible types

A type A is a (mere) proposition if we can exhibit an inhabitant of

Πx ,y :A(x = y)

A type A is contractible if we can exhibit an inhabitant of

Σx :AΠy :A (x = y),

i.e.:

- an inhabitant a of A (called center of contraction),

- and an inhabitant of Πy :A (a = y).

“Center” is a way of speaking, as in fact, any inhabitant of a contractible
type may serve as center.
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An example of contractible type (solution to Exercise 11)

For any type A and a : A, the type Σx :A(a =A x) is contractible.

Proof: A candidate for being a center is (a, refl(a)). For any
(x , p) : Σx :A(a =A x) (thus p : a =A x), we have (using the
characterisation of = on Σ-types):

(a, refl(a)) =Σx :Aa=Ax (x , p)

This follows from

transportΠx :Aa=Ax p (refl(a)) =a=Ax (refl(a)) · p =a=Ax p

Alternative (simpler) proof: use based path induction.
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Equivalence of propositions

If P and Q are propositions, and P and Q are logically equivalent, then

P
∼←→ Q

Indeed, if f : P → Q and g : Q → P are given, then g(fx) =P x holds
since P is a proposition (idem Q).

Hence, under the assumption that P and Q are propositions, every pair of
functions f : P → Q and g : Q → P is a pair of quasi-inverses.
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Closure of propositions under some type formers

Type formers preserve propositions. As an example we prove that if
B : A→ U is such that, for all x : A, Bx is a proposition, then for any type
A we have that Πx :ABx is a proposition.

Indeed, suppose that f , g : Πx :ABx . By function extensionality, all we need
to prove is that fx =Bx gx for all x , but this holds since Bx is a
proposition.

Note that A does not need to be a proposition in the proof above.
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Curry-Howard

We can interpret types as propositions, and terms as proofs (but the
homotopy type theory perspective says that not all types are propositions).

• One can read A× B as A ∧ B, since in order to prove A ∧ B we
need a pair (p, q) where p is a proof of A and q is a proof of B.

• One can read A→ B as A⇒ B, since proving A⇒ B amounts to
proving B under assumption A: compare with

Γ, x : A ` p : B

Γ ` λx .p : A→ B

• One can read A + B as A ∨ B, since in order to prove A ∨ B we
need a proof of A or a proof of B.

• One can read the identity type as the equality predicate.

• One can read Π and Σ as universal and existential quantification,
respectively.
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Sets

We define a type A to be a set , or 0-type, if (isSetA) is inhabited, where

(isSetA) :≡ Πx ,y :AΠp,q:(x=Ay)(p = q)

or equivalently if Πx ,y :A(isProp (x =A y)).

We then can define a 1-type, or groupoid, to be a type A such that

Πx ,y :A(isSet (x =A y))

Etc. This yields a hierarchy of types, based on how rich their homotopical
structure is. We set

is-(−1)-type(A) :≡ isProp(A)
is-(n + 1)-type(A) :≡ Πx,y:Ais-n-type(x =A y)

If is-n-type(A) is inhabited, we say that A has h-level n or is an n-type.
For example, sets and groupoids have h-level 0 and 1.
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Characterisations of contractible types

For any type A, the following are logically equivalent:

(1) A is contractible,

(2) A is a proposition and is inhabited, i.e. there exists some a : A,

(3) A
∼←→ 1.

We need preliminary facts:

(a) �2 in the slide “Characterising =1” witnesses that 1 is a proposition.

(b) If A is contractible and A
∼←→ B, then B is contractible. In fact, it

holds more generally if B is a retract (notion defined later) of A, as we
shall see.

It follows from the statement that under the assumption that A is
inhabited (typically when we have x : A in the context), we have that A is
a proposition if and only if it is contractible. We shall refer to this as the
isProp trick.
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Characterisations of contractible types (proof)

• (1)⇒ (2) If A is contractible with center a, then it is inhabited by
definition, and we have x =A a =A y for all x , y : A.

• (2)⇒ (1) Let f : Πx :AΠy :Ax =A y . Then (a, fa) : isContr(A).

• (2)⇒ (3) By (a) and since A and 1 are propositions, it is enough to
prove that A and 1 are logically equivalent. Indeed, we have

λx .? : A→ 1 λz .a : 1→ A

• (3)⇒ (2) We note that 1 satisfies (2), and hence (1), so that we can
conclude by (b).
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Every proposition is a set

Suppose that A is a proposition, i.e. we have f such that f (x , y) : x =A y
for all x , y : A.

Our goal is to prove that x =A y is a proposition. We show that x =A y is
in fact contractible. So we look for a center and a contraction.

For this, we fix z : A, and consider the family C :≡ λu.(z =A u). We have
seen that (transportCpq = q · p) for all p : x =A y and q : Cx .

Let g :≡ λu.f (z , u). We have g : Πu:ACu, and hence
(apd g p) : g(x) · p =z=Ay g(y), from which we deduce

p =x=Ay (g(x)−1 · g(y))

i.e., g(x)−1 · g(y) (that depends only on x , y , f ) is the center, since this
holds for any p : x =A y .
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isContr(A) and isProp(A) are propositions

• isProp: Suppose that f , g : Πx ,y :Ax =A y . By function extensionality,
we have to prove that f (x , y) =x=Ay g(x , y) for all x , y : A. But under the
assumption f (or g), A is a proposition, hence is a set. Therefore x =A y
is a proposition and the sought equality holds for free.

• isContr: By induction on Σ-types, it is enough to find for all a, a′ : A,
π : Πx :A(a =A x) and ρ : Πx :A(a′ =A x):

(i) q : a =A a′, and

(ii) an inhabitant of (transportC q π) =Ca′ ρ (for Cz = Πx :A(z =A x)).

- We define q = π(a′).

- By function extensionality, we are left to prove

transportC q π z =a′=Az ρ z

for all z . But under the assumption π, A is contractible, hence is a
proposition, hence is a set, so that this comes for free.
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Equivalence of contractible types

• If P and Q are contractible, then they are logically equivalent, and all
functions f : P → Q have quasi-inverses.

Proof: The second part of the statement is an obvious consequence of
logical equivalence (as seen before). Let a0 and b0 be centers for P and
Q: then λx .b0 and λy .a0 witness the two parts of the claimed logical
equivalence.
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Contractible types and Σ-types

Let P : A→ U be a type family.

(i) If each P(x) is contractible, then Σx :AP(x) is equivalent to A.

Proof: By the assumption, there exists center : Πx :AP(x) such that for
all x and y ∈ P(x) we have y =P(x) center(x). Then we take

pr1 : Σx :AP(x)→ A λx .(x , center(x)) : A→ Σx :AP(x).

(ii) If A is contractible with center a0, then Σx :AP(x) is equivalent to
P(a0).

Proof: Let (as a first try) (a0, f ) : isContr(A). We take

λb.(a0, b) : P(a0)→ Σx :AP(x)
λ(a, b).transportP (fa)−1 b : Σx :AP(x)→ P(a0)

We want to check that these maps are quasi-inverses. One direction
follows from the characterisation of equality types on Σ-types:

(a, b) =Σx :AP(x) (a0, transport
P (fa)−1 b) since fa : a0 =A a

The other direction is more tricky and requires to make a good choice of f .
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Completing the proof of (ii)

(a) First we observe that we can choose f such that fa0 =A refl(a0)
(propositionally). Indeed, we can replace an arbitrary f with λa.(fa0)−1 · fa:

(λa.(fa0)−1 · fa)a0 ≡ (fa0)−1 · fa0 =A refl(a0)

(b) Next, we have the following fact, for any family of types P : A→ U . If
x : A, if (p =x=Ax refl(x)), then for all y : Px we have
(transportP p b) = b. This follows by using based path induction
ind′=x=Ax .

(c) Finally, we need another easy fact: if p =x=Ax refl(x), then also
p−1 =x=Ax refl(x). Indeed p = refl(x) implies

refl(x) = p−1 · p = p−1 · refl(x) = p−1

We can now complete the proof of (ii): starting from b : Pa0, we get
(a0, b), and then transportP (fa0)−1 b. But we have chosen in (a) f such
that fa0 (and hence also (fa0)−1 by (c)) is propositionally equal to
refl(a0), and we conclude by (b).
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Stability of contractible types under retraction

A retraction is a function r : A→ B such that there exists s : B → A and a
homotopy ε : r ◦ s ∼ idB . We say that B is a retract of A (through r , s, ε).

The following closure property holds: if B is a retract of A and if A is
contractible, then B is contractible.

Proof: Let (a0, f ) : isContr(A). We take r(a0) as center. For y : B,
f (sy) is a path from a0 to sy , from which we get

r(f (sy)) · (εy) : (r(a0) =B y)

Hence (r(a0), λy .r(f (sy)) · (εy)) : isContr(B).
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isContr is h-level -2

We have
isProp(A)

∼←→ Πx ,y :AisContr(x =A y)

We first note that both isProp(A) and Πx ,y :AisContr(x =A y) are
propositions (for the latter, we use the fact that isContr(x =A y) is a
proposition). So we just have to prove a logical equivalence.

- Given d : Πx ,y :AisContr(x =A y), we get
λx , y .pr1(d(x , y)) : isProp(A).

- Given c : isProp(A), and given x , y : A, it is enough to provide an
inhabitant of x =A y and an inhabitant of isProp(x =A y):

- for the first, we take c(x , y);
- for the second, using that A is a set, witnessed by c ′, we take
c ′(x , y).

It follows that we can start at h-level -2 and set

is-(−2)-type(A) :≡ isContr(A)
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Cumulativity of h-levels

We shall show that, for all types A, if A is of h-level n, it is also of h-level
n + 1. We prove this universal quantification by induction on n.

• The base case n = −2 is clear: a contractible type is a proposition, and
we have proved that propositions occupy h-level −1.

• For the inductive case, knowing that A has h-level n, we have to prove
is-n-type(x =A y) for all x , y : indeed, since by assumption A has h-level
n, x =A y has h-level n − 1, and hence has h-level n by induction
hypothesis.
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Closure of n-types under some type formers

n-types are closed under type formers. As an example, we prove hat if
B : A→ U is such that, for all x : A, Bx is an n-type, then for any type A
we have that Πx :ABx is an n-type.

• Base case n = −2. We have seen this for n = −1. For n = −2, if all Bx
are contractible, then a fortiori they are propositions, and hence case
n = −1 gives us that Πx :ABx is a proposition. It remains to show that
Πx :ABx is inhabited. Let f : Πx :A isContr(A). Then take λx .pr1(fx).

• Inductive case. f , g : Πx :ABx . We have to prove that f =Πx :ABx g is an
n-type. But function extensionality says that this type is equivalent to
Πx :Afx =Bx gx . By univalence, these types are in fact equal, and hence, we
can as well prove that Πx :Afx =Bx gx is an n-type, since by transport, for
any types C ,D and p : C =U D we have that C is an n-type if and only if
D is an n-type. But by induction it is enough to show that fx =Bx gx is an
n-type, which follows from our assumption that all Bx are of (n + 1)-type.
One can show that n-types are closed under equivalences without
appealing to univalence.

72 / 131



is-n-type(A) is a proposition

• We have seen this for h-level −2 (and level −1), so the base case is OK.

• Inductive case. We want to show that Πx ,y :A is-n-type(x =A y) is a
proposition. By closure of propositions under type formers, it is enough to
show that is-n-type(x =A y) is a proposition, but this holds by induction.
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Four logically equivalent notions of equivalence

We have seen qinv(f ) and biinv(f ), and shown them to be logically
equivalent. Here are two more logically equivalent ways to express
equivalence of A,B via f : A→ B:

• half adjoint equivalence:

ishae(f ) :≡ Σg :B→A,ε:(f ◦g∼id),η:(g◦f∼id)Πx :A (f (ηx) = ε(fx))

• contractible map:

contrmap(f ) :≡ Πy :B isContr(fibf (y))

We shall show (remember that ←→ is logical equivalence):

qinv(f )←→ ishae(f )
ishae(f )←→ contrmap(f )

It follows that

biinv(f )←→ qinv(f )←→ ishae(f )←→ contrmap(f )
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Three equivalent notions of equivalence

We shall show that biinv(f ), ishae(f ) and contrmap(f ) are
propositions. It will follow that

biinv(f )
∼←→ ishae(f )

∼←→ contrmap(f )

and hence univalence can be formulated replacing biinv by ishae or
contrmap.

We shall thus sometimes use a uniform notation isequiv(f ) to stand for
any of biinv(f ), ishae(f ) or contrmap(f ), and in fact for any
proposition logically equivalent to them.

It can be shown that qinv(f ) is not a proposition, and hence that qinv(f )
is not equivalent to the three other notions.
We shall sketch the proof that using qinv in the axiom of univalence
would lead to an inconsistent system.
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Notions of equivalence in a nutshell

biinv(f ) :≡ (Σg :B→A(f ◦ g ∼ id))× (Σh:B→A(h ◦ f ∼ id))
qinv(f ) :≡ Σg :B→A(f ◦ g ∼ id)× (g ◦ f ∼ id)
ishae(f ) :≡ Σg :B→A,ε:(f ◦g∼id),η:(g◦f∼id)Πx :A (f (ηx) = ε(fx))
ishae′(f ) :≡ Σg :B→A,ε:(f ◦g∼id),η:(g◦f∼id)Πy :B (g(εx) = η(gy))
contrmap(f ) :≡ Πy :BisContr(fibf (y)

Remarks:

- qinv(f ) stands “in the middle” between biinv(f ) and ishae(f ), in
the sense that the logical implications

ishae(f ) −→ qinv(f ) −→ biinv(f )

are trivial (forgetful).

- ishae′ is symmetric to ishae. We call f (ηx) = ε(fx) or
g(εx) = η(gy) coherence equations. It can be shown that requiring
the two coherence equations together also gets us into trouble!
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qinv(f )→ ishae(f )

Given (g , ε, η) : qinv(f ), we define (g , ε′, η, τ) : ishae(f ) as follows:

ε′(b) = ε(f (g(b)))−1 · f (η(g(b))) · ε(b)

We seek τ(a) : ε(f (g(f (a))))−1 · f (η(g(f (a)))) · ε(f (a)) = f (η(a)).
Indeed, we have

f (η(g(f (a)))) · ε(f (a)) = f (g(f (η(a)))) · ε(f (a)) (by Exercise 10)
= ε(f (g(f (a)))) · f (η(a)) (by Exercise 9)

This is more appealing with string diagrams.
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String diagram companion to qinv(f )→ ishae(f )
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ishae(f ) −→ contrmap(f )

We shall need a characterisation of the equality in fibf (y):

(§) (x , p) =fibf (y) (x ′, p′)
∼←→ Σγ:x=Ax ′(f (γ) · p′ = p)

(the proof is a variation on things seen already).

Let (g , ε, η, τ) : ishae(f ) We have to prove that, for all y : B, fibf (y) is
contractible. We choose (gy , εy) as center of contraction. Let
(x , p) : fibf (y). We want a path γ : gy =A x such that f (γ) · p = εy . We
take

γ :≡ (g(p))−1 · ηx

f (γ) · p = (f (g(p)))−1 · f (ηx) · p (functoriality of f )
= (f (g(p)))−1 · ε(fx) · p (half equivalence)
= εy · p−1 · p (Exercise 9)
= εy
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String diagram companion to ishae(f ) −→ contrmap(f )
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ishae(f )←− contrmap(f )

Let P : contrmap(f ). We define g , ε by

gy :≡ pr1(pr1(Py)) εy :≡ pr2(pr1(Py))

We are left to exhibit an inhabitant of Ση:g◦f∼idΠx :A f (ηx) = ε(fx). We
can repackage the information needed as follows:

(¶) Ση:g◦f∼idΠx :A f (ηx)=ε(fx)
∼←→ Πx :A (g(fx), ε(fx))=fibf (fx) (x , refl(fx))

Proof of (¶): By (§), we retrieve ηx and f (ηx) = f (ηx) · refl(fx) = ε(fx)
from (g(fx), ε(fx)) =fibf (fx) (x , refl(fx)).

Back to the proof of ishae(f ): By (¶), we are left to provide a path from
(x , refl(fx)) to (g(fx), ε(fx)) in fibf (fx). But this is a consequence of
our assumption that fibf (fx) is contractible. Explicitly, we take

(pr2(P(fx))(x , refl(x)))−1 · (pr2(P(fx))(g(fx), ε(fx)))
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isProp(contrmap(f))

That contrmap(f ) is a proposition follows obviously from
isContr(A) −→ isProp(A) (applied to all fibers of f ) and from the
closure of propositions under type formers.

For the other two assertions isProp(biinv(f)) and isProp(ishae(f)), we
shall use the following property:

(††) qinv(f ) −→ isContr(Σg :B→A(g ◦ f ∼ idA))

Proof: We have that Σg :B→A(g ◦ f ∼ idA) is fib−◦f (idA). We next
observe that if g is a quasi-inverse of f , then (− ◦ g) is a quasi-inverse of
(− ◦ f ). Hence, by the logical implications proved, (− ◦ f ) is a contractible
map, which proves a fortiori the above implication.
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isProp(biinv(f)) and isProp(ishae(f))

• isProp(biinv(f)): We use the isProp trick, i.e., we assume biinv(f )
and prove that biinv(f ) is contractible. But since biinv(f ) −→ qinv(f ),
we can apply (††) and get isContr(Σg :B→A(g ◦ f ∼ idA)). One gets
similarly isContr(Σh:B→A(f ◦ h ∼ idA)), and we conclude by closure of
contractible types under product.

• isProp(ishae(f)): We may again assume ishae(f ). By (¶), we get

ishae(f )
∼←→ Σu:STu where

S :≡ Σh:B→A(f ◦ h ∼ idA)
Tu :≡ Πx :A (g(fx), ε(fx))=fibf (fx) (x , refl(fx)) (for g≡pr1(u), ε≡pr2(u))

We have that

- S is contractible by (the symmetric version of) of (††) (since
biinv(f ) −→ qinv(f ));

- Tu is contractible (for all u): we first note that fibf (fx) is
contractible since biinv(f ) −→ contrmap(f )). Then we apply
Exercise 12 and the closure property under Π-types of contractibility.

We conclude by Exercise 13. 83 / 131



The black sheep qinv

• One can show (Section 4.1 of the HoTT book) that qinv(f ) is not
always a proposition.

• Let us attempt to reformulate the univalence axiom using qinv instead
of ishae (or biinv, contrmap), i.e., let us assume (“black sheep
univalence”) the existence of a quasi-inverse ua′ for the canonical map
idtoeqv′ : (A =U B)→ Σf :A→B qinv(f ). One can show that this version
of univalence still works to establish that qinv(f ) is not always a
proposition.

• We shall sketch the proof that this univalence axiom is inconsistent. The
proof relies on the fact the property that ishae(f ) is a proposition,
established earlier (without making use of a univalence axiom).
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Inconsistency of univalence based on the black sheep

By definition of idtoeqv′ and idtoeqv (adapted to Σf :A→Bishae(f )), we have:

(◦) idtoeqv′(π) = pr(idtoeqv(π)) for all π : A =U B

where pr : Σf :A→Bishae(f )→ Σf :A→Bqinv(f ) is the projection map. We shall
show isProp(qinv(f )) for all f : A→ B, contradicting previous slide. Let

(gi , ηi , εi ) :qinv(f ) and (f ′i , g
′
i , η
′
i , ε
′
i , τi ) :≡idtoeqv(ua′(f , gi , ηi , εi )) (i = 1, 2)

Then by (◦) and “black sheep univalence” we get

(f , gi , ηi , εi ) = (f ′i , g
′
i , η
′
i , ε
′
i ) (i = 1, 2)

In particular, we have R : f = f ′1 and S : f = f ′2 , and similarly g1 = g ′1 and
g2 = g ′2. Since R−1 · S : f ′1 = f ′2 , we can use transport to get g ′, η′, ε′, τ such that

(f ′1 , g
′, η′, ε′, τ) = (f ′2 , g

′
2, η
′
2, ε
′
2, τ2)

Since (g ′1, η
′
1, ε
′
1, τ1), (g ′, η′, ε′, τ) : ishae(f ′1 ) and since ishae(f ′1 ) is a

proposition, we get

(g ′1, η
′
1, ε
′
1, τ1) = (g ′, η′, ε′, τ) and a fortiori (g ′1, η

′
1, ε
′
1) = (g ′, η′, ε′)

Collecting this all, we constitute a chain that will allow us to conclude (next slide):

(f , g1, η1, ε1) = (f ′1 , g
′
1, η
′
1, ε
′
1) = (f ′1 , g

′, η′, ε′) = (f ′2 , g
′
2, η
′
2, ε
′
2) = (f , g2, η2, ε2)85 / 131



Rounding up the proof of isProp(qinv(f )) in presence of the black sheep

We monitor the chain

black sheep isProp(ishae(f ′1 )) transport black sheep
(f , g1, η1, ε1) = (f ′1 , g

′
1, η
′
1, ε
′
1) = (f ′1 , g

′, η′, ε′) = (f ′2 , g
′
2, η
′
2, ε
′
2) = (f , g2, η2, ε2)

more closely, through the following table (omitting the ε’s):

f
R
= f ′1

refl
= f ′1

R−1·S
= f ′2

S−1

= f
g1 = g ′1 = g ′ = g ′2 = g2

η1 η′1 η′ η′2 η2

We then have, for all x

(η1x) = p1 · (η′1x) (p1 : g1(fx) = g ′1(f ′1x))
(η′1x) = p2 · (η′x) (p2 : g ′1(f ′1x) = g ′(f ′1x))
(η′x) = p3 · (η′2x) (p3 : g ′(f ′1x) = g ′2(f ′2x))
(η′2x) = p4 · (η2x) (p4 : g ′2(f ′2x) = g2(fx))

and therefore (η1x) = p′ · (η2x), where p′ :≡ p1 · p2 · p3 · p4. Our goal is to prove
(η1x) = p · (η2x), where p : g1(fx) = g2(fx) is induced by g1 = g2 (through
g ′1, g

′, g ′2). In contrast, p′ is induced by the same proof of g1 = g2 and by (cf.
table above) T :≡ R · refl · (R−1 · S) · S−1. Since T = refl, we deduce easily
p = p′, which in turn implies the goal.
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Fiberwise maps

Let P,Q : A→ U and f : Πx :A Px → Qx (fiberwise map from P to Q).
Then f induces a map total(f ) : Σx :APx → Σx :AQx defined by

total(f )(a, u) = (a, f a u)

We have, for all (fixed) x : A and v : Qx :

fibtotal(f )(x , v)
∼←→ fibf (x)(v)

Proof: We have
fibtotal(f )(x , v)

∼←→ Σa:AΣu:Pa(a, f a u) = (x , v)
∼←→ Σa:AΣu:PaΣp:a=x transport p (f a u) = v (equality in Σ-types)
∼←→ Σa:AΣp:a=xΣu:Pa transport p (f a u) = v
∼←→ Σu:Pxtransport refl(x) (f x u) = v (isContr(Σa:Aa = x))
≡ Σu:Px f x u = v
≡ fibf (x)(v)

It follows that total(f ) is a weak equivalence if and only each fx is an
equivalence. 87 / 131



Univalence and η-rule implies function extensionality

We want to show that happly(f , g) : (f = g)→ (f ∼ g) (defined before)
is an equivalence, for all f , g : Πx :APx . We fix f . We set

Qg :≡ (f = g) Rg :≡ (f ∼ g)

happly(f ,−) is a fiberwise map from Q to R. By what we have just seen,
our goal reformulates as proving that the total map induced, of type

Σg :Πx :APx(f = g)→ Σg :Πx :APx(f ∼ g) ≡ Σg :Πx :APxΠx :A(fx = gx)

is an equivalence. By Exercise 11, Σg :Πx :APx(f = g) is contractible. By our
analysis of equivalences between contractible types, it is enough to show
that Σg :Πx :APx(f ∼ g) is contractible. We shall prove this in two steps:

(i) Σg :Πx :APx(f ∼ g) is a retract of Πx :AΣu:Px(fx = u)

(ii) The property that a product of contractible types is contractible can
be established using univalence and not using function extensionality.

Then we can conclude: by Exercise 11 again, Σu:Px(fx = u) is
contractible, and a retract of a contractible type is contractible.
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Σg :Πx :APx(f ∼ g) is a retract of Πx :AΣu:Px(fx = u)

More generally, let A : U P : A→ U and Q : Πx :A (Px → U). Then

(‖‖) Σg :Πx :APxΠx :AQ x (gx) is a retract of Πx :AΣu:Px Q x u

We define maps in the two directions as follows:

φ(g , h)x :≡ (gx , hx) ψ(k) = (λx .pr1(kx), λx .pr2(kx))

(the type of pr2(kx) is Q x (pr1 (kx)) ≡ Q x (λx .(pr1 (kx))) x)).

We have ψ(φ(g , h)) :≡ (λx .gx , λx .hx) = (g , h).

Our claim (1) then follows by instantiation of (‖‖) with Qxy :≡ (fx = y).

Note the use of the (here assumed) propositional η-rule, namely

λx .fx = f (for x not free in f )

Remarks:

- Propositional η follows from function extensionality.

- We have φ(ψ(f )) ∼ f for all f , and hence, if function extensionality is
assumed, or proved, we have φ ◦ ψ ∼ id, and hence Σg :Πx :APx(f ∼ g) is in
fact in the end equivalent to Πx :AΣu:Px(fx = u) .
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Plan for the proof of (ii)

Let P : A→ U be a family of contractible types. We have seen earlier that
pr1 : (Σx :APx)→ A is an equivalence (and this does not use function
extensionality).

We shall prove the following properties

(a) Πx :APx is a retract of fibα(idA), where

α :≡ λfx .pr1(fx) : (A→ Σx :APx)→ (A→ A)

(b) α is an equivalence.

Then we can conclude, because α being an equivalence can be expressed
as contrmap(α), hence Πx :APx is a retract of a contractible type and
therefore is contractible.
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Proof of (a)

(a) Πx :APx is a retract of fibα(idA), where

α :≡ λfx .pr1(fx) : (A→ Σx :APx)→ (A→ A)

We define maps in the two directions:

φ(f ) :≡ (λx .(x , fx), refl(idA)) : Πx :APx → fibα(idA)
ψ(g , p) :≡ λx .transport (happly p x) (pr2(gx)) : fibα(idA)→ Πx :APx

The definition of ψ type-checks because

α(g)x ≡ pr1(gx) and pr2(gx) : P(pr1(gx))

We have:

ψ(φ(f )) ≡ ψ(λx .(x , fx), refl(idA)) ≡ λx .transport (refl(x))(fx)
≡ λx .fx = f

(since happly p (refl(idA)) ≡ refl(x) and pr2((λx .(x , fx))x) ≡ fx).

Note the use of the propositional η-rule again.
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Plan for the proof of (b)

(b) α is an equivalence, where

α :≡ λfx .pr1(fx) : (A→ Σx :APx)→ (A→ A)

This is where we make use of univalence!

More generally, we prove that if e : A→ B is an equivalence, then so is
λf x . e(fx) : (X → A)→ (X → B). This goes in two steps:

(b1) We show this in the case e :≡ idtoeqv(p) (for p : A = B).

(b2) We show that if e1 = e2 and isequiv(λf x . e1(fx)), then
isequiv(λf x . e2(fx)).

We then conclude since, by univalence, we have idtoeqv(ua(e)) = e. So,
setting e1 ≡ idtoeqv(ua(e)) and e2 :≡ e, we can apply (b1) and then
(b2).
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Completing the proof of (b)

(b1) λf x . idtoeqv(p) (fx) : (X → A)→ (X → B) is an equivalence.

• (b1) is proved by path induction. We are reduced to prove
isequiv(λf x . (idtoeqv(refl))(fx)), which is trivial since

λf x . (idtoeqv(refl))(fx) ≡ λf x . fx = λf .f

(identity functions have quasi-inverses!). We use again the η-rule!

(b2) If e1 = e2 and isequiv(λf x . e1(fx)), then isequiv(λf x . e2(fx)).

• (b2) is proved by transport. Consider the family P : (A→ B)→ U
defined by Pe :≡ isequiv(λf x . e(fx)), and let p : e1 = e2. Then
transportPp turns proofs of isequiv(λf x . e1(fx)) into proofs of
isequiv(λf x . e2(fx))

This finally completes the proof that (univalence + η) implies function
extensionality.
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Some properties of =A+B

One can prove the following equivalences of types:

((inl a1) =A+B (inl a2))
∼←→ (a1 =A a2)

((inr b1) =A+B (inr b2))
∼←→ (b1 =A b2)

((inl a1) =A+B (inr b1))
∼←→ 0

by the following method, called “encode-decode”. We define a family
code : A + B → U (tailored to the problem we want to solve) by induction
on coproduct as follows (a1 : A is fixed):

code(inl a) :≡ (a1 =A a) code (inr b) :≡ 0

Then we show, for all z : A + B that

(code z)
∼←→ ((inl a1) =A+B z)

The first and the third properties listed then follow from instantiation with
z ≡ (inl a2) and (inr b1), respectively.
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The encode-decode method

code : A+B → U code(inl a) :≡ (a1 =A a) code (inr b) :≡ 0

We exhibit:

• encode : Πz:A+B ((inl a1) = z)→ (code z)

encode z p :≡ transportcode p (refl(a1))

• decode : Πz:A+B (code z)→ ((inl a1) = z) is defined by induction
on the sum type:

decode (inl a) :≡ ap inl

decode (inr b) :≡ ind0 C

where in the last clause C : 0→ U is the constant (inl a1) = (inr b).

95 / 131



(encode z) and (decode z) witness an equivalence

decode : Πz:A+B (code z)→ ((inl a1) = z)
encode z p :≡ transportcode p (refl(a1)) (p : (inl(a1) = z))

decode (inl a) :≡ ap inl decode (inr b) :≡ ind0 C

• By using ind′=, decode z (transportcode p (refl(a1))) = p reduces to
the case where z ≡ (inl a1) and p ≡ (refl(inl a1)), in which case we
indeed have

decode (inl a1) (transportcode (refl (inl a1))(refl(a1)))
≡ decode (inl a1) (refl(a1)) ≡ ap inl (refl(a1)) ≡ (refl(inl a1))

• To prove encode z (decode z u) = u, we proceed by induction on z . If
z ≡ (inr b), then we are done by induction on 0. If z ≡ (inl a), then we
have u : (a1 =A a), and:

encode z (decode z u) ≡ transportcode (ap inl u) (refl(a1))
= transportcode ◦ inl u (refl(a1)) = (refl(a1)) · u = u
(since code ◦ inl ≡ λz .(a1 = z)) 96 / 131



The circle

• A type S1

• There are two constructors:

base : S1

loop : (base =S1 base)

Induction principle:

indS1 :
ΠP:S1→U (Σb:P(base) ((transportP loop b) =P(base) b))→ (Πx :S1Px)

Associated equalities:

indS1P (b, l) base ≡ b (definitional)
apd (indS1 P (b, l)) loop = l (propositional)
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Illustrating and explaining the induction principle for S1

184 CHAPTER 6. HIGHER INDUCTIVE TYPES

P

S1

base

loop

b

`

Figure 6.1: The topological induction principle for S1

P

S1

base

loop

b

` : loop⇤(b) = b

Figure 6.2: The type-theoretic induction principle for S1In the picture, P on the right should be read as Σx :S1Px . The vertical arrow into
S1 is pr1, and the torus on the left stands for Σx :S1Px .
We have seen that every path living in the space at the bottom induces a path in
the total space. We instantiate this with loop : base = base and b : P(base),
and we get the path (represented with dashes)

(loop, refl(transportP loop b)) : (base, b) =Σx :XPx (base, (transportP loop b))

This path has no reason to be a loop, but a l : ((transportP loop b) =P(base) b)
will complete it (dotted path closing the circle):

(refl(base), l) : (base, (transportP loop b)))) = (base, b)
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The recursion principle for S1

We shall also need a recursion principle for S1 for a constant family
C :≡ λx .A, for some A : U , i.e. we shall use

recS1 : ΠA:U (Σb:A (b =A b))→ (S1 → A)

Associated equalities:

recS1 A (b, l) base ≡ b (definitional)
ap (recS1 A (b, l)) loop = l (propositional)

That recS1 can be encoded from indS1 is proved via an adjustment
similar to the adjustment from apd to ap discussed before.

Here, U stands for any universe. We shall soon instantiate it to U1.
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The type Z of integers

We define first the type N+ of strictly positive natural numbers exactly as
Nat, replacing the constructor 0 by a constructor 1 (of course it is
equivalent to N, but we reserve the symbol 0 for the next step!).

We now define the integers:

• A type Z
• The constructors are

0 : Z
+ : N+ → Z
− : N+ → Z

Induction principe:

indZ : ΠC :Z→U C0 → (Πx :N+C (+x))→ (Πx :N+C (−x))→ (Πz:Z Cz)

This principle allows us to define two functions that we shall need
(Exercise 15):

λz .z + 1 : Z→ Z
λz . loopz : Z→ (base =S1 base)
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λz .z + 1 and λz . loopz , informally

• We have
0 + 1 ≡ 1
(+1) + 1 ≡ +(succ(1))
(+(succ(n))) + 1 ≡= +(succ(succ(n)))
(−1) + 1 ≡ 0
(−(succ(n))) + 1 ≡ −n

• We have

loop0 ≡ reflbase
loop+1 ≡ loop

loop+(succ(n)) ≡ loop · loop+n

loop−1 ≡ loop−1 (whence the notation loopz)

loop−(succ(n)) ≡ loop−1 · loop−n
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The fundamental group of the circle

Our goal is to prove
(base =S1 base)

∼←→ Z
Here, (base =S1 base) (or rather its truncation, see final slides) is the
HoTT formulation of the fundamental group π1(S1): its inhabitants are
the loops on base.

We shall use the encode-decode method, and this starts by generalising
the statement. We define EqS1 : S1 → U by instantiating

recS1 : ΠA:U1 (Σb:A (b =A b))→ (S1 → A)

with A = U0 , b = Z, and ua(λz .z + 1) : Z =U Z, i.e. we set

EqS1 :≡ recS1 U0 (Z, ua(λz .z + 1)),

and hence we have

EqS1(base) ≡ Z (ap EqS1 loop) = ua(λz .z + 1)

We shall prove, for all x : S1

(base =S1 x)
∼←→ EqS1(x)

Our goal will then follow by instantiation at base.
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Yet another property of transport

For B : A→ U and p : x =A y , we have the following property (that does
not require univalence):

transportBp =Bx→By idtoeqv(apB p)

This is proved by path induction: indeed, taking refl(x) for p, we have
transportBp ≡ idBx , apBrefl(x) ≡ refl(Bx) and
idtoeqv(refl(Bx)) ≡ idBx .

We apply this general result to EqS1 and loop and obtain

transportEqS1 loop = idtoeqv(ap EqS1 loop)
= idtoeqv(ua(λz .z + 1))
= λz .z + 1

And hence, via happly, we get, for all z : Z:

(∗) transportEqS1 loop z = z + 1
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The encode and decode functions

• For x : S1, define encode(x) : (base = x)→ EqS1(x) by path induction:

encode(base)(refl(base)) :≡ 0 : EqS1(base)

• We synthesise a definition of decode : Πx :S1 (EqS1(x)→ (base = x)) by
induction on S1:

decode :≡ indS1 P �

where P :≡ λx .(EqS1(x)→ (base = x)) and hence

P(base) :≡ Z→ (base = base)

We seek � : Σb:P(base) ((transportP loop b) =P(base) b), i.e., we seek

�1 : P(base) and �2 : ((transportP loop�1) =P(base) �1). We take

�1 :≡ λz .loopz : Z→ (base = base)

and hence we will have

decode base ≡ λz .loopz

For defining �2, we must analyse transport relative to the family
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Completing the definition of decode

From exercise 6, we get (for P :≡ λx .(EqS1(x)→ (base = x))):

transportP p f z = transportλx .(base=x) p f (transportEqS1 p−1 z)

which we instantiate with p :≡ loop and f :≡ λz .loopz .

• By a variant of the above property (∗), we have

(transportEqS1 loop−1 z) = z − 1

Therefore we have

transportP loop (λz .loopz) z

= transportλx .(base=x) loop ((λz .loopz)(z − 1))

≡ transportλx .(base=x) loop loopz−1

= loopz−1 · loop
= loopz

Therefore, by function extensionality, we have proved

transportP loop (λz .loopz) = λz .loopz

and this proof is our �2.
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(encode x) and (decode x) are quasi-inverses

We prove decode x (encode x p) = p by path induction, i.e., we consider
only the case where x ≡ base and p = refl(base). Then we have by
definition

(encode base refl(base)) ≡ 0

and in turn

decode base 0 ≡ (λz .loopz) 0 ≡ loop0 ≡ refl(base)
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The other direction

• We prove encode x (decode x q) = q for q : EqS1(x) by induction on S1,
relative to the family

P ≡ λx .Πq:EqS1 (x) (encode x (decode x q) = q)

We shall need two results:

(∗∗) Z is a set
(∗∗∗) encode base (loopz) = z (for all z : Z)

We have to provide an inhabitant of

Σb:P(base) ((transportP loop b) =P(base) b)

But, noticing that P(base) ≡ Πz:Z (encode base (decode base z) = z),
we see by (∗∗) that we shall get

(transportP loop b z) =(encode base (decode base z)=z (b z)

for free, hence by function extensionality we only have to care about
producing an inhabitant of P(base), which is given by (∗∗∗), since by
definition
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Proving (∗∗)

The proof that Z is a set is a variation on the proof that N is a set,

which itself is established via the encode-decode method (see Exercise 16),

in a way very much similar to the analysis of =A+B that we have seen.
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Proving (∗∗∗)

(∗∗∗) encode base (loopz) = z (for all z : Z)

We first prove
(encode x p) = (transportEqS1 p 0)

It follows by path induction, since

(encode base refl(base)) ≡ 0 ≡ (transportEqS1 refl(base) 0)

Therefore we have

(encode base (loopz)) = (transportEqS1 loopz 0)

Finally, one proves

(transportEqS1 loopz 0) = z

by induction on z : Z, using

(∗) transportEqS1 loop z = z + 1
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Suspension

Let X be a type. The following inductive type captures the notion of
suspension of X :

• If X : U , then ΣX : U
• Constructors:

N : ΣX , (North)
S : ΣX (South)
merid : Πx :X N =ΣX S

• Induction operator:

indΣX :
ΠC :ΣX→U (Σn:CNΣs:CS(Πx :X transportC (merid x) n =CS s)→ (Πx :ΣX Cx))

• Associated equalities:

indΣX C (n, s, f ) N ≡ n (definitional)
indΣX C (n, s, f ) S ≡ s (definitional)
apd (indΣX C (n, s, f )) (meridx) = fx (propositional)
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Pointed types

• We consider the type U? whose inhabitants are pairs (X , x), where X : U
and x : X (a distinguished point of X ). Formally, we consider the type
family idU : U → U , and we define

U? :≡ ΣX :U (idU X ) ≡ ΣX :U X

We usually write an inhabitant of U? as (X , ?X ) and refer sloppily to X as
pointed type.

• Morphisms of pointed types should preserve distinguished points. Given
two pointed types (X , ?X ) and (Y , ?Y ), we define a new pointed type
(Map?(X ,Y ), ?XY ) as follows:

Map?(X ,Y ) :≡ Σf :X→Y (f (?X ) =Y ?Y )
?XY :≡ λx .?Y

We usually write an inhabitant of Map?(X ,Y ) as (f , ?f )). We refer to f as

a pointed map and use the notation f : X →? Y or X
f→? Y .
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Examples of pointed types

Two “king” examples of pointed types are suspensions and loop spaces.
Given a pointed type (A, ?A):

- we take (by convention) N as the distinguished point of ΣA;

- we define the loop space Ω(A, ?A) of (A, ?A) as the pointed type
((?A =A ?A), (refl(?A))). We often write ΩA for short.

One could be tempted to choose the distinguished point of X as
distinguished point of ΣX , but in this axiomatisation, there is no point in
ΣX corresponding to a point in X (only a path “going through it”).
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Relating suspensions and loop spaces (statement)

We have the following adjunction:

Map?((ΣA, N), (B, ?B))
∼←→ Map?((A, ?A),Ω(B, ?B))

We shall prove

Map?((ΣA, N), (B, ?B))
∼←→ ΣbS:B(A→ (?B = bS))

Map?((A, ?A),Ω(B, ?B))
∼←→ ΣbS:B(A→ (?B = bS))

We shall use two properties proved before, which we recall. Let P : A→ U
be a type family.

(i) If each P(x) is contractible, then Σx :AP(x) is equivalent to A.

(ii) If A is contractible with center a0, then Σx :AP(x) is equivalent to
P(a0).
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Relating suspensions and loop spaces (proof)

• An inhabitant of Map?((ΣA, N), (B, ?B)) is given by two elements bN, bS, a function
h1 : A→ (bN = bS) and a path from bN to ?B . This can be repackaged as

Σp:ΣbN :B (bN=?B ) ΣbS:B(A→ ((pr1p) = bS))

which isolates the contractible type ΣbN:B(bN = ?B). Hence by property (ii) above, we have
proved Map?((ΣA, N), (B, ?B)) ∼= ΣbS:B(A→ (?B = bS)).

• An inhabitant of Map?((A, ?A),Ω(B, ?B)) is a function g : A→ (?B = ?B), together with a
path from (g ?A) to refl(?B). So we are left to prove

Σg :A→(?B=?B ) ((g ?A) = refl(?B)) ∼= ΣbS:B(A→ (?B = bS))

We have (using (ii) and (i), respectively):

Σg :A→(?B=?B ) ((g ?A) = refl(?B)) ∼= Σr :ΣbS :B (?B=bS) Σg :A→(?B=(pr1 r)) ((g ?A) = (pr2r))

ΣbS:B(A→ (?B = bS)) ∼= ΣbS:BΣg :A→(?B=bS)Σq:(?B=bS) ((g ?A) = q)

and conclude since both right hand sides are an easy repackaging of each other.

(Note the clever use of the sequence bS : B, q : (?B = bS) and ((g ?A) = q), giving rise to the

two contractible types ΣbS:B (?B = bS) and Σq:(?B=bS) ((g ?A) = q).)
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Fiber sequences

Given pointed types X ,Y ,Z : U?, we say that two pointed maps

X
f→? Y

g→? Z

form a (short) fiber sequence if, for all y : Y we have a map

εy : fibf (y)→ (g(y) = ?Z )

which is a quasi-inverse. Morevoer, we require ε?Y to be pointed, i.e.,

ε?Y (?X , ?f ) = ?g

(note that for general y , the types fibf (y) and (g(y) = ?Z ) need not be
inhabited).
In the following, we shall state the results on fiber sequences without
proof. We refer to the HoTT book.
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Fiber sequences versus exact sequences

• In homological algebra, a sequence s M
f→ N

g→ P of linear maps (or
module morphisms) is called exact if im(f ) = ker(g), i.e., if for all y ∈ N
we have g(y) = 0 if and only if y = f (x) for some x ∈ M.

• In group theory, a sequence G
f→ H

g→ K of group morphisms is called
exact if for y ∈ H we have h(y) = e if and only if y = f (x) for some
x ∈ G .

If we look at the definition of fiber sequence in a proof-irrelevant way, and
think of fibf (y) and (g(y) = ?Z ) as propositions, then the notion of fiber
sequence boils down to saying that for all y : Y we have g(y) = ?Z if and
only if f (x) = y for some x . But precisely because in general those two
types will have higher structure, the notion of fiber sequence is much
richer.
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Canonical fiber sequence associated with a pointed map

Given pointed types X ,Y : U? and f : X →? Y , the sequence

fibf (?Y )
pr1→ X

f→? Y

is a fiber sequence.

We note that pr1 is pointed, since pr1(?X , ?f ) ≡ ?X .

Every fiber sequence is of this sort, in the following sense: if

Z
g→? X

f→? Y is a fiber sequence, then we have

(Z , g) =ΣV :U?.,Map?(V ,X ) (fibf (?Y ), pr1)

(here, ΣV : U? Map?(V ,X ) is the pointed version of U/Y ).
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Long fiber sequence associated with a pointed map

Our data are still X ,Y : U? and f : X →? Y . We can iterate the

construction fibf (?Y )
pr1→ X

f→? Y .
We set

X (0) :≡ Y ?(0) :≡ ?Y X (1) :≡ X ?(1) :≡ ?X f (0) :≡ f

and for n ≥ 1, we set

f (n) :≡ pr1

X (n+1) :≡ fibf (n−1)(?(n−1))
?(n+1) :≡ (?(n), ?f (n−1))

In this way, we obtain a long fiber sequence

· · · f (n+1)

→? X (n+1) f (n)

→? X
(n) f (n−1)

→? · · · →? X
(2) f (1)

→? X
(1) f (0)

→? X
(0)

meaning that for all n, the short sequence

X (n+2) f (n+1)

→? X (n+1) f (n)

→? X
(n)

is a short fiber sequence.
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Reading the long fiber sequence in terms of loop spaces

Consider the last five pointed types in the long sequence:

X (4) f (3)

→? X
(3) f (2)

→? X
(2) f (1)

→? X
f→? Y

Then we have
X (3) ∼←→ ΩY X (4) ∼←→ ΩX

with pointed quasi-inverses. Moreover, under these equivalences, f (3) is
identified with Ωf : ΩX → ΩY , defined as follows, for all p : ?X = ?X :

Ω(f )(p) :≡ (?f )−1 · f (p) · ?f

Setting Z :≡ X (2), we thus have a long fiber sequence (known to
topologists)

· · · → Ω2X → Ω2Y → ΩZ → ΩX → ΩY → Z → X → Y

119 / 131



The long exact sequence of homotopy groups

There is a more down-to-earth even and more anciently well-known long

sequence in topology: with every exact Z
f→? X

g→? Y is associated an
exact sequence of groups:

· · · → π3(Y )→ π2(Z )→ π2(X )→ π2(Y )→ π1(Z )→ π1(X )→ π1(Y )

where πn(A) is the n-th homotopy group of the based space A (classes of
maps from Sn to A up to homotopy).

Type theory as described so far lacks something to account for this! We
need one more ingredient: truncation. We need a way to say in type
theory that we want to force a type to be a proposition, or a set (as here:
homotopy groups are sets, sets with structure, but sets, not fancy higher
groupoids).
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Truncation

There are truncations for each h-level n

• If A : U , then ‖A‖n : U .

• Constructors: we have a function | | : A→ ‖A‖n.

• If P : A→ U is a family of n-types and if f : Πx :APx then we have a
function f̃ : Πx :‖A‖nPx .

• Definitional equality: f̃ (|x |) ≡ f (x) (for all x : A).

Then we can define the homotopy groups in type theory by

πn(X , ?X ) = ‖Ωn(X , ?X )‖0

and then we can go on and establish the long exact sequence of homotopy
groups, deriving it from the long fiber sequence of spaces.

THE END
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Epilogue

The more traditional definition of πn(X ) for a pointed space is as the set
of all pointed maps from Sn to X (quotiented by homotopy). Here is how
it connects to Ωn(X , ?X ) (using the type-theoretical language), informally.

- The data of a pointed map from S1 to (X , ?X ) amounts, by
recursion, to give a point a : X and a path p : (a = a). But since the
map is pointed, and since it maps definitionally base to a, this forces
a = ?X . Hence we can identify S1 →? X with ΩX .

- Suppose that we have established

Map?(Sn−1,X )
∼←→ Ωn−1Y (for all Y )

Then, by the adjunction between Σ and Ω and by the property that
Sn is the suspension of Sn−1 (which serves as type-theoretic definition
of the spheres Sn for n > 1), we have

Map?(Sn,X ) ≡ Map?(ΣSn−1,X )
∼←→ Map?(Sn−1,ΩX )
∼←→ Ωn−1(ΩX ) ≡ ΩnX
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Exercises 1-3

In the intuitionistic setting, negation is defined as A→ 0.

Exercise 1: Let A : U and B : U . Construct a term (a de Morgan law!) of
type ((A + B)→ 0)→ (A→ 0)× (B → 0).

Exercise 2: Let A : U , P : A→ U and Q : A→ U . Construct a term of
type (Πx :A(Px × Qx))→ ((Πx :APx)× (Πx :AQx)).

Exercise 3 We define Can : N→ U by induction (notice the typographical
difference: on the right, 0 and 1 are types!) :

Can 0 :≡ 0 Can (succ n) :≡ (Can n) + 1

We then define Fin n :≡ ΣA:U (A =U Can n). Define the function max and
in = pick i n p, where p : i < n, where (x < y) :≡ ((succ x) ≤ y), and
where ≤: Πx ,y :NU is defined by induction on x , and then on y :

(0 ≤ y) :≡ 1 (succ x ≤ 0) :≡ 0 (succ x ≤ succ y) :≡ (x ≤ y)
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Exercises 4-6

Exercise 4 One can encore coproducts from booleans (using a Σ-type):

A + B = Σx :2rec2 U AB x

Define recA+B using rec2.

Exercise 5 One can encode products from booleans (using a Π-type):

A× B :≡ Πx :2rec2 U AB x

Define (a, b), pr1, pr2 and their definitional and propositional equalities.

Exercise 6 Consider two families P : A→ U and Q : A→ U , and let

R x := (P x)→ (Q x)

Show that, for x , y : A and p : (x =A y), and f : (P x)→ (Q x), u : (P y),
we have:

transportR p f u = transportQ p f (transportP p−1 u)
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Exercises 7-11

Exercise 7 Let P : A→ U and Q : (Σx :AP x)→ U . These data generate a
family R : A→ U of Σ-types, defined by

R x :≡ Σu:P xQ (x , u)

Let p : (x =A y) and (u, z) : R x . Find a formula for transportR in
terms of transportP and transportQ .

Exercise 8 Show that if B is a proposition, then, for any type A : U ,
A→ B is a proposition (hint: use function extensionality).

Exercise 9 Let f , g : A→ B, H : f ∼ g and p : x =A y . Show that
(naturality)

H(x) · g(p) =f (x)=Bg(y) f (p) · H(y)

Exercise 10. Let f : A→ A and H : f ∼ idA. Show that

H(f (x)) =f (f (x))=Af (x) f (H(x))

Exercise 11 Show that for any A and a : A, the type Σx :A a =A x is
contractible.
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Exercises 12-16

Exercise 12 Show that if A is contractible, then so are all x =A y for
x , y : A.

Exercise 13 Let B : A→ U . Show that if all Bx are contractible and if A is
contractible, then Σx :ABx is contractible.

Exercise 14 Let A : U , B : A→ U , and C : Σx :A → U . Show that

(Σx :AΣy :BxC (x , y))
∼←→ (Σz:Σx :ABxCz)

Exercise 15 Give formal definitions of λz .z + 1 : Z→ Z and λz . loopz .

Exercise 16 Show that N is a set.
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Solution to exercise 3

max 0 :≡ (inr ?) max (succ n) :≡ (inl (max n))

and pick : Πi :N Pii :N (i < n)→ Can (n) is defined by

pick i 0 p :≡ (rec0N p)
pick 0 succ(n) p :≡ (inr ?)
pick (succ i) (succ n) p :≡ inl(pick i n p)
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Solutions to exercises 4-6

(Exercise 4) We derive, for f : A→ C , g : B → C ,

recA+B C f g :≡ recΣx :2rec2 U AB x C � : Σx :2rec2 U AB x → C

where � : Πx :2Dx , with D = λx .(rec2 U AB x → C ). We can fill the
unknown � with ind2D f g , noticing that D02 ≡ A→ C and
D12 ≡ B → C . Summing up:

recA+B C f g :≡ recΣx :2rec2 U AB x C (ind2D f g)

(Exercise 5) (a, b) :≡ ind2 (rec2 U AB) a b, pr1 c :≡ c 02, pr2 c :≡ c 12.
We have pr1 (a, b) :≡ ind2 (rec2 U AB) a b 02 ≡ a. We can also derive
surjective pairing. But this requires function extensionality.

(Exercise 6): The formula type-checks, because

• transportP p−1 u : (P x)

• f (transportP p−1 u) : (Q x)

• transportQ p f (transportP p−1 u) : (Q y)

The proof of inhabitation is immediate by path induction.
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Solution to Exercise 7

We seek transportR p (u, z) = (�1,�2) : R y , hence we must have
�1 : P y and �2 : Q (y ,�1). We take

�1 :≡ transportP p u
�2 :≡ transportQ ((pair=) (p, (refl (transportP p u)))) z

Indeed, we have z : Q (x , u) and
(pair=) (p, (refl (transportP p u))) : (x , u) = (y , (transportP p u)).
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Solution to Exercises 12-13

Exercise 12: Let (a, f ) : isContr(A). Our goal is to prove
isContr(x =A y) (for x , y arbitrary). We fix x and let y vary. We can
take

h x y :≡ (fx)−1 · fy
as center. We look for Hx : Πy :AΠp:x=Ay .C y p, where
C y p :≡ (h x y =x=Ay p). By based path induction on A, it is enough to
prove

h x x =x=Ax refl(x),

which holds since h x x ≡ (fx)−1 · fx = refl(x).

Exercise 13 We have shown that if all Bx are contractible, the Σx :ABx is
equivalent to A. Therefore, if A is contractible, then so is Σx :ABx .
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Sketch of solution to Exercise 16

The idea is to use the encode-decode method to characterise all types
m =N n. One defines (cf. also the inequality predicates of Exercise 3):

code(0, 0) :≡ 1

code({ttsucc(n), 0) :≡ 0

code(0, succ(n)) :≡ 0

code(succ(m), succ(n)) :≡ code(m, n)

An then to prove
(m =N n)

∼←→ code(m, n)

by a suitable combination of induction on N and of path induction.
The conclusion then follows from the fact that by definition all the types
code(m, n) are either 0 or 1, which are propositions.

131 / 131


