Call-By-Push-Value in system L style

Pierre-Louis

Abstract

I have cut down the syntax for bilateral (focalised, classical) system L in my style (appended to this note in a slightly modified version with respect to what I had sent before, where the involutive negation is taken seriously as a connective rather than a defined dual). The resulting subsystem is shown equivalent to CBPV in a precise way.

1 A system L syntax for CBPV

Formulas:

$$
\begin{aligned}
& P::=P \otimes P \mid P \oplus P \| \downarrow N \\
& N::=N \& N|P \rightarrow N| \uparrow P
\end{aligned}
$$

Remark 1. When studying polarities without linearity concerns, it is bit odd to still name \otimes the positive conjunction. May be \wedge^{+}should be used instead. But for the time being I stick with $\otimes \ldots$.

Remark 2. Exactly the same logical system appears (without reference to CBPV) in lecture notes of F. Pfenning on focusing for intuitionistic logic [2]. This independent appearance witnesses the fact that as long as no precision is given on the "kind of effects" we want to model with the monad associated to $F \dashv U$, we are just doing (intuitionistic) polarisation.

Dictionary wrt to P.B. Levy's notation:

$$
\left.\begin{array}{ccccc}
\text { value computation } \Sigma \times U N & F P & \Pi & P \rightarrow N \\
\text { positive } & \text { negative } \oplus \otimes \downarrow N & \oplus P & \& & P
\end{array} \rightarrow N \text { (thought of as } \bar{P} \ngtr N\right) ~ \$
$$

We have five syntactic categories:

$$
\begin{array}{lll}
\text { Values } & V::=x \|(V, V)|\operatorname{inl}(V)| \operatorname{inr}(V) \mid \mu[.]^{\downarrow} \cdot c & \Gamma \vdash V: P ; \\
\text { Negative terms } & v:=\mu[\cdot] \cdot c\left\|\mu\left([f s t] \cdot c_{1},[s n d] \cdot c_{2}\right)\right\| \mu[x \cdot[.]] \cdot c \| V^{\uparrow} & \Gamma \vdash v: N \mid \\
\text { Covalues } & E::=[.]\left|E[f s t]\|E[s n d] \mid[V \cdot E]\| \tilde{\mu} x^{\uparrow} \cdot c\right. & \Gamma ; E: N \vdash[.]: N^{\prime} \\
\text { Positive contexts } & e::=\tilde{\mu} x \cdot c\left\|\tilde{\mu}(x, y) \cdot c \mid \tilde{\mu}\left[\operatorname{inl}\left(x_{1}\right) \cdot c_{1}, \operatorname{inr}\left(x_{2}\right) \cdot c_{2}\right]\right\| E^{\downarrow} & \Gamma \mid e: P \vdash[.]: N \\
\text { Commands } & c::=\langle v \mid E\rangle \mid\langle V \mid e\rangle & c:(\Gamma \vdash[.]: N)
\end{array}
$$

where Γ is a context of positive formulas.
Dictionary wrt to P.B. Levy's notation (continued):

$$
\begin{array}{ll}
V \text { (value) } & M \text { (computation) } K \text { (stack) } \\
V \text { (value) } & v \text { (negative term) }
\end{array} E \text { (covalue) } e \text { (positive context) } c \text { (command) }
$$

Typing rules

$$
\Gamma \vdash v: N \mid \quad \Gamma ; E: N \vdash[.]: N^{\prime}
$$

$$
\Gamma \vdash V: P ; \quad \Gamma \mid e: P \vdash[.]: N
$$

$$
\begin{aligned}
\Gamma, x: P \vdash x: P ; \quad \Gamma ;[.]: N \vdash[.]: N & \langle v \mid E\rangle:\left(\Gamma \vdash[.]: N^{\prime}\right) \\
& \frac{c:(\Gamma \vdash[.]: N)}{\Gamma \vdash \mu[.] . c: N \mid}
\end{aligned} \frac{c:(\Gamma, x: P \vdash[.]: N)}{\Gamma \mid \tilde{\mu} x . c: P \vdash[.]: N}
$$

$$
\begin{aligned}
& \frac{c:(\Gamma \vdash[.]: N}{\Gamma \vdash \mu[.]^{\downarrow} . c: \downarrow N ;} \quad \frac{\Gamma \vdash V_{1}: P_{1} ; \quad \Gamma \vdash V_{2}: P_{2} ;}{\Gamma \vdash\left(V_{1}, V_{2}\right): P_{1} \otimes P_{2} ;} \quad \frac{\Gamma \vdash V_{1}: P_{1} ;}{\Gamma \vdash \operatorname{inl}\left(V_{1}\right): P_{1} \oplus P_{2} ;} \\
& \underline{\Gamma \vdash V: P ;} \quad \underline{c:(\Gamma, x: P \vdash[.]: N)} \quad \underline{c_{1}:\left(\Gamma \vdash[.]: N_{1}\right)} \quad c_{2}:\left(\Gamma \vdash[.]: N_{2}\right) \\
& \Gamma \vdash V^{\uparrow}: \uparrow P|\quad \Gamma \vdash \mu[x \cdot[.]] . c: P \rightarrow N| \quad \Gamma \vdash \mu\left([f s t] . c_{1},[s n d] . c_{2}\right): N_{1} \& N_{2} \mid \\
& \frac{\Gamma, x: P \vdash[.]: N}{\Gamma ; \tilde{\mu} x^{\uparrow} . c: \uparrow P \vdash[.]: N} \quad \frac{\Gamma \vdash V: P ; \quad \Gamma ; E: N \vdash[.]: N^{\prime}}{\Gamma ;[V \cdot E]: P \rightarrow N \vdash[.]: N^{\prime}} \quad \frac{\Gamma ; E_{1}: N_{1} \vdash[.]: N}{\Gamma ; E_{1}[f s t]: N_{1} \& N_{2} \vdash[.]: N} \\
& \underline{\Gamma ; E: N \vdash[.]: N^{\prime} \quad c:\left(\Gamma, x_{1}: P_{1}, x_{2}: P_{2} \vdash[.]: N\right) \quad c_{1}:\left(\Gamma, x_{1}: P_{1} \vdash[.]: N\right) \quad c_{2}:\left(\Gamma, x_{2}: P_{2} \vdash[.]: N\right)} \\
& \Gamma\left|E^{\downarrow}: \downarrow N \vdash[.]: N^{\prime} \quad \Gamma\right| \tilde{\mu}\left(x_{1}, x_{2}\right) . c: P_{1} \otimes P_{2} \vdash[.]: N \quad \Gamma \mid \tilde{\mu}\left[\operatorname{inl}\left(x_{1}\right) \cdot c_{1}, \operatorname{inr}\left(x_{2}\right) \cdot c_{2}\right]: P_{1} \oplus P_{2} \vdash[.]: N
\end{aligned}
$$

Operational semantics:

$$
\begin{aligned}
& \langle V \mid \tilde{\mu} x \cdot c\rangle \rightarrow c[V / x] \\
& \langle\mu[\cdot] \cdot c \mid E\rangle \rightarrow c[E /[\cdot]] \\
& \left\langle\left(V_{1}, V_{2}\right) \mid \tilde{\mu}\left(x_{1}, x_{2}\right) \cdot c\right\rangle \rightarrow c\left[V_{1} / x_{1}, V_{2} / x_{2}\right] \\
& \langle\mu[x \cdot \alpha] \cdot c \mid[V, E]\rangle \rightarrow c[V / x, E / \alpha] \\
& \left.\left.\left\langle\operatorname{inl}\left(V_{1}\right)\right| \tilde{\mu}\left[\operatorname{inl}\left(x_{1}\right) \cdot c_{1}, \operatorname{inr}\left(x_{2}\right) \cdot c_{2}\right]\right)\right\rangle \rightarrow c_{1}\left[V_{1} / x_{1}\right] \\
& \left\langle\mu\left([f s t] \cdot c_{1},[s n d] \cdot c_{2}\right)\right)\left|E_{1}[f s t]\right\rangle \rightarrow c_{1}\left[E_{1} /[\cdot]\right] \\
& \left\langle\mu[.] \downarrow . c \mid E^{\downarrow}\right\rangle \rightarrow c[E /[\cdot]] \\
& \left\langle V^{\uparrow} \mid \tilde{\mu} x^{\uparrow} \cdot c\right\rangle \rightarrow c[V / x]
\end{aligned}
$$

2 Translations

2.1 From CBPV

(read "let $V\left(\right.$ resp. $\left.v, v_{1}, E, \ldots\right)$ be the translation of $V\left(\operatorname{resp} M, M_{1}, K, \ldots\right)$ ")

x	\rightsquigarrow	x
return V	\rightsquigarrow	V^{\uparrow}
thunk M	\rightsquigarrow	$\mu[.] \downarrow .\langle v \mid[]$.
Σ introduction	\rightsquigarrow	inl, inr
(V, V^{\prime})	\rightsquigarrow	(V, V^{\prime})
$\lambda\left\{1 . M_{1}, 2 . M_{2}\right\}$	\rightsquigarrow	$\mu\left([f s t] .\left\langle v_{1} \mid[].\right\rangle,[s n d] .\left\langle v_{\text {2 }} \mid[].\right\rangle\right)$
$\lambda x . M$	\rightsquigarrow	$\mu[x \cdot[]] ..\langle v \mid[]$.
let V be $x . M$	\cdots	$\mu[] ..\langle V \mid \tilde{\mu} x .\langle v \mid[]\rangle$.
M_{1} to $x . M_{2}$	\cdots	$\mu[] ..\left\langle v_{1} \mid \tilde{\mu} x^{\uparrow} .\left\langle v_{2} \mid[\cdot]\right\rangle\right\rangle$
force V	\rightsquigarrow	$\mu[] ..\left\langle V \mid[.]{ }^{\downarrow}\right\rangle$
$\mathrm{pm} V$ as $\left\{\left(1, x_{1}\right) \cdot M_{1},\left(2, x_{2}\right) \cdot M_{2}\right\}$	\cdots	$\mu[] ..\left\langle V \mid \tilde{\mu}\left[\operatorname{inl}\left(x_{1}\right) \cdot\left\langle v_{1} \mid[].\right\rangle, \operatorname{inr}\left(x_{2}\right) \cdot\left\langle v_{2} \mid[\cdot]\right\rangle\right]\right\rangle$
pm V as $(x, y) . M$	\rightsquigarrow	$\mu[] ..\langle V \mid \tilde{\mu}(x, y) \cdot\langle v \mid[]\rangle$.
$\hat{1}^{\dagger} M$	\cdots	$\mu[] ..\langle v \mid[].[f s t]\rangle$
$V^{\bullet} M$	\rightsquigarrow	$\mu[\cdot] \cdot\langle\langle v \mid[V \cdot[]]\rangle$.
nil	\cdots	[•]
$[\cdot]$ to $x . M$:: K	\cdots	$\tilde{\mu} x^{\uparrow} .\langle v \mid E\rangle$
$\hat{1}:: ~ K$	\rightsquigarrow	$E[f s t]$ (idem $\hat{2}$, snd)
$V:: K$	\rightsquigarrow	$[V \cdot E]$

2.2 To CBPV

The three categories e, c, v are translated to computations M, while V, E of course translate to values and stacks. For contexts e, the translation is parameterised by a variable x (the place-holder of e in the sequent). The translation makes use of the dismantling $M \bullet K$ (or read-back) of a state (M, K) as a computation (beginning of Section 3 of [1]).

$$
\begin{aligned}
& x^{\dagger}=x \\
& (i n l(V))^{\dagger}=\left(\hat{1}, V^{\dagger}\right) \quad(\text { idem inr }) \\
& \left(V_{1}, V_{2}\right)^{\dagger}=\left(\left(V_{1}\right)^{\dagger},\left(V_{2}\right)^{\dagger}\right) \\
& \left(\mu[.]^{\downarrow} \cdot c\right)^{\dagger}=\text { thunk } c^{\dagger} \\
& (\mu[\cdot] \cdot c)^{\dagger}=c^{\dagger} \\
& \left(\mu\left([f s t] \cdot c_{1},[\text { snd }] \cdot c_{2}\right)\right)^{\dagger}=\lambda\left\{1 \cdot\left(c_{1}\right)^{\dagger}, 2 \cdot\left(c_{2}\right)^{\dagger}\right\} \\
& (\mu[x \cdot[.]] \cdot c)^{\dagger}=\lambda x \cdot c^{\dagger} \\
& \left(V V^{\uparrow}\right)^{\dagger}=\text { return } V^{\dagger} \\
& {[\cdot]^{\dagger}=\text { nil }} \\
& E[f s t]^{\dagger}=\hat{1}:: E^{\dagger} \quad(\text { idem snd }) \\
& {[V \cdot E]^{\dagger}=V^{\dagger}:: E^{\dagger}} \\
& \left(\tilde{\mu} x^{\uparrow} \cdot c\right)^{\dagger}=[\cdot] \text { to } x \cdot c^{\dagger}:: \text { nil } \\
& (\tilde{\mu} x \cdot c)_{x}^{\dagger}=c^{\dagger} \\
& \left(\tilde{\mu}\left(x_{1}, x_{2}\right) \cdot c\right)_{x}^{\dagger}=\mathrm{pm} x \text { as }\left(x_{1}, x_{2}\right) \cdot c^{\dagger} \\
& \left(\tilde{\mu}\left[\text { inl } l\left(x_{1}\right) \cdot c_{1}, \text { inr }\left(x_{2}\right) \cdot c_{2}\right]\right)_{x}^{\dagger}=\operatorname{pm} x \text { as }\left\{\left(1, x_{1}\right) \cdot\left(c_{1}\right)_{x}^{\dagger},\left(2, x_{2}\right) \cdot\left(c_{2}\right)_{x}^{\dagger}\right\} \\
& \left(E^{\downarrow}\right)_{x}^{\dagger}=(\text { force } x) \bullet E^{\dagger} \\
& \langle v \mid E\rangle^{\dagger}=v^{\dagger} \bullet E^{\dagger} \\
& \langle V \mid e\rangle^{\dagger}=e_{x}^{\dagger}[V / x]
\end{aligned}
$$

2.3 Equivalence

One checks easily that the two systems simulate each other. Note that the steps in Levy's machine are somewhat more informative in the system L (analysis to be completed. . . : switch from CBN mode to CBV mode and conversely). For example, we have that

$$
\langle\text { return } V|[\cdot] \text { to } x . M:: K\rangle \rightarrow\langle N[V / x] \mid K\rangle
$$

becomes

$$
\left\langle V^{\uparrow} \mid(\tilde{\mu} x .\langle v \mid E\rangle)^{\uparrow}\right\rangle \rightarrow\langle V \mid \tilde{\mu} x .\langle v \mid E\rangle\rangle \rightarrow\langle v[V / x] \mid E\rangle
$$

(of the shape $\langle v \mid E\rangle \rightarrow\left\langle V_{1} \mid e_{1}\right\rangle \rightarrow\left\langle v_{2} \mid E_{2}\right\rangle$)
To get that the translations are inverse to each other, we need the η-rules (cf. appendix).

3 Categorical interpretation

We use \mathbf{P} and \mathbf{N} for Levy's \mathcal{C} and \mathcal{D}, in conformity with the syntax of formulas. We write $\mathbf{0}[P, N]$ where Levy would write $\mathcal{O}_{A}(\underline{B})$, to suggest a profunctor view.

The idea is to interpret the five categories V, v, E, e, c in $\mathbf{P}, \mathbf{N}, \mathbf{N}^{o p}, \mathbf{P}^{o p}$ and $\mathbf{0}$, respectively.
Using action notations as proposed by Marcelo, the interpretation of the judgements goes as follows:

$$
\begin{array}{ll}
\Gamma \vdash V: P ; & \mathbf{P}[\Gamma, P] \\
\Gamma \vdash v: N \mid & \mathbf{N}\left[\Gamma\left\lfloor 1_{\mathbf{N}}, N\right]\right. \\
\Gamma ; E: N_{1} \vdash[.]: N_{2} & \mathbf{N}^{o p}\left[N_{2}, \Gamma\left\lfloor N_{1}\right]\right. \\
\Gamma \mid e: P \vdash[.]: N & \left.\mathbf{P}^{o p}\left[1_{\mathbf{P}}\right] N, \Gamma \otimes P\right] \\
c:(\Gamma \vdash[.]: N) & \mathbf{O}[\Gamma, N]
\end{array}
$$

See the discussion on the adjunction $\uparrow \dashv \downarrow$ at the end of the appendix.

A Focalising system L in full bilateral form

$$
\begin{aligned}
& P::=X|P \otimes Q| P \oplus Q \mid \neg N \| \downarrow N \\
& N::=\bar{X} \mid N \not N N\|N \& N\| \neg P \| \uparrow P \\
& A::=P \mid N
\end{aligned}
$$

In sequents, Γ stands for $\ldots, x^{+}: P, \ldots, x^{-}: N, \ldots$, and Δ stands for $\ldots, \alpha^{+}: P, \ldots, \alpha^{-}: N, \ldots$

$$
\begin{array}{ll}
\text { Commands } & c::=\left\langle v^{+} \mid e^{+}\right\rangle \mid\left\langle v^{-} \mid e^{-}\right\rangle \\
\text {Expressions } & v^{+}::=V \mid \mu \alpha^{+} . c \\
& v^{-}::=x^{-}\left|\mu \alpha^{-} . c\left\|\mu \alpha^{+\uparrow} . c\left|\mu\left[\alpha_{1}^{-}, \alpha_{2}^{-}\right] \cdot c \| \mu\left(\alpha_{1}^{-}[f s t] \cdot c_{1}, \alpha_{2}^{-}[s n d] \cdot c_{2}\right)\right| \mu x^{+\urcorner} . c\right.\right. \\
\text { Values } & V::=x^{+}\|(V, V)\| \operatorname{inl}(V) \mid \operatorname{inr}(V) \| v^{-\downarrow} \\
\text { Contexts } & e^{-}::=E \| \tilde{\mu} x^{-} . c \\
& e^{+}::=\alpha^{+}\left\|\tilde{\mu} x^{+} . c\right\| \tilde{\mu} x^{-\downarrow} . c\left|\tilde{\mu}\left(x^{+}, y^{+}\right) \cdot c\right| \tilde{\mu}\left[\operatorname{inl}\left(x_{1}^{+}\right) \cdot c_{1}, \operatorname{inr}\left(x_{2}^{+}\right) \cdot c_{2}\right] \\
\text { Covalues } & \left.E::=\alpha^{-} \| E E, E\right]\|E[f s t] \mid E[s n d]\| e^{+\uparrow} \| V^{\urcorner}
\end{array}
$$

We can factorise a few rules using the following mergings:

$$
v::=v^{+}\left\|v^{-} \quad \alpha::=\alpha^{+} \mid \alpha^{-} \quad e::=e^{+}\right\| e^{-} \quad x::=x^{+} \| x^{-}
$$

$$
\overline{\Gamma, x^{+}: P \vdash x^{+}: P ; \Delta} \quad \overline{\Gamma \mid \alpha^{+}: P \vdash \alpha^{+}: P, \Delta} \quad \overline{\Gamma ; \alpha^{-}: N \vdash \alpha^{-}: N, \Delta} \quad \overline{\Gamma, x^{-}: N \vdash x^{-}: N \mid \Delta}
$$

$$
\frac{\Gamma \vdash v: A|\Delta \quad \Gamma| e: A \vdash \Delta}{\langle v \mid e\rangle:(\Gamma \vdash \Delta)}
$$

$$
\frac{c:(\Gamma \vdash \alpha: A, \Delta)}{\Gamma \vdash \mu \alpha . c: A \mid \Delta} \quad \frac{c:(\Gamma, x: A \vdash \Delta)}{\Gamma \mid \tilde{\mu} x . c: A \vdash \Delta} \quad \frac{\Gamma \vdash V: P ; \Delta}{\Gamma \vdash V: P \mid \Delta} \quad \frac{\Gamma ; E: N \vdash \Delta}{\Gamma \mid E: N \vdash \Delta}
$$

$\frac{\Gamma \vdash v: N \mid \Delta}{\Gamma \vdash v^{\downarrow}: \downarrow N ; \Delta} \quad \frac{\Gamma \vdash V_{1}: P_{1} ; \Delta \quad \Gamma \vdash V_{2}: P_{2} ; \Delta}{\Gamma \vdash\left(V_{1}, V_{2}\right): P_{1} \otimes P_{2} ; \Delta} \quad \frac{\Gamma \vdash V_{1}: P_{1} ; \Delta}{\Gamma \vdash \operatorname{inl}\left(V_{1}\right): P_{1} \oplus P_{2} ; \Delta} \quad \frac{\Gamma \vdash V: P ; \Delta}{\Gamma ; V\urcorner: \neg P \vdash \Delta}$

$c:\left(\Gamma \vdash \alpha^{+}: P, \Delta\right)$	$c:\left(\Gamma \vdash \alpha_{1}^{-}: N_{1}, \alpha_{2}^{-}: N_{2}, \Delta\right)$	$c_{1}:\left(\Gamma \vdash \alpha_{1}^{-}: N_{1}, \Delta\right) \quad c_{2}:\left(\Gamma \vdash \alpha_{2}^{-}: N_{2}, \Delta\right)$	$c:(\Gamma, x: P \vdash \Delta$
$\Gamma \vdash \mu \alpha^{+\uparrow} . c: \uparrow P \mid \Delta$	$\Gamma \vdash \mu\left[\alpha_{1}^{-}, \alpha_{2}^{-}\right] . c: N_{1} ช N_{2} \mid \Delta$	$\Gamma \vdash \mu\left(\alpha_{1}^{-}[f s t] . c_{1}, \alpha_{2}^{-}[s n d] . c_{2}\right): N_{1} \& N_{2} \mid \Delta$	$\Gamma \vdash \mu x^{+} . c: \neg P \mid \Delta$

$$
\begin{array}{rc}
\frac{\Gamma \mid e: P \vdash \Delta}{\Gamma ; e^{\uparrow}: \uparrow P \vdash \Delta} & \frac{\Gamma ; E_{1}: N_{1} \vdash \Delta}{\Gamma ;\left[E_{1}, E_{2}\right]: N_{1} \diamond N_{2} \vdash \Delta} \quad \frac{\Gamma ; E_{2}: N_{2} \vdash \Delta}{\Gamma ; N_{1}[f s t]: N_{1} \& N_{2} \vdash \Delta} \\
\frac{c:\left(\Gamma, x^{-}: N \vdash \Delta\right)}{\Gamma \mid \tilde{\mu} x^{-\downarrow} \cdot c: \downarrow N \vdash \Delta} & \frac{c:\left(\Gamma, x_{1}^{+}: P_{1}, x_{2}^{+}: P_{2} \vdash \Delta\right)}{\Gamma \mid \tilde{\mu}\left(x_{1}^{+}, x_{2}^{+}\right) \cdot c: P_{1} \otimes P_{2} \vdash \Delta} \quad \frac{c_{1}:\left(\Gamma, x_{1}^{+}: P_{1} \vdash \Delta\right)}{\Gamma \mid \tilde{\mu}\left[\operatorname{inl}\left(x_{1}^{+}\right) \cdot c_{1}, i n r\left(x_{2}^{+}\right) \cdot c_{2}\right]: P_{1} \oplus P_{2} \vdash \Delta}
\end{array}
$$

Operational semantics:

$$
\begin{aligned}
& \left\langle V \mid \tilde{\mu} x^{+} . c\right\rangle \rightarrow c\left[V / x^{+}\right] \\
& \left\langle\mu \alpha^{-} . c \mid E\right\rangle \rightarrow c\left[E / \alpha^{-}\right] \\
& \left\langle v^{-} \mid \tilde{\mu} x^{-} . c\right\rangle \rightarrow c\left[v^{-} / x^{-}\right] \\
& \left\langle\mu \alpha^{+} . c \mid e^{+}\right\rangle \rightarrow c\left[e^{+} / \alpha^{+}\right] \\
& \left\langle\left(V_{1}, V_{2}\right) \mid \tilde{\mu}\left(x_{1}^{+}, x_{2}^{+}\right) \cdot c\right\rangle \rightarrow c\left[V_{1} / x_{1}^{+}, V_{2} / x_{2}^{+}\right] \\
& \left\langle\mu\left[\alpha_{1}^{-}, \alpha_{2}^{-}\right] . c \mid\left[E_{1}, E_{2}\right]\right\rangle \rightarrow c\left[E_{1} / \alpha_{1}^{-}, E_{2} / \alpha_{2}^{-}\right] \\
& \left.\left.\left\langle\operatorname{inl}\left(V_{1}\right)\right| \tilde{\mu}\left[\operatorname{inl}\left(x_{1}^{+}\right) \cdot c_{1}, \operatorname{inr}\left(x_{2}^{+}\right) \cdot c_{2}\right]\right)\right\rangle \rightarrow c_{1}\left[V_{1} / x_{1}^{+}\right] \\
& \left\langle\mu\left(\alpha_{1}^{-}[f s t] . c_{1}, \alpha_{2}^{-}[s n d] \cdot c_{2}\right)\right)\left|E_{1}[f s t]\right\rangle \rightarrow c_{1}\left[E_{1} / \alpha_{1}^{-}\right] \\
& \left\langle v^{-\downarrow} \mid \tilde{\mu} x^{-\downarrow} . c\right\rangle \rightarrow c\left[v^{-} / x^{-}\right] \\
& \left\langle\mu \alpha^{+\uparrow} . c \mid e^{+\uparrow}\right\rangle \rightarrow c\left[e^{+} / \alpha^{+}\right] \\
& \left\langle\tilde{\mu} x^{+-} . c \mid V V^{\urcorner}\right\rangle \rightarrow c\left[V / x^{+}\right]
\end{aligned}
$$

For such full bilateral sequents, the interpretation might look as follows (Γ 's positive and Δ 's negative): $\Gamma_{1}, \Delta_{1} \vdash$ $V: P ; \Gamma_{2}, \Delta_{2}$ could live in $\left.\mathbf{P}[\Gamma\rfloor \Delta, P\right]$, where $\Gamma=\Gamma_{1} \otimes \neg \Delta_{2}$ and Δ is defined similarly using the tensor in \mathbf{N}. Etc... (not sure of what I am writing here...).

A. 1 Two syntactical adjunctions

In this section, we give evidence that
$\downarrow \dashv \uparrow$ at the level of positive contexts and negative terms
$\uparrow \dashv \downarrow$ at the level of covalues and values

As we shall see, the first adjunction is in some sense more primitive than the second, since our choice of patternmatching notation for the syntax of system L, which favours the right invertibility of \uparrow, allows to define the patternmatching notation suggested by the second adjunction as syntactic sugar, but not conversely.

We start with the first adjunction, which is mediated by command judgements. We exhibit the inverse syntactic isomorphisms. We need two η-rules (which express invertibility):

$$
\begin{array}{ccc}
v^{-}=\mu \alpha^{+\uparrow} .\left\langle v^{-} \mid \alpha^{+\uparrow}\right\rangle & \left(\text { for } \Gamma \vdash v^{-}: \uparrow P \mid \Delta\right) \\
e^{+}=\tilde{\mu} x^{-\downarrow} .\left\langle x^{-\downarrow} \mid e^{+}\right\rangle & \text {(for } \left.\Gamma \mid e^{+}: \downarrow N \vdash \Delta\right) \\
\Gamma \vdash v^{-}: \uparrow P \mid \Delta & v^{-} & \mu \alpha^{+\uparrow} . c \\
c:\left(\Gamma \vdash \alpha^{+}: P, \Delta\right) & \left\langle v^{-} \mid \alpha^{+\uparrow}\right\rangle & c \\
\Gamma \mid e^{+}: \downarrow N \vdash \Delta & e^{+} & \tilde{\mu} x^{-\downarrow} . c \\
& \downarrow & \uparrow \\
c:\left(\Gamma, x^{-}: N \vdash \Delta\right) & \left\langle x^{-\downarrow} \mid e^{+}\right\rangle & c
\end{array}
$$

so that putting these isos together we obtain isos between

$$
\Gamma, x^{-}: N \vdash v^{-}: \uparrow P\left|\Delta \quad c:\left(\Gamma, x^{-}: N \vdash \alpha^{+}: P, \Delta\right) \quad \Gamma\right| e^{+}: \downarrow N \vdash \alpha^{+}: P, \Delta
$$

Before turning to the second adjunction, we define syntactic sugar (for which the choice of notation will be justified by the second adjunction). We define:

$$
\begin{aligned}
& \mu \alpha^{-\downarrow} \cdot c=\left(\mu \alpha^{-} . c\right)^{\downarrow} \\
& E^{\downarrow}=\tilde{\mu} x^{-\downarrow} \cdot\left\langle x^{-} \mid E\right\rangle \\
& \tilde{\mu} x^{+\uparrow} . c=\left(\tilde{\mu} x^{+} . c\right)^{\uparrow} \\
& V^{\uparrow}=\mu \alpha^{+\uparrow} \cdot\left\langle V \mid \alpha^{+}\right\rangle
\end{aligned}
$$

With the following derived typing rules:

$$
\frac{c:\left(\Gamma \vdash \alpha^{-}: N, \Delta\right)}{\Gamma \vdash \mu \alpha^{-\downarrow} . c: \downarrow N ; \Delta} \quad \frac{\Gamma ; E: N \vdash \Delta}{\Gamma \mid E^{\downarrow}: \downarrow N \vdash \Delta} \quad \frac{c:\left(\Gamma, x^{+}: P \vdash \Delta\right)}{\Gamma ; \tilde{\mu} x^{+\uparrow . c: \uparrow P \vdash \Delta} \quad} \quad \frac{\Gamma \vdash V: P ; \Delta}{\Gamma \vdash V^{\uparrow}: \uparrow P \mid \Delta}
$$

We need two new η-rules, which again express invertibility, but this time in relation with the second adjunction, and which are "by value" (cf. $\lambda x . V x$ in CBV λ-calculus):

$$
\begin{aligned}
& V=\mu \alpha^{-\downarrow} \cdot\left\langle V \mid \alpha^{-\downarrow}\right\rangle \quad(\text { for } \Gamma \vdash V: \downarrow N ; \Delta) \\
& E=\tilde{\mu} x^{+\uparrow} \cdot\left\langle x^{+\uparrow} \mid E\right\rangle \quad(\text { for } \Gamma ; E: \uparrow P \vdash \Delta)
\end{aligned}
$$

(note that expanding the macros, these η-rules are uglier and less suggestive, e.g., $V=\left(\mu \alpha^{-} .\left\langle V \mid \tilde{\mu} x^{-\downarrow} .\langle x \mid \alpha\rangle\right\rangle\right)^{\downarrow}$)
We are now ready to exhibit the second adjunction (again mediated by command judgements)

$\Gamma \vdash V: \downarrow N ; \Delta$	V	$\mu \alpha^{-\downarrow} . c$
$c:\left(\Gamma \vdash \alpha^{-}: N, \Delta\right)$	$\langle V\| \alpha^{-\downarrow\rangle}$	c
$\Gamma ; E: \uparrow P \vdash \Delta$	E	$\tilde{\mu} x^{+\uparrow} . c$
	\downarrow	\uparrow
$c:\left(\Gamma, x^{+}: P \vdash \Delta\right)$	$\left\langle x^{+\uparrow} \mid E\right\rangle$	c

and putting this together, we get the chain of isos so that putting these isos together we obtain isos between

$$
\Gamma, x^{+}: P \vdash V: \downarrow N ; \Delta \quad c:\left(\Gamma, x^{+}: P \vdash \alpha^{-}: N, \Delta\right) \quad \Gamma ; E: \uparrow P \vdash \alpha^{-}: N, \Delta
$$

Notice that in the design choices, I applied Guillaume's guide-line to associate pattern)matching to the invertibility of the right adjoint.

Could we have taken the defined syntax, tailored to the second adjustment, as primitive? Well, one recovers easily $v^{-\downarrow}$ defined as $\left(\mu \alpha^{-\downarrow} . c\right)^{\downarrow}$, but for $\tilde{\mu}^{-\downarrow} . c$ we cannot form $\left(\tilde{\mu} x^{-} . c\right)^{\downarrow}$ because $\tilde{\mu} x^{-} . c$ is not a covalue.

Now, what happens when cutting down to CBPV (or to LLP, or to intuitionistic logic) is that there is no space to express the first adjunction: there are no sequents in which there is a variable x of negative type in the (left) context, and similarly no sequents with a variable α of positive type on the right (only [.] : N is available). But the macros make sense (and are not macros anymore in the cut-down version) and the second adjunction persists. One sees only the second one

Note that this situation corresponds to the following categorical fact. Let $F \dashv G$ be an adjunction between \mathbf{C} and \mathbf{C}^{\prime}. Then this induces an adjunction $\underline{G} \dashv \underline{F}$ between the Kleisli category of the induced monad T and the coKleisli category of the induced comonad D. It goes like this. The functors \underline{F} and \underline{G} act as F and G on objects. A Kleisli morphism from $G d$ to c is a morphism from $G d$ to $G F c$ which by adjunction corresponds to a coKleisli morphism for d to $F c$. On morphisms, the definition of \underline{F} goes as follows. Given $f: c_{1} \rightarrow G F c_{2}$, we define $\underline{F} f$ by composing the the counit at $F c_{1}$ with the morphism from $F c_{1} \rightarrow F c_{2}$ obtained by adjunction.

References

1. P.B. Levy, Adjunction models for call-by-push-value with stacks, Theory and Applications of Categories 14(5), 75-110 (2005).
2. Frank Pfenning, Lecture notes on focusing, available from http://www.cs.uoregon.edu/Activities/ summerschool/summer11/curriculum.html.
