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tWe de�ne the 
omplete Taylor expansion of an ordinary lambda-term as an in�nite linear 
ombina-tion � with rational 
oe�
ients � of terms of a resour
e 
al
ulus similar to Boudol's lambda-
al
uluswith multipli
ities (or with resour
es). In our resour
e 
al
ulus, all appli
ations are (multi-)linearin the algebrai
 sense, i.e. 
ommute with linear 
ombinations of the fun
tion or the argument. Westudy the 
olle
tive behaviour of the beta-redu
ts of the terms o

urring in the Taylor expansionof any ordinary lambda-term, using, in a surprisingly 
ru
ial way, a uniformity property that theyenjoy. As a 
orollary, we obtain (that main part of) a proof that this Taylor expansion 
ommuteswith Böhm tree 
omputation, synta
ti
ally.Introdu
tionAlthough the present arti
le develops a di�erential approa
h to the lambda-
al
ulus that we initiatedin [ER03℄, it is self-
ontained and does not require any te
hni
al knowledge of [ER03℄. Nevertheless, wethink that the di�erential intuitions developped in that paper are quite helpful for understanding thepresent work, and therefore, we re
all them shortly.In [ER03℄, we introdu
ed an extension of the lambda-
al
ulus where terms 
an be di�erentiated withrespe
t to their arguments. Typi
ally (in a simply typed version of this di�erential lambda-
al
ulus), if
M is a term of type A→ B and if N is a term of type A, we introdu
e1 the term DM ·N of type A→ B,to be understood as the derivative of the fun
tion M with respe
t to its argument, linearly applied2 tothe value N .Intuitively, in the term DM ·N , the termM is provided with exa
tly one 
opy N of its argument, andthis explains why A is still present as an argument type of DM ·N , for the other 
opies thatM might needin 
omputing a result. We argued indeed in the introdu
tion of [ER03℄ that the mathemati
al notion oflinearity, whi
h is the key 
on
ept of di�erentiation (
omputing the best possible linear approximation ofa fun
tion), and the logi
al notion of linearity (a fun
tion is linear if it uses its argument exa
tly on
e) aredeeply related, as already strongly suggested by the notations, terminology and denotational semanti
sof linear logi
 [Gir87℄. The idea of extending linear logi
 with a di�erential 
onstru
tion, expressed asan exponential rule, is even mentioned at the end of [Gir87℄. But, probably be
ause of the fundamentalin
ompatibility of this 
onstru
tion with both 
oheren
e spa
e semanti
s and totality, Girard didn't

∗This work has been supported by the ACI proje
t GEOCAL.1A
tually, the syntax of [ER03℄ is more 
ompli
ated sin
e we introdu
ed an expli
it notation DiM ·N for the derivative of
M with respe
t to its ith argument. This has been shown useless by Lionel Vaux in his study of the di�erential lambda-mu
al
ulus [Vau05℄.2In standard mathemati
al notations, the derivative of M is a fun
tion M ′ asso
iating to x ∈ A a linear map M ′(x)from A to B, the di�erential of M at point x; thus M ′ has type A → (A ⊸ B) (where A ⊸ B is the type of linear mapsfrom A to B). With these notations, our DM ·N has type A → B and represents λxA (M ′(x)(N)) so that �DM � 
ould be
onsidered as having type A ⊸ (A → B). But, on purpose, we did not introdu
e the synta
ti
 
onstru
tion DM for nothaving to introdu
e expli
itely linear types in the syntax. 1



explore this dire
tion further. Taking this idea seriously, we arrived to a di�erential extension of linearlogi
 presented in [ER06b℄.Sin
e the di�erential allows to write all the derivatives of a lambda-term, it also allows to write formalTaylor expansions of lambda-terms, and it is quite temting to understand the operational meaning ofsu
h expansions. At the end of [ER03℄, we proved a result relating, in a spe
ial 
ase, the Taylor expansionof a lambda-term to its linear head redu
tion3. More pre
isely, given two ordinary lambda-termsM and
N su
h that (M)N is β-equivalent to a variable ∗, we studied the Taylor expansion of that appli
ation,whi
h is the following in�nite linear 
ombination of di�erential lambda-terms

∞∑

n=0

1

n!
(DnM ·Nn) 0 ,where we use DnM ·Nn for the n-th derivative of M with respe
t to its �rst parameter (it 
orrespondsto an n-linear fun
tion) linearly applied n times to N , that is: D(· · ·DM ·N · · · ) ·N . We showed that,with our redu
tion rules for the di�erential lambda-
al
ulus, in that sum, there is exa
tly one term whi
hdoes not redu
e to 0, and that the order n of that term 
orresponds to the number of times N arrives inhead position during the linear head redu
tion of (M)N to ∗.Our aim here is to generalize the �nal result of [ER03℄ in two dire
tions:

• instead of Taylor expanding only one appli
ation, we want to Taylor expand all the appli
ationso

urring in an ordinary lambda-term;
• instead of 
onsidering terms whi
h redu
e to a variable, we want to 
onsider all possible situations.We shall show that this generalized Taylor expansion makes sense and we shall give a quite simple expli
itformula for the (generalized) Taylor expansion of a lambda-term.Then we shall prove that one 
an beta-redu
e the Taylor expansion of a lambda-term and obtaina result whi
h generalizes the above des
ribed �nal theorem of [ER03℄. In [ER06a℄, using a version ofKrivine ma
hine, we shall dedu
e from the main theorem of the present paper a result expressing thatTaylor expansion and beta-redu
tion of lambda-terms (in the sense of Böhm tree 
omputation) 
ommute.Outline. For de�ning this generalized Taylor expansion of lambda-terms, we shall introdu
e here a�target language� whi
h is mu
h simpler than the full di�erential lambda-
al
ulus of [ER03℄, and whi
h
an be seen as a sublanguage of that 
al
ulus. Indeed, the general appli
ation of lambda-
al
ulus will notbe needed anymore, we shall only need iterated �di�erential appli
ations� followed by an appli
ation to

0, 
orresponding to di�erential lambda-terms like (DnM · (N1, . . . , Nn)) 0 (where DnM · (N1, . . . , Nn) isjust a notation for the iterated di�erential appli
ation D(. . .D(DM ·N1) ·N2) . . . ·Nn). Keeping in mindthat su
h a di�erential appli
ation is �symmetri
� in the sense that its value does not 
hange when wepermute the Nis (this 
orresponds to the S
hwarz Lemma of 
al
ulus), in our target language, we repla
eordinary appli
ation by a multi-set-based notion of appli
ation: given a term s and a �nite multi-set
T = t1 . . . tn of terms4, we allow the formation of a term 〈s〉T to be understood as 
orresponding to thedi�erential lambda-term (Dns · (t1, . . . , tn)) 0.Interestingly, the 
al
ulus we arrive to by these 
onsiderations is very similar to Boudol's lambda-
al
ulus with multipli
ities or with resour
es (see [Bou93, BCL99℄) and Kfoury's linearized lambda-
al
ulus [Kfo00℄, but we insist on its standard algebrai
 aspe
ts, supported by the fa
t that it admitsthe already mentioned quite natural ve
tor spa
e model of [Ehr05℄ (�niteness spa
es).This 
al
ulus has a notion of redu
tion, whi
h 
orresponds to the di�erential beta-redu
tion of [ER03℄ :standard substitution is repla
ed by a linear version of substitution whi
h 
an be seen as a partialderivative. For this redu
tion, the 
al
ulus enjoys 
on�uen
e as well as strong normalization, even in theuntyped 
ase (from the viewpoint of linear logi
, this is due to the fa
t that the promotion rule is absentfrom this 
al
ulus, see also [ER06b℄).3A modi�ed beta-redu
tion 
onsidered expli
itly for the �rst time by De Bruijn and 
alled by himmini-redu
tion [DB87℄;it is the redu
tion implemented by Krivine's abstra
t ma
hine [Kri85, Kri05℄ and it has been extensively studied by Danosand Regnier, see for instan
e [DR99℄.4Written as a produ
t, for reasons whi
h should be 
lear if one has in mind the semanti
s outlined in the �nal se
tionof [ER03℄ and thoroughly presented in [Ehr05℄, where we insist on the fa
t that the spa
e !X has not only a standard
o-algebrai
 stru
ture whi
h a

ounts for the stru
tural rules of logi
, but also an algebrai
 stru
ture, a

ounting for thismulti-set 
onstru
tion. 2



In this resour
e 
al
ulus, we are now able to de�ne indu
tively the Taylor expansion M∗ of anordinary lambda-term M : it will be an in�nite formal linear 
ombination of simple5 resour
e terms(with 
oe�
ients in a �eld), and should satisfy, in the 
ase of an appli
ation:
((M)N)

∗
=

∞∑

n=0

1

n!
〈M∗〉N∗n ,in a

ordan
e with the intended meaning, and with the denotational semanti
s, of appli
ation in thisresour
e 
al
ulus. Of 
ourse we have to give meaning to the operations involved in that sum, andespe
ially to the expression N∗n, where N∗ will itself be an in�nite linear 
ombination of simple terms.As we shall see, this 
an be done using a version of the multinomial equation that we shall explain inSe
tion 2.1, and one obtains in that way a dire
t expression of the Taylor expansion of M :

M∗ =
∑

t∈T (M)

1

m(t)
twhere T (M) is the set of all simple resour
e terms whi
h have �the same shape� as M , and m(t) is apositive integer 
alled the multipli
ity 
oe�
ient of t (�mutipli
ity� be
ause this number is larger when thas more repeated patterns). Up to some minor variations, the resour
e terms whi
h are in some T (M)are those 
alled well formed in [Kfo00℄. We 
hara
terize these terms as those whi
h are 
oherent withthemselves for a 
oheren
e relation on simple resour
e terms, and 
all them uniform (not �well formed�,be
ause we are very mu
h interested by the other terms as well, and also be
ause this usage of theword �uniform� is reminis
ent of a 
orresponding notion in denotational semanti
s, see the dis
ussionsin [BE01℄).The main purpose of the paper is then to study the behaviour of the Taylor expansion of an ordinarylambda-term M when one redu
es its simple summands, whi
h are all strongly normalizing, even if Mis not. Let us denote by supp(t) the support of a resour
e term t, that is, the set of all simple termswhi
h appear with a non-zero 
oe�
ient in t (a resour
e term will be, by de�nition, a possibly in�nitelinear 
ombination of simple resour
e terms). Let us also denote by NF(t) the normal form of the simpleresour
e term t, so that NF(t) is a �nite linear 
ombination of simple resour
e terms with 
oe�
ientswhi
h are positive integers.Thanks to the uniformity and 
oheren
e of the resour
e terms whi
h belong to T (M), the situationis quite simple:

• For two distin
t simple terms t and t′ in T (M), the supports of NF(t) and NF(t′) are disjoint;
• For that reason, it makes sense to add the normal forms of all the elements t of T (M), getting agenerally in�nite sum s of simple terms with rational 
oe�
ients.
• Moreover, if u ∈ supp(NF(t)) for some t ∈ T (M), the 
oe�
ient of u in NF(t) is m(t)/m(u), andhen
e the 
oe�
ient of a normal simple term u o

urring in the sum s de�ned in the item above isjust 1/m(u).
• Last, all these normal simple terms are 
oherent with ea
h other (and in parti
ular, uniform).So this (generally) in�nite sum s of normal simple terms looks like the Taylor expansion of an ordinarylambda-term, and a
tually it is the Taylor expansion of the Böhm tree of M ; this 
omplementary resultis explained in [ER06a℄, using a de
orated version of Krivine ma
hine.1 Syntax1.1 Notation and terminologyIf X is a �nite set, we use |X | for its 
ardinality. For us the word integer means non-negative integer.5We 
all simple a resour
e term whi
h is not a linear 
ombination of resour
e terms. Sin
e all the operations of theresour
e lambda-
al
ulus are linear, any term obtained by 
ombining terms along the syntax of the resour
e lambda-
al
ulus
an be written in an unique way as a linear 
ombination of simple terms, exa
tly as for polynomials in algebra: simpleterms play the role of monomials. 3



In this paper we deal with some kind of power series. This notion involves two kinds of numbers:
oe�
ients and exponents. Power series have a natural ve
tor spa
e (or more generally module) stru
ture,whi
h requires an addition and a multipli
ation on 
oe�
ients, more pre
isely, a semi-ring stru
ture on
oe�
ients. On the other hand, exponents have to be natural numbers.1.1.1 I-indexed families. Let R and I be sets; we use RI for the set of I-indexed families of elementsof R, or equivalently the set of appli
ations from I to R. An I-indexed family is denoted as (xu)u∈I oras a map x : I 7→ R, depending on the 
ontext.1.1.2 Free modules. Suppose R is a 
ommutative semi-ring: R has a 
ommutative addition with azero, and a 
ommutative multipli
ation that is distributive over addition. Given an I-indexed family x,we use supp(x) for the support of x, that is, the set {u ∈ I, xu 6= 0}.We use R〈I〉 for the subset of RI 
onsisting of families with a �nite support, that is the free R-module on the set I. Con
retely we view R〈I〉 as the set of �nite linear 
ombinations of elements of Iwith 
oe�
ients in R. We therefore denote the family (xu) in R〈I〉 as the sum∑u∈I xuu whi
h has only�nitely many nonzero terms.1.1.3 Multi-sets. In the parti
ular 
ase where R = N, we may alternatively view R〈I〉 as the free
ommutative monoid over I. We use Mfin(I) for the set N〈I〉 and 
all its elements the �nite multi-setsover I. Finite multisets are ranged over by the letters S, T . . .Let S be a �nite multi-set over I. We 
all multipli
ity of u in S the number S(u). The 
ardinalityof S is the number |S| =
∑

u∈I S(u) and its underlying set is set(S) = {u ∈ I | S(u) 6= 0} (set(S) is justanother notation for supp(S), dedi
ated to multi-sets; we use sometimes the notation u ∈ S instead of
u ∈ set(S)). If n ∈ N, we use Mn(I) for the set of all S ∈ Mfin(I) su
h that |S| = n.Let S, T ∈ Mfin(I). The multi-set union of S and T is the multi-set U de�ned by U(u) = S(u)+T (u).This is of 
ourse the monoid operation on Mfin(I) and its neutral element is the empty multi-set.Depending on the 
ontext, we use one of two notations for this operation: the additive notation U = S+T(to be used when the multi-sets represent multi-exponents) and the multipli
ative notation U = ST (tobe used when the multi-sets represent monomials).1.1.4 Multi-sets as monomials. Multi-sets will be used for representing 
oe�
ient-free monomials.Suppose e.g. that I is a set of variables and pi
k for example two variables u and v in I; then we willwrite upvq for the multi-set where u has multipli
ity p, v has multipli
ity q, all the multipli
ities of theother variables in I being 0. In this 
ontext, 
onsidering two multi-set S, T ∈ Mfin(I) as monomials, itis natural to use ST to denote their multi-set union, sin
e this operation 
orresponds to the produ
t ofmonomials. A

ordingly, in this 
ontext, we use 1 for the empty multi-set. As it is standard, given any
u ∈ I, we shall identify the multi-set/monomial u1 with u.1.1.5 Multi-sets as multi-exponents. Let now x be a fun
tion from I to any 
ommutative monoid
R and let S ∈ Mfin(I). Then we denote by xS the value ∏u∈I x(u)

S(u) ∈ R of the monomial S underthe valuation x. In this 
ontext we 
onsider S as a multi-exponent. If T is another monomial on I thenwe have xSxT = xU where U is, again, the multi-set union of S and T so we are driven, in this 
ontext,to use an additive notation in order to get the usual equation xSxT = xS+T .We also extend to �nite multi-sets (
onsidered as multi-exponents) some notations whi
h are standardfor integers. We �rst de�ne the fa
torial of S as S! =
∏

u∈I S(u)! (this produ
t having only �nitely manyfa
tors di�erent from 1). Observe that S! = 1 if S is a �set� in the sense that ∀u ∈ I S(u) ∈ {0, 1}. Wede�ne next the multinomial 
oe�
ient
[S] =

|S|!

S!
=

(∑
u∈I S(u)

)
!∏

u∈I S(u)!
∈ Nwhi
h is the number of distin
t enumerations of the elements of S (taking repetitions into a

ount). Forinstan
e, if u and v are two distin
t elements of I, then [un−pvp] =
(
n
p

). More generally, if u1, . . . , uk arepairwise distin
t elements of I and n1, . . . , nk ∈ N with n1 + · · ·+nk = n, then [un1
1 . . . unk

k ] = n!
n1!...nk! =(

n
n1,...,nk

) is the 
oe�
ient of the monomial un1
1 . . . unk

k in the expansion of (u1 + · · ·+uk)
n in the algebraof polynomials with variables u1, . . . , uk, over any �eld of 
hara
teristi
 0.4



Given S, T ∈ Mfin(I), one de�nes S + T and T ≤ S, as well as S − T if T ≤ S, in the obvious,pointwise way.All these notations are 
ompatible with standard mathemati
al pra
ti
e. For instan
e, given S, T ∈
Mfin(I) with T ≤ S, we de�ne the generalized binomial 
oe�
ient

(
S

T

)
=

S!

T !(S − T )!
=
∏

u∈I

(
S(u)

T (u)

)
∈ N (1)where, in the last expression, the binomial 
oe�
ients are the standard ones, de�ned on natural numbers.Observe that (ST) =

(
S

S−T

).Given two valuations x and y from I to some 
ommutative semi-ring, the binomial equation generalizesto
(x+ y)S =

∑

T≤S

(
S

T

)
xT yS−T .For instan
e, if u ∈ I is su
h that S(u) ≥ 1, then U = S − u is the multi-set de�ned by U(v) = S(v)if v 6= u and U(u) = S(u) − 1. This multi-set S − u 
orresponds to the multi-set S, from whi
h oneinstan
e of u has been removed. One has ( S

S−u

)
= S(u).Also, the 
lassi
al Pas
al formula holds under the following guise: given S,U ∈ Mfin(I) and u ∈ I,with U ≤ S and S(u) > U(u) > 0, one has

(
S

U

)
=

(
S − u

U

)
+

(
S − u

U − u

)
. (2)1.2 Syntax of the resour
e 
al
ulusLet V be a 
ountable set of variables.1.2.1 Simple terms and simple poly-terms. They are de�ned by mutual indu
tion, as follows.Variable: if x is a variable, then x is a simple term.Linear appli
ation: if s is a simple term and T is a simple poly-term, then 〈s〉T is a simple term, theappli
ation of s to T .Abstra
tion: if x is a variable and t is a simple term, then λx t is a simple term in whi
h, as usual, thevariable x is bound.Poly-terms: any �nite multi-set of simple terms is a simple poly-term viewed as a monomial of simpleterms (so we use the multipli
ative notations for the operations on these multi-sets). The intuitionis that ea
h of the elements of su
h a monomial must be used multi-linearly, that is, exa
tly asmany times as its multipli
ity in the monomial.Let ∆ be the set of all simple terms; they will be ranged over by the letters s, t, . . . . Let ∆! = Mfin(∆)be the 
olle
tion of all simple poly-terms, whi
h will be ranged over by the letters S, T, . . . . Then,a

ording to the notations introdu
ed in 1.1.3, remember that Mn(∆) is the set of all the elements Sof ∆! of the shape S = s1 . . . sn, with si ∈ ∆ for i = 1, . . . , n. We use ∆(!) for ∆ or ∆! when we do notwant to be spe
i�
 and then we use the letters σ, τ . . . to range over individuals.When we write 〈s〉 t1 . . . tn (where s, t1, . . . , tn are simple terms), we mean the linear appli
ation of sto the poly-term t1 . . . tn. When we want to denote iterated appli
ations, we keep the bra
kets expli
it inorder to avoid 
onfusions: we write in that 
ase e.g. 〈· · · 〈s〉 T1 · · ·〉Tp and not 〈s〉T1 · · ·Tp whi
h wouldbe ambiguous, though 
ompatible with standard lambda-
al
ulus pra
ti
e.As in lambda-
al
ulus, we have bound and free variables in simple (poly-)terms. Standard lambda-
al
ulus te
hni
s may be applied to this system to de�ne α-equivalen
e and substitution of a term for avariable into a term.A (poly-)term σ 
an have various subterms whi
h are equivalent up to α-equivalen
e, but neverthelesssynta
ti
ally distin
t. We say that σ is α-
anoni
al if this is not the 
ase. Clearly, any (poly-)termadmits an α-equivalent α-
anoni
al (poly-)term. We assume all the (poly-)terms we deal with to be in

α-
anoni
al form. For instan
e, an α-
anoni
al form of the simple poly-term (λxx)(λy y) is (λxx)2.5



If σ is a simple (poly-)term, we use fv(σ) for the set of all free variables of σ.In 2.2.2, we shall asso
iate a (generally in�nite) set T (M) of resour
e terms with any ordinarylambda-term M . The interested reader 
an already have a look at the de�nition of T (M) to get moreintuition on the syntax of the resour
e lambda-
al
ulus and its 
onne
tion with the syntax of the ordinarylambda-
al
ulus.1.2.2 Size of a simple (poly-)term. We de�ne the size of a simple (poly-)term by the followingindu
tion:
• size(x) = 1;
• size(λx t) = 1 + size(t);
• size(〈t〉T ) = 1 + size(t) + size(T );
• size(t1 . . . tn) = n+

∑n
i=1 size(ti).Con
erning the last 
lause, observe that one has size(T ) = 0 i� T = 1 (the empty simple poly-term).1.2.3 Finite terms and �nite poly-terms. Let R be a semiring with multipli
ative unit6 1 andlet I be a set. Re
all that we use R〈I〉 for the free R-module generated by I, the set of �nite linear
ombinations with 
oe�
ients in R of elements of I. If f is a fun
tion from I to some R-module E, weuse f̃ for the fun
tion R〈I〉 → E whi
h is de�ned in the obvious way, extending f by linearity.We 
all �nite terms and �nite poly-terms the elements of R〈∆〉 and R〈∆!〉 respe
tively, and we extendto these terms our notational 
onventions: we use letters like s, t, u,. . . for denoting �nite terms andletters like S, T , U ,. . . for denoting �nite poly-terms. Also, we use Greek letters to 
over both 
ases.Of 
ourse, simple (poly-)terms are 
onsidered as parti
ular �nite (poly-)terms. Finite 
ombinations of(poly-)terms are mandatory for being able to de�ne partial derivatives of (poly-)terms, see 1.2.4. Moregeneral (in�nite) linear 
ombinations will be used later for writing Taylor expansions, see Se
tion 2.1.A possible intuition behind linear 
ombinations is to 
onsider them as non deterministi
 superimpo-sition of (poly-)terms. The (poly-)term 0 
an be 
onsidered as a kind of �error� or �failure� expressingthat no further 
omputation is possible. It has probably some similarities with the daemon of Girard'sludi
s [Gir01℄.We extend by multi-linearity all the 
onstru
tions of the syntax of 1.2.1 to �nite terms and �nitepoly-terms. For instan
e, if U =

∑
S∈∆! aSS and V =

∑
T∈∆! bTT are elements of R〈∆!〉, the produ
t

UV ∈ R〈∆!〉 is de�ned as UV =
∑

S,T∈∆! aSbTST =
∑

W∈∆! cWW where cW =
∑

ST=W aSbT ∈ Rvanishes for almost all values of W .Similarly λxu is de�ned by linearity in u and 〈u〉U is de�ned by bilinearity in u and U . In parti
ular,we have λx 0 = 0 and 〈0〉U = 〈u〉 0 = 0. This bilinearity of appli
ation justi�es the terminology �linearappli
ation� for this 
onstru
tion. Standard lambda-
al
ulus appli
ation is de�nitely not linear in theargument (see the introdu
tion of [ER03℄). The point of the Taylor formula is pre
isely to provide ananalysis of this non-linearity.1.2.4 Partial derivatives. We de�ne now formally the �nite (poly-)term ∂σ
∂x · t where σ is a �nite(poly-)term, x is a variable and t is a �nite term. This will be 
alled the partial derivative of σ withrespe
t to x in the dire
tion t. The intuition is that ∂σ

∂x · t is the (poly-)term σ where exa
tly oneo

urren
e of x is repla
ed by the simple term t. Of 
ourse, sin
e σ 
an 
ontain several o

urren
es of
x, there are several ways to perform this substitution, when
e the sums whi
h appear in this de�nition.6At some point, we shall require that ea
h element of the shape n · 1 (with n ∈ N+) has an inverse, as for instan
e inthe semiring of positive rational numbers.
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We �rst give the de�nition for σ simple and t �nite:
∂y

∂x
· t =

{
t if y = x
0 otherwise

∂λy s

∂x
· t = λy

( ∂s
∂x

· t
) with the usual proviso that x 6= y and y is not free in t

∂〈s〉T

∂x
· t =

〈 ∂s
∂x

· t
〉
T + 〈s〉

(∂T
∂x

· t
)

∂s1 . . . sn

∂x
· t =

n∑

i=1

s1 . . . si−1

(∂si

∂x
· t
)
si+1 . . . sn .Observe that, due to the last two rules, even when t ∈ ∆ is simple, ∂σ

∂x · t is generally a non-trivial sum,that is, ∂σ
∂x · t is a �nite (poly-)terms whi
h is generally not simple.The following properties follow from the above de�nition:

∂1

∂x
· t = 0

∂ST

∂x
· t =

(∂S
∂x

· t
)
T + S

(∂T
∂x

· t
)

∂sT

∂x
· t =

( ∂s
∂x

· t
)
T + s

(∂T
∂x

· t
)
.For instan
e, if s and t are two simple terms, one has ∂s2

∂x · t = 2s
(

∂s
∂x · t

).Lemma 1 Let σ be a simple (poly-)term, x be a variable and t be a simple term. Then, for any τ ∈
supp(∂σ

∂x · t), one has size(τ) = size(σ) + size(t) − 1.The proof is a straightforward indu
tion on σ. The �−1� 
orresponds to the fa
t that exa
tly oneo

urren
e of x disappears in this pro
ess.Finally, we extend the de�nition of the partial derivative ∂σ
∂x ·t to the 
ase where σ is a �nite (poly-)termby linearity. Partial derivation should be understood as a linear substitution operation. Indeed one showseasily that ∂σ

∂x · t it is linear in t. Moreover, it is 
lear that ∂σ
∂x · t = 0 as soon as x does not o

ur free in

σ.1.2.5 Iterated partial derivatives. The following lemma expresses that partial derivatives 
om-mute with ea
h others. It 
orresponds to S
hwarz Lemma in analysis. Here of 
ourse the lemma boilsdown to a simple formal veri�
ation.Lemma 2 Let σ be a �nite (poly-)term and let s and t be �nite terms. Let x and y be variables su
hthat x does not o

ur free in t. Then we have
∂

∂y

(∂σ
∂x

· s
)
· t =

∂

∂x

(∂σ
∂y

· t
)
· s+

∂σ

∂x
·
(∂s
∂y

· t
)and in parti
ular, when y does not o

ur free in s,

∂

∂y

(∂σ
∂x

· s
)
· t =

∂

∂x

(∂σ
∂y

· t
)
· s .
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Proof. The se
ond equation follows easily from the �rst one, whi
h is proved by indu
tion on the sizeof the simple (poly-)term σ. We just 
he
k the 
ase where σ = 〈u〉U . One has
∂

∂y

(∂σ
∂x

· s
)
· t =

∂

∂y

(〈∂u
∂x

· s

〉
U + 〈u〉

∂U

∂x
· s
)
· t

=
∂

∂y

(〈∂u
∂x

· s

〉
U
)
· t+

∂

∂y

(
〈u〉

∂U

∂x
· s
)
· t

=

〈
∂

∂y

(∂u
∂x

· s
)
· t

〉
U +

〈
∂u

∂x
· s

〉(∂U
∂y

· t
)

+

〈
∂u

∂y
· t

〉(∂U
∂x

· s
)

+ 〈u〉
( ∂
∂y

(∂U
∂x

· s
)
· t
)so that, applying the indu
tive hypothesis, we get

∂

∂y

(∂σ
∂x

· s
)
· t =

〈
∂

∂x

(∂u
∂y

· t
)
· s

〉
U +

〈
∂u

∂x
·
(∂s
∂y

· t
)〉

U +

〈
∂u

∂x
· s

〉(∂U
∂y

· t
)

+

〈
∂u

∂y
· t

〉(∂U
∂x

· s
)

+ 〈u〉
( ∂
∂x

(∂U
∂y

· t
)
· s
)

+ 〈u〉
(∂U
∂x

·
(∂s
∂y

· t
))

=

〈
∂

∂x

(∂u
∂y

· t
)
· s

〉
U +

〈
∂u

∂x
· s

〉(∂U
∂y

· t
)

+

〈
∂u

∂y
· t

〉(∂U
∂x

· s
)

+ 〈u〉
( ∂
∂x

(∂U
∂y

· t
)
· s
)

+

〈
∂u

∂x
·
(∂s
∂y

· t
)〉

U + 〈u〉
(∂U
∂x

·
(∂s
∂y

· t
))

=
∂

∂x

(∂σ
∂y

· t
)
· s+

∂σ

∂x
·
(∂s
∂y

· t
)as expe
ted. 2So we introdu
e the standard notation

∂nσ

∂x1 · · · ∂xn
· (t1, . . . , tn) =

∂

∂xn

(
· · ·

∂σ

∂x1
· t1 · · ·

)
· tnwhen no xi o

urs free in any of the simple terms tj . For any permutation f of {1, . . . , n}, we have

∂nσ

∂x1 · · · ∂xn
· (t1, . . . , tn) =

∂nσ

∂xf(1) · · · ∂xf(n)
·
(
tf(1), . . . , tf(n)

) (3)1.2.6 Ordinary substitution. As already mentioned, one 
an also de�ne a substitution operationof a �nite term t for a variable x in a simple (poly)-term σ, yielding a �nite (poly-)term that we denoteas σ [t/x]. This operation is then extended by linearity on σ to arbitrary (poly-)terms σ. However, justas ordinary lambda-
al
ulus appli
ation is not linear in the argument, this notion of substitution is notlinear in t, in sharp 
ontrast with the partial derivative operation de�ned above.This operation will be used essentially when t is the �nite term 0, in whi
h 
ase it is a simpleo

ur-
he
k of x in σ: σ [0/x] is equal to 0 if x o

urs free in σ and to σ otherwise, see Lemma 3.It will also be used for substituting variables for other variables. In that 
ase, we write σ [x /x1, . . . , xn]for the (poly-)term σ where the variables x1, . . . , xn are repla
ed by x.1.2.7 Degree of a simple (poly-)term in a variable. If σ is a simple (poly-)term and x is avariable, the degree of σ in x is the number of free o

urren
es of x in σ, taking multipli
ities intoa

ount. This number is denoted by degx(σ). For instan
e, the degree of the simple term 〈x〉 (〈x〉 y2)3in x is 4 and its degree in y is 6. Due to the fa
t that all the synta
ti
 
onstru
tions of this 
al
ulus arelinear, this notion of degree 
oin
ides with the standard algebrai
 one.Typi
ally, if σ is a simple (poly-)term and if a ∈ R, we have σ [ax/x] = adegx(σ)σ. Also, degx(ST ) =degx(S) + degx(T ) when S and T are simple poly-terms, and degx(t1 . . . tn) =
∑n

i=1 degxti when the tisare simple terms. 8



Lemma 3 Let σ be a simple (poly-)term and let t be a simple term. Let x be a variable and let n = degxσ.then ∂σ
∂x · t is a sum σ1 + · · · + σn of n simple (poly-)terms and one has degxσi = degxσ + degxt− 1 forea
h i = 1, . . . , p. In parti
ular, when n = degxσ = 0, one has ∂σ

∂x · t = 0.Last
σ [0/x] =

{
σ if degxσ = 0

0 if degxσ > 0and degx(σ [x /x1, . . . , xm]) =

m∑

i=1

degxi
σ .The proof is by indu
tion on σ. As an example, let us 
he
k the �rst statement, in the 
ase where

σ = 〈s〉T , s being a simple term and T being a simple poly-term. Then by indu
tive hypothesis, setting
p = degxs and q = degxT , one has ∂s

∂x · t = s1 + · · · + sp where ea
h si is a simple term whi
h satis�esdegxsi = degxs + degxt − 1, and ∂T
∂x · t = T1 + · · · + Tq where ea
h Tj is a simple poly-term whi
hsatis�es degxTj = degxT + degxt− 1. But ∂σ

∂x · t =
〈

∂s
∂x · t

〉
T + 〈s〉

(
∂T
∂x · t

)
=
∑p

i=1 〈si〉T +
∑q

j=1 〈s〉Tj ,and this expression is a sum of p + q = degxσ simple terms. Moreover, for i = 1, . . . , p, we havedegx(〈si〉T ) = degxs+degxt−1+degxT = degx(〈s〉T )+degxt−1 and similarly for the other summands,as announ
ed.1.2.8 Big step di�erentiation. Given a simple term σ, a variable x and a simple poly-term T =
t1 . . . tn where the variable x does not appear free, we de�ne

∂x(σ, T ) =
(∂nσ

∂xn
· (t1, . . . , tn)

)
[0/x] ∈ R〈∆(!)〉 (4)whi
h does not depend on the enumeration t1, . . . , tn of T thanks to Equation (3).By Lemma 3, this expression is non zero i� n = degx(σ).By the same lemma, if x does not o

ur free in any of the tis, then x does not o

ur free in (any ofthe summands of) ∂nσ

∂xn · (t1, . . . , tn).Lemma 4 Let σ be a simple (poly-)term and let T be a simple poly-term, and assume that |T | = degxσ =
n. Then, for any τ ∈ supp(∂x(σ, T )), one has size(τ) = size(σ) + size(T ) − n.The proof is by indu
tion on n, applying Lemma 1 at the indu
tive step.1.2.9 Extensions of big step di�erentiations. Observe that Formula (4) still makes sense if
σ ∈ R〈∆(!)〉 and t1, . . . , tn ∈ R〈∆〉, and then ∂x(σ, T ) is (n + 1)-linear in σ, t1, . . . , tn and symmetri
in t1, . . . , tn. Therefore, for ea
h n ∈ N, we 
an 
onsider ∂x(σ, T ) as a bilinear operation R〈∆(!)〉 ×
R〈Mn(∆)〉 → R〈∆(!)〉.Next, this operation 
an 
anoni
ally be extended as a bilinear map R〈∆(!)〉×R〈∆!〉 → R〈∆(!)〉, sin
e
R〈∆!〉 =

⊕∞
n=0R〈Mn(∆)〉.We use ∂x1,...,xm

(σ, T1, . . . , Tm) for the iterated big step di�erentiation
∂xm

(· · · ∂x1(σ, T1), · · · , Tm) .The value of this expression does not depend on the order we put on the pairwise distin
t variables
x1, . . . , xm. More pre
isely, if f is any permutation on {1, . . . ,m}, one has

∂x1,...,xm
(σ, T1, . . . , Tm) = ∂xf(1),...,xf(m)

(σ, Tf(1), . . . , Tf(m)) .1.2.10 Partial derivative vs. substitution. The partial derivative 
an be understood as a linearsubstitution. Let σ be a simple (poly-)term and let x be a variable. Let n = degx(σ) and let x1, . . . , xn bepairwise distin
t variables whi
h do not o

ur free in σ or in t. Let σ′ be a simple (poly-)term obtainedby repla
ing the n o

urren
es of x in σ by the pairwise distin
t variables x1, . . . , xn. Su
h a σ′ will be
alled an x-linearization of σ in x1, . . . , xn. For any simple term t, we have
∂σ

∂x
· t =

n∑

i=1

σ′ [t/xi] [x /x1, . . . , xn] . (5)9



This formula extends by linearity to the 
ase where t is not simple, but we shall not use this fa
t.Iterating this result, we get the following 
ru
ial formula.Lemma 5 Let σ be a simple (poly-)term, let x be a variable and let n = degxσ. Let T = t1 . . . tn be asimple poly-term of 
ardinality n and assume that x is not free in T . Then
∂x(σ, T ) =

∑

f∈Sn

σ′
[
tf(1)/x1, . . . , tf(n)/xn

] (6)where Sn is the group of all permutations of {1, . . . , n}.This formula 
ould also be generalized to situations where σ and T are not ne
essarily simple, but weshall never need su
h generalizations.The meaning of the lemma is that ∂x(σ, T ) is obtained by substituting in σ all the n o

urren
es of
x by t1, . . . , tn, in all possible ways, the result being the sum of these n! possibilities.1.2.11 Leibniz law and partial derivative. Let σ be a simple (poly-)term and let t be a simpleterm. Let x, x1 and x2 be variables, with x1 6= x2 and x not free in σ. Assume moreover that x1 and x2do not o

ur free in t.The Leibniz law 
on
erns the intera
tion between di�erentiation and 
ontra
tion, and 
an be writtenas follows:

∂σ [x /x1, x2]

∂x
· t =

( ∂σ
∂x1

· t
)

[x /x1, x2] +
( ∂σ
∂x2

· t
)

[x /x1, x2] . (7)The hypothesis that x1, x2 /∈ fv(t) is of 
ourse essential: take for instan
e σ = t = x1, then the left-handside of the equation is x1 whereas the right-hand side is x.The proof is a simple indu
tion on σ. Iterating, we obtain the following formula.Lemma 6 Let σ be a simple (poly-)term and let T be a simple poly-term. Let x, x1 and x2 be variables,with x1 6= x2, x /∈ fv(σ) and x, x1, x2 /∈ fv(T ). Then
∂x(σ [x /x1, x2] , T ) =

∑

UV =T

(
T

U

)
∂x1,x2(σ, U, V ) .Proof. Let n = degx(σ [x /x1, x2]) = degx1

(σ) + degx2
(σ). If |T | 6= n, the equation holds be
ause bothexpressions vanish. So assume that |T | = n and let us prove the equation by indu
tion on n.The 
ase n = 0 is trivial, so assume n = |T | > 0, we 
an write T = tS for some simple term t and we
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have
∂x(σ [x /x1, x2] , tS) = ∂x

(∂σ [x /x1, x2]

∂x
· t, S

) by de�nition of ∂x(_,_)

= ∂x

(( ∂σ
∂x1

· t
)

[x /x1, x2] , S
)

+ ∂x

(( ∂σ
∂x2

· t
)

[x /x1, x2] , S
) by Equation (7)

=
∑

UV =S

(
S

U

)(
∂x1,x2

( ∂σ
∂x1

· t, U, V
)

+ ∂x1,x2

( ∂σ
∂x2

· t, U, V
))by indu
tive hypothesis

=
∑

UV =S

(
S

U

)
(∂x1,x2(σ, tU, V ) + ∂x1,x2(σ, U, tV ))by de�nition of ∂x1,x2(_,_)

=
∑

U ′V =T
t∈U ′

(
T − t

U ′ − t

)
∂x1,x2(σ, U

′, V ) +
∑

UV ′=T
t∈V ′

(
T − t

U

)
∂x1,x2(σ, U, V

′)setting U ′ = tU and V ′ = tV

=
∑

U ′V ′=T
t∈U ′, t∈V ′

((
T − t

U ′ − t

)
+

(
T − t

U ′

))
∂x1,x2(σ, U

′, V ′)

+
∑

U ′V ′=T
t∈U ′, t/∈V ′

(
T − t

U ′ − t

)
∂x1,x2(σ, U

′, V ′) +
∑

U ′V ′=T
t/∈U ′, t∈V ′

(
T − t

U ′

)
∂x1,x2(σ, U

′, V ′) .We 
on
lude, applying Pas
al's formula (2) for the �rst of these three sums, and observing that, inthe two last sums, the binomial 
oe�
ients are equal to ( T
U ′

). Indeed, when U ′ and V ′ are su
h that
U ′V ′ = T , t ∈ U ′ and t /∈ V ′, we have U ′(t) = T (t), and hen
e also (T − t)(t) = (U ′ − t)(t), so applyingFormula (1), we get ( T−t

U ′−t

)
=
(

T
U ′

). When U ′ and V ′ are su
h that U ′V ′ = T , t /∈ U ′ and t ∈ V ′, one has(
T−t
U ′

)
=
(

T
U ′

) simply be
ause U ′(t) = 0. 21.3 Redu
tion and normal forms1.3.1 Linear relations. If E and F are two R-modules, we say that a relation ρ ⊆ E×F is linear if itis a linear subspa
e of the dire
t produ
t E×F (in other words, if u ρ u′ and v ρ v′ then au+bv ρ au′+bv′for any a, b ∈ R).Let I be a set. Given a relation ρ ⊆ I × R〈I〉, we de�ne a linear relation R〈ρ〉 ⊆ R〈I〉 × R〈I〉 asthe linear span of ρ in this produ
t spa
e and 
all R〈ρ〉 the linear extension of ρ. Spelling out thisde�nition, we have u R〈ρ〉 v i� we 
an �nd u1, . . . , un ∈ I, a1, . . . , an ∈ R and v1, . . . , vn ∈ R〈I〉 su
hthat u =
∑n

i=1 aiui, v =
∑n

i=1 aivi and ui ρ vi for ea
h i.1.3.2 Small step (non-deterministi
) redu
tion. A redex is a simple term of the shape 〈λx s〉Swhere we always assume that x is not free in S. As usual, this 
ondition 
an always be ful�lled by simply
α-
onverting the abstra
tion λx s.The redu
tion of su
h a redex is de�ned by 
ases, a

ording to whether S is empty or not. These
ond 
ase is non-deterministi
 as it 
onsists in 
hoosing an element u in S and then in 
omputing apartial derivative of s in the dire
tion u. The result of su
h a redu
tion is a linear 
ombination of simpleterms, with integer 
oe�
ients.

〈λx s〉 1 β1
∆ s [0/x] ∈ R〈∆〉

〈λx s〉uT β1
∆

〈
λx
( ∂s
∂x

· u
)〉
T ∈ R〈∆〉 ,so that β1

∆ is a relation from ∆ to R〈∆〉, that is β1
∆ ⊆ ∆ ×R〈∆〉.The following is a straightforward, but essential observation.11



Lemma 7 Let t and u be simple terms su
h that, for some �nite term t′, one has t β1
∆ t′ and u ∈ supp(t′).Then size(u) < size(t).Proof. If we are in the �rst 
ase of the de�nition of β1

∆, then size(u) = size(t) − 2 (the abstra
tion andthe appli
ation disappear). If we are in the se
ond 
ase, size(u) = size(t) − 2 as well, by Lemma 1. 21.3.3 Extending β1
∆ to all simple 
ontexts. By extending this redu
tion to all simple 
ontexts,we de�ne the one step redu
tion relation on simple terms and on simple poly-terms, β̄1

∆ ⊆ (∆×R〈∆〉)∪
(∆! ×R〈∆!〉). More pre
isely, we say that σ β̄1

∆ σ′ in one of the following situations:(Redex) σ β1
∆ σ′;(Abs) σ = λx t and σ′ = λx t′ with t β̄1

∆ t′;(App) σ = 〈t〉S and
• σ′ = 〈t′〉S with t β̄1

∆ t′ or
• σ′ = 〈t〉S′ with S β̄1

∆ S′;(Prod) σ is the poly-term uS and σ′ = u′S with u β̄1
∆ u′.Lemma 8 Let t and u be simple terms su
h that, for some �nite term t′, one has t β̄1

∆ t′ and u ∈ supp(t′).Then size(u) < size(t).Immediate 
onsequen
e of Lemma 7.1.3.4 Linear extension of β̄1
∆. We use β∆ for the re�exive and transitive 
losure of R〈β̄1

∆〉 ⊆
(R〈∆〉 × R〈∆〉) ∪ (R〈∆!〉 × R〈∆!〉) (the linear extension of β̄1

∆, see 1.3.1). This relation β∆ ⊆ (R〈∆〉 ×
R〈∆〉) ∪ (R〈∆!〉 ×R〈∆!〉) is 
ontextual (in the obvious sense) by 
onstru
tion.Theorem 9 The relation β∆ ⊆ (R〈∆〉 ×R〈∆〉) ∪ (R〈∆!〉 ×R〈∆!〉) has the following properties:

• it is 
on�uent on R〈∆〉 and on R〈∆!〉,
• and if R = N, it is strongly normalizing7.Proof. The 
on�uen
e property is proved as in [ER03℄ (and is simpler in the present 
ontext). Thenormalization property results from Lemma 8. 2Remark : This untyped 
al
ulus is (essentially) strongly normalizing, and so 
annot represent generalre
ursive 
omputations as the lambda-
al
ulus does. Later we shall introdu
e in�nite sums whi
h willallow us to en
ode ordinary lambda-terms, making expli
it the potential in�niteness of the lambda-
al
ulus.If σ ∈ ∆(!), we use NF(σ) for the unique normal form of σ, whi
h is an element of N〈∆(!)〉 (and so
an be 
onsidered as an element of any R〈∆(!)〉).1.3.5 Big step (deterministi
) redu
tion. We de�ne now a big step redu
tion relation β̄b

∆ whi
his more 
onvenient for dealing with the problems at hand. The de�nition is the same as the de�nition of
β̄1

∆, repla
ing the small step redex redu
tion β1
∆ by the following one:

〈λx s〉T βb
∆ ∂x(s, T ) ,where, as usual, one assumes that x is not free in T . Remember from 1.2.8 that the �nite term ∂x(s, T )is 0, unless |T | = degxs.This redu
tion is very similar to the β-redu
tion of the ordinary λ-
al
ulus � (λxM)N β M [N/x] �and for that reason, it is the good notion of redu
tion on simple terms for studying the Taylor expansionof ordinary lambda-terms. Observe that this redu
tion is deterministi
, in the sense that the redu
tionof a redex is uniquely determined by the shape of that redex.7This very strong hypothesis 
an be weakened a little bit as explained in [ER03℄, but not really signi�
antly.12



The relation β̄b
∆ ⊆ ∆ × R〈∆〉 is in
luded in β∆, and a simple (poly-)term is normal (that is, redex-free) for one of these redu
tions i� it is normal for the other one. Therefore, for any σ ∈ ∆(!), we 
an
ompute NF(σ) by iteratively applying the redu
tion β̄b

∆ to σ.1.3.6 An expli
it formula for normal forms. As in the ordinary lambda-
al
ulus, any simpleterm s 
an be written (in a unique way) as follows:
s = λx1 . . . λxn 〈· · · 〈t〉T1 · · ·〉Tkwhere t is a simple term whi
h is either a variable possibly equal to one of the xis, and in that 
ase wesay that s is in head normal form, or a redex, and in that 
ase we say that t (or rather, this parti
ularo

urren
e of t in s) is the head redex of s.We use ∆0 for the set of normal simple terms. We introdu
e similarly the notations ∆!

0 and ∆
(!)
0 fornormal simple poly-terms and for the union of these two sets.Lemma 10 Let σ be a simple (poly-)term. Then NF(σ) ∈ N〈∆

(!)
0 〉 satis�es the following property.

• If σ = λx1 . . . λxn 〈· · · 〈〈λy s〉S〉T1 · · ·〉Tk then
NF(σ) = ÑF(λx1 . . . λxn 〈· · · 〈∂y(s, S)〉T1 · · ·〉Tk)

=
∑

u∈∆

∂y(s, S)u(λx1 . . . λxn NF(〈· · · 〈u〉T1 · · ·〉Tk)) (8)(Remember that we use ÑF for the linear extension of NF to arbitrary �nite (poly-)terms and that
∂y(s, S)u, the 
oe�
ient of u in the linear 
ombination of simple terms ∂y(s, S), is an integer.)

• If σ = λx1 . . . λxn 〈· · · 〈y〉T1 · · ·〉Tk then NF(σ) = λx1 . . . λxn 〈· · · 〈y〉NF(T1) · · ·〉NF(Tk).
• If σ = t1 . . . tn then NF(σ) =

∏n
i=1 NF(ti).The proof is based on the fa
t that, for ea
h u ∈ supp(∂y(s, S)), one has size(u) < size(〈λy s〉S) byLemma 4. For that reason also, and by the 
on�uen
e property, the lemma above 
an be 
onsidered asan indu
tive de�nition of NF and will be used as su
h.Let us 
on
lude by a simple example of 
omputation of a normal form, using the pro
ess presentedin Lemma 10.

NF(
〈
〈λf λx 〈f〉 〈f〉x〉 (λy y)2

〉
z) = 2 NF(〈λx 〈λy y〉 〈λy y〉x〉 z)

= 2 NF(〈λy y〉 〈λy y〉 z)

= 2 NF(〈λy y〉 z)

= 2z .2 The Taylor expansion of ordinary lambda-termsWe show now how to represent ordinary lambda-terms in this 
al
ulus by re
ursively Taylor expandingall ordinary appli
ations. As remarked above, this requires dealing with in�nite linear 
ombinations of(poly-)terms.2.1 In�nite terms and poly-terms.2.1.1 In�nite dimensional produ
t spa
es. If M is a set, we use R〈M〉∞ for the R-module of allformal linear 
ombinations x =
∑

u∈M xuu where (xu) is an arbitraryM -indexed family of s
alars takenin R (so that R〈M〉∞ = RM ). Let J be a 
ountable set. We say that a family (xj)j∈J of elements of
R〈M〉∞ is summable if, for ea
h u ∈ M , the family ((xj)u)j∈J vanishes for almost all values of j. Wethen de�ne its sum x =

∑
j∈J xj by setting xu =

∑
j∈J (xj)u, a �nite sum in R by assumption. This isjust usual 
onvergen
e for the produ
t topology, R being endowed with the dis
rete topology. If J = N,observe that for this topology, the 
onvergen
e of a series is equivalent to the 
onvergen
e to 0 of its13



general term. Observe also that all the module operations on R〈M〉∞ are 
ontinuous (R being endowedwith the dis
rete topology).If M has a stru
ture of 
ommutative monoid (with multipli
ative notation) with the property thatfor ea
h u ∈ M there are only �nitely many pairs (v, w) ∈ M2 su
h that u = vw, then R〈M〉∞ is analgebra, with multipli
ation given by
xy =

∑

u∈M

(∑

vw=u

xvyw

)
u .Moreover, it is easily 
he
ked that this multipli
ation is 
ontinuous with respe
t to the produ
t topologyon R〈M〉∞ ×R〈M〉∞. In parti
ular, we have the following summability property for �produ
t families�.Lemma 11 If x = (xi)i∈I ∈ R〈M〉I∞ and y = (yj)j∈J ∈ R〈M〉J∞ are summable, then the family

x⊗ y = (xiyj)(i,j)∈I×J ∈ R〈M〉I×J
∞ is summable, with a sum equal to (

∑
i∈I xi)(

∑
j∈J yj).2.1.2 Produ
ts of in�nite sums. Consider the parti
ular 
ase where M is ∆!, the free 
ommuta-tive monoid over ∆ (what we say now would hold a
tually for an arbitrary free 
ommutative monoid

M). As we have just seen, R〈∆!〉∞ has a 
anoni
al stru
ture of 
ommutative algebra, with 
ontinuousmultipli
ation given by
ST =

∑

U∈∆!

(
∑

V W=U

SV TW

)
U (9)for ea
h S, T ∈ R〈∆!〉∞.We shall always 
onsider the module R〈∆〉∞ as a submodule of R〈∆!〉∞, by identifying the element

t =
∑

s∈∆ tss of R〈∆〉∞ with the element ∑s∈∆ tss of R〈∆!〉∞ (in this sum, �s� stands for the multisetwhi
h has s as unique element), this in
lusion being 
ontinuous and admitting a 
ontinuous left inverse(whi
h maps T ∈ R〈∆!〉∞ to ∑s∈∆ Tss).If T = (Tj)j∈J is a family of elements of R〈∆!〉∞ and if µ ∈ Mfin(J), remember from 1.1.5 that wewrite T µ =
∏

j∈J T
µ(j)
j ∈ R〈∆!〉∞ (this is a �nite produ
t sin
e µ is a �nite multi-set, so it makes sensein the algebra R〈∆!〉∞).Let n ∈ N. Remember from 1.1.3 that we use Mn(J) for the set of all multi-sets over J whose
ardinality is n and if µ ∈ Mn(J), remember from 1.1.5 that we have de�ned a multinomial 
oe�
ientas follows: [µ] = n!/
∏

j∈J µ(j)! ∈ N.Lemma 12 Let n ∈ N. Let T = (Tj)j∈J be a summable family in R〈∆!〉∞. Then the family ([µ] T µ)µ∈Mn(J)is summable in R〈∆!〉∞ and the following �multinomial equation� holds:
(∑

j∈J

Tj

)n

=
∑

µ∈Mn(J)

[µ] T µ . (10)Proof. The proof is an easy indu
tion on n, applying Lemma 11 at the indu
tive step. 2A parti
ularly simple 
ase where we shall apply this formula is when ea
h Tj is a singleton multipliedby a s
alar, in other words, the sum ∑
j∈J Tj is an element t =

∑
s∈∆ tss of R〈∆〉∞ ⊂ R〈∆!〉∞ (asexplained at the beginning of this paragraph). Then Formula (10) reads

tn =
∑

S∈∆!

[S] tSS (11)where we re
all that tS stands for the �nite produ
t ∏s∈∆ t
S(s)
s .Let T = (Tj)j∈J be a summable family in R〈∆!〉∞ and assume moreover that (Tj)1 = 0 for ea
h

j ∈ J , where we re
all that 1 ∈ ∆! stands for the empty multi-set. Then it is 
lear that, for ea
h
µ ∈ Mfin(J), one has

∀S ∈ supp(T µ) |S| ≥ |µ| .From this simple observation, we 
an derive the following property.14



Lemma 13 Let T = (Tj)j∈J be a summable family in R〈∆!〉∞ su
h that (Tj)1 = 0 for ea
h j ∈ J . Thenthe family ((
∑

j∈J Tj)
n)n∈N is summable in R〈∆!〉∞.2.1.3 Extension of the syntax to in�nite terms and poly-terms. The 
onstru
tions of thesyntax of our resour
e 
al
ulus 
an now be extended to these in�nite linear 
ombinations of sim-ple (poly-)terms in an obvious way, by linearity (and �
ontinuity� sin
e we require the 
onstru
ts to
ommute to arbitrary linear 
ombinations, not only to �nite ones). For instan
e, if t =

∑
s∈∆ tssand T =

∑
S∈∆! TSS are arbitrary elements of R〈∆〉∞ and R〈∆!〉∞ respe
tively, 〈t〉T is de�ned as∑

s∈∆,S∈∆! tsTS 〈s〉S, whi
h is a perfe
tly well de�ned element of R〈∆〉∞.But we need to 
he
k 
arefully that partial derivatives still make sense in that extended setting.Given σ ∈ R〈∆(!)〉∞ and t ∈ R〈∆〉∞, generalizing the linearity properties of partial derivatives statedin 1.2.4, one would like to write
∂σ

∂x
· t =

∑

τ∈∆(!),u∈∆

στ tu

(∂τ
∂x

· u
)where the partial derivatives ∂τ

∂x · u are partial derivatives of simple (poly-)terms, as de�ned indu
tivelyin 1.2.4. It is not 
lear however that the in�nite sum above makes sense, that is, it is not 
lear that thefamily (∂τ
∂x ·u

)
τ∈supp(σ),u∈supp(t)

is summable. This is exa
tly what expresses the forth
oming Lemma 17.2.1.4 Finiteness properties of the partial di�erential of simple (poly-)terms. So we wantto make sense of the expression ∂σ
∂x · t when σ ∈ R〈∆(!)〉∞, t ∈ R〈∆〉∞ and x is not free in t.We need �rst some basi
 
ombinatorial properties of di�erentiation in the 
ase where the involved(poly-)terms are simple: Lemma 15 expresses that, a simple term t being 
hosen, it is not possible to�nd in�nitely many pairwise distin
t simple (poly-)terms σi (i ∈ I) su
h that all the sets supp(∂σi

∂x · t)have a 
ommon element. In other words, the family (∂σi

∂x · t)i∈I is summable, whatever be the family
(σi)i∈I of pairwise distin
t simple (poly-)terms.Lemma 14 Let n ≥ 1, let σ1, . . . , σn ∈ ∆(!) be pairwise distin
t and let x be a variable su
h thatdegxσi = 1 for i = 1, . . . , n. Let t ∈ ∆ and assume that

σ1 [t/x] = · · · = σn [t/x] (12)Then, for any sequen
e y1, . . . , yn of pairwise distin
t variables, whi
h are not free in t and in the σis,there exists a simple (poly-)term σ su
h that degyi
σ = 1 and σi = σ [t/y1, . . . , t/yi−1, x/yi, t/yi+1, . . . , t/yn]for ea
h i = 1, . . . , n.Of 
ourse, the dependen
y of σ on y1, . . . , yn is trivial: if z1, . . . , zn is another sequen
e of variablessatisfying the required 
onditions, the 
orresponding (poly-)term τ is obtained by substituting zi for yiin σ for ea
h i.Proof. We pro
eed by indu
tion on the 
ommon sizem of the σis: these sizes are equal to size(σ1 [t/x])−size(t) by (12).If m = 0, then all the σis must be equal to the empty poly-term 1, hen
e we must have n = 1 andwe 
on
lude straightforwardly.Assume next that m = 1 so that σ1 is a variable. Sin
e degxσ1 = 1, we must have σ1 = x. For i > 1,we have size(σi [t/x]) = size(σi) + size(t) − 1, and we must have σi [t/x] = σ1 [t/x] = t. This impliessizeσi = 1 and hen
e σi must be a variable, and thus must be equal to x, in 
ontradi
tion with ourhypothesis that the σis are pairwise distin
t. Hen
e we must have n = 1 and one 
on
ludes easily (take

σ = y1).Suppose now that m ≥ 2 and that σ1 = 〈s1〉S1. If, for some i > 1, σi is not a linear appli
ation, then
σi = x and t is a linear appli
ation. But this is impossible be
ause size(σ1 [t/x]) = size(s1) + size(S1) +size(t) > size(t) sin
e size(s1) > 0. So for ea
h i = 2, . . . , n, the simple (poly-)term σi must be a linearappli
ation: σi = 〈si〉Si. Sin
e ea
h σi has degree 1 in x, we 
an assume without loss of generality thatthere is p su
h that 1 ≤ p ≤ n and 15



• degxσi = 1 and degxSi = 0 for 1 ≤ i ≤ p

• degxσi = 0 and degxSi = 1 for p+ 1 ≤ i ≤ n.Due to the hypothesis (12), the Sis have a 
ommon value S0 ∈ ∆! for 1 ≤ i ≤ p and the sis have a
ommon value s0 ∈ ∆ for p + 1 ≤ i ≤ n. Moreover, the sis are pairwise distin
t for 1 ≤ i ≤ p and the
Sis are pairwise distin
t for p + 1 ≤ i ≤ n. Let y1, . . . , yn be a sequen
e of pairwise distin
t variables.By indu
tive hypothesis, we 
an �nd s ∈ ∆, S ∈ ∆!, su
h that

• for ea
h i = 1, . . . , p, the simple term s has degree 1 in yi and
si = s [t/y1, . . . , t/yi−1, x/yi, t/yi+1, . . . , t/yp]

• for ea
h i = p+ 1, . . . , n, the simple poly-term S has degree 1 in yi and
Si = S [t/yp+1, . . . , t/yi−1, x/yi, t/yi+1, . . . , t/yn].By (12), we have si [t/x] = s0 for 1 ≤ i ≤ p and Si [t/x] = S0 for p + 1 ≤ i ≤ n. Let σ = 〈s〉S. For all

i = 1, . . . , p, we have degyi
σ = 1 and σi = σ [t/y1, . . . , t/yi−1, x/yi, t/yi+1, . . . , t/yn].The 
ase where m ≥ 2 and σ1 is an abstra
tion is trivial, so let us assume that m ≥ 2 and that σ1 isa poly-term: σ1 = s1S1. By the same reasoning as above, all the σis are of the same shape: σi = siSi.Moreover, sin
e ea
h σi is of degree 1 in x, we 
an assume to have 
hosen the sis in su
h a way thatdegxsi = 1 and degxSi = 0 for ea
h i. Then we 
on
lude straightforwardly, applying the indu
tivehyopthesis to s1, . . . , sn (we must have S1 = · · · = Sn by (12) so the sis must be pairwise distin
t). 2Lemma 15 Let τ ∈ ∆(!), let x be a variable and let t ∈ ∆. There are only �nitely many σ ∈ ∆(!) su
hthat τ ∈ supp(∂σ

∂x · t).Proof. Assume that τ ∈ ∩n
i=1 supp(∂σi

∂x · t) for a �nite family (σi)i=1,...,n of pairwise distin
t simple(poly-)terms. So for ea
h i = 1, . . . , n, one obtains the simple (poly-)term τ by repla
ing in the simple(poly-)term σi exa
tly one of the o

urren
es of x by the simple term t, see 1.2.10.Sin
e x is not free in t, we must have degxσi = degxτ + 1 by Lemma 3. Let d be the 
ommon degreeof the σis in the variable x. Let us 
hoose d pairwise distin
t variables x1, . . . , xd, distin
t from x andfree in the σis and in t, and, for ea
h i, let σ′
i be a simple (poly-)terms su
h that

• x is not free in σ′
i,

• degxj
σ′

i = 1 for j = 1, . . . , d

• and σi = σ′
i [x /x1, . . . , xd].In other words, σ′
i is an x-linearization of σi, in the sense of 1.2.10. For ea
h i = 1, . . . , n, we 
an �nd

f(i) ∈ {1, . . . , d} su
h that
τ = σ′

i

[
x/x1, . . . , x/xf(i)−1, t/xf(i), x/xf(i)+1, . . . , x/xd

]
.Up to permutation of the xjs in the σ′

is, we 
an assume that f(i) = 1 for ea
h i = 1, . . . , n and, upto permutations of the x2, . . . , xd in the simple (poly-)terms σ′
i [t/x1], we 
an say that these terms arepairwise equal:

σ′
1 [t/x1] = · · · = σ′

n [t/x1] .But the σis are pairwise distin
t, so the σ′
is must be pairwise distin
t as well. Let y1, . . . , yn be pairwisedistin
t variables, not free in t nor in the σ′

is. By Lemma 14 applied to σ′
1, . . . , σ

′
n, there is a simple(poly-)term σ′ su
h that, for i = 1, . . . , n,

• degyi
(σ′) = 1

• and σ′
i = σ′ [t/y1, . . . , t/yi−1, x1/yi, t/yi+1, . . . , t/yn].From this one 
learly sees that n is upper bounded by the size of τ . 2Lemma 16 generalizes Lemma 15 to the 
ase where t 
an vary as well.Lemma 16 Let x be a variable and let τ ∈ ∆(!). There are only �nitely many σ ∈ ∆(!) and t ∈ ∆ su
hthat τ ∈ supp(∂σ

∂x · t). 16



Proof. If (σi, ti)i∈I is a family of pairwise distin
t pairs of simple (poly-)terms and simple terms andif τ ∈ ∩i∈I supp(∂σi

∂x · ti) then ea
h simple term ti must appear as a sub-term of τ and therefore there
an be only a �nite number of distin
t tis. If I is in�nite, this leads to a 
ontradi
tion with Lemma 15.Therefore I is �nite and the lemma is proved. 22.1.5 Di�erentiation of in�nite (poly-)terms. Lemma 16 means pre
isely that the whole familyof �nite (poly-)terms (∂σ
∂x · t

)
σ∈∆(!),t∈∆

is summable. So, for σ ∈ R〈∆(!)〉∞ and t ∈ R〈∆〉∞, it makessense to de�ne the partial derivative ∂σ
∂x · t as follows:

∂σ

∂x
· t =

∑

τ∈∆(!), u∈∆

στ tu
∂τ

∂x
· u ∈ R〈∆〉∞ .And this generalized partial di�erential is bilinear in σ ∈ R〈∆(!)〉∞ and t ∈ R〈∆〉∞. We 
an derive a bitmore from Lemma 16.Lemma 17 The map (σ, t) 7→ ∂σ

∂x · t from R〈∆(!)〉∞ × R〈∆〉∞ to R〈∆(!)〉∞ is 
ontinuous (these spa
esbeing endowed with the produ
t topology). In parti
ular, if (σi)i∈I and (tj)j∈J are summable familiesin R〈∆(!)〉∞ and R〈∆〉∞ respe
tively (with respe
tive sums σ and t), then the family (∂σi

∂x · tj)i∈I,j∈J issummable, with sum equal to ∂σ
∂x · t.Proof. By linearity, it su�
es to prove 
ontinuity at the origin (0, 0) of R〈∆(!)〉∞ × R〈∆〉∞. Wetake a neighborhood of 0 in R〈∆(!)〉∞: it is indu
ed by a �nite subset W of ∆(!) (the 
orrespondingneighborhood of 0 in R〈∆(!)〉∞ is the 
olle
tion VW (0) of all θ ∈ R〈∆(!)〉∞ su
h that W ∩ supp(θ) = ∅).Then by Lemma 16, for ea
h ϕ ∈ W , we 
an �nd two �nite sets Uϕ ⊆ ∆(!) and Vϕ ⊆ ∆ su
h that

ϕ 6∈ supp(∂σ
∂x · t) for ea
h (σ, t) 6∈ Uϕ × Vϕ. Then taking U =

⋃
ϕ∈W Uϕ and V =

⋃
ϕ∈W Vϕ, we have

∂σ
∂x · t ∈ VW (0) for ea
h σ ∈ VU (0) and t ∈ VV (0). 2So ∂σ

∂x · t ∈ R〈∆(!)〉∞ is well de�ned for all σ ∈ R〈∆(!)〉∞ and t ∈ R〈∆〉∞ and has all the requiredlinearity and 
ontinuity properties.2.1.6 Big step di�erentiation of in�nite (poly-)terms. We 
an of 
ourse iterate this 
onstru
-tion and de�ne ∂nσ
∂x1···∂xn

· (t1, . . . , tn) for arbitrary σ ∈ R〈∆(!)〉∞ and t1, . . . , tn of R〈∆〉∞. Again, thisoperation is linear in ea
h of its parameters σ, t1, . . . , tn, and is 
ontinuous in these parameters (for theprodu
t topology).For that reason, for ea
h given n ∈ N, we 
an extend the 
onstru
tion ∂x(σ, T ) to σ ∈ R〈∆(!)〉∞ and
T ∈ R〈Mn(∆)〉∞, and this operation is bilinear and 
ontinuous in σ and T (this generalizes to in�nitesums the linear extension of ∂x(_,_) to R〈∆(!)〉 ×R〈Mn(∆)〉, explained in 1.2.9).The se
ond linear extension of ∂x(_,_) explained in 1.2.9, to R〈∆(!)〉×R〈∆!〉, 
an also be generalizedto in�nite sums. Observing indeed that, for σ ∈ ∆(!) and T ∈ Mn(∆), the size of any element of thesupport of ∂x(σ, T ) must be greater than n, we see that, for any σ ∈ R〈∆(!)〉∞ and any T ∈ R〈∆!〉∞,the sequen
e (∂x(σ, T (n)))n∈N 
onverges to 0 in R〈∆(!)〉∞ (where we use T (n) for the restri
tion of T to
Mn(∆), that is T (n) =

∑
S∈Mn(∆) TS S). So the series ∑∞

n=0 ∂x(σ, T (n)) 
onverges. Its sum is denotedby ∂x(σ, T ); this operation is bilinear and 
ontinuous in (σ, T ).So all the di�erentiation operations we have 
onsidered for �nite (poly-)terms make sense in thein�nite 
ase as well, without any restri
tion on the in�nite linear 
ombinations we 
onsider. This fa
twill be used at the end of the present paper, when we shall give a �substitution-oriented� version ofTaylor's formula in Theorem 32.2.1.7 The exponential and the promotion. From now on, we assume that R possesses inversesfor all integers 6= 0.As explained at the beginning of 2.1.2, any t ∈ R〈∆〉∞ 
an 
anoni
ally be seen as an element of
R〈∆!〉∞ (identifying u ∈ ∆ with u ∈ ∆!, the multi-set whose only element is u, with multipli
ity 1). Itis 
lear that tn → 0 when n→ ∞ so that the following sum 
onverges (this 
an also be seen as a trivial17



appli
ation of Lemma 13):
exp t =

∞∑

n=0

1

n!
tn ∈ R〈∆!〉∞where the exponents 
orrespond to multipli
ation in the algebra R〈∆!〉∞. Using Formula (11) of 2.1.2,one 
an 
he
k that a
tually

exp t =
∑

T∈∆!

tT

T !
T(remember that, with our notations, T ! =

∏
u∈∆ T (u)! ∈ N

+ and that tT =
∏

u∈∆ t
T (u)
u ∈ R).Without surprises, we have exp 0 = 1 and exp(s + t) = exp s exp t. This operation t 7→ exp t
orresponds to promotion in linear logi
. We 
ould then re
over the ordinary appli
ation of the lambda-
al
ulus by setting:

(s) t = 〈s〉 exp t . (13)This formula 
an also be seen as de�ning an en
oding of the ordinary lambda-
al
ulus in in�nite resour
eterms.The purpose of the sequel is pre
isely to analyze the properties of this en
oding.Remark : applying Lemma 13, this exponential operation 
ould be de�ned not only for t ∈ R〈∆〉∞but for arbitrary S ∈ R〈∆!〉∞, as soon as S1 = 0. When S1 6= 0, 
omputing expS involves an in�nitesum of s
alars, or maybe the use of an �exponential map� eR on the semi-ring R, setting expS =
eR(S1) exp(S − S1 · 1). This idea might lead to an interesting generalization of the promotion of linearlogi
.2.2 Complete Taylor expansion of an ordinary lambda-term2.2.1 Multipli
ity 
oe�
ients. Given a simple term t, we de�ne a positive integer m(t), the mul-tipli
ity 
oe�
ient of t by the following indu
tive de�nition.

m(x) = 1

m(λx s) = m(s)

m(〈s〉T ) = m(s)
∏

t∈∆

T (t)! m(t)T (t) = m(s) T ! mTwith our 
on
ise notations for arithmeti
 operations on multi-sets. This de�nition of m is not 
ir
ular,be
ause, when de�ning m(〈s〉T ), in the expression mT =
∏

t∈∆ m(t)T (t), the only simple terms t forwhi
h the value of m(t) is needed are subterms of 〈s〉T .For a poly-term T , we de�ne a

ordingly m(T ) = T ! mT , so that m(〈s〉T ) = m(s)m(T ). So if
T = tn1

1 · · · t
np
p , with the tis pairwise distin
t (up to α-
onversion), we have

m(T ) =

p∏

i=1

ni!m(ti)
ni .In Se
tion 4, paragraph 4.2.3, we shall give a pre
ise 
ombinatorial interpretation of these 
oe�
ients.We shall see that m(t) is the number of permutations of variable o

urren
es of t whi
h preserve thenames of the variables (one 
annot swap an o

urren
e of x with an o

urren
e of y, if x and y aredistin
t variables) and leave t un
hanged (taking into a

ount the fa
t that poly-term multipli
ation isa 
ommutative operation).As an example, we have m(〈x〉 (〈x〉 y3)2) = 2!(3!)2 = 72.2.2.2 The expansion. Given an ordinary lambda-term M , we de�ne a subset T (M) of ∆ whi
h isthe 
olle
tion of all simple terms having the same shape as M . This set is de�ned as follows, by indu
tionon M .

T (x) = {x}

T (λxM) = {λx t | t ∈ T (M)}

T ((M)N) = {〈t〉T | t ∈ T (M) and T ∈ Mfin(T (N))} .18



Observe that, as soon as the lambda-term M 
ontains an appli
ation, the set T (M) is in�nite. To givean example, the set T (λx (x) (x) y) 
ontains, among in�nitely many other simple terms, e.g. λx 〈x〉 1,
λx 〈x〉 〈x〉 y, λx 〈x〉 ((〈x〉 1)2 〈x〉 y3), . . .Observe also that T (M) 
ontains a simple term l(M) whi
h whi
h looks very mu
h like M , andis de�ned by: l(x) = x, l(λxM) = λx l(M) and l((M)N) = 〈l(M)〉 l(N). For instan
e, l(λx (x)x) =
λx 〈x〉 x. But this simple term l(M), whi
h is a �linearization� of M , has not the same properties as
M with respe
t to β-redu
tion (even if M is unsolvable, l(M) is strongly normalizing: in that 
ase, thenormal form of l(M) is 0).We de�ne the 
omplete Taylor expansion of an ordinary lambda-term M :

M∗ =
∑

t∈T (M)

1

m(t)
t ∈ R〈∆〉∞ . (14)This expansion satis�es the following lemma, whose last statement means that M∗ 
an be obtainedby re
ursively Taylor expanding all appli
ations inM . This motivates our terminology for this operation.Lemma 18 If x is a variable and if M and N are terms of the standard lambda-
al
ulus, one has

• x∗ = x,
• (λxM)

∗
= λxM∗ and

• ((M)N)
∗

= 〈M∗〉 expN∗ =
∑∞

n=0
1
n! 〈M

∗〉N∗n.Proof. The only interesting 
ase is the last one. We have
∞∑

n=0

1

n!
〈M∗〉N∗n =

∞∑

n=0

1

n!

〈 ∑

s∈T (M)

1

m(s)
s
〉( ∑

t∈T (N)

1

m(t)
t
)n

=

∞∑

n=0

1

n!

〈 ∑

s∈T (M)

1

m(s)
s
〉( ∑

T∈Mn(T (N))

[T ]
1

mT
T
)

=
∑

s∈T (M)
T∈Mfin(T (N))

1

|T |!
[T ]

1

m(s)mT
〈s〉T

=
∑

s∈T (M)
T∈Mfin(T (N))

1

T !m(s)mT
〈s〉T sin
e [T ] =

|T |!

T !

= ((M)N)
∗
.

2It must be observed that the 
oe�
ient of t in Formula (14) does not depend on M . This remarkableproperty is lost if we want to de�ne similarly a 
omplete Taylor expansion for an extension of the ordinarylambda-
al
ulus where �nite linear 
ombinations of terms are allowed.2.2.3 Outline of the sequel. As explained in the introdu
tion, our aim is to understand the be-haviour of this Taylor expansion with respe
t to beta-redu
tion. The �rst thing to observe is that theresour
e terms o

urring in the Taylor expansion of an ordinary lambda-term are 
oherent with ea
hother and with themselves (a simple term whi
h is 
oherent with itself will be said to be �uniform�), fora binary 
oheren
e relation we de�ne below, on simple terms. Then we shall see that the normal formoperator is stable (in the sense of [Ber78℄ and [Gir86℄) with respe
t to this 
oheren
e relation. This isa qualitative property whose main 
onsequen
e will be a �non-interferen
e� e�e
t: the supports of thenormal forms of two distin
t terms of the Taylor expansion are disjoint.Last, we shall see that the multipli
ity 
oe�
ients of uniform terms evolve very simply during bigstep di�erential redu
tion �a quantitative property�.These two main results will lead to our �nal Corollary 34.19



3 Qualitative properties: the 
oheren
e relation on simple termsand poly-termsWe de�ne a binary 
oheren
e relation ⌢⌣ on simple terms and on simple poly-terms, whi
h is easilyseen to be symmetri
 (but neither re�exive nor anti-re�exive). We use the notation ⌢ for the largestanti-re�exive sub-relation of ⌢⌣. The de�nition is by indu
tion on simple terms.
• x ⌢⌣ t′ if t′ = x;
• λx s ⌢⌣ t′ if t′ = λx s′ with s ⌢⌣ s′;
• 〈s〉T ⌢⌣ t′ if t′ = 〈s′〉T ′ with s ⌢⌣ s′ and T ⌢⌣ T ′.
• And, for two simple poly-terms T and T ′, one has T ⌢⌣ T ′ if, for all t, t′ ∈ TT ′, one has t ⌢⌣ t′.Observe �rst that, if s and s′ are simple terms, one has s ⌢⌣ s′ (
onsidering s and s′ as simple terms) i�

s ⌢⌣ s′ (
onsidering them as singleton poly-terms).This 
oheren
e relation is not re�exive: if x and y are distin
t variable, then xy ⌢⌣ xy does not hold(we shall say that xy is a non-uniform poly-term). It is not transitive either, sin
e, 
onsidering x and yas poly-terms, one has x ⌢⌣ 1 ⌢⌣ y, but it is no true that x ⌢⌣ y.We say that a simple (poly-)term σ is uniform if σ ⌢⌣ σ. This 
orresponds to the notion of well-formedterm in [Kfo00℄ (however, in that paper, the relation 
orresponding to⌢⌣ is a partial equivalen
e relationbe
ause empty multi-sets are not a

epted as arguments). Observe that, for two simple poly-terms Tand T ′, one has T ⌢⌣ T ′ i� TT ′ ⌢⌣ 1 i� TT ′ is uniform.A 
lique for this 
oheren
e relation is a subset U of ∆(!) su
h that τ ⌢⌣ τ ′ whenever τ, τ ′ ∈ U .In parti
ular, ea
h element of a 
lique must be uniform. Observe by the way that it results from thede�nition that if σ ⌢⌣ σ′ for two simple (poly-)terms σ and σ′, then automati
ally σ and σ′ are uniform.Lemma 19 If M is a lambda-term, then T (M) is a maximal 
lique in (∆,⌢⌣).The proof is straightforward. However, not all maximal 
liques of ∆ are of the shape T (M) for somelambda-term M . For instan
e, a maximal extension of the 
lique {〈x〉 1, 〈x〉 〈x〉 1, . . . } 
annot be of thatshape. Su
h maximal 
liques 
ould probably be seen as some kind of in�nitary generalized lambda-terms.3.1 Coheren
e and di�erentiation.Coheren
e is not preserved by partial di�erentiation. For instan
e, the poly-term x2 is uniform and y isa uniform term, but ∂x2

∂x · y = 2xy is not uniform if x and y are distin
t variables.3.1.1 Stability of big-step di�erentiation. However, big step di�erentiation � or, more pre-
iesely, the map supp ◦ ∂x � satis�es a �stability� property with respe
t to the 
oheren
e relationwe have de�ned on (poly-)terms, similar to the 
hara
terization of the tra
e of stable linear fun
-tions between 
oheren
e spa
es in [Gir87, GLT89℄. More pre
isely, Theorem 20 expresses that the set
{((σ, S), ϕ) | ϕ ∈ supp(∂x(σ, S))} is a 
lique in the 
oheren
e spa
e (∆(!) ⊗ ∆!) ⊸ ∆(!). That is, the map
f : P(∆(!)) × P(∆!) → P(∆(!)) de�ned by f(U, V ) = ∪σ∈U,S∈V supp(∂x(σ, S)) maps pairs of 
liques to
liques, and is a stable fun
tion on pairs of 
liques. The pre
ise statement is given in Theorem 20.Given U,U ′ ⊆ ∆(!), let us write U ⌢⌣ U ′ when ∀σ ∈ U, σ′ ∈ U ′ σ ⌢⌣ σ′. Then U ⌢⌣ U means that Uis a 
lique.Theorem 20 Let x be a variable. Let σ, σ′ ∈ ∆(!) and S, S′ ∈ ∆!.

• If σ ⌢⌣ σ′ and S ⌢⌣ S′, then supp(∂x(σ, S)) ⌢⌣ supp(∂x(σ′, S′))

• and if, moreover, σ 6= σ′ or S 6= S′, then supp(∂x(σ, S)) ∩ supp(∂x(σ′, S′)) = ∅.
20



Proof. We assume that σ ⌢⌣ σ′ and S ⌢⌣ S′. Let ϕ ∈ supp(∂x(σ, S)) and ϕ′ ∈ supp(∂x(σ′, S′)). Weprove that ϕ ⌢⌣ ϕ′ and that, if moreover ϕ = ϕ′, then σ = σ′ and S = S′. We pro
eed by indu
tion onthe sum of the sizes of σ and σ′, for σ and σ′ in ∆(!).Assume that σ is a variable y. Then σ′ = y. If y 6= x, we must have S = S′ = 1 sin
e ϕ ∈
supp(∂x(σ, S)) and ϕ′ ∈ supp(∂x(σ′, S′)) (otherwise at least one of these sets would be empty). So
ϕ = ϕ′ = y and we 
on
lude trivially. If y = x then S and S′ must be singleton multi-sets (otherwiseagain at least one of the two sets supp(∂x(σ′, S′)) and supp(∂x(σ, S)) would be empty). Say S = t and
S′ = t′ (with t, t′ ∈ ∆, t ⌢⌣ t′). Then we have ϕ = t and ϕ′ = t′ and we 
on
lude straightforwardly.The 
ase where σ is an abstra
tion is trivial.Assume that σ = 〈t〉T (with t ∈ ∆ and T ∈ ∆!). Then by de�nition of 
oheren
e we must have
σ′ = 〈t′〉T ′ with t ⌢⌣ t′ and T ⌢⌣ T ′. Sin
e ϕ ∈ supp(∂x(σ, S)), we must have ϕ = 〈u〉U and there mustexist S1, S2 ∈ ∆! su
h that S = S1S2, u ∈ supp(∂x(t, S1)), U ∈ supp(∂x(T, S2)). Similarly, ϕ′ = 〈u′〉U ′and there exist S′

1, S
′
2 ∈ ∆! su
h that S′ = S′

1S
′
2, u′ ∈ supp(∂x(t′, S′

1)), U ′ ∈ supp(∂x(T ′, S′
2)). But byde�nition of 
oheren
e we have S1 ⌢⌣ S′

1 and S2 ⌢⌣ S′
2 and hen
e by indu
tive hypothesis u ⌢⌣ u′ and

U ⌢⌣ U ′, so ϕ ⌢⌣ ϕ′. If furthermore ϕ = ϕ′, then u = u′ and U = U ′ and the indu
tive hypothesis yields
t = t′, S1 = S′

1 and S2 = S′
2 and we 
on
lude.Assume last that σ and σ′ are poly-terms. If σ = 1, we must have S = 1 (as otherwise supp(∂x(σ, S))would be empty) and there are two sub-
ases: the 
ase σ′ = 1 is straightforward. Let us assume that

σ′ 6= 1 so that we 
an write σ′ = u′U ′. In that 
ase we have ϕ = 1 and ϕ′ = v′V ′ with v′ ∈ supp(∂x(u′, S′
1))and V ′ ∈ supp(∂x(U ′, S′

2)) for some S′
1, S

′
2 ∈ Mfin(∆) satisfying S′

1S
′
2 = S′. We have to show that

1 ⌢⌣ v′V ′, or equivalently that {v′} ∪ set(V ′) is a 
lique. That set(V ′) is a 
lique results from theindu
tive hypothesis. So let w′ ∈ set(V ′) and let us show that v′ ⌢⌣ w′. We have w′ ∈ supp(∂x(w′
0, S

′
3))where w′

0 ∈ set(U ′) and S′
3 is a fa
tor of S′

2. We have u′ ⌢⌣ w′
0 and S′

1
⌢⌣ S′

3, hen
e the indu
tivehypothesis yields v′ ⌢⌣ w′ as desired. In the present 
ase we know that ϕ 6= ϕ′ so there is nothing moreto prove.The last sub-
ase to 
onsider is the 
ase where σ and σ′ are simple poly-terms both distin
t from
1. Then we 
an write ϕ = vV and ϕ′ = v′V ′ where v ∈ supp(∂x(t, S1)), V ∈ supp(∂x(U, S2)), v′ ∈
supp(∂x(t′, S′

1)) and V ′ ∈ supp(∂x(U ′, S′
2)) with tU = σ and t′U ′ = σ′, for some S1, S2, S

′
1, S

′
2 ∈ ∆(!)satisfying S1S2 = S and S′

1S
′
2 = S′. One shows exa
tly as above that ϕ ⌢⌣ ϕ′. If moreover ϕ = ϕ′,then we 
an take v = v′ and V = V ′ and again we 
on
lude straightforwardly by indu
tive hypothesis,sin
e we know that t ⌢⌣ t′ and S1 ⌢⌣ S′

1 (and hen
e t = t′ and S1 = S′
1) on one hand, and U ⌢⌣ U ′ and

S2 ⌢⌣ S′
2 (and hen
e U = U ′ and S2 = S′

2) on the other hand. This 
on
ludes the proof. 2Corollary 21 Let σ ∈ ∆(!) and S ∈ ∆! be uniform. Then supp(∂x(σ, S)) is a 
lique.3.1.2 Stability of the normal form operator. As a 
onsequen
e of Theorem 20 and Lemma 10,the NF operator � or, more pre
isely, the map supp ◦ NF � satis�es also a stability property withrespe
t to the 
oheren
e relation we have de�ned on (poly-)terms.Theorem 22 Let σ, σ′ ∈ ∆(!).
• If σ ⌢⌣ σ′, then supp(NF(σ)) ⌢⌣ supp(NF(σ′))

• and if, moreover, σ 6= σ′, then supp(NF(σ)) ∩ supp(NF(σ′)) = ∅.Proof. Let σ, σ′ ∈ ∆(!) and assume that σ ⌢⌣ σ′. Let ϕ ∈ supp(NF(σ)) and ϕ′ ∈ supp(NF(σ′)). Byindu
tion on the sum of the sizes of the simple (poly-)terms σ and σ′, we show that ϕ ⌢⌣ ϕ′ and that, if
ϕ = ϕ′, then σ = σ′.For this purpose, we use Lemma 10.If size(σ)+size(σ′) = 0 then σ and σ′ are poly-terms and σ = σ′ = 1; one 
on
ludes straightforwardly.Otherwise, assume �rst that σ is a simple term, we 
onsider the following 
ases.

• If σ = λx̄ 〈· · · 〈x〉S1 · · ·〉Sn, then σ′ = λx̄ 〈· · · 〈x〉S′
1 · · ·〉S

′
n with Si ⌢⌣ S′

i for i = 1, . . . , n. Sin
e ϕ ∈
supp(NF(σ)) and ϕ′ ∈ supp(NF(σ′)), these simple terms are of the shape ϕ = λx̄ 〈· · · 〈x〉T1 · · ·〉Tnand ϕ′ = λx̄ 〈· · · 〈x〉 T ′

1 · · ·〉T
′
n with Ti ∈ supp(NF(Si)) and T ′

i ∈ supp(NF(S′
i)) for ea
h i. Then weapply the indu
tive hypothesis for ea
h i (sin
e Si ⌢⌣ S′

i) and we 
on
lude.21



• If σ = λx̄ 〈· · · 〈〈λx t〉U〉S1 · · ·〉Sn then σ′ must be of the shape σ′ = λx̄ 〈· · · 〈〈λx t′〉U ′〉S′
1 · · ·〉S

′
nwith of 
ourse t ⌢⌣ t′, U ⌢⌣ U ′ and Si ⌢⌣ S′

i for ea
h i. There exists u ∈ supp(∂x(t, U)) and u′ ∈
supp(∂x(t′, U ′)) su
h that ϕ ∈ supp(NF(λx̄ 〈· · · 〈u〉S1 · · ·〉Sn)) and ϕ′ ∈ supp(NF(λx̄ 〈· · · 〈u′〉S′

1 · · ·〉S
′
n)).By Theorem 20 we have u ⌢⌣ u′ and hen
e, sin
e the size of λx̄ 〈· · · 〈u〉S1 · · ·〉Sn is stri
tly smallerthan the size of σ (and similarly for λx̄ 〈· · · 〈u′〉S′

1 · · ·〉S
′
n), we have ϕ ⌢⌣ ϕ′ by indu
tive hypothesis.If moreover ϕ = ϕ′, then the indu
tive hypothesis implies that u = u′ and Si = S′

i for ea
h i andhen
e (applying again Theorem 20), we obtain that σ = σ′.Assume last that σ = S and σ′ = S′ are poly-terms. Let T ∈ supp(NF(S)) and T ′ ∈ supp(NF(S′)),we must show that T ⌢⌣ T ′, so let t, t′ ∈ set(T )∪ set(T ′). We are redu
ed to showing that t ⌢⌣ t′. Thereexists s, s′ ∈ set(S) ∪ set(S′) su
h that t ∈ NF(s) and t′ ∈ NF(s′). We know that s ⌢⌣ s′ (by de�nitionof 
oheren
e for poly-terms) and moreover, with our de�nition of the size, we have size(s) + size(s′) <size(S) + size(S′). Therefore the indu
tive hypothesis applies and yields t ⌢⌣ t′ and hen
e T ⌢⌣ T ′.Assume moreover that T = T ′ = t1 . . . tk. Then S and S′ must be of the shape S = s1 . . . sk and
S′ = s′1 . . . s

′
k with ti ∈ supp(NF(si))∩ supp(NF(s′i)) for ea
h i, and hen
e si = s′i for ea
h i (by indu
tivehypothesis again). Hen
e S = S′. 2Corollary 23 Let σ ∈ ∆(!) be uniform. Then supp(NF(σ)) is a 
lique.4 Quantitative properties: 
ombinatorial 
onsiderationsWe shall now study the behaviour of the mutipli
ity 
oe�
ients of a simple (poly-)term along its bigstep redu
tion. In the present paper, we want to solve this question when the simple (poly-)termunder 
onsideration appears in the 
omplete Taylor expansion of an ordinary lambda-term, and hen
e isuniform. This hypothesis will be extremely useful.For this purpose, we shall �rst observe in Lemma 25 that m(σ) is the number of permutations of thefree or bound variable o

urren
es in σ whi
h respe
t the variables asso
iated with these o

urren
esand leave σ un
hanged. These permutations form a subgroup of a symmetri
 group, 
alled the isotropygroup of σ. This group is generally non trivial be
ause the multi-set 
onstru
tion used in the syntax ofpoly-terms is 
ommutative. For instan
e, the term λx

〈
〈z〉x3

〉
y2 has multipli
ity 
oe�
ient 3! × 2!.Doing that, we shall transform our problem into a 
ombinatorial group-theoreti
 one: relate theisotropy group of a term to the isotropy group of the same term where a big step di�erential substitutionhas been performed. This will be the main purpose of the present se
tion with, as a result, a proof ofthe Uniform Plugging Equation.4.1 A group equationLet G be a �nite group and let L and R be subgroups of G. Then LR = {lr | l ∈ L and r ∈ R} ⊆ Gis not a subgroup of G in general. Nevertheless, the 
ardinality of this set satis�es the following wellknown equation whi
h is essential in the forth
oming 
onsiderations.Lemma 24 If L and R are subgroups of a �nite group G, then

|LR| =
|L| |R|

|L ∩R|
.Proof. The set LR is the union of the left 
osets lR (for l ∈ L), and these 
osets are either disjoint orequal and have |R| as 
ardinality. Given l, l′ ∈ L, the left 
osets lR and l′R are equal subsets of G i�

l−1l′ belongs to the subgroup L ∩ R of G. Therefore, LR is the disjoint union of exa
tly |L| / |L ∩R|disjoint sets of 
ardinality |R|, when
e the equation. 2We shall also use the fa
t that if h : G → H is a group homomorphism and G is �nite, then
|h(G)| = |G| / |kerh|.
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4.2 The uniform plugging equationIn order to give a pre
ise de�nition of the group of permutations of variable o

urren
es in a simple(poly-)term σ whi
h leave σ un
hanged, we need to separate the various o

urren
es of all the vari-ables appearing, free or bound, in σ. This is exa
tly the purpose of the notion of �multilinear-visible�(poly-)term we introdu
e now. The idea is to separate the o

urren
es in σ by using pairwise distin
tvariables, produ
ing a term ϕ, and then re
overing the original names of variables through a �namingfun
tion� (we will use letters p, q. . . for these fun
tions from variables to variables). Su
h a pair (ϕ, p)will be 
alled a multilinear-visible representation of σ. Be
ause the permutations we 
onsider should a
talso on the bound o

urren
es of σ, all the variables o

urring in ϕ will be required to be free.For instan
e, we shall represent the simple term λx 〈y〉x2 by means of the multilinear-visible term
λx 〈y〉x1x2 where y, x1, x2, x are pairwise distin
t, together with the fun
tion p su
h that p(y) = y and
p(x1) = p(x2) = x. Observe that the bound variable x is not modi�ed, but it does not appear free inthe multilinear-visible term; the role of the fun
tion p is pre
isely to re
ord the information that thevariables x1 and x2 stand for the two o

urren
es of x.Remark : These multilinear-visible (poly-)terms, that we present as parti
ular (poly-)terms, are just
ombinatorial artifa
ts, introdu
ed for de�ning 
leanly the isotropy group of (poly-)terms, they shouldnot be 
onsidered as �real�, 
omputationally meaningful, (poly-)terms. We 
ould have introdu
ed anadditional syntax for these obje
ts, where, for instan
e, the various o

urren
es of a variable x wouldhave been repla
ed by pairs (x, i) where i is e.g. an integer atta
hed to this parti
ular o

urren
e of x (if
x has n o

urren
es in the (poly-)term, n distin
t values of i would have been used in the 
orrespondingmultilinear-visible (poly-)term, for distinguishing the various o

urren
es of x). We prefered not to doso for avoiding additional bureau
ra
y.4.2.1 Multilinear-visible representation of a (poly-)term. Let us say that a simple (poly-)term
ϕ is multilinear-visible if ea
h variable o

urring in ϕ o

urs exa
tly on
e, and o

urs free in ϕ.Let us say that a partial fun
tion (substitution) Φ from V to multilinear-visible terms is a multilinear-visible substitution if fv(Φ(x)) ∩ fv(Φ(x′)) = ∅ when x and x′ are two distin
t elements of Dom Φ (thedomain of Φ). We use fv(Φ) for the disjoint union ⋃x∈Dom Φ fv(Φ(x)).Given a multilinear-visible (poly-)term ϕ and a multilinear-visible substitution Φ, we say that the pair
(ϕ,Φ) is adapted if fv(ϕ) ⊆ DomΦ, and no element of fv(Φ) is bound in ϕ. In that situation, we 
an applythe substitution Φ to the term ϕ, getting a (poly-)term ϕ[Φ] whi
h is 
learly also multilinear-visible.Let ϕ be a multilinear-visible (poly-)term and let p : fv(ϕ) → V be a fun
tion. We use ϕp for the(poly-)term obtained by substituting ea
h variable y o

urring in ϕ with p(y), in the most naive way(that is, without renaming 
aptured variables).Let σ be a (poly-)term, we say that (ϕ, p) represents σ if ϕp = σ, a situation whi
h 
an be pi
turedas follows:

x y

fun
tion p ϕ

x1 x2

· · ·
y1 yn xm

represents σ

x x
· · ·

y y x

Example. The simple term σ = 〈z〉 (z(λy y)2) is represented by the pair (ϕ, p) where
ϕ = 〈z1〉 (z2(λy y1)(λy y2)) and {

p(z1) = p(z2) = z

p(y1) = p(y2) = y
.Clearly, if both (ϕ, p) and (ψ, q) represent σ, there is a (generally not unique) bije
tion f : fv(ϕ) →fv(ψ) su
h that qf = p and ϕ[f ] = ψ (observe that f is a multilinear-visible substitution, whi
h is adapted23



to ϕ sin
e ϕ and ψ have the same lambda-abstra
ted variables, whi
h are the lambda-abstra
ted variablesof σ, and none of the elements of fv(ψ) is lambda-abstra
ted in ψ, so the notation ϕ[f ] makes sense).This 
an be proved by indu
tion on σ. If σ is the simple term of the example above, there are two su
hbije
tions f .4.2.2 Isotropy group of a multilinear-visible (poly-)term. Let us introdu
e two importantnotations.
• If p : V → V is a �nite partial fun
tion, we use Sp for the subgroup of SDom p of all bije
tions f on

Dom p su
h that pf = p: it is a �nite produ
t of symmetri
 groups.
• If ϕ is a multilinear-visible (poly-)term and p : fv(ϕ) → V , we use Iso(ϕ, p) for the subgroup of Spwhose elements f satisfy ϕ[f ] = ϕ, sin
e it is the isotropy group of ϕ for the a
tion of Sp on themultilinear-visible simple (poly-)terms having the same free variables as ϕ.Example. Consider the following 
losed simple term:

σ = λx 〈x〉 (λy 〈x〉 y2)2 .We represent this terms by the pair (ϕ, p) where
ϕ = λx 〈x1〉 (λy 〈x2〉 y1y2)(λy 〈x3〉 y3y4) and {

p(x1) = p(x2) = p(x3) = x

p(y1) = · · · = p(y4) = y
.Remember that the poly-terms y1y2, y3y4 and (λy 〈x2〉 y1y2)(λy 〈x3〉 y3y4) are multisets whi
h have twoelements ea
h, so they are respe
tively equal to y2y1, y4y3 and (λy 〈x2〉 y4y3)(λy 〈x3〉 y1y2), for instan
e.We have Sp ≃ S{x1,x2,x3}×S{y1,y2,y3,y4} (a group with 144 elements). Then Iso(ϕ, p) is the subgroupgenerated by the two transpositions whi
h swap respe
tively y1, y2 and y3, y4, and by the permutation fgiven by f(x1) = x1, f(x2) = x3, f(x3) = x2, f(y1) = y3, f(y2) = y4, f(y3) = y1 and f(y4) = y2. Thissubgroup has 8 elements, as easily 
he
ked. Observe by the way that m(σ) = 2 × 22 = 8.4.2.3 Combinatorial interpretation. Here is the announ
ed 
ombinatorial interpretation of themultipli
ity 
oe�
ients.Lemma 25 Let σ be a (poly-)term, let ϕ be a multilinear-visible (poly-)term and p : fv(ϕ) → V be afun
tion su
h that (ϕ, p) represents σ. Then |Iso(ϕ, p)| = m(σ).The proof is by indu
tion on σ.4.2.4 Isotropy group of a multilinear-visible substitution. More generally, if Φ is a multilinear-visible substitution and if p : DomΦ → V and q : fv(Φ) → V are fun
tions, we de�ne the group

Iso(p,Φ, q) = {g ∈ Sq | ∃f ∈ Sp Φ[g] = Φf} ,where Φ[g] stands for the multilinear-visible substitution whi
h has the same domain as Φ and is givenby Φ[g](x) = Φ(x)[g].Due to the inje
tivity of Φ as a fun
tion from variables to multilinear-visible terms, the bije
tion fasso
iated with g in the de�nition above is uniquely determined, and 
learly the map g 7→ f is a grouphomomorphism. In other words, Iso(p,Φ, q) 
omes equipped with a group homomorphism Iso(p,Φ, q) →
Sq, that we shall always denote as π, and whi
h is uniquely determined by the following property:

∀g ∈ Iso(p,Φ, q) Φ[g] = Φπ(g) . (15)Let Φ, p and q be as above. For ea
h x ∈ V , p−1(x) is a �nite set whi
h is empty for almost all xssin
e p is �nite. Let Tx be the poly-term whi
h is the multiset of simple terms [Φ(y1)
q
, . . . ,Φ(yn)

q
] where

{y1, . . . , yn} = p−1(x). Then, by Lemma 25, we have
|Iso(p,Φ, q)| =

∏

x∈V

m(Tx) (16)as easily 
he
ked. 24



4.2.5 A 
ombined isotropy set. Assume that we are given ϕ, Φ, p and q as above, with (ϕ,Φ)adapted. Then there is yet another set of permutations whi
h will play an important role in the sequel,and this set is not a group in general, namely:
Iso(ϕ, p,Φ, q) = {f ∈ Sp | ∃g ∈ Sq (ϕ[Φ])[g] = ϕ[Φf ]} .Lemma 26 Let ϕ be a multilinear-visible (poly-)term. Let Φ be a multilinear-visible substitution su
hthat (ϕ,Φ) is adapted. Let p : DomΦ → V and q : fv(Φ) → V. Then

π(Iso(p,Φ, q)) Iso(ϕ, p) ⊆ Iso(ϕ, p,Φ, q) ,where we re
all that π is de�ned by equation (15).Proof. Let g ∈ Iso(p,Φ, q) and let f ∈ Iso(ϕ, p). Then ϕ[Φπ(g)f ] = (ϕ[f ])[Φπ(g)] = ϕ[Φπ(g)] sin
e
f ∈ Iso(ϕ, p) and hen
e ϕ[Φπ(g)f ] = ϕ[Φ[g]] sin
e g ∈ Iso(p,Φ, q). But we have ϕ[Φ[g]] = (ϕ[Φ])[g] andso π(g)f ∈ Iso(ϕ, p,Φ, q). 2We shall see that, under some uniformity 
ondition on the pair (ϕ, p), the 
onverse in
lusion holdsas well. The 
ru
ial step for proving this is the forth
oming fa
torization property, Lemma 27.4.2.6 Uniform pairs. We de�ne when a pair (F, p) is uniform, F being a multilinear-visible poly-term and p : fv(F ) → V a naming fun
tion. We shall see in Lemma 28 that this notion is equivalentto the 
on
ept of uniformity we have already de�ned in Se
tion 3, using the 
oheren
e relation on poly-terms, but we give �rst the following self-
ontained de�nition, very suitable to our present 
ombinatorial
onsiderations. The de�nition is by indu
tion. The pair (F, p) is uniform in one of the following situations:

• F = x1 . . . xn where the xis are variables and p(xi) = p(xj) for all i, j;
• F = (λy ϕ1) . . . (λy ϕn) and (ϕ1 . . . ϕn, p) is uniform;
• F = (〈ϕ1〉G1) . . . (〈ϕn〉Gn) and (ϕ1 . . . ϕn, l) and (G1 . . . Gn, r) are uniform, where l and r are theobvious restri
tions of p.When u is a multilinear-visible simple term, we say that (u, p) is uniform if (F, p) is uniform, where F isthe multilinear-visible poly-term whi
h has u as single element.4.2.7 The fa
torization property of uniform pairs. The main property of uniform pairs is thefollowing fa
torization lemma.Lemma 27 (fa
torization) Let (ϕ, p) be a uniform pair and let Φ and Φ′ be two multilinear-visiblesubstitutions of domain fv(ϕ). If ϕ[Φ] = ϕ[Φ′], then there exists f ∈ Iso(ϕ, p) su
h that Φ′ = Φf .Proof. We 
an restri
t our attention to the 
ase where ϕ is a poly-term, and the only interesting 
ase inthe indu
tive de�nition 4.2.6 of uniformity is obviously the last one. With the notations of that de�nition,we 
an �nd, by indu
tive hypothesis, g ∈ Iso(ϕ1 . . . ϕn, l) su
h that Λ′ = Λg and h ∈ Iso(G1 . . .Gn, r)su
h that P ′ = Ph where Λ,Λ′ and P, P ′ are the restri
tions of Φ,Φ′ to fv(ϕ1 . . . ϕn) and fv(G1 . . . Gn)respe
tively. Taking the union f of these two bije
tions g and h, we obtain an element f of Sp, and itremains to show that F [f ] = F .For this, it will be su�
ient to show that there is an index i su
h that ϕ1[g] = ϕi and G1[h] = Gi.We know that there is an i su
h that ϕ1[g] = ϕi sin
e g ∈ Iso(ϕ1 . . . ϕn, l)) (and this i is unique sin
eea
h ϕj 
ontains at least one variable, and all these variables are distin
t).We know moreover that (〈ϕ1〉G1 . . . 〈ϕn〉Gn)[Φ] = (〈ϕ1〉G1 . . . 〈ϕn〉Gn)[Φ′] and hen
e there is a(uniquely determined) j su
h that (〈ϕ1〉G1)[Φ

′] = (〈ϕj〉Gj)[Φ], hen
e ϕ1[Λ
′] = ϕj [Λ], that is ϕ1[Λg] =

ϕj [Λ]. This implies that ϕ1[g] = ϕj (be
ause Λ is an inje
tive partial fun
tion from variables to simpleterms), hen
e ϕi = ϕj and so we must have j = i. Therefore (〈ϕ1〉G1)[Φ
′] = (〈ϕi〉Gi)[Φ], hen
e

G1[P
′] = Gi[P ], that is G1[Ph] = Gi[P ]. If G1 = 1 then Gi = 1 and hG1 = Gi holds trivially. Otherwisewe 
on
lude again using the inje
tivity of P . 2The uniformity hypothesis is essential: take for ϕ the poly-term xy, for p the identity map on {x, y},and de�ne Φ and Φ′ by Φ(x) = x, Φ(y) = y and Φ′(x) = y, Φ′(y) = x. Then ϕ[Φ] = ϕ[Φ′] = ϕ but25



Φ 6= Φ′ and the only element of Iso(ϕ, p) is the identity. The problem is of 
ourse that the pair (ϕ, p) isnot uniform.Here is another, maybe more illuminating, example: take ϕ = x1 〈x2〉 1 (whi
h is a multilinear-visiblepoly-term) and let p be de�ned by p(x1) = p(x2) = x. Let Φ and Φ′ be given by: Φ(x1) = 〈x1〉 1,
Φ(x2) = x2, Φ′(x1) = 〈x2〉 1 and Φ′(x2) = x1. Then we have ϕ[Φ] = ϕ[Φ′] = 〈x1〉 1 〈x2〉 1 but there is nopermutation f su
h that Φ′ = Φf . Again, the point is that the pair (ϕ, p) is not uniform.We state now the equivalen
e between the two notions of uniformity introdu
ed so far.Lemma 28 Let σ be a (poly-)term. Let ϕ be a multilinear-visible (poly-)term and p : fv(ϕ) → V be afun
tion su
h that σ = ϕp. Then σ is uniform (that is σ ⌢⌣ σ) i� the pair (ϕ, p) is uniform.The proof is a straightforward indu
tion on σ.4.2.8 The equation. Let ϕ be a multilinear-visible simple term, Φ be a multilinear-visible substi-tution with Dom Φ = fv(ϕ), p : fv(ϕ) → V and q : fv(Φ) → V be fun
tions. Assume that the pair (ϕ,Φ)is adapted and that the pair (ϕ, p) is uniform.Let us �rst 
he
k that

π(Iso(p,Φ, q)) Iso(ϕ, p) = Iso(ϕ, p,Φ, q) .Let f ∈ Iso(ϕ, p,Φ, q), that is f ∈ Sp and there exists g ∈ Sq su
h that (ϕ[Φ])[g] = ϕ[Φf ], that is(repla
ing g by its inverse), there exists g ∈ Sq su
h that ϕ[Φ] = (ϕ[Φf ])[g] = ϕ[Φ[g]f ].Sin
e the pair (ϕ, p) is uniform, we 
an apply Lemma 27 and hen
e there exists f ′ ∈ Iso(ϕ, p)su
h that Φ[g]f = Φf ′. This means that g ∈ Iso(p,Φ, q) and π(g) = f ′f−1. Hen
e f = π(g−1)f ′ ∈
π(Iso(p,Φ, q)) Iso(ϕ, p). The 
onverse in
lusion holds by Lemma 26.Sin
e |π(Iso(p,Φ, q))| = |Iso(p,Φ, q)| / |kerπ|, applying Lemma 24 we obtain

|Iso(ϕ, p,Φ, q)| =
|Iso(p,Φ, q)| |Iso(ϕ, p)|

|kerπ| |π(Iso(p,Φ, q)) ∩ Iso(ϕ, p)|
.To 
on
lude, we show that |π(Iso(p,Φ, q)) ∩ Iso(ϕ, p)| = |π(Iso(ϕ[Φ], q))|.Let g ∈ Iso(ϕ[Φ], q). Sin
e the pair (ϕ, p) is uniform, by Lemma 27 again, there exists f ∈ Iso(ϕ, p)su
h that Φ[g] = Φf . In other words Iso(ϕ[Φ], q) ⊆ Iso(p,Φ, q) and also π(Iso(ϕ[Φ], q)) ⊆ Iso(ϕ, p).So π(Iso(ϕ[Φ], q)) ⊆ π(Iso(p,Φ, q)) ∩ Iso(ϕ, p). But the 
onverse impli
ation holds as well. Indeed, let

g ∈ Iso(p,Φ, q) be su
h that π(g) ∈ Iso(ϕ, p). Then (ϕ[Φ])[g] = ϕ[Φ[g]] = ϕ[Φπ(g)] = ϕ[Φ] and hen
e
g ∈ Iso(ϕ[Φ], q).Last observe that obviously kerπ ⊆ Iso(ϕ[Φ], q). So

|π(Iso(p,Φ, q)) ∩ Iso(ϕ, p)| = |π(Iso(ϕ[Φ], q))| =
|Iso(ϕ[Φ], q)|

|kerπ|
.So we have proved the following result whi
h will be essential in the sequel.Theorem 29 (Uniform plugging equation) If ϕ is a multilinear-visible simple term, Φ a multilinear-visible substitution with (ϕ,Φ) adapted, if p : fv(ϕ) → V and q : fv(Φ) → V are fun
tions and if the pair

(ϕ, p) is uniform, then the following equation holds:
|Iso(ϕ, p,Φ, q)| =

|Iso(p,Φ, q)| |Iso(ϕ, p)|

|Iso(ϕ[Φ], q)|
.The uniformity hypothesis is ne
essary. Take indeed for ϕ the non uniform poly-term ϕ = x1(〈x2〉 1) (pbeing the 
onstant fun
tion xi 7→ x where x is a �xed element of V). Then |Iso(ϕ, p)| = 1. De�ne Φ by

Φ(x1) = 〈y1〉 1 and Φ(x2) = y2 and take for q a 
onstant fun
tion q(yj) = y. Then |Iso(p,Φ, q)| = 1, but
ϕ[Φ] = (〈y1〉 1)(〈y2〉 1) so that |Iso(ϕ[Φ], q)| = 2 and the equation above 
annot hold sin
e its left handmember must be an integer.5 Redu
ing the Taylor expansion of an ordinary lambda-termWith the qualitative Theorems 20 and 22 and the quantitative Theorem 29, we have the main tools forstudying the beta-redu
tion of the Taylor expansion of an ordinary lambda-term.26



Extension of NF to in�nite, 
oherent (poly-)terms. We need �rst to 
onsider the 
ase of a singlebig step di�erentiation: for dealing with this 
ase, we apply the uniform plugging equation straightfor-wardly.Lemma 30 Let σ ∈ ∆(!) be uniform, let x be a variable and let T ∈ ∆!. Let θ ∈ supp(∂x(σ, T )). Thenthe 
oe�
ient ∂x(σ, T )θ of θ in ∂x(σ, T ), whi
h is a positive integer, is given by
∂x(σ, T )θ =

m(σ)m(T )

m(θ)
.Proof. Observe �rst that our hypotheses imply that |T | = degxσ sin
e otherwise the set supp(∂x(σ, T ))would be empty. Let ϕ be a multilinear-visible (poly-)term and let p : fv(ϕ) → V be a fun
tion su
hthat ϕp = σ. Then, by Lemma 28, the pair (ϕ, p) is uniform sin
e σ is. By Formula (6), we 
an 
hoosea multilinear-visible substitution Φ and a fun
tion q : fv(Φ) → V in su
h a way that the followingrequirements be ful�lled:

• the pair (ϕ,Φ) is adapted;
• (
∏

p(x′)=x Φ(x′))
q

= T (that is, (Φ, q), when restri
ted to p−1({x}), represents T );
• if p(x′) 6= x then Φ(x′) = x′ and q(x′) = p(x′) (that is, the substitution Φ a
ts trivially on allo

urren
es of variables distin
t from x);
• θ = (ϕ[Φ])q.By Formula (6), the 
oe�
ient ∂x(σ, T )θ is the number of permutations f ∈ Sn su
h that

σ′
[
tf(1)/x1, . . . , tf(n)/xn

]
= θ ,where t1 . . . tn = T , the variables x1, . . . , xn are fresh and σ′ is an x-linearization in x1, . . . , xn of σ. This

x-linearization 
an be 
hosen su
h that σ′ [t1/x1, . . . , tn/xn] = θ and in that 
ase the above mentionedset of permutations 
ontains the identity permutation and is in 
anoni
al bije
tive 
orrespondan
e with
Iso(ϕ, p,Φ, q) (remember that this set is not a group in general) be
ause Φ a
ts trivially on the variablesof ϕ whi
h do not 
orrespond to x. Therefore we have ∂x(σ, T )θ = |Iso(ϕ, p,Φ, q)|.By Theorem 29, sin
e (ϕ, p) is uniform, we have

|Iso(ϕ, p,Φ, q)| =
|Iso(p,Φ, q)| |Iso(ϕ, p)|

|Iso(ϕ[Φ], q)|
.and we 
on
lude be
ause, by Lemma 25, we have |Iso(ϕ, p)| = m(σ) and |Iso(ϕ[Φ], q)| = m(θ), and wehave |Iso(p,Φ, q)| = m(T ) by Equation (16). 2Again, the uniformity 
ondition is absolutely essential.Two 
orollaries. We derive two easy 
orollaries of this formula, before applying it to our main 
on
ern,whi
h is the study of the normal forms of the terms o

urring in the Taylor expansion of an ordinarylambda-term.First, we generalize the formula to iterated big step di�erentiation.Proposition 31 Let σ ∈ ∆(!) be uniform, let x1, . . . , xn be pairwise distin
t variables and let T1, . . . , Tn ∈

∆! be uniform. Let θ ∈ supp(∂x1,...,xn
(σ, T1, . . . , Tn)). Then

∂x1,...,xn
(σ, T1, . . . , Tn)θ =

m(σ)m(T1) · · ·m(Tn)

m(θ)
.
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Proof. It will be enough to deal with the 
ase n = 2. We have
∂x1,x2(σ, T1, T2)θ = ∂x2(∂x1(σ, T1), T2)θ

=
∑

ρ∈∆(!)

∂x1(σ, T1)ρ∂x2(ρ, T2)θ ,but sin
e σ and T1 are uniform, supp(∂x1(σ, T1)) is a 
lique by Theorem 20 and hen
e there is atmost one ρ ∈ supp(∂x1(σ, T1)) su
h that θ ∈ supp(∂x2(ρ, T2)). Hen
e, sin
e we have assumed that
θ ∈ supp(∂x1,x2(σ, T1, T2)), there is exa
tly one su
h ρ and we know that this ρ is uniform, so we get,applying twi
e Lemma 30,

∂x1,x2(σ, T1, T2)θ =
m(σ)m(T1)

m(ρ)
·
m(ρ)m(T2)

m(θ)
=

m(σ)m(T1)m(T2)

m(θ)
.

2The se
ond 
orollary is another version of the Taylor formula, whi
h is now substitution-orientedinstead of being appli
ation-oriented as in Lemma 18.Theorem 32 LetM and N be ordinary lambda-terms and let x be a variable. One has ∂x(M∗, N∗n) → 0as n→ ∞, and the following equation holds:
(M [N/x])

∗
=

∞∑

n=0

1

n!
∂x(M∗, N∗n) .Proof. The 
onvergen
e statement results from the fa
t that M∗n → 0 and from the 
ontinuity of ∂x.Just as in the proof of Lemma 18, we have

∞∑

n=0

1

n!
∂x(M∗, N∗n) =

∑

s∈T (M)
T∈Mfin(T (N))

1

m(s)m(T )
∂x(s, T ) .To 
on
lude, observe that the family of sets (supp(∂x(s, T )))(s,T )∈T (M)×Mfin(T (N)) is a partition of

T (M [N/x]) (disjointness results from Theorem 20, and the equality of sets is proved by an easy in-du
tion on M , using the Leibniz law in the 
ase where M is an appli
ation), and then apply Lemma 30.
2Proposition 33 Let σ ∈ ∆(!) be uniform and let θ ∈ supp(NF(σ)). Then m(θ) divides m(σ), and morepre
isely

m(σ)

m(θ)
= NF(σ)θ .Proof. We pro
eed by indu
tion on the size of the simple (poly-)term σ, using Lemma 10. Indeedobserve that when σ is uniform, the terms to whi
h NF is applied in the �re
ursive 
alls� of that lemmaare themselves uniform (the only non-trivial 
ase is the �rst one, and in that 
ase our 
laim results fromTheorem 20 and from the fa
t that any (poly-)subterm of a uniform (poly-)term is uniform).If σ = λx1 . . . xn 〈· · · 〈x〉T1 · · ·〉Tk then θ = λx1 . . . xn 〈· · · 〈x〉U1 · · ·〉Uk with Uj ∈ supp(NF(Tj)) for

j = 1, . . . , k. By indu
tive hypothesis, m(Tj)/m(Uj) = NF(Tj)Uj
, but m(σ) = m(T1) · · ·m(Tk) and

m(θ) = m(U1) · · ·m(Uk) and we 
on
lude be
ause, by multilinearity of appli
ation,
NF(σ) =

∑

V1,...,Vk

NF(T1)V1 · · ·NF(Tk)Vk
λx1 . . . xn 〈· · · 〈x〉V1 · · ·〉Vk .Assume now that σ = λx1 . . . xn 〈· · · 〈r〉 T1 · · ·〉Tk where r = 〈λx s〉T . Then there exists s′ ∈

supp(∂x(s, T )) su
h that θ ∈ supp(NF(λx1 . . . xn 〈· · · 〈s′〉T1 · · ·〉Tk)), and this simple term s′ is unique byTheorem 22, sin
e supp(∂x(s, T )) is a 
lique by Theorem 20. By indu
tive hypothesis,
m(λx1 . . . xn 〈s′〉T1 . . . Tk)

m(θ)
= NF(λx1 . . . xn 〈· · · 〈s′〉T1 · · ·〉Tk)θ .28



But NF(σ) = ÑF(λx1 . . . xn 〈· · · 〈∂x(s, T )〉 T1 · · ·〉Tk) and so NF(σ)θ = ∂x(s, T )s′ NF(λx1 . . . xn 〈· · · 〈s′〉T1 · · ·〉Tk)θ(see Equation (8)). Therefore by Lemma 30 we get
NF(σ)θ =

m(s)m(T )m(λx1 . . . xn 〈· · · 〈s′〉T1 · · ·〉Tk)

m(s′)m(θ)

=
m(s)m(T )m(T1) · · ·m(Tk)

m(θ)

=
m(σ)

m(θ)
.As a last 
ase, 
onsider the situation where σ = sp1

1 . . . spk

k is a uniform poly-term, with si ⌢⌣ sj forall i, j, and si and sj not α-equivalent when i 6= j, so that
m(σ) =

k∏

j=1

pj! m(sj)
pj .Then, by Theorem 22, supp(NF(s1)), . . . , supp(NF(sk)) are pairwise disjoint 
liques and θ is of the shape

θ = U1 . . . Uk with Uj ∈ supp(NF(sj)
pj ) for j = 1, . . . , k, and so the multi-sets Uj are pairwise disjoint,so that

m(θ) = m(U1) · · ·m(Uk) .Let j ∈ {1, . . . , k}, we have m(Uj) = Uj ! mUj so that
m(σ)

m(θ)
=

k∏

j=1

pj! m(sj)
pj

Uj ! mUj

=

k∏

j=1

[Uj]
m(sj)

pj

mUjbut for ea
h j,
NF(sj)

pj =

(
∑

u∈∆0

NF(sj)uu

)pj

=

(
∑

u∈∆0

m(sj)

m(u)
u

)pj by indu
tive hypothesis
=

∑

U∈Mpj
(∆0)

[U ]
m(sj)

pj

mU
U by the multinomial identity,so

NF(σ)θ =

k∏

j=1

NF(sj)
pj

Uj

=
k∏

j=1

[Uj]
m(sj)

pj

mUj

=
m(σ)

m(θ)and we are done. 2Given an element τ of R〈∆(!)〉∞, the sum NF(τ) =
∑

θ∈∆(!) τθ NF(θ) does not always 
onverge (inthe sense of 2.1.1): it 
an involve in�nite sums of 
oe�
ients. But in the 
ase where τ is the Taylorexpansion of a lambda-term, it does 
onverge.Corollary 34 Let M be an ordinary lambda-term and let u ∈ supp(NF(M∗)). Then the sum NF(M∗)
onverges and, for any simple term u o

urring in that sum, one has NF(M∗)u = 1/m(u). Moreover,there is exa
tly one simple term s ∈ T (M) su
h that u ∈ supp(NF(s)).29



Proof. Remember that M∗ =
∑

s∈T (M)
1

m(s)s and that T (M) is a 
lique (Lemma 19). Therefore thesupports of the terms NF(s), for s ∈ T (M), are pairwise disjoint, by Theorem 22. Hen
e, the sum
NF(M∗) =

∑
s∈T (M)

1
m(s) NF(s) 
onverges, and, for any simple term u whi
h o

urs with a non-zero
oe�
ient in that sum, there is exa
tly one s ∈ T (M) su
h that u ∈ supp(NF(s)), by Theorem 22 again.The 
oe�
ient of u in NF(M∗) is NF(s)u/m(s) = 1/m(u) by Proposition 33. 2Corollary 35 The sum NF(M∗) has the following shape

NF(M∗) =
∑

u∈U

1

m(u)
uwhere U is a set of normal simple terms, whi
h is a 
lique (by Theorem 22, sin
e T (M) is a 
lique).In [ER06a℄, it is shown, using Krivine ma
hine, that a
tually U = T (M0), where BT(M) is the Böhmtree of M . Therefore, we have

NF(M∗) = (BT(M))∗ . (17)In other words, Taylor expansion 
ommutes with (in�nite) normalization. The analysis developpedin [ER06a℄ shows that the simple term s asso
iated with u (in the statement of Corollary 34) representsthe part ofM whi
h is ne
essay for 
omputing the part u ofM0 in Krivine ma
hine, taking multipli
itiesinto a

ount.Example. Let M be the ordinary lambda-term
M = (λf (f)λx (f)λdx)λz (z) (z) ⋆where ⋆ is a distinguished variable. It is easily seen that M redu
es to ⋆. By the theorem above, thereis at most one simple term s ∈ T (M) su
h that ⋆ ∈ supp(NF(s)). One 
he
ks easily that

s =
〈
λf 〈f〉 (λx 〈f〉λdx)2

〉
(λz 〈z〉 〈z〉 ⋆)(λz 〈z〉 1)2is su
h a term, and more pre
isely that s redu
es to 4⋆, in a

ordan
e with the fa
t that m(s) = 4. Thissimple term 
an be seen as a �de
oration� of M giving an exa
t quantitative a

ount of how mu
h ea
hsubterm ofM is used during the run of the Krivine's ma
hine starting with termM (empty environmentand empty sta
k) and leading to the �nal value ⋆.Con
lusionThe main result of this paper, Corollary 35 and its 
onsequen
e, Formula (17), show that the situationis as simple and natural as one 
ould expe
t. The striking fa
t, maybe, is not the result itself but itsproof, whi
h is based on Theorems 22 and 29, and so uses uniformity twi
e, and ea
h time in a 
ru
ialway. So an essential step in the understanding of the di�erential extension of the fun
tional paradigmproposed in [ER03℄ will be to examine the behaviour of Taylor expansions in this more general and nonuniform setting.Referen
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