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Abstract

We define the complete Taylor expansion of an ordinary lambda-term as an infinite linear combina-
tion  with rational coefficients  of terms of a resource calculus similar to Boudol’s lambda-calculus
with multiplicities (or with resources). In our resource calculus, all applications are (multi-)linear
in the algebraic sense, i.e. commute with linear combinations of the function or the argument. We
study the collective behaviour of the beta-reducts of the terms occurring in the Taylor expansion
of any ordinary lambda-term, using, in a surprisingly crucial way, a uniformity property that they
enjoy. As a corollary, we obtain (that main part of) a proof that this Taylor expansion commutes
with B6hm tree computation, syntactically.

Introduction

Although the present article develops a differential approach to the lambda-calculus that we initiated
in [ERO3], it is self-contained and does not require any technical knowledge of [ER03]. Nevertheless, we
think that the differential intuitions developped in that paper are quite helpful for understanding the
present work, and therefore, we recall them shortly.

In [ER03], we introduced an extension of the lambda-calculus where terms can be differentiated with
respect to their arguments. Typically (in a simply typed version of this differential lambda-calculus), if
M is a term of type A — B and if N is a term of type A, we introduce! the term DM - N of type A — B,
to be understood as the derivative of the function M with respect to its argument, linearly applied? to
the value N.

Intuitively, in the term DM - N, the term M is provided with exactly one copy N of its argument, and
this explains why A is still present as an argument type of DM - N, for the other copies that M might need
in computing a result. We argued indeed in the introduction of [ER03] that the mathematical notion of
linearity, which is the key concept of differentiation (computing the best possible linear approximation of
a function), and the logical notion of linearity (a function is linear if it uses its argument exactly once) are
deeply related, as already strongly suggested by the notations, terminology and denotational semantics
of linear logic [Gir87]. The idea of extending linear logic with a differential construction, expressed as
an exponential rule, is even mentioned at the end of [Gir87]. But, probably because of the fundamental
incompatibility of this construction with both coherence space semantics and totality, Girard didn’t

*This work has been supported by the ACI project GEOCAL.

I Actually, the syntax of [ER03] is more complicated since we introduced an explicit notation D; M- N for the derivative of
M with respect to its ¢th argument. This has been shown useless by Lionel Vaux in his study of the differential lambda-mu
calculus [Vau05].

?In standard mathematical notations, the derivative of M is a function M’ associating to = € A a linear map M’ (x)
from A to B, the differential of M at point z; thus M’ has type A — (A —o B) (where A —o B is the type of linear maps
from A to B). With these notations, our DM - N has type A — B and represents Az (M’ (x)(N)) so that “DM?” could be
considered as having type A —o (A — B). But, on purpose, we did not introduce the syntactic construction DM for not
having to introduce explicitely linear types in the syntax.



explore this direction further. Taking this idea seriously, we arrived to a differential extension of linear
logic presented in [ERO6D].

Since the differential allows to write all the derivatives of a lambda-term, it also allows to write formal
Taylor expansions of lambda-terms, and it is quite temting to understand the operational meaning of
such expansions. At the end of [ER03|, we proved a result relating, in a special case, the Taylor expansion
of a lambda-term to its linear head reduction®. More precisely, given two ordinary lambda-terms M and
N such that (M) N is S-equivalent to a variable %, we studied the Taylor expansion of that application,
which is the following infinite linear combination of differential lambda-terms
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where we use D" M - N™ for the n-th derivative of M with respect to its first parameter (it corresponds
to an n-linear function) linearly applied n times to N, that is: D(---DM - N ---) - N. We showed that,
with our reduction rules for the differential lambda-calculus, in that sum, there is exactly one term which
does not reduce to 0, and that the order n of that term corresponds to the number of times N arrives in
head position during the linear head reduction of (M) N to *.

Our aim here is to generalize the final result of [ER03] in two directions:

e instead of Taylor expanding only one application, we want to Taylor expand all the applications
occurring in an ordinary lambda-term;

e instead of considering terms which reduce to a variable, we want to consider all possible situations.

We shall show that this generalized Taylor expansion makes sense and we shall give a quite simple explicit
formula for the (generalized) Taylor expansion of a lambda-term.

Then we shall prove that one can beta-reduce the Taylor expansion of a lambda-term and obtain
a result which generalizes the above described final theorem of [ER03]. In [ER06a], using a version of
Krivine machine, we shall deduce from the main theorem of the present paper a result expressing that
Taylor expansion and beta-reduction of lambda-terms (in the sense of Bohm tree computation) commute.

Outline. For defining this generalized Taylor expansion of lambda-terms, we shall introduce here a
“target language” which is much simpler than the full differential lambda-calculus of [ER03], and which
can be seen as a sublanguage of that calculus. Indeed, the general application of lambda-calculus will not
be needed anymore, we shall only need iterated “differential applications” followed by an application to
0, corresponding to differential lambda-terms like (D" M - (Ny,...,N,))0 (where D" M - (N, ..., N,) is
just a notation for the iterated differential application D(...D(DM - Ny) - Na)...-N,,). Keeping in mind
that such a differential application is “symmetric” in the sense that its value does not change when we
permute the N;s (this corresponds to the Schwarz Lemma of calculus), in our target language, we replace
ordinary application by a multi-set-based notion of application: given a term s and a finite multi-set
T =t...t, of terms?, we allow the formation of a term (s) T to be understood as corresponding to the
differential lambda-term (D™s - (t1,...,%))0.

Interestingly, the calculus we arrive to by these considerations is very similar to Boudol’s lambda-
calculus with multiplicities or with resources (see [Bou93, BCL99]) and Kfoury’s linearized lambda-
calculus [Kfo00], but we insist on its standard algebraic aspects, supported by the fact that it admits
the already mentioned quite natural vector space model of [Ehr05] (finiteness spaces).

This calculus has a notion of reduction, which corresponds to the differential beta-reduction of [ER03] :
standard substitution is replaced by a linear version of substitution which can be seen as a partial
derivative. For this reduction, the calculus enjoys confluence as well as strong normalization, even in the
untyped case (from the viewpoint of linear logic, this is due to the fact that the promotion rule is absent
from this calculus, see also [ER06D]).

3 A modified beta-reduction considered explicitly for the first time by De Bruijn and called by him mini-reduction [DB87];
it is the reduction implemented by Krivine’s abstract machine [Kri85, Kri05] and it has been extensively studied by Danos
and Regnier, see for instance [DR99).

4Written as a product, for reasons which should be clear if one has in mind the semantics outlined in the final section
of [ER03] and thoroughly presented in [Ehr05], where we insist on the fact that the space !X has not only a standard
co-algebraic structure which accounts for the structural rules of logic, but also an algebraic structure, accounting for this
multi-set construction.



In this resource calculus, we are now able to define inductively the Taylor expansion M™* of an
ordinary lambda-term M: it will be an infinite formal linear combination of simple® resource terms
(with coefficients in a field), and should satisfy, in the case of an application:

<M*> N*n ,

in accordance with the intended meaning, and with the denotational semantics, of application in this
resource calculus. Of course we have to give meaning to the operations involved in that sum, and
especially to the expression N*", where N* will itself be an infinite linear combination of simple terms.
As we shall see, this can be done using a version of the multinomial equation that we shall explain in
Section 2.1, and one obtains in that way a direct expression of the Taylor expansion of M:
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where T (M) is the set of all simple resource terms which have “the same shape” as M, and m(t) is a
positive integer called the multiplicity coefficient of t (“mutiplicity” because this number is larger when ¢
has more repeated patterns). Up to some minor variations, the resource terms which are in some 7 (M)
are those called well formed in [Kfo00]. We characterize these terms as those which are coherent with
themselves for a coherence relation on simple resource terms, and call them uniform (not “well formed”,
because we are very much interested by the other terms as well, and also because this usage of the
word “uniform” is reminiscent of a corresponding notion in denotational semantics, see the discussions
in [BEO1]).

The main purpose of the paper is then to study the behaviour of the Taylor expansion of an ordinary
lambda-term M when one reduces its simple summands, which are all strongly normalizing, even if M
is not. Let us denote by supp(t) the support of a resource term ¢, that is, the set of all simple terms
which appear with a non-zero coefficient in t (a resource term will be, by definition, a possibly infinite
linear combination of simple resource terms). Let us also denote by NF(¢) the normal form of the simple
resource term ¢, so that NF(¢) is a finite linear combination of simple resource terms with coefficients
which are positive integers.

Thanks to the uniformity and coherence of the resource terms which belong to 7 (M), the situation
is quite simple:

e For two distinct simple terms ¢ and ¢ in 7 (M), the supports of NF(¢) and NF(¢') are disjoint;

e For that reason, it makes sense to add the normal forms of all the elements ¢ of 7 (M), getting a
generally infinite sum s of simple terms with rational coefficients.

e Moreover, if u € supp(NF(t)) for some t € T (M), the coefficient of v in NF(¢) is m(t)/m(u), and
hence the coefficient of a normal simple term u occurring in the sum s defined in the item above is
just 1/m(u).

e Last, all these normal simple terms are coherent with each other (and in particular, uniform).

So this (generally) infinite sum s of normal simple terms looks like the Taylor expansion of an ordinary
lambda-term, and actually it is the Taylor expansion of the Béhm tree of M this complementary result
is explained in [ER064a], using a decorated version of Krivine machine.

1 Syntax

1.1 Notation and terminology

If X is a finite set, we use | X| for its cardinality. For us the word integer means non-negative integer.

5We call simple a resource term which is not a linear combination of resource terms. Since all the operations of the
resource lambda-calculus are linear, any term obtained by combining terms along the syntax of the resource lambda-calculus
can be written in an unique way as a linear combination of simple terms, exactly as for polynomials in algebra: simple
terms play the role of monomials.



In this paper we deal with some kind of power series. This notion involves two kinds of numbers:
coefficients and exponents. Power series have a natural vector space (or more generally module) structure,
which requires an addition and a multiplication on coefficients, more precisely, a semi-ring structure on
coefficients. On the other hand, exponents have to be natural numbers.

1.1.1 I-indexed families. Let R and I be sets; we use R’ for the set of I-indexed families of elements
of R, or equivalently the set of applications from I to R. An I-indexed family is denoted as (zy)uer or
as amap z : I — R, depending on the context.

1.1.2 Free modules. Suppose R is a commutative semi-ring: R has a commutative addition with a
zero, and a commutative multiplication that is distributive over addition. Given an [-indexed family z,
we use supp(x) for the support of x, that is, the set {u € I, x, # 0}.

We use R(I) for the subset of R! consisting of families with a finite support, that is the free R-
module on the set I. Concretely we view R(I) as the set of finite linear combinations of elements of I
with coefficients in R. We therefore denote the family (x,,) in R(I) as the sum > __;z,u which has only
finitely many nonzero terms.

uel

1.1.3 Multi-sets. In the particular case where R = N, we may alternatively view R(I) as the free
commutative monoid over I. We use Mgy (I) for the set N(I) and call its elements the finite multi-sets
over I. Finite multisets are ranged over by the letters S, T'...

Let S be a finite multi-set over I. We call multiplicity of v in S the number S(u). The cardinality
of S is the number |S| = 3" _; S(u) and its underlying set is set(S) = {u € I | S(u) # 0} (set(S) is just
another notation for supp(5), dedicated to multi-sets; we use sometimes the notation u € S instead of
u € set(S)). If n € N, we use M,,(I) for the set of all S € Mgy (I) such that |S| = n.

Let S, T € Mgn(I). The multi-set union of S and T is the multi-set U defined by U(u) = S(u)+T (u).
This is of course the monoid operation on Mg, (I) and its neutral element is the empty multi-set.
Depending on the context, we use one of two notations for this operation: the additive notation U = S+T
(to be used when the multi-sets represent multi-exponents) and the multiplicative notation U = ST (to
be used when the multi-sets represent monomials).

1.1.4 Multi-sets as monomials. Multi-sets will be used for representing coefficient-free monomials.
Suppose e.g. that I is a set of variables and pick for example two variables u and v in I; then we will
write uPv? for the multi-set where v has multiplicity p, v has multiplicity ¢, all the multiplicities of the
other variables in I being 0. In this context, considering two multi-set S, T € Mg, (I) as monomials, it
is natural to use ST to denote their multi-set union, since this operation corresponds to the product of
monomials. Accordingly, in this context, we use 1 for the empty multi-set. As it is standard, given any
u € I, we shall identify the multi-set/monomial u! with wu.

1.1.5 Multi-sets as multi-exponents. Let now z be a function from I to any commutative monoid
R and let S € Mgy(I). Then we denote by z° the value [],; z(u)®) € R of the monomial S under
the valuation x. In this context we consider S as a multi-exponent. If T is another monomial on I then
we have %27 = 2V where U is, again, the multi-set union of S and T so we are driven, in this context,
to use an additive notation in order to get the usual equation z°27 = 25+7.

We also extend to finite multi-sets (considered as multi-exponents) some notations which are standard
for integers. We first define the factorial of S as S! = [],,.; S(u)! (this product having only finitely many
factors different from 1). Observe that S! =1 if S is a “set” in the sense that Yu € I S(u) € {0,1}. We
define next the multinomial coefficient

1= 81 Buer @)

S! [T.erSw)!

which is the number of distinct enumerations of the elements of S (taking repetitions into account). For

instance, if u and v are two distinct elements of I, then [u" PoP] = (Z) More generally, if uy, ..., u; are
pairwise distinct elements of I and nq,...,n; € N with ny +---+n, =n, then [u]* ... up*] = nl,”—'nk, =
(m"nk) is the coefficient of the monomial u{'* ... u}* in the expansion of (u1 + - -4 uy)" in the algebra
of polynomials with variables w1, ..., u, over any field of characteristic 0.



Given S, T € Magn(I), one defines S+ T and T < S, as well as S — T if T < S, in the obvious,
pointwise way.

All these notations are compatible with standard mathematical practice. For instance, given S, T €
Mgn(I) with T < S, we define the generalized binomial coefficient

(8) = r - 1L (2 < f

uel

where, in the last expression, the binomial coefficients are the standard ones, defined on natural numbers.

Observe that (?) = (sz)'

Given two valuations z and y from I to some commutative semi-ring, the binomial equation generalizes

to @)=Y (;)xTyST_

T<S

For instance, if u € I is such that S(u) > 1, then U = S — u is the multi-set defined by U(v) = S(v)
if v # w and U(u) = S(u) — 1. This multi-set S — u corresponds to the multi-set S, from which one
instance of v has been removed. One has (Sfu) = S(u).

Also, the classical Pascal formula holds under the following guise: given S,U € Mg, (I) and u € I,
with U < S and S(u) > U(u) > 0, one has

()= (o) (G20) @

1.2 Syntax of the resource calculus

Let V be a countable set of variables.

1.2.1 Simple terms and simple poly-terms. They are defined by mutual induction, as follows.

Variable: if z is a variable, then z is a simple term.

Linear application: if s is a simple term and T is a simple poly-term, then (s) T is a simple term, the
application of s to T'.

Abstraction: if z is a variable and ¢ is a simple term, then Ax ¢ is a simple term in which, as usual, the
variable x is bound.

Poly-terms: any finite multi-set of simple terms is a simple poly-term viewed as a monomial of simple
terms (so we use the multiplicative notations for the operations on these multi-sets). The intuition
is that each of the elements of such a monomial must be used multi-linearly, that is, exactly as
many times as its multiplicity in the monomial.

Let A be the set of all simple terms; they will be ranged over by the letters s,t,.... Let A' = Mg, (A)
be the collection of all simple poly-terms, which will be ranged over by the letters S,T,.... Then,
according to the notations introduced in 1.1.3, remember that M, (A) is the set of all the elements S
of A' of the shape S = s1...s,, with s; € A for i = 1,...,n. We use A®) for A or A' when we do not
want to be specific and then we use the letters o, 7... to range over individuals.

When we write (s)ty ...t, (where s,t1,...,t, are simple terms), we mean the linear application of s
to the poly-term ¢; ...%¢,. When we want to denote iterated applications, we keep the brackets explicit in
order to avoid confusions: we write in that case e.g. (---(s)Ty---) T, and not (s) T} - -- T, which would
be ambiguous, though compatible with standard lambda-calculus practice.

As in lambda-calculus, we have bound and free variables in simple (poly-)terms. Standard lambda-
calculus technics may be applied to this system to define a-equivalence and substitution of a term for a
variable into a term.

A (poly-)term o can have various subterms which are equivalent up to a-equivalence, but nevertheless
syntactically distinct. We say that o is a-canonical if this is not the case. Clearly, any (poly-)term
admits an a-equivalent a-canonical (poly-)term. We assume all the (poly-)terms we deal with to be in
a-canonical form. For instance, an a-canonical form of the simple poly-term (Az z)(\y y) is (Az z)?.



If o is a simple (poly-)term, we use fv(o) for the set of all free variables of o.

In 2.2.2, we shall associate a (generally infinite) set 7 (M) of resource terms with any ordinary
lambda-term M. The interested reader can already have a look at the definition of 7 (M) to get more
intuition on the syntax of the resource lambda-calculus and its connection with the syntax of the ordinary
lambda-calculus.

1.2.2 Size of a simple (poly-)term. We define the size of a simple (poly-)term by the following
induction:

t1...tn) =n—+ > size(t;).

Concerning the last clause, observe that one has size(T') = 0 iff T =1 (the empty simple poly-term).

1.2.3 Finite terms and finite poly-terms. Let R be a semiring with multiplicative unit® 1 and
let I be a set. Recall that we use R(I) for the free R-module generated by I, the set of finite linear
combinations with coefficients in R of elements of I. If f is a function from I to some R-module E, we
use f for the function R(I) — E which is defined in the obvious way, extending f by linearity.

We call finite terms and finite poly-terms the elements of R(A) and R(A') respectively, and we extend
to these terms our notational conventions: we use letters like s, ¢, u,... for denoting finite terms and
letters like S, T, U,... for denoting finite poly-terms. Also, we use Greek letters to cover both cases.
Of course, simple (poly-)terms are considered as particular finite (poly-)terms. Finite combinations of
(poly-)terms are mandatory for being able to define partial derivatives of (poly-)terms, see 1.2.4. More
general (infinite) linear combinations will be used later for writing Taylor expansions, see Section 2.1.

A possible intuition behind linear combinations is to consider them as non deterministic superimpo-
sition of (poly-)terms. The (poly-)term 0 can be considered as a kind of “error” or “failure” expressing
that no further computation is possible. It has probably some similarities with the daemon of Girard’s
ludics [Gir01].

We extend by multi-linearity all the constructions of the syntax of 1.2.1 to finite terms and finite
poly-terms. For instance, if U = ) g aiasS and V = 3 ..\ brT are elements of R(A"), the product
UV € R(A'") is defined as UV = Y g penr asbrST = Yy cpcwW where cw = Y gr_y asbr € R
vanishes for almost all values of W.

Similarly Az w is defined by linearity in v and (u) U is defined by bilinearity in « and U. In particular,
we have Az 0 = 0 and (0) U = (u) 0 = 0. This bilinearity of application justifies the terminology “linear
application” for this construction. Standard lambda-calculus application is definitely not linear in the
argument (see the introduction of [ER03]). The point of the Taylor formula is precisely to provide an
analysis of this non-linearity.

do

1.2.4 Partial derivatives. ~We define now formally the finite (poly-)term 5Z -t where o is a finite

(poly-)term, x is a variable and ¢ is a finite term. This will be called the partial derivative of o with
respect to x in the direction ¢. The intuition is that % -t is the (poly-)term o where ezactly one

occurrence of x is replaced by the simple term ¢. Of course, since o can contain several occurrences of
x, there are several ways to perform this substitution, whence the sums which appear in this definition.

6 At some point, we shall require that each element of the shape n -1 (with n € N*) has an inverse, as for instance in
the semiring of positive rational numbers.



We first give the definition for o simple and ¢ finite:

@-t _ {t ify=u

ox 0 otherwise

o\ 0

# o= Ay (8—8 . t) with the usual proviso that = # y and y is not free in ¢
z x

et = e (5 )
W.t Zsl .S 1(881 t)8i+1---8n

Observe that due to the last two rules, even when t € A is simple, —g -t is generally a non-trivial sum,

that is, 52 -t is a finite (poly-)terms which is generally not simple.
The followmg properties follow from the above definition:
01
—t =0
Ox
oSsT oS oT
ot = (G TS5
ox Ox * ox
osT ; (85 t)T+ (8T t)
- . — - . S| — - .
ox ox ox
For instance, if s and ¢ are two simple terms, one has ai t=2s ( . )

Lemma 1 Let o be a simple (poly-)term, x be a variable and t be a simple term. Then, for any T €
supp(% -t), one has size(T) = size(o) + size(t) — 1.

The proof is a straightforward induction on ¢. The “—1" corresponds to the fact that exactly one
occurrence of x disappears in this process.

Finally, we extend the definition of the partial derivative % -t to the case where o is a finite (poly-)term
by linearity. Partial derivation should be understood as a linear substitution operation. Indeed one shows
eagsily that g—g -t it is linear in t. Moreover, it is clear that % -t =0 as soon as x does not occur free in

ag.

1.2.5 Iterated partial derivatives. The following lemma expresses that partial derivatives com-
mute with each others. It corresponds to Schwarz Lemma in analysis. Here of course the lemma boils
down to a simple formal verification.

Lemma 2 Let o be a finite (poly-)term and let s and t be finite terms. Let x and y be variables such
that x does not occur free in t. Then we have

() wmlm ) G

and in particular, when y does not occur free in s,



Proof. The second equation follows easily from the first one, which is proved by induction on the size
of the simple (poly-)term o. We just check the case where ¢ = (u) U. One has

(5ot = g o)rrmg )
o (ODREE A SOR
= (o)) (a ) (5 )
(g0 (o) o (5 (5 2) )
so that, applying the inductive hypothesis. we get
oo )t = (ol 0o v (a
< ) (5 9)+ 0 (g0 9) + o (5 (5 0)
U ou
<8x 8y > <3: >(8y t)
{5 f>(ax )+ (g5 )
g (5 0)rrw (5 (5 0)
0 (0o do  (0s
- %(a—y't)'”%(a—y't)

as expected. O

So we introduce the standard notation

oo .(tl,...,tn):i("'a—a'“"')'t”

Ox1-++0xy, oxy, 0x1
when no x; occurs free in any of the simple terms ¢;. For any permutation f of {1,...,n}, we have
"o oo
i U [ — N . 3
oxy - -0z, (ta ) D ;1 - - O () (tr) ) (3)

1.2.6 Ordinary substitution. As already mentioned, one can also define a substitution operation
of a finite term ¢ for a variable z in a simple (poly)-term o, yielding a finite (poly-)term that we denote
as o [t/x]. This operation is then extended by linearity on o to arbitrary (poly-)terms o. However, just
as ordinary lambda-calculus application is not linear in the argument, this notion of substitution is not
linear in ¢, in sharp contrast with the partial derivative operation defined above.

This operation will be used essentially when ¢ is the finite term 0, in which case it is a simple
occur-check of x in o: o [0/z] is equal to 0 if 2 occurs free in o and to o otherwise, see Lemma 3.

It will also be used for substituting variables for other variables. In that case, we write o [z /21, ..., x;]
for the (poly-)term o where the variables x4, ..., x, are replaced by z.

1.2.7 Degree of a simple (poly-)term in a variable. If ¢ is a simple (poly-)term and z is a
variable, the degree of ¢ in x is the number of free occurrences of x in o, taking multiplicities into
account. This number is denoted by deg, (). For instance, the degree of the simple term () ({x)y?)3
in z is 4 and its degree in y is 6. Due to the fact that all the syntactic constructions of this calculus are
linear, this notion of degree coincides with the standard algebraic one.

Typically, if o is a simple (poly-)term and if a € R, we have o [az/x] = a%%8:(")g. Also, deg, (ST) =
deg, (S) + deg, (') when S and T" are simple poly-terms, and deg, (t1 ...t,) = > .., deg,t; when the ¢;s
are simple terms.



Lemma 3 Let o be a simple (poly-)term and let t be a simple term. Let x be a variable and let n = deg,o.
then % -t is a sum o1 + - -+ + o, of n simple (poly-)terms and one has deg,0; = deg,o + deg,t — 1 for
each i =1,...,p. In particular, when n = deg,o = 0, one has g—; -t=0.

Last
o [0/2] = o z‘fdegzozo
0 if deg,o >0

and

deg, (o [z /x1,...,2m]) = Zdegma.
i=1

The proof is by induction on o. As an example, let us check the first statement, in the case where
o = (s)T, s being a simple term and T being a simple poly-term. Then by inductive hypothesis, setting
p = deg,s and ¢ = deg,T’, one has % -t =51 +---+ s, where each s; is a simple term which satisfies
deg,s; = deg,s + deg,t — 1, and g—g -t =11 + --- + T, where each T} is a simple poly-term which
satisfies deg,T; = deg,T + deg,t — 1. But 22 -t = (22 . )T+ (s) (L - ) =30 (si) T + > 5= () Ty,
and this expression is a sum of p + ¢ = deg,o simple terms. Moreover, for ¢ = 1,...,p, we have
deg, ((s;) T) = deg,s+deg,t —1+deg, T = deg,((s) T') +deg,t — 1 and similarly for the other summands,
as announced.

1.2.8 Big step differentiation. Given a simple term o, a variable z and a simple poly-term T =
t1...t, where the variable z does not appear free, we define

877,
0p(0.T) = (5= (b, ta)) [0/a] € R(A®) (4)
which does not depend on the enumeration ¢, ..., ¢, of T" thanks to Equation (3).

By Lemma 3, this expression is non zero iff n = deg, (o).
By the same lemma, if = does not occur free in any of the ¢;s, then x does not occur free in (any of
on
the summands of) 57 - (t1,...,1n).
Lemma 4 Let o be a simple (poly-)term and let T be a simple poly-term, and assume that |T| = deg, o =
n. Then, for any 7 € supp(9(0,T)), one has size(t) = size(o) + size(T) — n.

The proof is by induction on n, applying Lemma 1 at the inductive step.

1.2.9 Extensions of big step differentiations. Observe that Formula (4) still makes sense if
o € RAM) and ty,...,t, € R(A), and then 9,(0,T) is (n + 1)-linear in o,ty,...,t, and symmetric
in ti,...,t,. Therefore, for each n € N, we can consider d,(c,T) as a bilinear operation R(A®) x
R{(Mn(A)) — R(AV).

Next, this operation can canonically be extended as a bilinear map R(A®M) x R(A") — R(AM) since
R(A") = @2 RIMn(A)).

n=0
We use Oy, ..z, (0,T1,...,T),) for the iterated big step differentiation

HTm

aw ("'811(0-7/111)7'” 7Tm)

The value of this expression does not depend on the order we put on the pairwise distinct variables

Z1,...,Zm. More precisely, if f is any permutation on {1,...,m}, one has
8:61 ..... Im(av Tl?" 7Tm) = 8If(1) ..... :Ef(m) (07 Tf(l)) 7Tf(m))

1.2.10 Partial derivative vs. substitution. The partial derivative can be understood as a linear
substitution. Let o be a simple (poly-)term and let  be a variable. Let n = deg, (o) and let x4, ..., x,, be
pairwise distinct variables which do not occur free in o or in t. Let ¢’ be a simple (poly-)term obtained
by replacing the n occurrences of x in o by the pairwise distinct variables z1,...,x,. Such a ¢’ will be
called an z-linearization of o in xz4,...,x,. For any simple term ¢, we have

9 =Y o | Q

—t= o' [t)z;) [z /a1, ... xn] .

O | 7 1 n



This formula extends by linearity to the case where t is not simple, but we shall not use this fact.
Iterating this result, we get the following crucial formula.

Lemma 5 Let o be a simple (poly-)term, let x be a variable and let n = deg,o. Let T =1t1...t, be a
simple poly-term of cardinality n and assume that x is not free in T. Then

ax(UaT) = Z o’ [tf(l)/xlvatf(n)/xn} (6)
feEGn
where &,, is the group of all permutations of {1,...,n}.

This formula could also be generalized to situations where ¢ and T are not necessarily simple, but we
shall never need such generalizations.

The meaning of the lemma is that 9, (o, T') is obtained by substituting in o all the n occurrences of
x by t1,...,t,, in all possible ways, the result being the sum of these n! possibilities.

1.2.11 Leibniz law and partial derivative. Let o be a simple (poly-)term and let ¢ be a simple
term. Let x,z; and xo be variables, with z; # x2 and z not free in . Assume moreover that z; and x5
do not occur free in ¢.

The Leibniz law concerns the interaction between differentiation and contraction, and can be written

as follows: 9o [z | 5 5
0| /X1, o g ) g )
—g = (—8331 t) [z /z1,22] + (—8:1:2 t) [z /x1,22] . (7)

The hypothesis that z1, 29 ¢ fv(t) is of course essential: take for instance o = t = x1, then the left-hand
side of the equation is x; whereas the right-hand side is x.
The proof is a simple induction on o. Iterating, we obtain the following formula.

Lemma 6 Let o be a simple (poly-)term and let T be a simple poly-term. Let x,x1 and xo be variables,
with x1 # xa, © ¢ fv(o) and z,x1,22 ¢ (V(T). Then

Ou(0 [z /21,29] T) = > (g) Oy oy (0, U V).

uv=T

Proof. Let n = deg, (o [x /x1,22]) = deg,, (0) + deg,, (o). If |T| # n, the equation holds because both
expressions vanish. So assume that |T'| = n and let us prove the equation by induction on n.
The case n = 0 is trivial, so assume n = |T'| > 0, we can write 7' = ¢S for some simple term ¢ and we
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have
do [z /961,202 L
Or(o [z /21, 22] ,£S) = 81( -, S) by definition of d,(_, )

- ((8:1:1 ) @ [a1, 2], S)—l—@ ((5;2 )[x/xlalh],S) by Equation (7)

= Z < )<““(6§1 tUV)+azlz2(§;~t,U,v)>

by inductive hypothesis

S

= ¥ (5) @m0V + 0o, UV
uv=s

by definition of 0y 4, (_, )

_ T—t / T—t )
S S (I SRR S (R LNCEAE

U'v=r Uv'="
teu tev!

setting U’ = tU and V' =tV

S () (e

U'v'=r
teU’, teV’
Tt Tt
+ Z (U/J)a”“’”(“ CNOLEDY ( U )8“”(0’ vLvY.
U'v'= U'V'=T
teU’, tQV/ tgU’, teV’

We conclude, applying Pascal’s formula (2) for the first of these three sums, and observing that, in
the two last sums, the binomial coefficients are equal to (5,) Indeed, when U’ and V' are such that
UV' =T,t€U and t ¢ V', we have U’(t) = T(t), and hence also (T —t)(t) = (U’ — t)(¢), so applying
Formula (1), we get (5;2) = (5,) When U’ and V' are such that U'V' =T, t ¢ U’ and t € V', one has
(T[;t) = (5,) simply because U’(t) = 0. O

1.3 Reduction and normal forms

1.3.1 Linear relations. If F and F are two R-modules, we say that a relation p C E X F'is linear if it
is a linear subspace of the direct product E'x F' (in other words, if u p v’ and v p v then au+bv p av’+bv’
for any a,b € R).

Let I be a set. Given a relation p C I x R(I), we define a linear relation R{p) C R(I) x R(I) as
the linear span of p in this product space and call R{p) the linear extension of p. Spelling out this
definition, we have u R{p) v iff we can find u1,...,u, € I, a1,...,a, € R and v1,...,v, € R(I) such
that u = Y"1 | au;, v =31, a;v; and u; p v; for each .

1.3.2 Small step (non-deterministic) reduction. A redex is a simple term of the shape (Az s) S
where we always assume that x is not free in S. As usual, this condition can always be fulfilled by simply
a-converting the abstraction Ax s.

The reduction of such a redex is defined by cases, according to whether S is empty or not. The
second case is non-deterministic as it consists in choosing an element « in S and then in computing a
partial derivative of s in the direction u. The result of such a reduction is a linear combination of simple
terms, with integer coefficients.

(Axs)1 BN s[0/z] € R(A)
0s
1 _—
Az s)yuT [a </\a: ((%c u) >T € R(A),
so that 3} is a relation from A to R(A), that is 34 C A x R(A).

The following is a straightforward, but essential observation.
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Lemma 7 Lett and u be simple terms such that, for some finite termt', one has t 35 t' and u € supp(t').
Then size(u) < size(t).

Proof. If we are in the first case of the definition of 3}, then size(u) = size(t) — 2 (the abstraction and
the application disappear). If we are in the second case, size(u) = size(t) — 2 as well, by Lemma 1. O

1.3.3 Extending 3} to all simple contexts. By extending this reduction to all simple contexts,
we define the one step reduction relation on simple terms and on simple poly-terms, BL C (Ax R(A)U
(A' x R(A")). More precisely, we say that o 4 o’ in one of the following situations:

(Redex) o B) o’;
(Abs) o = Axt and o/ = Az t' with t B} t';
(App) o = (t) S and

o' = (') S with t 35 ¢’ or
e o' = (t) S' with S g} S;
(Prod) o is the poly-term uS and o’ = u'S with u B4 u'.

Lemma 8 Lett and u be simple terms such that, for some finite termt', one has t 34 t' and u € supp(t').
Then size(u) < size(t).

Immediate consequence of Lemma 7.

1.3.4 Linear extension of 35. We use (a for the reflexive and transitive closure of R(3X) C
(R(A) x R(A)) U (R(A") x R(A")) (the linear extension of 3}, see 1.3.1). This relation Sa C (R(A) x
R(A)) U (R(A") x R(A")) is contextual (in the obvious sense) by construction.

Theorem 9 The relation Ba C (R(A) x R(A)) U (R(A")Y x R(A")) has the following properties:
e it is confluent on R(A) and on R(A"),

o and if R =N, it is strongly normalizing” .

Proof. The confluence property is proved as in [ER03| (and is simpler in the present context). The
normalization property results from Lemma 8. O

Remark: This untyped calculus is (essentially) strongly normalizing, and so cannot represent general
recursive computations as the lambda-calculus does. Later we shall introduce infinite sums which will
allow us to encode ordinary lambda-terms, making explicit the potential infiniteness of the lambda-
calculus.

If 0 € AV, we use NF(o) for the unique normal form of ¢, which is an element of N(A™) (and so
can be considered as an element of any R(AM)).

1.3.5 Big step (deterministic) reduction. We define now a big step reduction relation BZ which
is more convenient for dealing with the problems at hand. The definition is the same as the definition of
BX, replacing the small step redex reduction 8} by the following one:

M s)T 62 0.(s,T),

where, as usual, one assumes that z is not free in T. Remember from 1.2.8 that the finite term 9, (s, T)
is 0, unless |T'| = deg,s.

This reduction is very similar to the S-reduction of the ordinary A-calculus ~ (Az M) N 8 M [N/z]
and for that reason, it is the good notion of reduction on simple terms for studying the Taylor expansion
of ordinary lambda-terms. Observe that this reduction is deterministic, in the sense that the reduction
of a redex is uniquely determined by the shape of that redex.

"This very strong hypothesis can be weakened a little bit as explained in [ERO03], but not really significantly.
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The relation S} C A x R(A) is included in Ba, and a simple (poly-)term is normal (that is, redex-
free) for one of these reductions iff it is normal for the other one. Therefore, for any o € AWM we can
compute NF(o) by iteratively applying the reduction R to o.

1.3.6 An explicit formula for normal forms. As in the ordinary lambda-calculus, any simple
term s can be written (in a unique way) as follows:

s=Axy.. Awy (- ()T ) T

where t is a simple term which is either a variable possibly equal to one of the z;s, and in that case we
say that s is in head normal form, or a redex, and in that case we say that ¢ (or rather, this particular
occurrence of ¢ in ) is the head redex of s.

We use A for the set of normal simple terms. We introduce similarly the notations A} and Aé!) for
normal simple poly-terms and for the union of these two sets.

Lemma 10 Let o be a simple (poly-)term. Then NF(o) € N(Aé% satisfies the following property.
o Ifo=Xr1... Az (- ((A\ys)S)T1--) Ty then

NF(o) = NFAz1... Az (- (0 (s, 8)) Ty - ) Ty)
= > 0y(5,8)u(Ar1 .. Az NF((-- (u) Ty - ) Th)) (8)
[I<VAN

(Remember that we use NF for the linear extension of NF to arbitrary finite (poly-)terms and that
0y (s, 8)u, the coefficient of w in the linear combination of simple terms 0y(s,S), is an integer.)

o Ifo=Xxy... Aty (- (y) Ty ---) Ty then NF(o) = Axy ... Axy, (- (y) NF(Ty) - - -) NF(T}).
o Ifo=ty...t, then NF(c) =[]\, NF(¢;).

The proof is based on the fact that, for each u € supp(9,(s,S)), one has size(u) < size({A\y s)S) by
Lemma 4. For that reason also, and by the confluence property, the lemma above can be considered as
an inductive definition of NF and will be used as such.

Let us conclude by a simple example of computation of a normal form, using the process presented
in Lemma 10.

NF(((Af Az () (F)z) dyy)?) z) = 2NF((Az (dyy) (Ayy) ) 2)
= 2NF((Ayy) (\yy) 2)
= 2NF({(\yy) 2)
2z.

2 The Taylor expansion of ordinary lambda-terms

We show now how to represent ordinary lambda-terms in this calculus by recursively Taylor expanding
all ordinary applications. As remarked above, this requires dealing with infinite linear combinations of
(poly-)terms.

2.1 Infinite terms and poly-terms.

2.1.1 Infinite dimensional product spaces. If M is a set, we use R(M) for the R-module of all
formal linear combinations = = 3, z,u where (z,) is an arbitrary M-indexed family of scalars taken
in R (so that R{(M), = RM). Let J be a countable set. We say that a family (z;);cs of elements of
R(M) is summable if, for each w € M, the family ((z;).);es vanishes for almost all values of j. We
then define its sum x = Z]EJ x;j by setting x, = EjeJ(xj)u, a finite sum in R by assumption. This is
just usual convergence for the product topology, R being endowed with the discrete topology. If J =N,
observe that for this topology, the convergence of a series is equivalent to the convergence to 0 of its
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general term. Observe also that all the module operations on R{M )., are continuous (R being endowed
with the discrete topology).

If M has a structure of commutative monoid (with multiplicative notation) with the property that
for each u € M there are only finitely many pairs (v,w) € M? such that u = vw, then R(M)., is an
algebra, with multiplication given by

vy — Z(Z xvyw)u.

weM “ww=u

Moreover, it is easily checked that this multiplication is continuous with respect to the product topology
on R{(M)s X R{M)+,. In particular, we have the following summability property for “product families”.

Lemma 11 If 2 = (2;)ie; € R(M)L, and y = (y;)jes € R(M)L, are summable, then the family

o0

r @y = (y)) @ erxs € RIM)IX is summable, with a sum equal to (3, i) Vi)

2.1.2 Products of infinite sums. Consider the particular case where M is A', the free commuta-
tive monoid over A (what we say now would hold actually for an arbitrary free commutative monoid
M). As we have just seen, R(A'), has a canonical structure of commutative algebra, with continuous

multiplication given by
ST =Y ( > SVTW> U 9)
UeA' \VW=U

for each S, T € R(A") .

We shall always consider the module R(A)., as a submodule of R(A") ., by identifying the element
t =13 ,cntss of R(A)s with the element Y tss of R(A")s (in this sum, “s” stands for the multiset
which has s as unique element), this inclusion being continuous and admitting a continuous left inverse
(which maps T' € R(A") o to Y- ca Tss).

If T = (T});ey is a family of elements of R(A'), and if 4 € Mgy, (J), remember from 1.1.5 that we
write 7H =[], ; Tj”(]) € R(A") (this is a finite product since p is a finite multi-set, so it makes sense
in the algebra R(A")..).

Let n € N. Remember from 1.1.3 that we use M, (J) for the set of all multi-sets over J whose
cardinality is n and if o € M,,(J), remember from 1.1.5 that we have defined a multinomial coefficient

as follows: [u] = n!/]];c,; u(4)! € N.

Lemma 12 Letn € N. Let T = (T}) e be a summable family in R(A")o. Then the family ([1] T") ue m,, (1)
is summable in R(A"Y) and the following “multinomial equation” holds:

(Z ) - 3w (10)

Proof. The proof is an easy induction on n, applying Lemma 11 at the inductive step. O

A particularly simple case where we shall apply this formula is when each Tj is a singleton multiplied
by a scalar, in other words, the sum >, ;7 is an element t = > 1 tss of R(A)s C R(A"Y (as
explained at the beginning of this paragraph). Then Formula (10) reads

=" [5]t°S (11)

SeA!

where we recall that ¢° stands for the finite product HSeA tf(s).
Let 7 = (T})jcs be a summable family in R(A'),, and assume moreover that (7}); = 0 for each
j € J, where we recall that 1 € A' stands for the empty multi-set. Then it is clear that, for each
i € Mgn(J), one has
VS € supp(T*)  |S] = ] -

From this simple observation, we can derive the following property.
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Lemma 13 Let T = (T}) e be a summable family in R(A") o such that (T;); = 0 for each j € J. Then
the family ((3_,c; T5)" )nen is summable in R(AY .

2.1.3 Extension of the syntax to infinite terms and poly-terms. The constructions of the
syntax of our resource calculus can now be extended to these infinite linear combinations of sim-
ple (poly-)terms in an obvious way, by linearity (and “continuity” since we require the constructs to
commute to arbitrary linear combinations, not only to finite ones). For instance, if t = Y7 _\ t,s
and T = Y g a: TsS are arbitrary elements of R(A)s and R(A'). respectively, (t)T is defined as
> seasea tsTs (s) S, which is a perfectly well defined element of R(A)x.

But we need to check carefully that partial derivatives still make sense in that extended setting.
Given 0 € R(AM) and t € R(A),, generalizing the linearity properties of partial derivatives stated
in 1.2.4, one would like to write

0o or
99 4= ot (— : u)
ox Z T\ Ox
T7eAM ueA
where the partial derivatives % -u are partial derivatives of simple (poly-)terms, as defined inductively
in 1.2.4. It is not clear however that the infinite sum above makes sense, that is, it is not clear that the

family (% is summable. This is exactly what expresses the forthcoming Lemma 17.

. u)
TEsupp(o),ucsupp(t)

2.1.4 Finiteness properties of the partial differential of simple (poly-)terms. So we want
to make sense of the expression 92 -t when o € R(A"), t € R(A) and x is not free in ¢.
We need first some basic combinatorial properties of differentiation in the case where the involved
(poly-)terms are simple: Lemma 15 expresses that, a simple term ¢ being chosen, it is not posséble to
o

find infinitely many pairwise distinct simple (poly-)terms o; (i € I) such that all the sets supp(F2 - t)

%‘;i - t);es is summable, whatever be the family

have a common element. In other words, the family (
(04)ier of pairwise distinct simple (poly-)terms.

Lemma 14 Let n > 1, let o1,...,0, € A" be pairwise distinct and let x be a variable such that
deg,o;, =1 fori=1,...,n. Let t € A and assume that

o1[t/x] = =op [t/x] (12)

Then, for any sequence yi,...,Yy, of pairwise distinct variables, which are not free in t and in the o;s,
there exists a simple (poly-)term o such that deg, 0 =1 ando; = o [t/y1, ..., t/yi-1,%/Yi;t/Yit1, - t/Yn]
for eachi=1,....,n.

Of course, the dependency of o on yi,...,y, is trivial: if z1,..., 2, is another sequence of variables
satisfying the required conditions, the corresponding (poly-)term 7 is obtained by substituting z; for y;
in o for each i.

Proof.  'We proceed by induction on the common size m of the o;s: these sizes are equal to size(oy [t/x])—
size(t) by (12).

If m = 0, then all the ;s must be equal to the empty poly-term 1, hence we must have n = 1 and
we conclude straightforwardly.

Assume next that m = 1 so that o; is a variable. Since deg, 01 = 1, we must have o7 = x. For i > 1,
we have size(o; [t/x]) = size(o;) + size(t) — 1, and we must have o; [t/2] = o1 [t/x] = t. This implies
sizeo; = 1 and hence o; must be a variable, and thus must be equal to z, in contradiction with our
hypothesis that the o;s are pairwise distinct. Hence we must have n = 1 and one concludes easily (take
o =y1).

Suppose now that m > 2 and that o7 = (s1) S7. If, for some i > 1, 0; is not a linear application, then
o; =z and t is a linear application. But this is impossible because size(o [t/z]) = size(s1) + size(S1) +
size(t) > size(t) since size(s;) > 0. So for each i = 2,...,n, the simple (poly-)term o; must be a linear
application: o; = (s;) S;. Since each o; has degree 1 in z, we can assume without loss of generality that
there is p such that 1 < p < n and
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e deg,0; =1 and deg,S; =0for 1 <i<p
e deg,0; =0 and deg,S; =1for p+1<i<n.

Due to the hypothesis (12), the S;s have a common value Sy € A' for 1 < i < p and the s;s have a
common value sg € A for p+ 1 < ¢ < n. Moreover, the s;s are pairwise distinct for 1 <7 < p and the
S;s are pairwise distinct for p+1 <7 < n. Let y1,...,y, be a sequence of pairwise distinct variables.
By inductive hypothesis, we can find s € A, S € A', such that

e for each i =1,...,p, the simple term s has degree 1 in y; and
si=s[t/yr, -t Yim1, 2/Yis t/Yiv1, - yp]

e for each i =p+1,...,n, the simple poly-term S has degree 1 in y; and
Si = S[t/yps1s - /Y1, /Yis t/Yir1s - -t/ Yn)-

By (12), we have s; [t/x] = sg for 1 <i < pand S; [t/z] = Sy for p+1 < i < n. Let o0 = (s) S. For all
i=1,...,p, we have deg, 0 = 1 and o; = o [t/y1, .., t/yi1,%/Yi, t/Yit1, - t/Yn]-

The case where m > 2 and o7 is an abstraction is trivial, so let us assume that m > 2 and that oy is
a poly-term: o7 = s157. By the same reasoning as above, all the ;s are of the same shape: o; = s;5;.
Moreover, since each o; is of degree 1 in x, we can assume to have chosen the s;s in such a way that
deg,s; = 1 and deg,S; = 0 for each i. Then we conclude straightforwardly, applying the inductive
hyopthesis to s1,..., s, (we must have S; =--- =5, by (12) so the s;s must be pairwise distinct). O

Lemma 15 Let 7 € AU, let = be a variable and let t € A. There are only finitely many o € AY) such
el

that T € supp(5Z - 1).
Proof. Assume that 7 € N, supp(%‘;i -t) for a finite family (0;);=1,.. n of pairwise distinct simple
(poly-)terms. So for each ¢ = 1,...,n, one obtains the simple (poly-)term 7 by replacing in the simple
(poly-)term o; exactly one of the occurrences of x by the simple term ¢, see 1.2.10.

Since x is not free in ¢, we must have deg,o; = deg,7 + 1 by Lemma 3. Let d be the common degree
of the ;s in the variable x. Let us choose d pairwise distinct variables x1, ..., x4, distinct from z and
free in the o;s and in ¢, and, for each 4, let o} be a simple (poly-)terms such that

e z is not free in o},

e deg, oy =1forj=1,....d

e and o, =0} [z /x1,. .., 24).

In other words, o} is an z-linearization of o;, in the sense of 1.2.10. For each ¢ = 1,...,n, we can find
f@@) e {1,...,d} such that
T =0, [3:/:1:1, e T[Ty =15 T ), T T p iy 41 - - .,x/xd} .

Up to permutation of the z;s in the ols, we can assume that f(i) = 1 for each ¢ = 1,...,n and, up
to permutations of the zs,...,z4 in the simple (poly-)terms o) [t/x1], we can say that these terms are
pairwise equal:

oy [t/z] = = oy, [t/z1] .
But the o;s are pairwise distinct, so the os must be pairwise distinct as well. Let y1,...,y, be pairwise
distinct variables, not free in ¢ nor in the ols. By Lemma 14 applied to of,..., 0}, there is a simple
(poly-)term ¢’ such that, for i =1,...,n,

e deg, (0') =1
e and 0-»2 = U/ [t/yla cee 7t/yi—17 xl/yiu t/yi-‘rlu e 7t/yn]
From this one clearly sees that n is upper bounded by the size of 7. O

Lemma 16 generalizes Lemma 15 to the case where ¢ can vary as well.

Lemma 16 Let z be a variable and let 7 € AY). There are only finitely many o € AV and t € A such
that T € supp(22 - t).
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Proof. 1Tf (0;,t;)icr is a family of pairwise distinct pairs of simple (poly-)terms and simple terms and
if 7€ Nier supp(%‘;i - t;) then each simple term ¢; must appear as a sub-term of 7 and therefore there
can be only a finite number of distinct ¢;s. If I is infinite, this leads to a contradiction with Lemma 15.

Therefore I is finite and the lemma is proved. O

2.1.5 Differentiation of infinite (poly-)terms. Lemma 16 means precisely that the whole family
— 't)aeAU),teA is summable. So, for ¢ € R(AM), and t € R(A), it makes
9o

of finite (poly-)terms (92
sense to define the partial derivative 57 -t as follows:
do

or
TeAM, ueA

And this generalized partial differential is bilinear in ¢ € R(A®), and t € R(A),,. We can derive a bit
more from Lemma 16.

Lemma 17 The map (o,t) — % -t from R(AM) o x R(A)s to R(AM) . is continuous (these spaces
being endowed with the product topology). In particular, if (0;)icr and (t;)jes are summable families
in R(AM) . and R(A) o respectively (with respective sums o and t), then the family (% “t;)icrjeg 1S

summable, with sum equal to % - t.
X

Proof. By linearity, it suffices to prove continuity at the origin (0,0) of R(AM) x R(A)s. We
take a neighborhood of 0 in R(AM).: it is induced by a finite subset W of A" (the corresponding
neighborhood of 0 in R(AM), is the collection Vy(0) of all § € R(AM), such that W Nsupp() = ).
Then by Lemma 16, for each ¢ € W, we can find two finite sets U, C AY and V, € A such that
o e supp(g—g -t) for each (0,t) & Uy x V,,. Then taking U = ey Up and V = J ey Vi, we have
92 .+ € Vw (0) for each o € Vi (0) and t € Vi (0). O

So g—g -t € RIAW), is well defined for all ¢ € R(AM), and t € R(A)+ and has all the required
linearity and continuity properties.

2.1.6 Big step differentiation of infinite (poly-)terms. We can of course iterate this construc-
tion and define azf}f%%% - (t1,...,t,) for arbitrary o € R(AM) and t,...,t, of R(A)s. Again, this
operation is linear in each of its parameters o,t1,...,t,, and is continuous in these parameters (for the
product topology).

For that reason, for each given n € N, we can extend the construction d,(c,T) to o € R(A®), and
T € R{My(A))oo, and this operation is bilinear and continuous in o and T' (this generalizes to infinite
sums the linear extension of 9,( , ) to R(A") x R(M,,(A)), explained in 1.2.9).

The second linear extension of d,(_, ) explained in 1.2.9, to R(A") x R(A'), can also be generalized
to infinite sums. Observing indeed that, for 0 € A" and T € M,,(A), the size of any element of the
support of 9, (o, T) must be greater than n, we see that, for any o € R(A") and any T € R(A"),
the sequence (9, (o, T™)),en converges to 0 in R(A")), (where we use T for the restriction of T to
M, (A), that is T = >_sem,(a) I'sS). So the series S 5 0 (0, T™) converges. Its sum is denoted
by 0, (o,T); this operation is bilinear and continuous in (o, T).

So all the differentiation operations we have considered for finite (poly-)terms make sense in the
infinite case as well, without any restriction on the infinite linear combinations we consider. This fact
will be used at the end of the present paper, when we shall give a “substitution-oriented” version of
Taylor’s formula in Theorem 32.

2.1.7 The exponential and the promotion. From now on, we assume that R possesses inverses
for all integers # 0.

As explained at the beginning of 2.1.2, any ¢t € R{A),, can canonically be seen as an element of
R(A") o (identifying u € A with u € A', the multi-set whose only element is u, with multiplicity 1). Tt
is clear that ¢ — 0 when n — oo so that the following sum converges (this can also be seen as a trivial
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application of Lemma 13):
o0

1 n !
expt = Z Ht € R(A")
n=0
where the exponents correspond to multiplication in the algebra R(A'>Oo. Using Formula (11) of 2.1.2,

one can check that actually
T

expt = Z %T

TeA'

(remember that, with our notations, 7! =[], . T(u)! € N* and that t¥ =[], A I ¢ R).

Without surprises, we have exp0 = 1 and exp(s +t) = exps expt. This operation ¢ — expt
corresponds to promotion in linear logic. We could then recover the ordinary application of the lambda-
calculus by setting;:

(s)t = (s)expt. (13)
This formula can also be seen as defining an encoding of the ordinary lambda-calculus in infinite resource
terms.

The purpose of the sequel is precisely to analyze the properties of this encoding.

Remark: applying Lemma 13, this exponential operation could be defined not only for ¢t € R(A)s,
but for arbitrary S € R(A')s, as soon as S; = 0. When S; # 0, computing exp S involves an infinite
sum of scalars, or maybe the use of an “exponential map” er on the semi-ring R, setting exp S =
er(S1)exp(S — Sy - 1). This idea might lead to an interesting generalization of the promotion of linear
logic.

2.2 Complete Taylor expansion of an ordinary lambda-term

2.2.1 Multiplicity coefficients. Given a simple term ¢, we define a positive integer m(¢), the mul-
tiplicity coefficient of t by the following inductive definition.

m(z) = 1
m(Axs) = m(s)
m((s)T) = m(s) H T mt)T® = m(s) T' m”

teA

with our concise notations for arithmetic operations on multi-sets. This definition of m is not circular,
because, when defining m((s) T'), in the expression m” = [[,., m(t)"®, the only simple terms ¢ for
which the value of m(¢) is needed are subterms of (s) T

For a poly-term T, we define accordingly m(T) = T! m”, so that m((s)T) = m(s)m(T). So if
T = 7' ---t,7, with the #;s pairwise distinct (up to a-conversion), we have

m(T) = Hni!m(ti)"i .
i=1

In Section 4, paragraph 4.2.3, we shall give a precise combinatorial interpretation of these coefficients.
We shall see that m(¢) is the number of permutations of variable occurrences of ¢ which preserve the
names of the variables (one cannot swap an occurrence of x with an occurrence of y, if x and y are
distinct variables) and leave t unchanged (taking into account the fact that poly-term multiplication is
a commutative operation).

As an example, we have m((z) ((z) y3)?) = 2!(3!)? = 72.

2.2.2 The expansion. Given an ordinary lambda-term M, we define a subset 7 (M) of A which is
the collection of all simple terms having the same shape as M. This set is defined as follows, by induction
on M.

T(z) = {x}
{\at|teT(M)}
()T |t e T(M) and T € Mgn(T(N))}.

2 5
=z
35
[
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Observe that, as soon as the lambda-term M contains an application, the set 7 (M) is infinite. To give
an example, the set T (Az (z) (z)y) contains, among infinitely many other simple terms, e.g. Az (z) 1,

2o () (2 g, Az (@) (((2) 1)2 (2) ), ..

Observe also that 7 (M) contains a simple term [(M) which which looks very much like M, and
is defined by: l(z) = =, (A M) = Xxl(M) and I((M)N) = (I(M))I(N). For instance, [(A\z (z)x) =
Az (x) . But this simple term [(M), which is a “linearization” of M, has not the same properties as
M with respect to G-reduction (even if M is unsolvable, {(M) is strongly normalizing: in that case, the
normal form of /(M) is 0).

We define the complete Taylor expansion of an ordinary lambda-term M:

M = )" ﬁt € R(A) s . (14)
teT (M)

This expansion satisfies the following lemma, whose last statement means that M* can be obtained
by recursively Taylor expanding all applications in M. This motivates our terminology for this operation.

Lemma 18 If x is a variable and if M and N are terms of the standard lambda-calculus, one has
o ¥ =1z,
e \xM)" =X x M* and
o (M)N) = (M*)expN* =522 L (M*) N*".

n=0 n!

Proof. The only interesting case is the last one. We have

Sgornt = oS ()
n=0"" n=0"" seT(M)m(S) teT(N)m(t)

seT (M)
TEMgin(T(N))

1 .
= Z W <S> T since [T] T
seT (M)

TGMfin(T(N))
= ((M)N)".

O

It must be observed that the coefficient of ¢ in Formula (14) does not depend on M. This remarkable
property is lost if we want to define similarly a complete Taylor expansion for an extension of the ordinary
lambda-calculus where finite linear combinations of terms are allowed.

2.2.3 Outline of the sequel. As explained in the introduction, our aim is to understand the be-
haviour of this Taylor expansion with respect to beta-reduction. The first thing to observe is that the
resource terms occurring in the Taylor expansion of an ordinary lambda-term are coherent with each
other and with themselves (a simple term which is coherent with itself will be said to be “uniform”), for
a binary coherence relation we define below, on simple terms. Then we shall see that the normal form
operator is stable (in the sense of [Ber78] and [Gir86]) with respect to this coherence relation. This is
a qualitative property whose main consequence will be a “non-interference” effect: the supports of the
normal forms of two distinct terms of the Taylor expansion are disjoint.

Last, we shall see that the multiplicity coefficients of uniform terms evolve very simply during big
step differential reduction  a quantitative property

These two main results will lead to our final Corollary 34.
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3 Qualitative properties: the coherence relation on simple terms
and poly-terms

We define a binary coherence relation < on simple terms and on simple poly-terms, which is easily
seen to be symmetric (but neither reflexive nor anti-reflexive). We use the notation — for the largest
anti-reflexive sub-relation of <. The definition is by induction on simple terms.

o x Ot ift = u;

e \xsctift! = \xs with s © §/;

o (YT ot ittt = ()T withs s and T < T".

e And, for two simple poly-terms T and T”, one has T'< T" if, for all t,¢' € TT’, one has t = t'.

Observe first that, if s and s’ are simple terms, one has s © s’ (considering s and s’ as simple terms) iff
s < ¢’ (considering them as singleton poly-terms).

This coherence relation is not reflexive: if z and y are distinct variable, then xy < xy does not hold
(we shall say that zy is a non-uniform poly-term). It is not transitive either, since, considering = and y
as poly-terms, one has x © 1 C y, but it is no true that z < y.

We say that a simple (poly-)term o is uniform if o < o. This corresponds to the notion of well-formed
term in [Kfo00] (however, in that paper, the relation corresponding to < is a partial equivalence relation
because empty multi-sets are not accepted as arguments). Observe that, for two simple poly-terms T
and 77, one has T < T" iff TT' < 1 iff TT" is uniform.

A clique for this coherence relation is a subset U of A") such that 7 < 7/ whenever 7,7/ € U.
In particular, each element of a clique must be uniform. Observe by the way that it results from the
definition that if o © o for two simple (poly-)terms o and ¢’, then automatically o and ¢’ are uniform.

Lemma 19 If M is a lambda-term, then T (M) is a mazimal clique in (A, ).

The proof is straightforward. However, not all maximal cliques of A are of the shape 7 (M) for some
lambda-term M. For instance, a maximal extension of the clique {(z) 1, (z) () 1,...} cannot be of that
shape. Such maximal cliques could probably be seen as some kind of infinitary generalized lambda-terms.

3.1 Coherence and differentiation.

2

Coherence is not preserved by partial differentiation. For instance, the poly-term x“ is uniform and y is

a uniform term, but %—f -y = 2xy is not uniform if x and y are distinct variables.

3.1.1 Stability of big-step differentiation. However, big step differentiation or, more pre-
ciesely, the map supp o 0, satisfies a “stability” property with respect to the coherence relation
we have defined on (poly-)terms, similar to the characterization of the trace of stable linear func-
tions between coherence spaces in [Gir87, GLT89]. More precisely, Theorem 20 expresses that the set
{((0,8),¢) | ¢ € supp(D,(c,S))} is a clique in the coherence space (AM) @ A') —o AY). That is, the map
f:PAY) x P(A") — P(AWM) defined by f(U,V) = Uyecv.sev supp(dx(c, S)) maps pairs of cliques to
cliques, and is a stable function on pairs of cliques. The precise statement is given in Theorem 20.

Given U, U’ C AO), let us write U © U’ when Vo € U,0’ € U’ ¢ = ¢’. Then U < U means that U
is a clique.

Theorem 20 Let z be a variable. Let 0,0’ € AY) and S, 5" € A.
e Ifo o' and S < S, then supp(0.(c,5)) < supp(9.(c’,5"))
e and if, moreover, o # o’ or S # S’, then supp(0.(c,S)) Nsupp(d.(a’,S")) = 0.

20



Proof. We assume that ¢ < ¢’ and S < S’. Let ¢ € supp(9.(0,S5)) and ¢’ € supp(9.(c’,5")). We
prove that ¢ < ¢’ and that, if moreover ¢ = ¢, then ¢ = ¢/ and S = 5’. We proceed by induction on
the sum of the sizes of o and o', for o and ¢’ in A®).

Assume that o is a variable y. Then ¢/ = y. If y # x, we must have S = S’ = 1 since ¢ €
supp(9,(0,5)) and ¢ € supp(d.(c’,S")) (otherwise at least one of these sets would be empty). So
¢ = ¢’ =y and we conclude trivially. If y = x then S and S’ must be singleton multi-sets (otherwise
again at least one of the two sets supp(9, (o, S’)) and supp(9, (o, S)) would be empty). Say S = ¢ and
S =1t (with t,t’ € A, t = t'). Then we have p =t and ¢’ = t' and we conclude straightforwardly.

The case where o is an abstraction is trivial.

Assume that ¢ = (t)T (with t € A and T € A'). Then by definition of coherence we must have
o' ={")T' witht =t and T < T’. Since ¢ € supp(9:(c, S)), we must have ¢ = (u) U and there must
exist 1,52 € A' such that S = 5152, u € supp(dx(t,51)), U € supp(9x(T, S2)). Similarly, ¢’ = (u') U’
and there exist S}, 5% € A' such that S' = 5155, u' € supp(0.(t',S1)), U' € supp(d.(T",S5)). But by
definition of coherence we have S; < S} and Sz < S% and hence by inductive hypothesis u © ' and
UcU', sopc ¢ If furthermore ¢ = ', then v = u’ and U = U’ and the inductive hypothesis yields
t=1t',5; =5] and Sy = S and we conclude.

Assume last that o and ¢’ are poly-terms. If ¢ = 1, we must have S = 1 (as otherwise supp (9, (o, S))
would be empty) and there are two sub-cases: the case ¢/ = 1 is straightforward. Let us assume that
o’ # 1 so that we can write 0’ = «/U’. In that case we have ¢ = 1 and ¢’ = o'V’ with v’ € supp(9, (v, S}))
and V' € supp(0,(U’,S4)) for some 57,5, € Mgn(A) satisfying S5, = S’. We have to show that
1 © v'V’, or equivalently that {v'} Uset(V’) is a clique. That set(V’) is a clique results from the
inductive hypothesis. So let w’ € set(V’) and let us show that v' < w'. We have w’ € supp(9,(wy, S5))
where w(, € set(U’) and S% is a factor of S5. We have v/ < w{ and S7 < 5%, hence the inductive
hypothesis yields v" © w’ as desired. In the present case we know that ¢ # ¢ so there is nothing more
to prove.

The last sub-case to consider is the case where o and ¢’ are simple poly-terms both distinct from
1. Then we can write ¢ = vV and ¢’ = v'V’ where v € supp(0:(t,S1)), V € supp(9.(U, S2)), v' €
supp(0,(t',S})) and V' € supp(d,(U’,S%)) with tU = ¢ and t'U’ = o', for some Si,Ss,5],5, € AC)
satisfying S1.52 = S and 5155 = S’. One shows exactly as above that ¢ < ¢'. If moreover ¢ = ¢/,
then we can take v = v' and V = V'’ and again we conclude straightforwardly by inductive hypothesis,
since we know that ¢ © ¢ and S; < 5] (and hence ¢t = ¢’ and S; = S7) on one hand, and U < U’ and
Sy =S4 (and hence U = U’ and Sy = S5) on the other hand. This concludes the proof. O

Corollary 21 Let 0 € A" and S € A" be uniform. Then supp(ds (0, S)) is a clique.

3.1.2 Stability of the normal form operator. As a consequence of Theorem 20 and Lemma 10,
the NF operator — or, more precisely, the map supp o NF — satisfies also a stability property with
respect to the coherence relation we have defined on (poly-)terms.

Theorem 22 Let 0,0’ € AV,
o Ifo = o', then supp(NF(c)) < supp(NF(c"))

e and if, moreover, o # o', then supp(NF(c)) Nsupp(NF(c’)) = 0.

Proof. Let 0,0’ € A" and assume that ¢ = o’. Let ¢ € supp(NF(o)) and ¢’ € supp(NF(c”)). By
induction on the sum of the sizes of the simple (poly-)terms ¢ and ¢’, we show that ¢ < ¢’ and that, if
o=, then o = o’.

For this purpose, we use Lemma 10.

If size(o) +size(o’) = 0 then o and o’ are poly-terms and o = ¢’ = 1; one concludes straightforwardly.

Otherwise, assume first that o is a simple term, we consider the following cases.

e Ifoc =Mz (---(x) Sy ) Sp, then o’ = Az (---(x) S1---) S}, with S; = S} fori=1,...,n. Since p €
supp(NF (o)) and ¢ € supp(NF(c”)), these simple terms are of the shape ¢ = Az (--- () Ty ---) T},
and ¢ = AT (---(x) T} -- ) T} with T; € supp(NF(S;)) and T/ € supp(NF(S})) for each i. Then we
apply the inductive hypothesis for each i (since S; < S!) and we conclude.
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e If o = AT (- - ((Axt)U)Sy---) S, then ¢/ must be of the shape ¢/ = AT (--- ((Ax¢')U’) S ---) S,
with of course t © t/, U © U’ and S; © S/ for each i. There exists u € supp(9,(¢,U)) and v’ €
supp(05(t',U")) such that ¢ € supp(NF(AZ (- -+ (u) Sy ---) Sp)) and " € supp(NF(AZ (- - (u') S1---) S))).
By Theorem 20 we have v © «’ and hence, since the size of AZ (- (u) Sy --+) S, is strictly smaller
than the size of o (and similarly for Az (- - - (u’) S7 -+ ) S},), we have ¢ © ¢’ by inductive hypothesis.

If moreover ¢ = ¢, then the inductive hypothesis implies that u = v’ and S; = S} for each i and
hence (applying again Theorem 20), we obtain that o = ¢’.

Assume last that 0 = S and ¢’ = S’ are poly-terms. Let T' € supp(NF(S)) and T" € supp(NF(S")),
we must show that "< T”, so let ¢, ' € set(T) Uset(T”). We are reduced to showing that ¢ < t'. There
exists s, s’ € set(S) Uset(S’) such that ¢ € NF(s) and ¢ € NF(s’). We know that s © s’ (by definition
of coherence for poly-terms) and moreover, with our definition of the size, we have size(s) + size(s’) <
size(S) + size(S’). Therefore the inductive hypothesis applies and yields ¢ < ¢’ and hence T' < T".
Assume moreover that 7' = T’ = t;...t;. Then S and S’ must be of the shape S = s1...s; and
S' =5 ...s) with t; € supp(NF(s;)) Nsupp(NF(s})) for each ¢, and hence s; = s} for each i (by inductive
hypothesis again). Hence S = S’. ]

Corollary 23 Let 0 € AY) be uniform. Then supp(NF(c)) is a clique.

4 Quantitative properties: combinatorial considerations

We shall now study the behaviour of the mutiplicity coefficients of a simple (poly-)term along its big
step reduction. In the present paper, we want to solve this question when the simple (poly-)term
under consideration appears in the complete Taylor expansion of an ordinary lambda-term, and hence is
uniform. This hypothesis will be extremely useful.

For this purpose, we shall first observe in Lemma 25 that m(o) is the number of permutations of the
free or bound variable occurrences in o which respect the variables associated with these occurrences
and leave o unchanged. These permutations form a subgroup of a symmetric group, called the isotropy
group of o. This group is generally non trivial because the multi-set construction used in the syntax of
poly-terms is commutative. For instance, the term Ax <<z) ;v3> y? has multiplicity coefficient 3! x 2!.

Doing that, we shall transform our problem into a combinatorial group-theoretic one: relate the
isotropy group of a term to the isotropy group of the same term where a big step differential substitution
has been performed. This will be the main purpose of the present section with, as a result, a proof of
the Uniform Plugging Equation.

4.1 A group equation

Let G be a finite group and let L and R be subgroups of G. Then LR ={ir |l € Landr € R} C G
is not a subgroup of G in general. Nevertheless, the cardinality of this set satisfies the following well
known equation which is essential in the forthcoming considerations.

Lemma 24 If L and R are subgroups of a finite group G, then

_ ILIIR|
[LNR|

|LE|

Proof. The set LR is the union of the left cosets [R (for [ € L), and these cosets are either disjoint or
equal and have |R| as cardinality. Given [,I’ € L, the left cosets [R and I’R are equal subsets of G iff
[711" belongs to the subgroup L N R of G. Therefore, LR is the disjoint union of exactly |L|/|L N R|
disjoint sets of cardinality |R|, whence the equation. ]

We shall also use the fact that if h : G — H is a group homomorphism and G is finite, then
[h(G)| = |G/ [ker h].
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4.2 The uniform plugging equation

In order to give a precise definition of the group of permutations of variable occurrences in a simple
(poly-)term o which leave o unchanged, we need to separate the various occurrences of all the vari-
ables appearing, free or bound, in . This is exactly the purpose of the notion of “multilinear-visible”
(poly-)term we introduce now. The idea is to separate the occurrences in ¢ by using pairwise distinct
variables, producing a term ¢, and then recovering the original names of variables through a “naming
function” (we will use letters p, g...for these functions from variables to variables). Such a pair (p, p)
will be called a multilinear-visible representation of o. Because the permutations we consider should act
also on the bound occurrences of o, all the variables occurring in ¢ will be required to be free.

For instance, we shall represent the simple term Az (y) 22 by means of the multilinear-visible term
Az (y) x1x9 where y, a1, xo, ¢ are pairwise distinct, together with the function p such that p(y) = y and
p(z1) = p(x2) = . Observe that the bound variable x is not modified, but it does not appear free in
the multilinear-visible term; the role of the function p is precisely to record the information that the
variables 1 and x5 stand for the two occurrences of x.

Remark: These multilinear-visible (poly-)terms, that we present as particular (poly-)terms, are just
combinatorial artifacts, introduced for defining cleanly the isotropy group of (poly-)terms, they should
not be considered as “real”, computationally meaningful, (poly-)terms. We could have introduced an
additional syntax for these objects, where, for instance, the various occurrences of a variable x would
have been replaced by pairs (x,7) where i is e.g. an integer attached to this particular occurrence of x (if
x has n occurrences in the (poly-)term, n distinct values of ¢ would have been used in the corresponding
multilinear-visible (poly-)term, for distinguishing the various occurrences of ). We prefered not to do
so for avoiding additional bureaucracy.

4.2.1 Multilinear-visible representation of a (poly-)term. Let ussay that a simple (poly-)term
@ is multilinear-visible if each variable occurring in ¢ occurs ezxactly once, and occurs free in .

Let us say that a partial function (substitution) ® from V to multilinear-visible terms is a multilinear-
visible substitution if fv(®(x)) Nfv(®(2’)) = @ when z and 2’ are two distinct elements of Dom ® (the
domain of ®). We use fv(®) for the disjoint union J,cpom ¢ fV(®(2)).

Given a multilinear-visible (poly-)term ¢ and a multilinear-visible substitution ®, we say that the pair
(p, ) is adapted if fv(p) C Dom @, and no element of fv(®) is bound in . In that situation, we can apply
the substitution ® to the term ¢, getting a (poly-)term ¢[®] which is clearly also multilinear-visible.

Let ¢ be a multilinear-visible (poly-)term and let p : fv(¢) — V be a function. We use ¢? for the
(poly-)term obtained by substituting each variable y occurring in ¢ with p(y), in the most naive way
(that is, without renaming captured variables).

Let o be a (poly-)term, we say that (¢, p) represents o if ¢? = o, a situation which can be pictured
as follows:

© o
represents
Frr 1 [
T T2 Y1 Yn Tm, r Ty Yy x
function p W
Z )

Example. The simple term o = (z) (2(A\yy)?) is represented by the pair (¢, p) where

P(z1) =P\22) =%
¢ = (=) (20w Oy ) and P ZPEZE
p(y1) =p(y2) =y
Clearly, if both (¢,p) and (1, q) represent o, there is a (generally not unique) bijection f : fv(p) —
fv(¢) such that ¢f = p and ¢[f] = 9 (observe that f is a multilinear-visible substitution, which is adapted
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to ¢ since ¢ and 1 have the same lambda-abstracted variables, which are the lambda-abstracted variables
of o, and none of the elements of fv(1)) is lambda-abstracted in 1, so the notation ¢[f] makes sense).
This can be proved by induction on o. If ¢ is the simple term of the example above, there are two such
bijections f.

4.2.2 TIsotropy group of a multilinear-visible (poly-)term. Let us introduce two important
notations.

o If p: V — Vis a finite partial function, we use &,, for the subgroup of Gpom,, of all bijections f on
Dom p such that pf = p: it is a finite product of symmetric groups.

e If © is a multilinear-visible (poly-)term and p : fv(¢) — V), we use Iso(¢, p) for the subgroup of &,
whose elements f satisfy ¢[f] = ¢, since it is the isotropy group of ¢ for the action of &, on the
multilinear-visible simple (poly-)terms having the same free variables as ¢.

Example. Consider the following closed simple term:

o=z (z) Ay (z)y*)*.

We represent this terms by the pair (p, p) where

¢ = Az (21) (A (72) y1y2)(A\y (r3) yays) and p(e) B p(xi) :p(xi) -
pyr) = =plys) =y

Remember that the poly-terms y1y2, ysys and (A\y (x2) y1y2)(Ay (z3) ysy4) are multisets which have two
elements each, so they are respectively equal to yay1, yays and (Ay (x2) yays)(Ay (x3) y1y2), for instance.

We have &) >~ Gyu, 25,251 X Oy, ys.ys.5a) (& group with 144 elements). Then Iso(y, p) is the subgroup
generated by the two transpositions which swap respectively vy, y2 and ys, y4, and by the permutation f

given by f(z1) = w1, f(x2) = 23, f(23) = x2, f(y1) = v, f(y2) = va, f(y3) = y1 and f(ya) = yo. This
subgroup has 8 elements, as easily checked. Observe by the way that m(o) = 2 x 22 = 8.

4.2.3 Combinatorial interpretation. Here is the announced combinatorial interpretation of the
multiplicity coefficients.

Lemma 25 Let o be a (poly-)term, let ¢ be a multilinear-visible (poly-)term and p : f(p) — V be a
function such that (o,p) represents o. Then |lso(p,p)| = m(o).

The proof is by induction on o.

4.2.4 Isotropy group of a multilinear-visible substitution. More generally, if ® is a multilinear-
visible substitution and if p : Dom® — V and ¢ : fv(®) — V are functions, we define the group

Iso(p, ®,q) = {g € &, | If € &, [g] = f},

where ®[g] stands for the multilinear-visible substitution which has the same domain as ® and is given
by ®[g](z) = ®(z)[g].

Due to the injectivity of ® as a function from variables to multilinear-visible terms, the bijection f
associated with g in the definition above is uniquely determined, and clearly the map g — f is a group
homomorphism. In other words, Iso(p, @, ¢) comes equipped with a group homomorphism Iso(p, ®, q) —
S, that we shall always denote as 7, and which is uniquely determined by the following property:

Vg € lso(p, ®,q) ®[g] = P7(g). (15)

Let @, p and ¢ be as above. For each z € V, p~!(x) is a finite set which is empty for almost all xs
since p is finite. Let T} be the poly-term which is the multiset of simple terms [®(y1)?, ..., ®(y,)?] where
{y1,.--,yn} = p~(z). Then, by Lemma 25, we have

lIso(p, ®,q)| = [ m(T) (16)

zeV

as easily checked.
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4.2.5 A combined isotropy set. Assume that we are given ¢, ®, p and ¢ as above, with (p, D)
adapted. Then there is yet another set of permutations which will play an important role in the sequel,
and this set is not a group in general, namely:

Iso(p,p, ®,q) = {f € &p | Ig € &4 (p[®])[g] = [P []}

Lemma 26 Let ¢ be a multilinear-visible (poly-)term. Let ® be a multilinear-visible substitution such
that (o, ®) is adapted. Let p: Dom® — V and q : fv(®) — V. Then

m(Iso(p, @, q)) Iso(,p) C Iso(p,p, @, q) ,

where we recall that 7 is defined by equation (15).

Proof. Let g € lIso(p, ®,q) and let f € Iso(¢,p). Then ¢[®7(g)f] = (¢[f])[®7(9)] = ¢[P7(g)] since
f € lso(p, p) and hence p[®7(g)f] = ¢[P[g]] since g € Iso(p, P, q). But we have ¢[®[g]] = (¢[®P])[g] and

so m(g)f € Iso(p,p, ©, q). O

We shall see that, under some uniformity condition on the pair (p, p), the converse inclusion holds
as well. The crucial step for proving this is the forthcoming factorization property, Lemma 27.

4.2.6 Uniform pairs. We define when a pair (F,p) is uniform, F' being a multilinear-visible poly-
term and p : fv(F) — V a naming function. We shall see in Lemma 28 that this notion is equivalent
to the concept of uniformity we have already defined in Section 3, using the coherence relation on poly-
terms, but we give first the following self-contained definition, very suitable to our present combinatorial
considerations. The definition is by induction. The pair (F) p) is uniform in one of the following situations:

e F'=ux;...x, where the x;s are variables and p(z;) = p(z;) for all ¢, j;

e F'=(Ayp1)...(\yyyn) and (¢1 ... ¢n,p) is uniform;

o F'=({p1)G1)...({n)Gy) and (¢1 ...¢n,1) and (Gy ...G,,r) are uniform, where [ and r are the
obvious restrictions of p.

When w is a multilinear-visible simple term, we say that (u,p) is uniform if (F,p) is uniform, where F is
the multilinear-visible poly-term which has u as single element.

4.2.7 The factorization property of uniform pairs. The main property of uniform pairs is the
following factorization lemma.

Lemma 27 (factorization) Let (p,p) be a uniform pair and let ® and ®' be two multilinear-visible
substitutions of domain fv(p). If [®] = p[®’'], then there exists f € Iso(p,p) such that ' = Of.

Proof. We can restrict our attention to the case where ¢ is a poly-term, and the only interesting case in
the inductive definition 4.2.6 of uniformity is obviously the last one. With the notations of that definition,
we can find, by inductive hypothesis, g € Iso(p; ... ¢,,1) such that A’ = Ag and h € Iso(G1...Gy, 1)
such that P’ = Ph where A, A" and P, P’ are the restrictions of ®,®" to fv(y; ... ¢,) and fv(Gy...G,)
respectively. Taking the union f of these two bijections g and h, we obtain an element f of &, and it
remains to show that F[f] = F.

For this, it will be sufficient to show that there is an index ¢ such that ¢1[g] = ¢; and G1[h] = G;.
We know that there is an ¢ such that ¢;1[g] = ¢; since g € Iso(p1...¢n,1)) (and this ¢ is unique since
each ¢; contains at least one variable, and all these variables are distinct).

We know moreover that ((p1) G1...{(on) Gn)[®] = ((¢1)G1...{pn) Gn)[®'] and hence there is a
(uniquely determined) j such that ((p1) G1)[®'] = ({¢;) G;)[®], hence p1[A’] = ¢;[A], that is p1[Ag] =
©;[A]. This implies that ¢1[g] = ¢; (because A is an injective partial function from variables to simple
terms), hence ¢; = ¢; and so we must have j = i. Therefore ({(¢1) G1)[®'] = ({¢;) G;)[®], hence
G1[P'] = G,[P], that is G1[Ph] = G;[P]. I G; = 1 then G; = 1 and hG; = G, holds trivially. Otherwise
we conclude again using the injectivity of P. O

The uniformity hypothesis is essential: take for ¢ the poly-term zy, for p the identity map on {z,y},
and define @ and &’ by ®(z) = z, P(y) = y and ¥'(z) = y, D'(y) = z. Then p[P] = p[P’] = ¢ but
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® £ @’ and the only element of Iso(p, p) is the identity. The problem is of course that the pair (¢, p) is
not uniform.

Here is another, maybe more illuminating, example: take ¢ = x1 (x2) 1 (which is a multilinear-visible
poly-term) and let p be defined by p(x1) = p(z2) = . Let ® and @’ be given by: ®(z1) = (z1) 1,
D(x9) = 9, (1) = (v2) 1 and ®’(z3) = x1. Then we have p[®] = ¢[®’] = (z1) 1 (x2) 1 but there is no
permutation f such that ® = ®f. Again, the point is that the pair (¢, p) is not uniform.

We state now the equivalence between the two notions of uniformity introduced so far.

Lemma 28 Let o be a (poly-)term. Let ¢ be a multilinear-visible (poly-)term and p : fv(p) — V be a
function such that o = ¢P. Then o is uniform (that is o < o) iff the pair (p,p) is uniform.

The proof is a straightforward induction on o.

4.2.8 The equation. Let ¢ be a multilinear-visible simple term, ® be a multilinear-visible substi-
tution with Dom ® = fv(p), p: fv(p) — V and ¢ : fv(®) — V be functions. Assume that the pair (¢, @)
is adapted and that the pair (p,p) is uniform.
Let us first check that
7(Iso(p, @, q)) Iso(p, p) = Iso(p, p, P, q) .

Let f € Iso(¢,p,®,q), that is f € &, and there exists g € &, such that (p[®])[g] = ¢[Pf], that is
(replacing g by its inverse), there exists g € &4 such that ¢[®] = (¢[®f])[g] = ©[®[g]f].

Since the pair (¢,p) is uniform, we can apply Lemma 27 and hence there exists f' € lIso(y,p)
such that ®[g]f = ®f’. This means that g € lso(p, ®,q) and 7(g) = f'f~'. Hence f = n(¢g')f’ €
m(Iso(p, @, q)) Iso(p, p). The converse inclusion holds by Lemma 26.

Since |7 (Iso(p, @, q))| = |Iso(p, @, q)| / |ker 7|, applying Lemma 24 we obtain

lIso(p, @, q)| [Iso(e, p)|
Iso(p, p, ®,q)| = :
tso = era] w(iso(p, @, )) N 1s0(p. )]

To conclude, we show that |m(Iso(p, @, q)) Nlso(p, p)| = |w(Iso(¢[P], q))|-

Let g € Iso(¢[®], q). Since the pair (¢, p) is uniform, by Lemma 27 again, there exists f € Iso(p, p)
such that ®[g] = ®f. In other words Iso(p[®],q) C Iso(p,®,q) and also w(Iso(p[®],q)) C lso(y,p).
So m(Iso(¢[®],q)) C w(Iso(p, ®,q)) N lIso(p,p). But the converse implication holds as well. Indeed, let
g € lso(p, @, q) be such that w(g) € Iso(p,p). Then (p[®])[g] = ¢[Plg]] = ¢[P7(9)] = ¢[®] and hence

9 € lso(p[®], q).
Last observe that obviously ker w C Iso([®], q). So

|m(Iso(p, @, q)) Nlso(i, p)| = |m(Iso([®], q))| = w _

So we have proved the following result which will be essential in the sequel.

Theorem 29 (Uniform plugging equation) If ¢ is a multilinear-visible simple term, ® a multilinear-
visible substitution with (o, ®) adapted, if p : fv(p) — V and q : f(®) — V are functions and if the pair
(p,p) is uniform, then the following equation holds:

_ [lso(p, ®, )| [lso(, )|
B N IR

The uniformity hypothesis is necessary. Take indeed for ¢ the non uniform poly-term ¢ = 1 ((z2) 1) (p
being the constant function x; — x where x is a fixed element of V). Then [lso(p,p)| = 1. Define ® by
®(z1) = (y1) 1 and P(z2) = yo2 and take for ¢ a constant function ¢(y,;) = y. Then |Iso(p, @, ¢)| = 1, but
©[®] = ((y1) 1)({y2) 1) so that |Iso(¢[®],¢)| = 2 and the equation above cannot hold since its left hand
member must be an integer.

5 Reducing the Taylor expansion of an ordinary lambda-term

With the qualitative Theorems 20 and 22 and the quantitative Theorem 29, we have the main tools for
studying the beta-reduction of the Taylor expansion of an ordinary lambda-term.
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Extension of NF to infinite, coherent (poly-)terms. We need first to consider the case of a single
big step differentiation: for dealing with this case, we apply the uniform plugging equation straightfor-
wardly.

Lemma 30 Let 0 € AY) be uniform, let = be a variable and let T € A'. Let 6 € supp(d,(c,T)). Then
the coefficient 0, (0, T)g of 0 in 0,(o,T), which is a positive integer, is given by

m(o)m(T)
(91(0,T)9— m(@) .
Proof. Observe first that our hypotheses imply that |T'| = deg,o since otherwise the set supp(9,(o,T))
would be empty. Let ¢ be a multilinear-visible (poly-)term and let p : fv(p) — V be a function such
that ¢? = 0. Then, by Lemma 28, the pair (¢, p) is uniform since o is. By Formula (6), we can choose
a multilinear-visible substitution ® and a function ¢ : fv(®) — V in such a way that the following
requirements be fulfilled:

e the pair (p, @) is adapted;
o (ITw=e ®(2'))? =T (that is, (®,q), when restricted to p~1({x}), represents T');

o if p(z') # x then ®(2') = 2’ and ¢(2') = p(2’) (that is, the substitution ® acts trivially on all
occurrences of variables distinct from z);

o 0= (p[®))".

By Formula (6), the coefficient 0,(0,T)p is the number of permutations f € &,, such that

o’ I:tf(l)/x17-"7tf(n)/xn:| =0,

where t; ...t, = T, the variables x1, ..., z, are fresh and ¢’ is an z-linearization in x1,...,z, of o. This
a-linearization can be chosen such that o’ [t;/21,...,t,/2,] = 0 and in that case the above mentioned
set of permutations contains the identity permutation and is in canonical bijective correspondance with
Iso(¢, p, @, q) (remember that this set is not a group in general) because ® acts trivially on the variables
of ¢ which do not correspond to x. Therefore we have 9,.(c,T)g = |lso(p, p, ®,q)|.

By Theorem 29, since (i, p) is uniform, we have

_ [lso(p, @, g)[ [lso(, p)|
lso(p[®],q)|

and we conclude because, by Lemma 25, we have |lso(¢,p)| = m(o) and [lso(p[®], ¢)| = m(), and we
have |lso(p, @, ¢)| = m(T) by Equation (16). O

[Iso(, p, @, q)|

Again, the uniformity condition is absolutely essential.

Two corollaries. We derive two easy corollaries of this formula, before applying it to our main concern,
which is the study of the normal forms of the terms occurring in the Taylor expansion of an ordinary
lambda-term.

First, we generalize the formula to iterated big step differentiation.

Proposition 31 Let o € A" be uniform, let 1, . .., x, be pairwise distinct variables and let Ty, ..., T, €
A' be uniform. Let 0 € supp(Oy,... 2, (0,T1,...,Ty)). Then

.....
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Proof. Tt will be enough to deal with the case n = 2. We have
811112(05 TlaTQ)G = 812(811(07 T1)7T2)9
- Z 811(0" Tl)parz (paT2)9 )

peAM

but since o and Ty are uniform, supp(d.,(0,T1)) is a clique by Theorem 20 and hence there is at
most one p € supp(dy,(0,T1)) such that 6 € supp(d.,(p,T2)). Hence, since we have assumed that
0 € supp(0y, 4,(0,T1,T>)), there is exactly one such p and we know that this p is uniform, so we get,
applying twice Lemma 30,

m(o)m(Th) m(p)m(Tz) _ m(o)m(T1)m(T>)

am1,12(07 T17T2)0 - m(p) . m(e) = m(g) .

O

The second corollary is another version of the Taylor formula, which is now substitution-oriented
instead of being application-oriented as in Lemma 18.

Theorem 32 Let M and N be ordinary lambda-terms and let x be a variable. One has 0, (M*, N*") — 0
as n — oo, and the following equation holds:

(M [N/z])" =" %az(M*,N*").

n=0

Proof. The convergence statement results from the fact that M*"™ — 0 and from the continuity of 9.
Just as in the proof of Lemma 18, we have

ZE‘MM ,N*) = Z ey 0:(s,T).
n=0 seT (M)
TeMiin(T(N))

To conclude, observe that the family of sets (supp(0.(s,T')))(s,1)eT(M)x Man(T(N)) 18 @ partition of
T (M [N/z]) (disjointness results from Theorem 20, and the equality of sets is proved by an easy in-
duction on M, using the Leibniz law in the case where M is an application), and then apply Lemma 30.

O

Proposition 33 Let o € AY) be uniform and let 6 € supp(NF(c)). Then m(0) divides m(c), and more
precisely

Proof. We proceed by induction on the size of the simple (poly-)term o, using Lemma 10. Indeed
observe that when o is uniform, the terms to which NF is applied in the “recursive calls” of that lemma
are themselves uniform (the only non-trivial case is the first one, and in that case our claim results from
Theorem 20 and from the fact that any (poly-)subterm of a uniform (poly-)term is uniform).
Ifo=MXei...xn(---(x)Th--) T} then 0 = A1 ... 2, (--- (x) Uy - - -) Uy with U; € supp(NF(Tj)) for
Jj = 1,...,k. By inductive hypothesis, m(T};)/m(U;) = NF(T})y,, but m(c) = m(Ty)---m(T}) and
m(0) = m(Uy) - - - m(Uy) and we conclude because, by multilinearity of application,

NF(o) = Y NF(Ty)y, - NF(Th)y Azy oy (o (@) Vi) Vi

Assume now that ¢ = Azy...2, (- (r)Ty---) Ty, where r = (Azs)T. Then there exists s’ €
supp(0.(s,T)) such that 6 € supp(NF(Azy ...z, (---(s')T1---) T})), and this simple term s’ is unique by
Theorem 22, since supp(9,(s,T)) is a clique by Theorem 20. By inductive hypothesis,

mAzy ...y ($)Ty ... Tk)

m(0) CNFOM1 e (o () T ) T
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But NF(o) = RTIE(Axl coity (- (O (8, 7)) Th- -y T)) and so NF(0)g = 05(s, T) s NF(Axy ..oy (- (s") T+ ) Tk )o
(see Equation (8)). Therefore by Lemma 30 we get

m(s)m(T)m(Axy ...xp (- (sYTh - ) T)

NF(o)s m(s')m(6)
~ m(s)m(T)m(Ty) - - m(Ty)
m(6)
_ m(o)
= 0@
As a last case, consider the situation where o = s{* ... s7* is a uniform poly-term, with s; < s; for

all 4, j, and s; and s; not a-equivalent when ¢ # j, so that

k
m(o) = Hpj! m(s;)" .

Then, by Theorem 22, supp(NF(s1)),...,supp(NF(sy)) are pairwise disjoint cliques and 6 is of the shape
0 = Uy ... Uy with U; € supp(NF(s;)?7) for j = 1,...,k, and so the multi-sets U; are pairwise disjoint,
so that

m(0) = m(Uy) - m(Uy) .
Let j € {1,...,k}, we have m(U;) = U;! mYi so that

k

m(o) _ pit m(s;)"
m(6) e U;! mYs
k
_ 1 m(s;)P
- i Uil =

but for each j,

P
NF(s;)Pi = (Z NF(sj)uu>
[IISPANG)
() \"
= (Z My u) by inductive hypothesis
Lz m(u)
m(s;)P? S
= Z (U] — U by the multinomial identity,
UeM,, (o) m
SO
k
NF(o)s = HNF(SJ)ZI)JJ]
j=1
k
_ m(s;)"”
= j];[l[Uj] 7
_ m(o)
- m(9)
and we are done. .

Given an element 7 of R(A"),, the sum NF(1) = > ,_ o) 79 NF(0) does not always converge (in
the sense of 2.1.1): it can involve infinite sums of coefficients. But in the case where 7 is the Taylor
expansion of a lambda-term, it does converge.

Corollary 34 Let M be an ordinary lambda-term and let u € supp(NF(M*)). Then the sum NF(M™)
converges and, for any simple term w occurring in that sum, one has NF(M*), = 1/m(u). Moreover,
there is exactly one simple term s € T (M) such that u € supp(NF(s)).
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Proof. Remember that M* =3 _7,p ﬁs and that 7 (M) is a clique (Lemma 19). Therefore the
supports of the terms NF(s), for s € 7 (M), are pairwise disjoint, by Theorem 22. Hence, the sum
NF(M™) = > e ﬁ NF(s) converges, and, for any simple term w which occurs with a non-zero
coefficient in that sum, there is exactly one s € 7 (M) such that u € supp(NF(s)), by Theorem 22 again.

The coefficient of v in NF(M™*) is NF(s),/m(s) = 1/m(u) by Proposition 33. m|
Corollary 35 The sum NF(M*) has the following shape

NF(M*) =)

—Uu
uel m(u)

where U is a set of normal simple terms, which is a clique (by Theorem 22, since T (M) is a clique).

In [ERO06a], it is shown, using Krivine machine, that actually & = T (My), where BT(M) is the Béhm
tree of M. Therefore, we have
NF(M*) = (BT(M))". (17)

In other words, Taylor expansion commutes with (infinite) normalization. The analysis developped
in [ERO6a] shows that the simple term s associated with u (in the statement of Corollary 34) represents
the part of M which is necessay for computing the part w of My in Krivine machine, taking multiplicities
into account.

Example. Let M be the ordinary lambda-term

M = (M (f) A (f) Mddx) Az (2) (2) *

where x is a distinguished variable. It is easily seen that M reduces to x. By the theorem above, there
is at most one simple term s € 7 (M) such that x € supp(NF(s)). One checks easily that

s = (M (f) Oz (f) M 2)?) (A2 (2) (2) %) (A2 () 1)?

is such a term, and more precisely that s reduces to 4x, in accordance with the fact that m(s) = 4. This
simple term can be seen as a “decoration” of M giving an exact quantitative account of how much each
subterm of M is used during the run of the Krivine’s machine starting with term M (empty environment
and empty stack) and leading to the final value *.

Conclusion

The main result of this paper, Corollary 35 and its consequence, Formula (17), show that the situation
is as simple and natural as one could expect. The striking fact, maybe, is not the result itself but its
proof, which is based on Theorems 22 and 29, and so uses uniformity twice, and each time in a crucial
way. So an essential step in the understanding of the differential extension of the functional paradigm
proposed in [ER03] will be to examine the behaviour of Taylor expansions in this more general and non

uniform setting.
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