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Abstract 

Lincoln, P., J. Mitchell, A. Scedrov and N. Shankar, Decision problems for propositional 

linear logic, Annals of Pure and Applied Logic 56 (1992) 239-311. 

Linear logic, introduced by Girard, is a refinement of classical logic with a natural, intrinsic 

accounting of resources. This accounting is made possible by removing the ‘structural’ rules of 

contraction and weakening, adding a modal operator and adding finer versions of the 

propositional connectives. Linear logic has fundamental logical interest and applications to 

computer science, particularly to Petri nets, concurrency, storage allocation, garbage collection 

and the control structure of logic programs. In addition, there is a direct correspondence 

between polynomial-time computation and proof normalization in a bounded form of linear 

logic. In this paper we show that unlike most other propositional (quantifier-free) logics, full 

propositional linear logic is undecidable. Further, we prove that without the modal storage 
operator, which indicates unboundedness of resources, the decision problem becomes 

PsPAcE-complete. We also establish membership in NP for the multiplicative fragment, 

NP-completeness for the multiplicative fragment extended with unrestricted weakening, and 

undecidability for fragments of noncommutative propositional linear logic. 

1. Introduction 

Linear logic is a refinement of classical logic introduced by Girard [15]. This 
logic has a ‘resource sensitive’ character, reflected in the fact that two assump- 
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tions of a formula A are distinguished from a single assumption of A. In this 
paper, we study the decision problem for full propositional linear logic and 
several natural fragments. The easiest result to state is that full propositional 
linear logic is undecidable. We also show that an ‘intuitionistic’ fragment is 
undecidable, a natural fragment is PsrAcn-complete, and a smaller fragment that 
is in NP becomes NP-complete with an additional rule. Before describing these 
results, we give a short overview of linear logic by explaining the passage from 
classical to linear logic. 

Formally, linear logic may be derived in three steps from a Gentzen-style 
sequent calculus axiomatization of classical logic. The first step is to drop two 
structural rules, contraction and weakening. This forces a re-examination of 
conjunction and disjunction, leading to two forms of each connective. The third 
step is to recover the full expressive power of classical logic by adding two modal 
operators, ! and ?. These three steps are described in more detail in the following 
paragraphs. The resulting logic is surprisingly natural, from both proof-theoretic 
and computational standpoints. In particular, Gentzen-style cut-elimination, a 
crucial proof-theoretic property (see [14,19], for example), has been established 
for linear logic in [15]. This yields consistency and provides a natural computa- 
tional mechanism that resembles reduction in lambda calculus (e.g., [19,23]). 

The derivation of linear logic begins by dropping the structural rules 
contraction and weakening, which are an essential part of classical and intuitionis- 
tic logic. Each rule may be applied to either the left or right side of a sequent. On 
the left, contraction allows repeated assumptions of some formula to be replaced 
by a single assumption of the same formula. This means that a single hypothesis is 
as good as any number of duplicates, or, a hypothesis may be ‘reused’ as often as 
desired. Contraction on the right also allows duplicates to be dropped, which has 
essentially the same effect. Weakening on the left allows us to add irrelevant 
hypotheses, and, on the right, to extend the set of possible conclusions arbitrarily. 
Since contraction and weakening make it possible to use an assumption as little or 
as often as desired, these rules are responsible for what we may regard as a loss of 
control over resources in both classical and intuitionistic logic. Excluding these 
rules produces a linear system in which each assumption must be used exactly 
once, and each conclusion must follow from the hypotheses. In linear logic, 
formulas may be regarded as fixed resources that cannot necessarily be discarded 

or duplicated without effort. 
The second step in deriving linear logic involves the propositional connectives. 

Briefly, the change in structural rules leads to two forms of conjunction and 
disjunction. The reason for the split is that we must decide whether we require 
linearity of the entire conjunction or disjunction, or whether it suffices to have 
each conjunct or disjunct alone depend linearly on the surrounding formulas. 
One form, called additive conjunction or disjunction, is informally described as 
‘sharing of resources’ since the two conjuncts or disjuncts may depend on a 
shared set of hypotheses. In the other multiplicative form, there is no such 
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sharing. The general situation may be illustrated by examining two consequences 
of the pair of linear implications A--o B and A--o C. Intuitively, A -+I B says that 
from A we may conclude B, or, in more computational terms, we have a process 
that will consume A and produce B. Given the two assumptions A-B and 
A-a C, there are two possible conclusions involving conjunctions of B and C. 
Using additive conjunction, written &, we may conclude A -o(B & C) since from 
A we are capable of obtaining B and we are capable of obtaining C. With 
multiplicative conjunction, written 8, sharing is not allowed. However, we may 
obtain B and C from two separate A's. This is written symbolically as 

(A@A)-o(B@CC). 0 ne way of describing the distinction is that B & C indicates 
a choice between B and C, while B G3 C reflects an ability to have both 
simultaneously. 

The final step in deriving linear logic is to add two modal operators. These are 
a storage or reuse operator, !, and a dual consumption operator ?, definable from 
! using negation. Intuitively, the formula !A provides unlimited use of the 
resource A and ?B allows the unlimited consumption of B. Using a computational 
metaphor that we have found useful and faithful to the logic, we may read !A as 
‘the datum A is stored in the memory and may be referenced an unlimited 
number of times’. In deductive terms, if B follows from any number of 
assumptions of A, then B follows from the single assumption !A. A view of ! 

which suggests the translation of classical logic into linear logic is that while we do 
not have contraction and weakening as structural rules, we may apply contraction 
and weakening to formulas beginning with !. Since the basic framework remains 
linear, unbounded use is allowed only ‘locally’, at formulas specifically marked 
with ! or ?. 

The first application of the resource-sensitive aspect of the logic was the 
development of a functional programming language implementation in which 
garbage collection was replaced by explicit duplication operations based on linear 
logic [27]. Further studies have demonstrated connections with Petri nets 
[3,4,13,21,33] and other models of concurrency [l, 281. With regard to 
concurrency, there is a similarity between proof nets, the inherent model of 
computation associated with cut-elimination in multiplicative linear logic (cf. 
[ll, 15, 16,28]), and connection graphs, which were designed to model connec- 
tion machine computation [6]. Other applications include optimization of copying 
in lazy functional programming language implementation [22] and analyzing 
the control structure of logic programs [2,8]. A natural characterization of 
polynomial-time computations can be given in a bounded version of linear logic 
[20] obtained by limiting reuse to specified bounds, i.e., by bounding the number 
of references to each datum in memory. Informal introductions to linear logic 
may be found in [18,40]. 

We now summarize the main results of this paper (which were sketched in 
[31]), beginning with the smallest fragment considered. Multiplicative linear logic 
contains only linear implication, negation, and the multiplicative forms of 
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conjunction and disjunction. Recall that these forms require the available 
resource to be partitioned rather than shared. We show that the decision problem 
for this fragment is in NP. With unrestricted weakening added, we show that the 
multiplicative fragment is NP-complete. 

There are two natural fragments extending pure multiplicative linear logic, one 
with additive connectives and the other with the ! operator. We show that the first 
extension, with additive and multiplicative connectives but not !, is PSPACE- 

complete. The proof, by reduction from classical quantified Boolean formulas, 
involves encoding quantifier order using only commutative propositional connec- 
tives. We note here in passing that the fragment with only multiplicative 
connectives and the ! operator is at least as hard as the reachability problem for 
Petri nets (or, equivalently, commutative semi-Thue systems or vector addition 
systems). This follows from conservativity properties established in this paper and 
previous work relating linear logic and Petri nets. Although reachability is 
decidable [26,34], the best known lower bound is EXPSPACE [32,35]. A likely 
upper bound on Petri net reachability is primitive recursive in the Ackermann 
function [lo, 361. We do not know if multiplicative linear logic with ! is decidable. 

Finally, we show that provability in full propositional linear logic with additive 
and multiplicative connectives and modal storage operator is undecidable. It 
follows from this undecidability result that when propositional linear logic is 
extended with quantification over propositions, the resulting logic is also 
undecidable. (Provability is trivially recursively enumerable, since the proof 
system is effective.) Undecidability also holds for a restricted form called 
intuitionistic propositional linear logic. In addition, we establish the unde- 
cidability of a noncommutative variant of linear logic (even without additive 
connectives), a system that extends the calculus in [29]; see [17,42]. 

Our undecidability proof uses a direct encoding of a form of alternating counter 
machines. Our ‘and-branching counter machines’ resemble the alternating Turing 
machines of [9], but lack a basic operation to test for zero. The basic transitions 
of these machines may be axiomatized using the multiplicative and additive 
connectives, while the ! operator is needed to allow an instruction to be executed 
an arbitrary number of times. Additive connectives are used to encode and- 
branching, which is needed to simulate the zero-tests of conventional counter 
machines. As for the other lower bounds, the bulk of the technical work lies in 
establishing that the encoding is faithful, i.e., each deduction in linear logic 
determines some computation. Faithfulness is demonstrated using a detailed 
examination of cut-elimination in linear logic [15]. This yields a version of the 
deduction theorem for linear logic and various conservativity results of independ- 
ent interest. 

A key insight is that searching for a proof of a certain special form for a given 
linear logic sequent corresponds directly to searching for an accepting computa- 
tion in a particular machine model. A successful search is exactly an accepting 
computation. 
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For propositional linear logic without storage, membership in PSPACE is shown 
using a proof bound based on cut-elimination. PsPAcE-hardness is demonstrated 
by a (log-space) construction of formulas that may be proved only by alternating 
between rules that simulate classical universal and existential propositional 
quantifiers. This construction demonstrates a surprising property of linear logic: 
the connectives are sufficient to express synchronization to the point of 
‘sequentiality’. Undecidability of noncommutative linear logic is proved by 
encoding the word problem for semigroups. Unlike our other reductions, this 
does not require the additive connectives. Membership in NP for multiplicative 
linear logic, with or without unrestricted weakening, is based on a polynomial 
bound on proof-size from cut-elimination. With unrestricted weakening, we show 
NP-completeness by reduction from the Vertex Cover problem [12]. 

A logic that is superficially related to linear logic is propositional relevance 
logic, which is proved undecidable in [41]. Like linear logic, relevance logic lacks 
weakening. However, relevance logic does have unrestricted contraction. In 
addition, relevance logic has a distributivity axiom, absent from linear logic. 
Without the distributivity axiom, relevance logic becomes decidable [37]. The 
system with distributivity also lacks cut-free Gentzen-type formulation. See, for 
example, [5]. Thus both the motivation and technical properties of linear logic are 
significantly different from relevance logic. 

2. Multiplicative additive propositional linear logic is PsPAcE-complete 

In this section, we analyze the complexity of the fragment of propositional 
linear logic without the modal storage operator ! and its dual ?, but including all 
the remaining connectives and constants of linear logic. 

We begin with some standard definitions. A deduction in propositional linear 
logic is a tree, usually presented with the root at the bottom, and the leaves at the 
top. Each branch of a deduction is a sequence of applications of the proof rules 
given in Appendix B, some of which, such as &, represent branching points in the 
deduction tree, some, such as ~9, which extend the length of a branch, and some, 
such as identity, which terminate a branch. The leaves embody the assumptions, 
and the root the conclusion. Such a structure is said to be a deduction of the 
conclusion from the assumptions. A proof in linear logic is a deduction with no 
assumptions. That is, each branch terminates with an application of identity, T or 
1. One interesting feature of linear logic, as presented in Appendix B, is that 
negation is defined, and it is not a connective. In particular, the propositional 
literals are assumed to be given in pairs, one positive (written pi for some i) and 
one negative (written pl). 

In this section we are concerned with the multiplicative-additive fragment of 
linear logic, which we abbreviate as MALL. The logical symbols used in this 
fragment are multiplicative conjunction (8) and disjunction ($?), additive 
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conjunction (8~) and disjunction (@), and the constants 0, 1, T and I. MALL 

formulas and sequents contain only these connectives and constants, in addition 
to the positive and negative literals. The proof rules of MALL are all of the rules in 
the Appendix B that are associated with these connectives and constants. This 
logic has been studied in [7, 151. While provability for the classical propositonal 
logic is co-NP-complete, we show below that provability for MALL is PSPACE- 

complete. 
An important property of the sequent calculus formulation of MALL is 

cut-elimination. This property follows from Theorem A.3 of Appendix A. 

Theorem 2.1. Any sequent provable in MALL is provable without the cut rule. 

Proof. Since MALL is a fragment of linear logic, we may use the cut-elimination 
procedure from Theorem A.3 to convert a MALL proof to a cut-free proof in linear 
logic. By the subformula property (Corollary A.4), such a cut-free proof of a 
MALL sequent contains only MALL formulas. Since all the rules which apply to 
MALL formulas are already in MALL, any cut-free proof of a MALL sequent must 
already be a MALL proof. Cl 

Membership in PSPACE is straightforward, given cut-elimination, but we include 
a short sketch to illustrate the importance of Theorem 2.1. The proof of 
PSPACE-hardness is more technical. Proof search in the cut-free sequent calculus is 
crucial to the proof. The primitive step in proof search is a reduction, namely the 
application of an inference rule to transform a sequent matching the conclusion of 
the rule to the collection of sequents given by the corresponding premises of the 
rule. A reduction is the inverse of an inference rule, and drives conclusions to 
premises. Proof search is the process of constructing a cut-free proof in a 
bottom-up manner by nondeterministically applying reductions starting from the 
conclusion sequent. 

2.1. Membership in PSPACE 

Theorem 2.2. The provability in MALL of a given sequent can be decided by a 
polynomial space bounded Turing machine. 

Proof. By Theorem 2.1, a provable MALL sequent has a cut-free MALL proof. In a 
cut-free MALL proof, there are at most two premises to each rule, and each 
premise is strictly smaller than the consequent. Therefore, the depth of a cut-free 
MALL proof tree is at most linear in the length of the final sequent of the proof. 
An alternating Turing machine [9] may guess and check a cut-free proof in linear 
time, using OR-branching to nondeterministically guess a reduction in the 
cut-free proof, and AND-branching to generate and check the proofs of both 
premises of a two-premise rule in parallel. 
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Membership in PSPACE can also be proved without reference to alternation. A 

nondeterministic Turing machine can be defined to generate and check a cut-free 

sequent proof in a depth-first manner. Given the linear bound on the depth of 

any cut-free proof with respect to the size of the conclusion sequent, the search 

stack need contain no more than a linear number of sequents. Since each sequent 

in a cut-free proof is no larger than the conclusion sequent, we get a quadratic 

bound on the stack size. q 

2.2. Informal outline of PsPAcE-hardness of MALL 

Since there are a number of technical details to the proof of PsPAcE-hardness, 

we will illustrate the key intuitions by means of an example; the details of the 

proof are given in Section 2.4. 

The PsPAcE-hardness of MALL provability is demonstrated by a transformation 

from the validity problem for quantified Boolean formulas (QBF). A quanti$ed 
Boolean formula has the (prenex) form Q,X,,, . . . QIXl M, where 

(1) each Qi is either V or 3; 

(2) M is a quantifier-free Boolean matrix containing only the connectives 1 and 

A, and Boolean variables. 
A closed QBF contains no free variables. Our conventions in this section are 

that G and H range over quantified Boolean formulas, M and N range over 

quantifier-free Boolean formulas, U, V, X, Y, Z range over Boolean variables, 

and I ranges over truth value assignments. For expository convenience, we refer 

to quantifier-free Boolean formulas simply as Boolean formulas. 

An assignment I for a set of Boolean variables {X1, . . . , X,} maps each Xi to a 

truth value from {T, F}. An assignment is represented by a sequence of Boolean 

variables and negated Boolean variables. For example, the assignment X1, 

1X2, X3 maps X, to T, X2 to F, and X3 to T. The assignment Z, X assigns T to X, 

but behaves like I, otherwise. If I is an assignment for the free variables in G, we 

use the standard notation I k G to indicate that G is valid under Z, and write I f G 

if I falsifies G. Note that 

ILVXG iff I,XkGandI,lXbG, 

Ib3XG iff I, XbG or I,lXLG. 

If G is a QBF and I is an assignment for the free variables in G, we say G is 

valid under I exactly if I L G. If G is a closed QBF, then G is said to be valid if it 

is valid under the empty assignment. The validity of a closed QBF G is 

represented as L G. The QBF validity problem is: given a closed QBFG, is G 
valid? 

We demonstrate the PsPAcE-hardness of MALL provability by defining a succinct 

encoding of a QBF as a MALL sequent that is provable exactly when the given 

QBF is valid. 
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The transformation of the QBF validity problem to MALL provability takes 
place in two steps. 
l Given a quantifier-free Boolean formula A4 and an assignment Z for the free 
variables in M, we show that there is a MALL sequent encoding A4 and Z which is 
provable exactly when M is valid under I. This essentially demonstrates that the 
process of evaluating Boolean functions can be represented by the process of 
cut-free proof search in the MALL sequent calculus. 
l Given a QBF G and an assignment Z for the free variables in G, there exists a 
MALL sequent encoding the quantifier prefix and the Boolean matrix of G so that 
the MALL sequent is provable exactly when G is valid under I. The idea here is to 
simulate the Boolean quantifiers 3 and V by using the additive connectives @ and 
&. 

Two-sided vs. one-sided sequents. We use a formulation of MALL with 
one-sided sequents to simplify the proofs. In linear logic, a two-sided sequent 
AI,. . . ,AmbB1,. . . , B, has the one-sided form IAt, . . . , Ai, B1, . . . , B,. 
Thus, a formula A -o B on the left of a two-sided sequent becomes A 60 B * in a 
one-sided sequent. Similarly, the provable two-sided sequent A, A + B t B 
becomes t A', A @I B’, B. While one-sided sequents simplify the technical 
arguments considerably, the reader might gain further insight by rewriting parts 
of our encoding in a two-sided form. 

2.2.1. Encoding Boolean evaluation 
The encoding of the Boolean connectives and quantifiers in MALL is described 

here by means of an example. The full definition of the encoding appears in 
Section 2.3. The encoding from QBF validity to MALL provability makes no use of 
the MALL constants. Consider the valid QBF G given by 

vx2 3X11(1X, A X,) A 1(1X* A Xl). 

The matrix M of G is essentially a restatement of (X,eXx,). Let H be the 
falsifiable formula 3X1 VXz M that is obtained from G by reversing the order of 
the quantifiers. It is crucial that the encodings of G and H in MALL respect the 
ordering of quantifiers so that the encoding of G is provable but the encoding of 
H is not. 

The encoding of the Boolean matrix describes the formula as a circuit with 
signals labeled by MALL literals. Let the assignment Z be encoded by a sequence of 
MALL formulas (I), and [Ml0 be the MALL formula encoding M with output 
labeled by the literal a. Then Z != M is encoded by the sequent 

I- (I), [Ml,, a, 

whereas Z # M is encoded by 

t- (0, WI,, al. 
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Since we are using one-sided sequents, we encode the assignment X1, 1X, by 

x:, x2. The MALL literals encoding the assignment are to be seen as the input 
signals to the encoding of the Boolean formula. 

We first consider the Boolean connectives 1 and A, then construct the full 
encoding of M. The encoding [IX,], of 1X1 with output labeled a is the formula 
NOT(X~, a). For literals x and y, the definition of NOT(X, y) is just the repre- 
sentation of the truth table for negation within MALL, as shown below: 

NOT(X,y)=(X'8y)@(XL@yYI). 

NOT(X~, a) is simply the linear negation of the formula 

(XI-oaL)&(x:-oa), 

(2.1) 

which is more perspicuous in describing a as the Boolean negation of x,. The 
sequent 

txr, Nor(&, a), a (2.2) 

encodes the situation where the input X, is F, and asserts (correctly) that the 
output 1X1 is T. 

The sequent (2.2) is easily seen to have the MALL proof 

___ _ 
lx,, x:I td, u1 
kx,, (x: @u’), a 

cc3 

tx,, (x*@u)@(X:@uL), a 
a3 

Similarly, the sequent (2.3) representing {XI +T} #1X, is also provable: 

kX:, NOT(XI, a),&. 

On the other hand, the sequent 

(2.3) 

tXf,NOT(X1, U),U (2.4) 

asserts (falsely) that {XI +T} klX1. To see why sequent (2.4) is not provable, 
we observe that MALL is a refinement of classical logic in which no classically 
falsifiable sequents are provable. The sequent kx:, NOT(X~, a), a is falsified by 
assigning T to x1 and F to a, while interpreting @J and & as classical conjunction 
and @ and ~9 as classical disjunction. A sequent is interpreted classically as the 
disjunction of the sequence of formulas that it contains. 

The encoding for conjunction, [X A Ylb is given by AND(X, y, 6) as defined 
below: 

(x@yc3b*) a3 

AND(X,Y,b)= 
(X’@y*@b) CB 

[ 1 (xBylBb6) e . (2.5) 

(xl 63,~ @b) 
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Sequent (2.6) represents X, Y k (X A Y): 

kxl, yl, AND(X,y, b), b. 

Sequent (2.6) has the proof 

P-6) 

As with sequent (2.4), the MALL sequent representing the false assertion 

1X, Y k (X A Y) is given by 

t-x, Ye, AND@, Y, b), b 

and is not provable since it can be falsified by the classical interpretation assigning 

F to x and b, and T to y. 

The next step is to construct the encoding of the Boolean formula M given at 

the beginning of this section, from the encodings of the Boolean connectives. The 

formula M is thought of as a Boolean circuit with the distinctly labeled signals. 

The encoding [(lx, A X,)1* is given by the formula AND(CI, x2, b)% NOT(xl, a). 

Let IMPLIES@, y, y, u, w) represent the formula 

NOT(V, W)-?? AND(U, y, U)%NOT(X, U), 

then IMPLIES(~~,X~, a, b, c) is the encoding [1(1X, A X2)]=. The literals a, b and c 

are the distinct literals labeling the output signals of the Boolean gates. 

We now consider the problem that the input signals in M have a fanout greater 

than one. An almost correct encoding in MALL of the Boolean formula M is given 

by the formula 

AND(C,~, ~)%IMPLIES(X~, x2, a, b, c)% IMPLIES(X~,X~, d, e,f). 

The validity of M under the assignment {X, +T, X2+-T} would then be 

represented by 

Ix:, xi, AND(C,~, ~)'~IMPLIES(X~,X~, a, b, c)4? IMPLIES(X~, xl, d, e,f), g. (2.7) 

The following deduction represents one attempt to prove sequent (2.7): 

bgL, g1 

tx;,x:, IMPLIEs(X1,x2, a, b, c), c 

kx:, x:, (c @f), 

k IMPLIES(X~, i1, d, e, f), fB 

IMPLIES(X,, x2, a, b, c), IMPLIES(X~, x,, d, e,f) 

lx:, xi, (c @f @I&), IMPLIES(X~, x2, a, b, c), IMPLIES(X~, x1, d, e,f), g@ @J 

t-6, xi, AND(C, f, g), IMPLIES(%, x2, a, b, c), IMPLIES(X~, x1, d, e, f), g 

kx:, x:, AND(C,~, ~)OIMPLIES(X~,X~, a, b, C)%IMPLIES(X~, x1, d, e,f), g 
D 

Since MALL lacks a rule of contraction, each of the assignment literals x: and 

x: can appear in only one premise of a C3 rule. As a result, one of the remaining 

subgoals in the above deduction lacks the required input literals. We therefore 

need to be able to explicitly duplicate the assignment literals in the sequent (2.7) 
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to match the number of duplicate occurrences of X, and X2 in M. The formula 
COPY(XJ defined as 

(xl~((x:~x:))~(x:~(x1~~1)) 

serves to duplicate an instance of x1 or x:. If M is now encoded as 

AND(c, f, g) 3 COPY(X1) % COPY(X2) 3 r, ;19 r,, 

where r, abbreviates IMPLIES(XI,X2, a, b, c) and r2 abbreviates 
IMPLIES(X~, x1, d, e, f), the desired deduction of (2.7) can then be constructed: 

FXi, x:I 

l-x2, x:’ W, x:, x:, x:, (c 8f @g”), r,, r,, g 

%, X:, Xi, AND@, f, S), % @ (X+%)X:), c, &, g 

kX;, Xi, AN@, f, S), Xl 8 (X:%Xf), COPY(Xz), q, &, g ~ 

@ ~ 

IX:, Xi, AND(C, f, g), COPY(Xd, COPY(Xz), c, & g 

FX:, X:, AND(C,f, g)%COPY(X1)%COPY(Xz)%~%&, g 

%. 

In summary, we have informally described the encoding in MALL of the 
evaluation of Boolean formulas under an assignment. The connectives 43, 8, and 
63 were used to represent the truth tables of 1 and A, and MALL literals were used 
to represent the ‘signals’ in the Boolean formula. The duplication of input signals 
forms a crucial part of the encoding since MALL lacks a rule of contraction. 

2.2.2. Encoding Boolean quanti$cation 

Recall that G is the formula VXz 3X1 
where M is 1(-X, A X,) A -@X, A Xi). 

M, and H is the formula 3X1 VX2 M, 

Intuitively, it is useful to separate the 
encoding of the Boolean quantifier prefix as separately encoding the individual 
quantifiers and the dependencies between quantifiers. Given the above encoding 
for assignments and Boolean formulas, an almost correct way to encode Boolean 
quantifiers would be to encode 3X1 as the formula (xi @x:), and VX2 as 

(x2 &xi). The encoding of G would then be given by the sequent 

The formula (x1 63 x:) behaves like existential quantification in proof search since 

a nondeterministic choice can be made between 

I-X:, r 
@ and kh r 

1 (x1 @x:), r k (x1 e+x:), r 
83 

according to the assignment (T or F, respectively) to Xi which makes 3X, M 

valid. Similarly, the rule for reducing (x2&x:) in a proof behaves like universal 
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quantification requiring proofs of both kx:, rand kxz, C 

However, with this mapping of quantifiers, the MALL encoding of G and H would 
be identical and provable, but H is not a valid QBF. 

A correct encoding of 3X1 VXz M should ensure that if the encoding is 
provable in MALL, then there is a proof in which the choice of a truth value for X, 
is independent of whether X2 is T or F. The order of reductions below show how 
the choice of a truth value for 3X1 in a proof of the MALL encoding can depend on 
the quantifier VX2: 

kx1,x2, r 

~(x1@x:),x2, r" 

~x:,x:, r 

~(xl@x:),x:, r@ & 

t(xl@x:), (x2&x:), r 

In this ordering of the reductions, (x1 63 x:) is reduced differently on the x2 and 
xi branches of the proof leading to distinct witnesses for X1 according to whether 
X2 is T or F. The solution to this quantifier order problem is to encode the 
quantifier dependencies in the MALL formula so that if there is any proof, then 
there is some proof of the encoding in which (x1 @3x:) is reduced below 
(x2 &xi), thus ensuring that the truth value of X, has been chosen independently 
of the truth value for X2. For this purpose, we introduce new MALL atoms qo, ql, 

q2, and encode 3X1 VX2 M as 

4:~'(418x,)~(q,~x:)>, 

s: @((qo~x2)&(qo~x:)L 

401 @WI,, g. 

The idea here is that the quantifier encoding for 3X1 hides the ‘key’ q1 that is 
needed to unlock the quantifier encoding for VX2. If we now attempt to violate 
the quantifier dependencies, the following would be one possible deduction: 

In the above deduction, we are left with a subgoal of the form t q:, ql, x1, and 
since x1 is not a constant, we cannot reduce this sequent to a MALL axiom. (Recall 
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that MALL lacks an unrestricted weakening rule.) Other deductions attempting to 
violate the quantifier ordering also fail. On the other hand, the deduction which 
does respect the order of the quantifier encodings can be performed as shown 
below. The quantifier encoding for 3X1 provides the key q1 for unlocking the 
quantifier encoding of VX2: 

141, Xl? 4: @ ((qo~x2) & hl8xth 40163 [Ml,, g ,@ 

1q2,4:' 

t 41 *x1,4: @ ((40~x2) &(409x:)), 4018 [Ml,, g 
I- ((q1-Q-d @ (Mw)> 4: @ ((qcax,) & hmd)), q:C3 [Ml,, g@ 

tq2,q: ~((410n,)~(q,9x:)),q: @ mo9~2Mq,~x:)),qo1 @[[M],,g @ 

The formal definition of the polynomial time encoding of QBF validity in terms 
of MALL provability is given in Section 2.3. In Section 2.4, we demonstrate the 
correctness of the encoding. 

2.3. Formal definition of the encoding 

For our purpose, a Boolean formula is constructed from Boolean variables 
using the Boolean connectives 1 and A. All quantified variables are assumed to 
occur in the matrix. Var(M) is the set of variables occurring in the Boolean 
formula M. Overlined syntactic variables such as k and P range over sets of 
Boolean variables. 

The small sequent encoding a QBF G is represented by a(G). We need to be 
careful about keeping literals distinct. The annotation ‘a new’ in the definition 
indicates that the literal a is a freshly chosen one that has not been used 
elsewhere in the encoding. 

The sequent a(G) consists of the encoding of the QBF [G&, where g labels the 
output signal, the key qn, and the output value g. The definition of UC& 
constructs the quantifier encodings by induction on the length of the quantifier 
prefix. The definition of [M], is by induction on the structure of M, so that 
[N A P], is constructed by 
l choosing the fresh labels a and b for the outputs of subformulas N and P, 
respectively; 
l defining the relation between a, b, and g by mD(a, b, g); 
l if needed, providing a copying formula for each Boolean variable common to 
both N and P; 
l and recursively constructing [N], and [Plb. 

To be precise, we provide the following definition of the encoding. 

Definition 2.3. 

o(G) = t- qn, UGII,, g qnl g new, 

BP&+1 G)II,= (qil+l@ ((x,+l*qi) & (x,l,i*qi))), [G& qi+l new, 

U@xi+I G)n~=(qil,l~((xi+l~4i)~(nil+l~q;>)), [Cl, qi+l new, 
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wn,= ho'@ bw,) 

[xl,=w@Ewww) 

[1N],=NoT(% g)'P[N], 

r AND@, b, g) 

[NA PI,= 1 coPY,4Lt_(Var(N) n Var(P)) 

m? 
1 [Plb 

[N A Pig = AND@, b, 8) 4? [NJ %’ [P]t, 

COPYALL@)=&&COPY(X;). 

a new, 

a, b new; Var(N) 

Cl Var(P) # 0, 

a, b new; Var(N) 

n Var(P) = 0, 

Note that the sequent a(G) contains no MALL constants. The complexity of 

40 new, 

computing o(G) is at most quadratic in the size of G since the encoding function 
is defined inductively over the structure of the formula, and the intersection 
operation can be performed in linear time with a bit-vector representation of sets, 
where the length of each bit-vector is the number of distinct Boolean variables 
occurring in G. The cost of constructing the COPY formulas at each step in the 
recursion is also linear in the size of G. The cost of each NOT and AND formula is 
fixed with respect to the representation of the literals, and the literals can be 
represented with a coat that is logarithmic in the size of G. 

The encoding may be computed in log-space, although the algorithm described 
above uses more than log-space, because of the work space required to save the 
set of variables that must be copied when encoding a conjunction. The encoding 
algorithm could be modified to make a number of passes over the input to 
determine the number of occurrences of each variable and generate the required 
number of COPY formulas. Each pass would use only log-space, and the remainder 
of the algorithm may be performed in log-space. 

2.4. Proof of PspAcE-hardness of MALL 

The main theorem is that for any closed QBF G, G is valid if and only if a(G) 
is a provable MALL sequent. The first set of lemmas demonstrates that the 
encoding of Boolean formulas works correctly. The second set of lemmas 
demonstrates that the Boolean quantifiers have been correctly encoded. 

If I is a truth value assignment for the Boolean variables Xi, . . . , X,, then Z is 
encoded as (I), where 

(Z) = (Xi),, . . . 3 (-&>l? 
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If Z is an assignment for a set of variables p, and X c F, then Z/X is the 
assignment Z restricted to the subset X, and by abuse of notation Z/M is 

Z/Var(M). The following lemma is stated without proof. 

Lemma 2.4. Given sets of variables x and F, and an assignment Z for _% U p, 
there is a deduction of the sequent k (I), COPYALL@ fl Y), r from the sequent 

k (Z/X), (Z/F), r. 

Lemma 2.5. Let M be a Boolean formula and Z an assignment for the variables in 
M, then 

(1) if I k M, then 1 (I), [Ml,, g, 

(2) iflfM, then I- (I), [Ml,, 8’. 

Proof. By induction on the structure of M, as follows. The cases in the proof 
correspond closely to those in the definition of [Ml,. 

Base case. M =X. Suppose Z(X) = T, then Z L M and (I) = xl. The following 
proof can then be constructed, expanding the definition of [Ml,: 

The case when Z(X) = F is similarly straightforward. 
Induction step. There are a number of cases here corresponding to the 

definition of [Ml,. We consider a typical case and leave the remaining ones to the 
reader. 

Let M = N A P, and suppose that Var(N) fl Var(P) # 0. Consider the case 
when Z/N k N and Z/P #P, so that Z # N A P. Expanding [Ml,, AND (a, b, g), and 
using Lemma 2.4, the following deduction can be constructed: 

t (Z/N), [NL a I- (ZIP), [f%, b* 
t-g, g l’ k (Z/N), (ZIP), (a @bb’), [N],, [Plb@ 

k (Z/N), (ZIP), (a @ bL @g), PI,, [plb, gLa @ 
t (Z/N), (Z/P), AND(a, b, g), [Nl,, [% g1 

1 (I), AND@, b, g), copyALL(Var(N) n Var(P)), [Nl,, [Plb, 8’ 
t (I), AND(a, 6, g)JI?coPYALL(Var(N) fl Var(P))Ip[N],%[P],, gl% 

Applying the induction hypothesis to Z/N, N and a, and to ZIP, P and b, we 
can establish that the remaining subgoals of the deduction are provable. 

The remaining subcases in the evaluation of N A P are similar, as are the 
remaining cases in the induction argument. 0 
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The next step is to establish the converse of Lemma 2.5. The classical 
interpretation of the MALL connectives may be used to give a relatively easy 
proof. In the classical interpretation, truth values, T and F, are assigned to the 
MALL atoms, A* is read as classical negation, A @ B and A&B are read as 
classical conjunction, and AD B and A @ B are read as classical disjunction. A 
sequent is interpreted as the classical disjunction of the formulas contained in it. 

Lemma 2.6. If k T is a provable MALL sequent, then for any assignment of truth 
values to the atoms in T, there exists a formula A in the sequence Z-such that A is 
true under the classical intepretation. 

Proof. The proof is by a straightforward induction on cut-free MALL proofs. 
Clearly, for axioms 1 x, xl, one of x or xl must evaluate to T in a given truth 
assignment. In the induction case, suppose that the last step in the proof of Tis a 
@-rule of the form 

By the induction hypothesis, the sequence B, & contains a formula AI, and the 
sequence C, r, contains a formula AZ, and both A, and A2 are true. If A, is 
different from B, then AI occurs in the conclusion sequent yielding the required 
A, and similarly, when A2 is different from C. Otherwise, the formula (B @I C) is 
(A, @I A2) and is hence true under the classical interpretation of @J as conjunc- 
tion. The induction arguments corresponding to the other connectives are 
similar. 0 

The main intuition behind Lemma 2.7 is that by appropriately assigning truth 
values to the literals in (I) and [Ml,, it is possible to mimic the evaluation of the 
Boolean formula M under I. Due to our use of one-sided sequents and the form 
of our encoding, there is exactly one truth value falsifying each formula in (I) 
and [Ml,. This assignment turns out to be the appropriate one, i.e., the value of g 
under this assignment is T exactly when Z k M. For example, if Z is {X +F} and 
M is 1X, then (Z) is x’ and [Ml, is (x 8 g) G3 (x’ 8 g’). The only falsifying 
assignment here is {x +F, g +T}. 

Lemma 2.7. Let M be a Boolean formula and Z be an assignment for the variables 
in M. There exists an assignment K of truth values to the atoms in (I) and [Ml, 
such that for every formula A in the sequence (I), [Ml,, assignment K falsifies A 
under the classical interpretation, and K(g) = T iff Z k M. 

Proof. The proof is by induction on the construction of [Ml,. Note that the 
induction is parametric in Z and g (I and g are universally quantified in the 
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induction hypothesis), so that when M = (N A P), the induction hypothesis on N 
has Z/N replacing Z and a replacing g, where a labels the output of N. 

Ruse case. M=X. Then [M],=(xL@g)C13(x@gL). If ZkX, then Z(X)=T 
and (I) = xl, and (Z) is falsified if K assigns T to x. [Ml, is falsified if K assigns 
T to g, and the second part of the conclusion, K(g) = T also follows. If Z #X, then 
Z(X) = F. Let K assign F to x and F to g to falsify both (I) and [Ml,. Then 
K(g) = F as required. 

Induction step. Observe first that the formula COPY(X) defined as 
(x 63 (x’%x’)) Cl3 (x’ C3 (xqx)) is classically false. 

When M =lN, the encoding [Ml, is NOT(U, g), [N],. By the induction 
hypothesis, we have an assignment K, falsifying (Z), [N], such that K,(a) = T, 
iff Z k N. Suppose K,(u) = T, and hence Z k N. The formula NOT(U, g) is (a @g) Cl3 
(al @g’). Let K be K,{g t F}. Since g does not occur in (Z) or [N],, K agrees 
with K, on (I), [N],. Th e assignment K also falsifies NOT(U, g), thus falsifying 
(I), [Ml,. Note that K(g) = F as required, since Z #M. 

If K,(u) = F, then Z lZ N. Letting K be K,{g +T} falsifies (I), [Ml,. 
When M = (N A P), then by the induction hypotheses for N and P, there exists 
(1) X1 falsifying (Z/N), [N], such that Ki(u) = T iff Z/N L N, and 
(2) K2 falsifying (Z/P), [Plb such that K,(u) = T iff Z/P k P. 

The encoding (I) is a sequence of literals such that no two distinct literals in (I) 

share a common atom. Since (Z/N) and (Z/P) are subsets of (I), there is no 
literal x such that x is in (Z/N) and XI is in (Z/P). Formulas [N], and [Plb have 
no atoms in common outside of those in (I). Then the union of the assignments 
K1 U K2, is still an assignment, i.e., it assigns a unique truth value to each atom in 

(Z), WI,, [% 
Suppose that K,(u) = T, and hence Z/N k N, and K,(b) = F, so that Z/P VP. Let 

K be (K, U K2){g *F}. Note that g does not occur in (I), [N]@ or [Plb so that K 
agrees with K1 on [N], and with K2 on [Plb. Each disjunct in AND(U, 6, g) 
expanded as 

(uC3bbgL) G3 

(aL@bL@g) G3 

(uC3bbIg) G3 

(uL@bbg) 

is falsified by K. As already observed, the COPY formulas are all classically false, 
and thus K falsifies (I), [Ml,. Since in this case, Z IN A P, the second part of the 
conclusion is also satisfied. 

The remaining cases are similar. q 

Lemma 2.8. Zf I ti an assignment for the variables in a given Boolean formula M, 

then 
(1) if k (I), [Ml,, g is provable, I tr M, 
(2) if 1 (Z), [Ml,, gl is provable, Z i# M. 



256 P. Lincoln et al. 

Proof. By Lemma 2.6, we know that if k (I), [Ml,, g is provable, then no 
assignment can simultaneously falsify (I), [Ml,, and g under the classical 
interpretation. By Lemma 2.7, we can find an assignment K which falsifies (I) 
and [Ml, such that K(g) = T iff Z I= M. Since K cannot also falsify g, K(g) = T and 
hence Z k M. 

Similarly, when t (I), [Ml,, g ’ is provable, we can, by Lemmas 2.6 and 2.7, 
find an assignment K such that K(g) = F and as a consequence, Z f M. 0 

Lemma 2.9. k (I), [Ml,, g is provable if Z != M. 

Proof. Follows immediately from Lemmas 2.5 and 2.8. •i 

So far, we have demonstrated the correctness of the encoding of the Boolean 
matrix of a given quantified Boolean formula. The remainder of the proof deals 
with the encoding of Boolean quantifiers. The next lemma states the crucial 
reason why the MALL encoding of quantifiers is faithful to the quantifier orderings. 
As observed in Section 2.2.2, the goal is to ensure that in any successful proof 
search, the ith quantifier encoding is reduced after,-i.e., above, the reduction of 
the (i + 1)st quantifier encoding in any cut-free proof. To achieve this, we need to 
argue that the key qi needed to unlock the ith quantifier encoding is only made 
available when the (i + 1)st quantifier encoding has been reduced. In order for 
the ith quantifier encoding, which has the form q: 8 Ui, to be reduced before the 
(i + 1)st quantifier encoding, a subgoal of the form k 41, r would have to be 
provable. The only occurrences of qi are in the subformula U,+l given by 

(qiDxi+l)o(q,qXil,l), where 0 may be either G3 or &. If Ui+l occurs in Z, then 
the only occurrences of qi in Z are as immediate arguments to a 4?. By exploiting 
the absence of an unrestricted weakening rule in MALL, it can be shown that in the 
absence of constants, kg:, Tis not provable when all of the occurrences of qi in Z 
appear as immediate arguments to 9. Therefore, regardless of whether Vi+, 
occurs in Z, the sequent k 41, Zwould not be provable, thus making it impossible 
to reduce the ith quantifier encoding below the (i + 1)st quantifier encoding in a 
cut-free proof. 

Lemma 2.10. Zf q is a positive or negative literal and the sequent t q, rcontains no 
constants, then C-q, r is provable only if either r = q1 or r contains at Least one 
occurrence of a subformula either of the form q L “A, or the form A oqL, where 0 
may be either %3, & or 63. 

Proof. We fix 0 to be either @3, & or @ for this proof. This proof is by induction 
on cut-free MALL proofs of t q, C In the base case, for a cut-free proof of depth 0, 
the sequent t q, r must be a MALL axiom, and Z = qL holds. 

In the induction step, hen in the given cut-free proof of l-q, r, the conclusion 
sequent is derived by an application of either a 8, & or a @3 rule, then at least 
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one premise must be of the form t q, A. We know by the induction hypothesis for 
the proof of l-q, A, either A = q1 or A either contains a subformula of the form 
qloA, or the form Aoq’. In either case, Z contains one of the forms, q1 0A or 
Aoql. 

If in the cut-free proof of kq, r, the conclusion sequent is derived by an 
application of the 43 rule, the premise sequent must be of the form F q, A, where A 
is not a single formula. Then by the induction hypothesis on the proof of kq, A, 
the sequence A must contain one of the forms, q’ 0A or A oql. Since every 
subformula of A is a subformula of Z as well, Z must also contain one of the 
forms qloA or Aoqi. 0 

The following lemma demonstrates the correctness of the MALL encoding of 
Boolean quantifiers. Each Qi in the statement below is either V or 3. 

Lemma 2.11 (Main induction). Let M be a Boolean formula in the variables 

XI,..., X,, then for any m, 0 6 m < n, and assignment I for X,,, , . . . , X,,, 
the relation Z k Q,X, * * . QIX, M holds iff the sequent t q,,,, (I), 

IIQrJm. . . QIXl Ml,, g is provable in MALL. 

Proof. The proof is by induction on m between 0 and n. Note that Z is universally 
quantified in the induction hypothesis. 

Base case +. Here m = 0. Then [Ml, = q; 03 [Ml,, and we can easily construct 
the following deduction of the required conclusion 1 qO, (lo), CM&, g: 

t-40, qoL1 t- (Z>, [Ml,> gB 

t (1)) qo, qci@ [Ml,, g 
The proof of the remaining subgoal F (I), [G],, g, follows from Lemma 2.5. 

Base case +. The deduction shown above is the only possible one in a cut-free 
proof of 1 (I), qo, qt 8 [Ml,, g since qt @ [G] is the only compound formula in 
the conclusion. So if t (I) qo, qt @ [Ml,, g is provable, by Theorem 2.1 it must 
have a cut-free proof containing a proof of t (I), [Ml,, g. By Lemma 2.8, we get 
ZkM. 

Induction step +. Assume O<m <II. Let G abbreviate Qm-lXm_l . . + 
Q,X, M. We must prove the lemma for Q,X,,,G. If Q,,, = 3, then 

UQmXm GL=(q~~((x,Dq,-,)~(x~~q,-,))), UGll,. 
If Z F 3X, G, then either Z, X,,, k G or Z, 1X, L G. In the former case, the 
following deduction of the required conclusion can be constructed: 
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Since (I, Xm) = (I), xh, the induction hypothesis can be applied to show that the 

remaining subgoal of the above deduction is provable. 
When I, 1X, b G, the proof construction only differs from the above one on 

the Cl3 rule corresponding to the quantifier encoding. 
If Q, = V, then 

Since Z k VX,,, G, it follows that I, X k G and I, 1X t= G. The following deduction 
can be constructed: 

t- qm, 42 
I- (0, &z, qm-1, UGllp g +), d-z> qm-1, iFI,, geL 

t (I), &r&z,-d& ~dS’q,-J), UGII,, g 
1 (Z)> an, (4; 8 ((xm%‘qm-1) W~;~qm-~))~ U’3g~ g 

~ 

Since (I, X,) is (I), xi and (Z,lX,) is (I), x,, the two remaining subgoals in 

the deduction are provable by the induction hypotheses. 
Induction step c$. This is the critical step in the proof. We are given that m > 0 

and that the conclusion sequent 1 qm, (I), nQmX, . + - QIXl MDg, g is provable. 
Theorem 2.1 can be applied to construct a cut-free proof of I- qm, (I), 

UQmL--0 QIXl M&, g. We show that this cut-free proof respects the quantifier 
ordering, i.e., the reduction of the encoding of QmX, occurs below any other 
step in the proof. 

It is easy to see that every formula in the multiset [Q,,,X,,, . . . QIX, ML is of 
the form q: @Ai, for 0 si Sm, with Ao= [Ml,, and Aj+l= ((xj+14?qj)~(xil,14? 
qj)). The connective written as 0 can be either & or 63. The formulas qf @ Ai are 
the only compound formulas in the conclusion sequent k qm, (I), 

UQwL -*. QIXl M],, g. From the MALL rules, it is clear that the only applicable 
reduction in a cut-free proof search would be an application of the @-rule. Hence 
for some k, we can partition the formulas other than qk C?l Ak in the conclusion 
sequent into Z and A to get a deduction of the conclusion sequent of the 
following form: 

Suppose for the sake of deriving a contradiction that k <m. Recall that there 
are no constants in the encoding. The formula qi+l C?I.A~+~ must either occur in r 
or A, and definitely not in both. Since the only occurrences of qk are within Ak+l, 
by Lemma 2.10, if qi+l @J’A~+~ occurs in A, then we cannot complete the proof 

t-q,,r. Thus We t3SSUU-E q;+l@&+l occurs in Z. It is easy to see by inspection 
of the form of Ak+l that the only occurrences of qk in A,,, have the form qk 0 &? 
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or the form B oqk, where 0 is either @,, & or 63. Therefore, again by Lemma 
2.10, l-q:, Tis not provable. 

Thus it follows that k #m. 
When k = m, we can apply Lemma 2.10 to infer that r= q,,,, since otherwise, 

Z would not contain any occurrences of q,,, as immediate arguments to 63, & or 
@. If Q,,, = 3, this yields the deduction 

For the same reason as before, the remaining subgoal cannot be reduced by 
applying the @rule to a formula qzAC3 Ai since all of the occurrences of qi remain 
as immediate arguments to 4?. The only possible reduction then is to ‘unwind’ the 
quantifler encoding for Q,X, as in the (+)-direction of the proof until qm_l is 
introduced as a sequent formula. If the left @reduction is applied in the given 
cut-free proof, we have 

t- (Z), -&l, q,-1, UQm-Ar-~ . . . Q&o Mlg, g B 

1 (I), (Xrn~qrn-A UQm-,Xn-, . . . QoXo Wig, g 

1 (I), (bn*qm-d @ (Xi~ar-A), ilQ,-,-K-, . . . Qo&Mlp gb 

Then by the induction hypothesis applied to the proof of the sequent 

t (Z), &I, qm-1, UQm-I&-I . . . Q&o Mllg, g 

we get Z, 1X, k Qm_lX,,_l * . * Q,X,, M, and hence Z k 3X,,, Qm-lXm_l . . . 

Q&-o ~4. 
The argument is similar when the right @-reduction is applied in the given 

cut-free proof. 
The proof when Q, = V is also similar. 0 

When m = n in Lemma 2.11, it follows that a closed QBF G is valid iff a(G) is 
provable in MALL. since o is a log-space encoding of a given QBF, the final result 
below follows immediately from Theorems 2.2 and 2.11. 

Theorem 2.12. MALL provabiliv is PsPAcE-complete. 

With two-sided sequents, the intuitionistic fragment of MALL constrains the 
right-hand side of the sequent to contain at most one formula. A two-sided 
reformulation of the above proof could be carried out entirely within the 
intuitionistic fragment of MALL, showing that intuitionistic MALL is also PSPACE- 

complete. 
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3. Propositional hear logic is undecidable 

In the previous section, the decision problem for MALL was shown to be 
PsPAcE-complete. We now show that if nonlogical (MALL) axioms are added to 
MALL, the decision problem becomes recursively unsolvable. We also show that 
nonlogical MALL axioms may be encoded in full propositional linear logic without 
nonlogical axioms, and thus we hve the result that full propositional linear logic is 
undecidable. 

The proof of undecidability consists of a reduction from the halting problem for 
a form of counter machine to a decision problem in linear logic. In more detail, 
we begin by extending propositional linear logic with theories whose (nonlogical) 
axioms may be used any number of times in a proof. We then describe a form 
of and-branching two-counter machine with an undecidable halting problem and 
show how to encode these machines in propositional linear logic with theories. 
Since the axioms of our theories must have a special form, we are able to show 
the faithfulness of this encoding using a natural form of cut-elimination in the 
presence of nonlogical axioms. To illustrate the encoding of two-counter 
machines, we present an example simulation of a simple computation in Section 
3.6. On first reading, the reader may wish to jump ahead to that section since it 
demonstrates the basic mechanism used in the undecidability proof. Also, the 
crucial cut-standardization step used in this section relies heavily on the 
cut-elimination procedure for linear logic without nonlogical axioms, first 
sketched by Girard in [15]. We give a very explicit proof of cut-elimination for 
full propositional linear logic in Appendix A, which some readers may find 
helpful to skim before continuing. 

The key to our encoding of an undecidable problem in linear logic is the 
combination of three powerful mechanisms: resource accumulation, arbitrary 
reuse and and-branching. In linear logic, FA, A is very different from I-A, and 
this allows us to represent counters in unary. Indefinitely reusable formulas such 
as ?(B-c C), (or axioms of the form F B*, C) may be used to implement machine 
instructions. Note that the ? operator is used here to indicate a reusable resource, 
since we are working with one-sided sequents. If we were to express an axiom as 
a formula on the left-hand side of the l- in a two-sided presentation of linear logic, 
we would use ! to express the unlimited potential for reuse of instructions. 

The operator & may be used to test a conjunction of properties of the 
simulated machine, such as whether a counter is zero, and if the rest of the 
computation can continue normally. Together this machinery is enough to encode 
recursively unsolvable problems in linear sequents. 

3.1. Overview 

l We de-fine linear logic theories, and prove a cut-standardization theorem for 
linear logic augmented with theories in Lemma 3.1. 
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l Using cut-standardization, we prove theories are sound and faithful to a pure 
linear logic translation in Lemmas 3.2 and 3.3. 
l We describe and-branching two counter machines, and note that their halting 
problem is unsolvable by reduction from standard two counter machines in 
Lemma 3.4. 
l We demonstrate an encoding of our automata into linear logic theories, and 
prove that the encoding is sound and faithful in Lemmas 3.5 and 3.6. 
l We present an example computation, showing the correspondence between the 
automaton and the (standardized) linear logic proof. 
l We combine these lemmas to obtain our main result in Theorem 3.7. 

3.2. Linear logic augmented with theories 

Essentially, a theory is a set of nonlogical axioms (sequents) that may occur as 
leaves of a proof tree. The use of theories described here is an extension of 
earlier work on multiplicative theories [21,33]. 

We define a positive literal to be one of the given propositional symbols pi. A 
negative literal is one of the pf symbols. An atomic formula is any positive or 
negative literal. 

For the theories of interest here, an axiom may be any linear logic sequent of 
the form tC,pt,pi,. . . , pif;, where C is a MALL formula (a linear logic formula 
without ! or ?) and the remainder of the sequent is made up of negative literals. 
For example, the sequents tp,, pi, I-(PI @PA P:, k (pl@pl) and FP:, pi may 
all be axioms. However, tp,, p1 and t (pl @pp2), p3 may not be axioms. We use 
this restriction on axioms to achieve strict control over the shape of a proof, as 
described in Lemma 3.1. Some of this control is lost if the definition of theory is 
generalized, although for some applications the weaker available results would be 
sufficient. 

Any finite set of axioms is a theory. We consider only finite theories so that 
theories may be encoded as formulas of linear logic. For any theory T, we say 
that a sequent l-r is provable in T exactly when we are able to derive l-r using 
the standard set of linear logic proof rules, in combination with axioms from T. 

Thus each axiom of T is treated as a reusable sequent which may occur as a leaf 
of a proof tree. For notational convenience, in the case that the axiom I- r occurs 
in the theory T, we will write 

A directed cut is one where at least one premise is an axiom 

r-C,P,:,Pi:, . . . , p,: in T, and C is the cut-formula in that axiom. We call any 
axiom premise of a directed cut where the cut-formula in that axiom is not a 
negative literal a principal axiom of that directed cut. By definition, all directed 
cuts have at least one principal axiom. A cut between two axioms is always 
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directed, and if the cut-formula of such a cut is nonatomic, that cut has two 
principal axioms. A directed or standardized proof is a proof with all cuts 
directed. 

When theories are added to linear logic the cut-elimination Theorem A.3 no 
longer holds, due to the added axioms which may participate directly in cuts. 
However, we do obtain the following result. 

Lemma 3.1. (Cut-standardization). If there is a proof of t r in theory T, then 
there is a directed proof of k r in theory T. 

Proof. We modify the cut-elimination procedure defined in Appendix A in two 
ways. First we alter the definition of degree to ignore the measure of directed 
cuts. Formally, we say that if a cut is directed, its degree is zero. Second, we 
modify the procedure given in Lemma A.1 to handle the extra cases brought 
about by the presence of axioms. We must allow all the reductions as stated in 
Appendix A to apply to the case when one of the premises is an axiom, but we 
need not introduce any truly novel reductions. 

We will follow the notation used in Appendix A, where Cut * is used to 
ambiguously refer to the Cut rule or the extra rule of inference introduced in the 
Appendix called Cut!. Also, we will define all the formulas which appear in an 
axiom to be principal in that application of the axiom. 

In Appendix A most of the reductions are given for some specific derivation 
versus any possible derivation. For example, all the nonprincipal cases are stated 
for any derivation of the ‘other’ hypothesis of Cut*. Similarly, the Identity and 
T rules are stated for any derivation of the ‘other’ hypothesis. We simply now 
state that even if the other derivation involves an axiom, the reduction still 

applies. 
For example, if the last rule applied in the left hypothesis is @, and the last 

rule in the right hypothesis is an axiom, we apply the following transformation: 

l-2, C FB, A,pi 

tC (C @ B), A, pi@ 
---T+ : 
kr,Pl kc, c 

FB, 4pi Wpl’ “, 

k B, A, r 

kZ,(C@B),A,r et tZ(C@B),A,r * 

This is simply a special case of the reduction given in Section A. 1.1. 
Also, as a second example, the reduction given for Identity is applicable even 

to the axiom case: 

Again, this is simply a special case of the reduction given in Appendix A. 
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As a third and final example of specializations of reductions given in the 
Appendix, the T rule also applies to axioms: 

This is also simply a special case of the reduction given in the Appendix. 
Now, some simple analysis is required to show that there are no new cases of 

principal cuts involving axioms. If the cut in question is already directed, the cut 
has degree zero, by our modified definition, and thus we are done. Otherwise, by 
definition of axiom we know that the cut-formula is a negative atomic literal. 
There are only two rules where an atomic literal may be principal: Identity and 
T. However, both of these cases are handled by existent reductions (restated 
above). One should also note that since any cut involving two axioms must be 
directed, we need not provide a reduction for that case. 

This completes the discussion of the modifications to Lemma A.1 necessary to 
handle nonlogical axioms. Fortunately, Lemma A.2 and Theorem A.3 then 
follow without modification (although the definition of degree has changed 
somewhat). 

Therefore, given any proof of a sequent t r in theory T, we can construct a 
directed proof of t Tin theory T. 0 

The cut-elimination procedure in Appendix A introduces a new rule of 
inference called Cut!. If we generalized axioms to allow ? and ! formulas in 
axioms, we would have to generalize the notion of directed proof to incude cases 
involving Cut!, and a post processing step would be required to transform all 
directed Cut!s into a sequence of contractions followed by a single directed Cut, 
or perhaps simply into a sequence of Cuts. In any event, our axioms are restricted 
to MALL formulas so that any cut involving an axiom is always an application of 
Cut, never of Cut!. 

3.3. Coding theories in formulas 

In the next few sections, we show that adding nonlogical axioms to MALL 

increases the difficulty of deciding if a sequent is provable from PSPACE to 
undecidable. However, we first show that adding nonlogical axioms to full 
propositional linear logic does not increase its expressive power, or the difficulty 
of its decision problem. To accomplish this we show how to encode nonlogical 
axioms in full propositional linear logic, and then prove that the translation is 
sound and faithful. 

We define the translation [T] of a theory T with k axioms into a multiset of 
pure linear logic formulas by 

[{r1, rz, . . * > t/c)1 = %I, m21, * . . 3 ?[h], 
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where [tJ is defined for each axiom ti as follows: 

kC>P,‘,Pbl,. a. ,p:] 4 (C43p,‘9pbl4& 4?p:y = (C’ Gopa @pb (8. - * @pz). 

Note that the pf’s are negative literals, and that since linear logic is commutative, 
we need not be concerned with the order of formulas in an axiom. Thus each 
axiom becomes a reusable formula, where the parity of the subformulas of the 
axiom have been inverted in the formula. 

Intuitively, it should be clear that for any theory T, the sequent k r should be 
provable in theory T if and only if 1 [T], r is provable without nonlogical axioms. 
However, due to the unusual nature of linear logic, we will present the proof in 
detail. 

Lemma 3.2 (Theory +). For any finite set of axio? T, k r is provable in theory T 
only if t- [T], r is provable without nonlogical axiom. 

Proof. Given some proof of t r in theory T, we have a linear logic proof tree 
with axioms of T at some leaves. For each leaf of the proof tree of the form I- A, 
where k A is some axiom ti, we replace that leaf with a small proof of 1 [T], A. 
This proof tree will be constructed from the proof tree for t- [ti], A, and then one 
application of dereliction leaves us with k ?[ti], r. Since each formula in [T] 
begins with ?, we may weaken in the remainder of [T], and thus with some 
number of weakening steps we have k [T], A. For example, if there are k 
axioms, and I- A is the axiom tl = kq:, (q2@a), then we know [tl] = q1 63 
(q$ 42 al). We then perform the following transformation: 

k ?[hl, ?[t21, . . . , +[&-I], qk, (q2 C3 a):: 

t[Tll st, (q2@aa) ’ 

For each leaf sequent which was originally an application of identity, we 
weaken in all the ?[ti] formulas: 

tPi,Pf’ * 
t ?[tIl, Pi, Pl Iw 

b?[tll, ?[t2], pi, pb,& 
. 
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We then continue by adding [T] to every sequent in the entire proof tree. At 
every application of 8 and Cut, we extend the proof tree with an extra copy of 
the conclusion sequent of the binary rule, to which we add an extra copy of [T]. 
Then we extend the proof further, adding one contraction step for each ?[ti] 
between that sequent and the original conclusion of that binary rule: 

t-Z,A 

f-2, (A 

IB, A 

GOB), A@ 

t [Tl, Z A IPI, B, Aa 
k [Tl, 2: (A 8 B), A, [Tllc 

3 

t [T], 2, (A ‘23 B), A” 

Thus we have given a construction which builds a proof of t- [T], r without any 
nonlogical axioms from a given proof of t r using axioms from T. q 

Lemma 3.3 (Theory +). For any finite set of axioms T, k r is provable in theory 

T if k [T], r is provable without nonlogical axioms. 

Proof. For each axiom ti = t C, p,‘, pk, . . . , p:, we may prove !([tj]‘) = 

!(c??p:;Qp;D.. * %p:) by several applications of B and one application of !S, 
as follows: 

tC,P:>PL~P~T 
9 

k(C%P,‘), Pbl, . . . 9 Pzg 

1 (C4?p,‘4?p,‘), . * . , p:, 

By cutting this proof against a given proof of I- [T], r, we obtain a proof of 
t [T - {ti}], r, where T - { ti} is the multiset difference of T and {ti}: 

b !([&) t [zj, r 

1 [{t1, . . . , tk--l)lr ut 

k !&I') 

t ml9 k ml), ml), r 
t- ml), r 

cut 

kr 
cut 

Thus by induction on the number of axioms, we can derive I- r in theory T. ci 

We have just shown how a decision problem for MALL with the addition of 
nonlogical axioms may be encoded in full propositional linear logic without 
nonlogical axioms. Thus the upcoming proof of undecidability of MALL with 
nonlogical axioms will yield undecidability for full propositional linear logic. 
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3.4. And-branching two-counter machines without zero-test 

In this section we describe nondeterministic two-counter machines with 
and-branching but without a zero-test instruction. We show that these machines 
have a recursively unsolvable halting problem, and then we will show how the 
halting problem for these machines may be encoded as a decision problem in 
MALL, with nonlogical axioms corresponding to the machine instructions. 

The machines described here are similar to standard two-counter machines 
except for the lack of an explicit zero test transition, and the addition of ‘fork 
transitions. Intuitively, Qj Fork Qi, Q, is an instruction which allows a machine in 
state Qj to continue computation from both states Qj and Qk, each computation 
continuing with the current counter values. For brevity in the following proofs, 
we emphasize two-counter machines. However, there is no intrinsic reason to 
restrict the machines to two counters. All of our arguments and results generalize 
easily to N counters, for N 32. Formally, an And-Branching Two-Counter 
Machine Without Zero-Test, or ACM for short, is given by a finite set Q of states, a 
finite set 6 of transitions, and distinguished initial and final states Qr and Qr, as 
described below. 

An instantaneous description, or ID, of an ACM M is a finite list of ordered 

triples (Q,, A, B), where Q2i E Q, and A and B are natural numbers, each 
corresponding to a counter of the machine. Intuitively, a list of triples represents 
a set of machine configurations. One may think of an ACM state as some sort of 
parallel computation which terminates successfully only if all its concurrent 
computation fragments terminate successfully. 

We define the accepting triple as (Qr, 0,O). We also define an accepting ID as 
any ID where every element of the ID is the accepting triple. That is, every 
and-branch of the computation has reached an accepting triple. We say that an 
ACM M accepts from an ID s if and only if there is some computation from s to an 
accepting ID. It is essential for our encoding in linear logic that both counters be 
zero in all elements of an accepting ID. 

The set 6 may contain transitions of the following form: 

(Qi Increment A Qj) taking 

(Qi, A, B) to (Qj, A + 1, B), 
(Qi Increment B Qj) taking 

(Qi, A, B) to (Qj, A, B + I>, 
(Qi Decrement A Qj) taking 

(Qi, A + 1, B) to (Qj, A, B), 
(Q, Decrement B Qi) taking 

(Qi,AJ+l) to (Q~,A,B), 
(Q, Fork Qj, Qk) taking 

(Qi, A, B) to ((Qj, A, B), (Q/c, A, B)), 
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where Qi, Qj and Qk are states in Q. The Decrement instructions only apply if the 
appropriate counter is not zero, while the Increment and Fork instructions are 
always enabled from the proper state. 

For example, the single transition Qi Increment A Qj takes an ACM from ID 

{ . . . ) (Qi, A, B), 1 . .} tO ID {a . . 7 (Qj, A + 1, B), . . .}e 

3.4.1. Two-counter machines 

Standard two-counter machines have a finite set of states Q, a finite set of 
transitions 6, a distinguished initial state Q,, and a set of final states F [24,38]. 

An instantaneous description of the state of a two-counter machine is given by a 

triple (Qi, A, B), which consists of the current state, and the values of two 
counters, A and B. The transitions in 6 are of four kinds: 

(Qi Increment A Qj) taking (Qi, A, B) to (Qj, A + 1, B), 

(Qi Increment B Qj) taking (Qit A, B) to ( Qj, A, B + l), 

(Qi Decrement A Qj) taking (Qi, A + 1, B) to (Qj, A, B), 

(Qi Decrement B Qj) taking (Qi, A, B + 1) to (Qj, A, B), 

(Qi Zero-Test A Qj) taking (Q;, 0, B) to ( Qj, 0, B), 

(Qi Zero-Test B Qj) taking (Qi, A, 0) to (Qj, A, 0). 

A two-counter machine accepts if it is able to reach any one of the final states in 
the set F with both counters at zero. It is important that these machines have a 
Zero-Test instruction since the halting problem becomes decidable otherwise, by 
obvious reduction to the word problem in commutative semi-Thue systems, which 
is decidable [35]. Since Zero-Test is the most difficult to encode in linear logic, we 
concentrate on a machine with and-branching, which provides a basic mechanism 
powerful enough to simulate Zero-Test, but which is more easily simulated in 
linear logic. 

Using two-counter machines, we show that ACMS have an undecidable halting 
problem. 

Lemma 3.4. It is undecidable whether an and-branching two-counter machine 

without zero-test accepts from ID { ( Qr, 0, 0) }. Th is remains so if the transition 

relation of the machine is restricted so that there are no outgoing transitions from 

the jinal state. 

Proof. Since ACMS may simulate zero-test with and-branching, ACMS are 
sufficiently powerful to simulate two-counter machines, for which the halting 
problem is known to be recursively unsolvable [30,38]. We will give a 
construction from standard two-counter machines to ACMS, and argue that the 
construction is sound and faithful. This construction and the proof of its 
soundness is routine, and its steps should be familiar to anyone versed in 
automata theory. In our simulation of the test for zero instruction of two-counter 
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machines, we make essential use of the fact that all branches of computation 
terminate with both counters set to zero. 

Given a nondeterministic two-counter machine M we first construct an 
equivalent two-counter machine M' with a unique final state Qr which has no 
outgoing transitions. One simply adds two new states, Q, and Qr to M', and for 
each Qf E F of M, one adds the instructions (Qf Increment A Q,) and 
(Q, Decrement A Qr). Note that one may simply look at these new transitions 
as a single nondeterministic step from each old final state to the new (unique) 
final state, which has no outgoing transitions. However, since there is no general 
‘silent’ move, we make the transition in two steps. 

We claim wihout proof that M and M' accept the same set of input values, and 
are therefore equivalent machines. 

From a nondeterministic two-counter machine M' with unique final state 
without out-going transitions, we construct an ACM M" as follows. The ACM M" 
will have the same set of states, and same initial and final states as M'. The 
transition function of 44” is built by first taking all the Increment and Decrement 

instructions from the transition function of M'. We then add two new states to 
M”, Z, and Zg, which are used to test for zero in each of the two counters. For 
Z,, we add two instructions, (Z, Decrement B Z,), and (Z, Fork QF, QF), to 
the transition function of M". Similarly for Zg, we add (Z, Decrement AZ,), 
and (Z, Fork QF, QF). Then for each Zero-Test instruction of M' of the form 

(Qi Zero-Test A Qj) 

we add one instruction to M": 

(Qi Fork Qj7 Z,J. 

An important feature of M" is that once a zero testing or final state is entered, 
no configuration of that branch of computation may ever leave that set of states. 
More specifically, where M' would test for zero, M" will fork into two ‘parallel’ 
computations. One continues in the ‘same’ state as M' would have if the 
Zero-Test had succeeded, and the other branch ‘verifies’ that the counter is 
indeed zero. While the second branch may change the value of one of the 
counters (the counter which is not being tested), this cannot affect the values of 
the counters in the ‘main’ branch of computation. Further, the zero-testing 
branch of computation never enters any states other than zero-test states or the 
final state. This holds because there are no outgoing transitions from the final 
state whatsoever, and the only transitions from the two zero-testing states either 
loop back to that state or move directly to the final state. Also note that any 
branch of an ACM M" computation which arrives at the state Z, may be part of a 
terminating computation if and only if the counter A is zero when the machine 
reaches that state. This can be seen by observing that once arriving in Z, , there is 
no possibility of modifications to the counter A. The Decrement B transition from 
Z, to itself allows M" to loop and decrement the counter B arbitrarily. In 
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particular it is possible for B to be decremented to the value 0. Since QF has no 
outgoing transitions, the Fork instruction which moves from 2, to QF and Qr 
allow this branch of computation to terminate correctly if and only if both 
counters are zero when it is executed. Since we are considering nondeterministic 
ACMS, it is possible for a branch of computation which reaches 2, to terminate if 
and only if the A counter is zero when it reaches 2,. Similarly, any branch of 
computation reaching ZB reaches an accepting ID if and only if the B counter is 
zero. 

We claim that there is a halting computation for the given two-counter machine 
M’ if and only if there is one for the constructed ACM M". This is proven by two 
simulations. 

The and-branching machine M” may mimic the original two-counter machine in 
the performance of any instruction, by following any Increment of M’ with the 
corresponding Increment instruction, and a Decrement with the corresponding 
Decrement. When M’ executes a Zero-Test A instruction, M” forks off an 
and-branch which verifies that the counter A is in fact zero, and the other branch 
continues to follow the computation of M’. 

For the converse simulation, there is always at most one and-branch of any M” 
computation which corresponds to a nonfinal, nonzero-testing state in the original 
machine. There may be many and-branches of the computation which are in 
states Z,, Z, and QF, but at most one and-branch is in any other state. Thus, M’ 

may mimic M” by following the branch of ACM computation which does not enter 
Z,, Z, or QF until the final step of computation, when it enters QF. For every 
Increment and Decrement instruction in the accepting computation of M”, M’ 

may perform the corresponding instruction. Every Fork instruction executed by 
M” from a nonfinal, nonzero-testing state corresponds to a Zero-Test instruction 
in M’, and by the above observation, if M” forks into state Z,, then M” accepts 
only if the counter A is zero (and similarly for ZB and the counter B). Since we 
are assuming an accepting M” computation, we know that M’ may execute the 
corresponding Zero-Test instruction successfully. 0 

3.5. From machines to logic 

We give a translation from ACMS to linear logic with theories and show that our 
sequent translation of a machine in a particular state is provable in linear logic if 
and only if the ACM halts from that state. In fact, our translation uses only MALL 

formulas and theories, thus with the use of our earlier encoding, Lemma 3.2 and 
Lemma 3.3, we will have our result for propositional linear logic without 
nonlogical axioms. Since an instantaneous description of an ACM is given by a list 
of triples, it is somewhat delicate to state the induction we will use to prove 
soundness. 

We have already seen how the linear connective & may be used to achieve 
and-branching in the proof of PsPAcE-completeness of MALL. We now make use of 
that, along with some other machinery, to simulate ACM computations. 
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Given an ACM M = (Q, 6, QI, QF) we first define a set of propositions: 

{qi 1 Qi E Q> u id 1 Qi E Q> u ia, al, b, bl). 

We then define the linear logic theory corresponding to the transition relation 6 
as the set of axioms determined as follows: 

Qi Increment A Qi H l- qzA, (qj ~ a), 

Qi Increment B Qj H kqt, (qj 8 b), 

Qj Decrement A Qi I-+ t-qf, ui, qj, 

Qi Decrement B Qj * l-q:, bl, qj, 

Qi Fork Qj, Qk w 1 qf, (qj @ qk)- 

Using linear implication, the (Q, Increment B Qj) transition may be viewed as 
1 qi-o (qj @ b), i.e., from state Qi, move to state Qj and add one to counter B. 
The other axioms in this translation may also be viewed in this way. 

We will write C” to indicate a sequence of n C’s, separated by commas, as 
follows: 

Since pl is an atomic symbol, the notation p A3 will be used for (p’)“, which is 
simply pl, p’, p’. 

Given a triple (Qi, X, y) of an ACM, we define the translation O( ( Qi, X, y)) by 

e((Q,, x, y )) e t- 41, al=, bl’, qF* 

Thus all sequents which correspond to ACM triples have exactly one positive literal 
qr, some number of u’s, and b’s, the multiplicity of which correspond to the 
values of the two counters of the ACM in unary, and exactly one other negative 
literal, which corresponds to the state of the ACM. 
The translation of an ACM ID is simply the set of translations of the elements of 

the ID: 

O({&, L . . . , K,,)) = {W-M, W%), . . . , WZ,,)). 

We claim that an ACM M accepts from ID s if and only if every element of O(s) is 
provable in the theory corresponding to the transition function of the machine. 
We prove each half of this equivalence in separate lemmas. 

Lemma 3.5 (Machine +). An and-branching counter machine M accepts from 
ID s only if every sequent in O(s) is provable in the theory derived from M. 

Proof. Given a halting computation of an ACM machine M from s we claim we 
can build a proof of every sequent in e(s) in the theory derived from M. 
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M accepts from s only if there is some finite sequence of transitions from this 
ID to an accepting ID. We proceed by induction on the length of that sequence of 
transitons. 

If there are no transitions in the sequence, then by the definition of accepting 
ID, s consists entirely of (Q,, 0,O). We must show that the sequent 

tq;, aL0, bL’), qF 

is provable in linear logic. This is immediate: we have 0 A’s and 0 B’s, that is, 
none at all. Thus by one application of identity per sequent t qk, qF, we have our 
proof. 

If there is at least one transition in the sequence, we have to show that e(s) is 
provable. Since M accepts from ID {. . . ( Qi, A, B ). . . }, and there is at least one 
transition in the sequence, we know that there is some transition in M such that 
ID+ ID’, and M accepts from ID’. We assume by induction that there is a linear 
logic proof which corresponds to the accepting computation for ID’. 

We now perform case analysis on the type of transition. There are five different 
types of instructions: Increment A or B, Decrement A or B, and Fork. Since the 
two increment and two decrement instructions are nearly identical, we will 
concentrate only on the cases concerning the counter A. 

Qi Increment A Qj. In this case, the first step in the halting computation has 
the form 

{. . . (Qi, A, B) . . e} + {. . . (Qj, A + 1, B) . . e}. 

We assume by induction that we have a proof of O(( Q,, A + 1, B)) = 
kqf, al*+‘, b”, qF. We extend this proof into a proof of e((Q,, A, B)) = 
tq/, aLA, b’“, qF by adding a cut with an axiom, as follows: 

t qf, al*+‘, bLB, qF 
4? 

l-(qt4?a’), aLA, bLa, qF 

kqf, dA, bLB, qF 
Cut 

Note that the axiom t qk, (q, C3 a) is precisely the translation of the transition 
taken by the machine, and therefore is an axiom of the theory. 

Qi Increment B Qi. Analogous to above. 
Qi Decrement A Qj. Since the A counter of the machine must be positive for 

this instruction to apply, we know that the halting computation begins with the 
transition 

{...(Q,,A+l, B)...} --, {... (Qj,A,B)...}. 

We assume by induction that we have a proof of tqf, aLA, bl”, qF. As in the 
Increment A case, we extend this to a proof of tqf, aLA+‘, bLe, qF by adding a 
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cut with the axiom corresponding to the transition taken by the machine: 

k 91, a’, 9jT t- qf, aLA, bLB, qF 

b q/, aLA+‘, bLB, qF 
cut 

Qi Decrement B Qj. Analogous to above. 
Qi Fork Qj, Qk. Here, the halting computation begins with the step 

i.. . (Qi, A, B). 

We assume by induction 

k q:, alA, bl”, qF, and we 

- .T 

. . > + {. . . (Qj, A, B), (Qk,A, B) *. ->- 

that we have a proof of kqf, aLA, bLB, qF, and of 
extend those proofs into a proof of 1q1, a II, b Is, qF: 

I-qf, aLA, bl”, qF 1 qkl, a? bL”, qF 

k4?, (qj@qk) t (4; &qkl), aLA, b’“, qF 

& 

i-q:, aLA, bLs, qF 
cut 

Here t q:, (qj CB qk) is the axiom which corresponds to the fork instruction. 0 

Lemma 3.6 (Machine +). An and-branching counter machine M accepts from 
ID s if every sequent in the set O(s) is provable in the theory derived from M. 

Proof. Given a set of proofs of the elements of O(s) in the theory derived from 
M, we claim that a halting computation of the ACM M from state s can be 
extracted from those proofs. We achieve this with the aid of the cut- 
standardization Lemma 3.1, which in this case leaves cuts in the proof only where 
they correspond to applications of ACM instructions. We may thus simply read the 
description of the computation from the standardized proof. 

By Lemma 3.1, it suffices to consider standardized proofs. We show that a set 
of standardized proofs of O(s) may be mimicked by the ACM M to produce an 
accepting computation from state s. 

This proof is by induction on the sum of the sizes (number of proof rules 
applied) of standardized proofs. Since an ACM state is given by a finite set of 
triples, and all proofs are finite, we know that this measure is well founded. We 
assume that any smaller set of proofs which all end in conclusions which 
correspond to a triple ( Qi, A, II) can be simulated by machine M. 

We consider the proof of a single element of O(s) at a time. 
Ifs = {. . . (Qi, x, y) . . .}, then O(s) = {. . . tqf, aLI, bLY, qF. . .}. 

We assume that we are given a proof of each element of the set O(s), and we 
analyze one of the proofs, all of which end in a conclusion corresponding to a 
machine triple (Qi, X, y ): 



Decision problems for propositional linear logic 273 

Since this sequent is simply a list of atomic propositions, the only linear logic 
rules which can apply to any such sequent are identity, some axiom, and cut. 

Identity is only applicable when both x and y are zero, and qi = qF. In this case, 
t qk, qF already corresponds to the accepting triple ( Qr, 0,O). 

The only axioms which are identical to a sequent in 0(s) are those which 
correspond to some 6 which is a decrement instruction that ends in qF. In this 
case, since each decrement axiom in [a] contains exactly one occurrence of al or 
bl,x=landy=O,orx=Oandy=l.Ineithercase,the~~~machineMneed 
only perform the decrement instruction 6, and this branch of computation 
reaches an accepting triple. 

The final possibility is cut, and by our standardization procedure, we know that 
one hypothesis of that cut is an axiom from the theory derived from M, and 
furthermore that the cut-formula in that axiom is not a negative literal. 

Since there are only five types of instructions in an ACM, Increment A or B, 
Decrement A or B, and Fork, there are only five different types of axioms in a 
theory derived from any ACM M. We now perform case analysis on the type of 
axiom that was last applied in a proof. 

t-q:, (qj 8 a): If the last axiom applied is of the form t q:, (qj 8 a), then it 
corresponds to an Increment A instruction, and by standardization we know the 
cut-formula must be (qj CB a) in the axiom, and that the proof must look like 

Since each other linear logic rule besides 4?, cut, identity or axiom introduces 
some symbol which does not occur in t (qf D al), aLx, b I’, qF, the derivation of 
this sequent must end in one of these rules. Furthermore, there are two formulas 
in this sequent which are not negative literals, so this sequent is not derivable 
using only an axiom. Identity could not lead to this sequent, since the sequent 
contains a nonatomic formula. By our standardization procedure, we know that 
each cut must involve an axiom from the theory, and the cut-formula in the axiom 
is not a negative literal. Inspecting the various types of axioms in the theory 
derived from M, we see that all axioms contain one top level negative atomic 
formula q: for some i. Since qf cannot be a directed cut-formula in a principal 
axiom, it must appear in the conclusion of that application of cut. However, there 
is no such top level qi in the sequent in question. Thus this sequent may only be 
derived by the application of the 4? rule. Therefore, we know the derivation must 
have the form: 

tqf, &=+I, bl’, qF 

k(q,%aL),UL', bL’, qF 
42 

t q,+, aI=, bl’, qF 
cut 
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We know that the proof of I- qf , aLx+‘, bLY, qF may be simulated by the ACM by 
induction, since it is the sequent O(( Qj, x + 1, y )), which corresponds to the 
triple (Qj, x + 1, y ), and has a proof in linear logic of smaller size. 

Therefore the machine M may emulate this proof by performing the ACM 

instruction corresponding to the axiom used (in this case an Increment A 
instruction), and then continuing as dictated by the inductive case. 

k qf, (qj C3 a): Analogous arguments apply. 
kqk, a’, qi: If the last axiom applied is l-q:, a’, qi, which corresponds to a 

Decrement A instruction, then by standardization we know the cut-formula must 
be qj in the axiom, and that the proof must be of the form 

t qf, dx, bl', qF 

kqf, &+‘, bl', qF 
cut 

By induction, the proof of 1 qf, a”;, bl’, qF can be simulated, since it is the 

sequent e((Qj, x, y)), which corresponds to the triple (Qj, X, y ), and has a 
shorter proof in linear logic. 

Therefore the machine M may emulate this proof by performing the ACM 

instruction corresponding to the axiom used (in this case a Decrement A 
instruction), and then continuing as dictated by the inductive case. 

tqf, al, qj: Analogous arguments apply. 
t qf , (qj Cl3 qk): If the last axiom applied is t qf , (qj C3 qk), which corresponds 

to a Fork instruction, then by standardization we know the cut-formula must be 
(qj Cl3 q,J in the axiom, and that the proof must look like 

t- (4; &I:), al’;, bLY, qF ut 

kq,+, dx, bl”, qF 

Since each other linear logic rule besides &, cut, identity or axiom introduces 
some symbol which does not occur in t (qf & qk), aLx, bl’, qF, the derivation of 
this sequent must end in one of these rules. Furthermore, there are two formulas 
in the sequent which are not negative literals, so this sequent is not derivable 
using only an axiom. Identity could not lead to this sequent, since the sequent 
contains a nonatomic formula. By our standardization procedure, we know that 
each cut must involve an axiom from the theory, and the cut-formula in the axiom 
is not a negative literal. Inspecting the various types of axioms in the theory 
derived from M, we see that all axioms contain one top level negative atomic 
formula qk for some i. Since qf cannot be the cut-formula in a principal axiom of 
a directed cut, it must appear in the conclusion of that application of cut. 
However, there is no such top level qi in the sequent in question. Thus this 
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sequent may only be derived by the application of the & rule. Thus we know the 
derivation to be of the form: 

kg,+, aI’, bl’, qF tq:, aLx, bLY, qF 

t (qf & q:), aLx, bL’, qF 

& 

tq;, flLx, b”, qF 
cut 

The proofs of l-q:, a’=;, b”, qF and l-q:, aL”, bLY, qF can be simulated on the 
machine by induction, since one is a sequent which corresponds to the triple 
( Qi, X, y ), the other corresponds to ( Qk, X, y ), and each has a proof in linear 
logic of smaller size. 

Therfore the machine M may emulate this proof by performing the ACM 

instruction corresponding to the axiom used (in this case a Fork instruction), and 
then continuing as dictated by the two inductive cases. •! 

From Lemmas 3.2-3.6, we easily obtain our main result: 

Theorem 3.7. The provability problem for propositional linear logic is recursively 
unsolvable. 

As mentioned earlier, linear logic, like classical logic, has an intuitionistic 
fragment. Briefly, the intuitionistic fragment is restricted so that there is only one 
positive formula in any sequent. In fact, the entire construction above was carried 
out in intuitionistic linear logic, and thus the undecidability result also holds for 
this logic. 

In any theory derived from an ACM M, there is only one positive formula in any 
theory axiom. Also, throughout a directed proof of O(S) in such a theory, the 
only positive atom which appears outside a theory axiom is qF. Thus any directed 
proof of O(s) in a theory derived from M is in the intuitionistic fragment of linear 
logic, and along with a conservativity result not proven here, we have the 
following corollary. 

Corollary 3.8. The provability problem for propositional intuitionistic linear logic 
is recursively unsolvable. 

In the proof of this corollary we make use of the conservativity property of full 
linear logic over the intuitionistic fragment for any sequents occuring in a directed 
proof of a translation of an ACM machine configuration. This conservativity is a 
weaker property than full conservativity since sequents in such a directed proof 
have a special form. In particular, they have no constants, and the right-hand side 
is always a single formula. 
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3.6. Example computation 

This section is intended to give an overview of the mechanisms we have defined 
above, and lend some insight into our undecidability result, stated above. We 
present a simple computation of an ordinary two-counter machine with zero-test 
instruction, a corresponding ACM computation, and a corresponding linear logic 
proof. 

Repeating from the Introduction, a key insight is that searching for a directed 
proof of a linear logic sequent in a theory is analogous to searching for an 
accepting ACM computation. A successful search is exactly an accepting 
computation. 

Suppose the transition relation 6 of a standard two-counter machine with 
zero-test consists of the following: 

6, ::= Q, Increment A Q2, 

& :: = Q3 Decrement A Qr, 

a3 ::= Q2 Zero-Test B Q,. 

The machine may perform the following transitions, where an instantaneous 
description of a two-counter machine is given by the triple consisting of Qi, the 
current state, and the values of counters A and B: 

<QI,% 0) -% (Qa l,O> 63 (Qs l,O> 62 (QF,~, 0). 

This computation starts in state Qr, increments the A counter and steps to state 
Q2. Then it tests the B counter for zero, and moves to Q3, where it then 
decrements the A counter, moves to Qr, and accepts. 

The transition relation 6 may be transformed into a transition relation 6’ for 
any equivalent and-branching two-counter machine without zero-test. The mod- 
ified relation 6’ (shown on the left below), may then be encoded as a linear logic 
theory (shown on the right): 

Transitions Theory Axioms 
6; ::= Qr Increment A Q2 k 4:, (42 @ a), 

a;::= Q3 Decrement A QF kq:, a’, qF, 

6; ::= Q2 Fork ZB, Q3 k 4:, h3 @ q3h 

a;::= zB Decrement A Zb Fzj$, al, zB, 

S; :: = ZB Fork QF, QF k zih (qF @ qFb 

Notice how the first two transitions (6, and 6,) of the standard two-counter 
machine are preserved in the translation from 6 to 6’. Also, the zero-test 
instruction ~3~ is encoded as three ACM transitions- 64, S; and S;. The transition 
6; is a fork to a special state Zs, and one other state Q,. The two extra 
transitions 6; and Sk force the computation branch starting in state ZB to verify 
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that counter B is zero. Given the above transitions, the and-branching machine 
without zero-test may then perform these moves: 

{(Qr,O,O>> -% {(Qz, l,O)) -% {(Z,, 1, O), (Qj, I, 0)) 

-% {(Z,,O,O), (Q,, LO)} 6; {(QF,O>O), (QF>O,O), (Q,, l>O)) 

Note that an instantaneous description of this and-branching machine is a list of 
triples, and the machine accepts if and only if it is able to reach (Qr, 0,O) in all 
branches of its computation. This particular computation starts in state Qr, 
increments the A counter and steps to state Q2. Then it forks into two separate 
computations; one which verifies that the B counter is zero, and the other which 
proceeds to state Q3. The B counter is zero, so the proof of that branch proceeds 
by decrementing the A counter to zero, and jumping to the final state Qr. The 
other branch from state Q3 simply decrements A and moves to QF. Thus all 
branches of the computation terminate in the final state with both counters at 
zero, resulting in an accepting computation. 

The linear logic proof corresponding to this computation is displayed in Figs. 
3.1 and 3.2, and is explained in the following paragraphs. In these proofs, each 
application of a theory axiom corresponds to one step of ACM computation. We 
represent the values of the ACM counters in unary by copies of the formulas ai 
and bL. In this example the B counter is always zero, so there are no occurrences 
of bL. 

The proof shown in Fig. 3.1 of 1z$, al, qF in the above linear logic theory 
corresponds to the ACM verifying that the B counter is zero. Reading the proof 
bottom up, it begins with a directed cut. The sequent tzi, qF is left as an 
intermediate step. The next step is to use another directed cut, and after 
application of the & rule, we have two sequents left to prove: t-q;, qF and /-qi, 

qF. Both of these correspond to the ACM triple (Qr, 0,O) which is the accepting 
triple, and are provable by the identity rule. If we had attempted to prove this 
sequent with some occurrences of b L, we would be unable to complete the proof. 

The proof shown in Fig. 3.2 of t q:, qF in the same theory demonstrates the 
remainder of the ACM machinery. The lowermost introduction of a theory axiom, 

Fig. 3.1. Zero-test proof. 
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Fig. 3.2. Proof corresponding to computation. 

cut and D together correspond to the application of the increment instruction 6;. 
That is, the qf has been ‘traded in’ for q: along with uL. The application of a 
directed cut and & correspond to the fork instruction 6; which requires that both 
branches of the proof be successful in the same way that and-branching machines 
require all branches to reach an accepting configuration. The elided proof of 
k ti, al, qF appears in Fig. 3.1, and corresponds to the verification that the B 
counter is zero. The application of cut and identity correspond to the final 
decrement instruction of the computation, and complete the proof. 

4. Noncommutative propositional linear logic 

The following may be called the unrestricted exchange rule: 

Since sequents are treated as multisets of formulas in linear logic, the E rule is 
implicitly present in full linear logic. This structural rule allows sequents to be 
permuted arbitrarily, making linear logic a commutative logic. More specifically, 
k(A@B)-o(BC3A) is d erivable in linear logic using exchange, as are the 
analogous sequents for all the other binary connectives of linear logic (%, @, 8~). 
Since sequents are considered to be implicitly commutative, the E rule does not 
explicitly appear in proofs or lists of proof rules for linear logic. However, the 
absence of the E rule (treating sequents as I& of formulas) drasticly alters the set 
of provable sequents in linear logic. In fact, without the exchange rule, 

t-(A@3B)-o(BC3A) is not derivable. Thus the E rule forces 63) (and other 
connectives) to be commutative. 

Noncommutative propositional linear logic is linear logic where the unrestricted 
exchange rule is omitted, or equivalently, where sequents are treated as being 
lists instead of multisets. This entire family of logics is quite speculative, ad hoc, 
and most formulations are original to this paper. Thus one should not take too 
seriously any of the results of this section. 

The family of noncommutative linear logics may be derived from linear logic by 
treating sequents as [tits of formulas, instead of multisets. Thus the order of 
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formulas in a sequent becomes important. However, the immediate resulting 
system is unsatisfying in that the reusable formulas (those marked by ?) are 
exactly the ones which can be contracted and weakened in linear logic, and thus 
should be permitted the freedom of exchange, even in the noncommutative 
versions of linear logic. 

There are a whole family of logics which could result from various additions of 
restricted exchange to noncommutative linear logic. The main point of difference 
within this family is the exact formulation of the rules of inference. However, 
most members of this family of logics have an undecidable provability problem. 

In fact, the multiplicative and reuse operators are sufficient to encode 
undecidable problems in most of these logics. In other words, the constants and 
additive connectives are not necessary in order to simulate a Turing machine in 
noncommutative linear logic, although they appear to be necessary in (commuta- 
tive) linear logic. Below we present the detailed proof of undecidability for a 
particular logic we will call NCL, which is actually the multiplicative and reuse 
fragment of a member of the noncommutative linear logic family. 

Yetter [42] has also studied a variant of noncommutative linear logic. In his 
work, he considered a system with two new modalities, k and K, which are 
related to ? and !. The k modality essentially marks those formulas which are free 
to be permuted, despite the noncommutativity of the logic in general. The 
reusable formulas (marked with ?) are allowed to permute, but are also allowed 
the freedom of contraction and weakening, while the k and K formulas are not. 
We find no compelling reason for these extra connectives, except to facilitate the 
encoding of (commutative) linear logic in noncommutative linear logic by 
prefixing every subformula with k or K. Based on our results below, other 
encodings of linear logic into noncommutative linear logic without k and K exist. 
Thus we do not include any new connectives or modalities in our logics presented 
below, and allow only the reusable ? formulas to permute. 

We now focus on one particular member of the family of noncommutative 
linear logics. This logic will include only the multiplicative and reuse connectives 
of linear logic, excluding the additives. In order to mesh smoothly with the earlier 
sections we will use the proof rules as presented in Appendix B, but add two new 
rules, one which allows ? formulas to permute, and one which allows an entire 
sequent to be ‘rotated’. Thus one may think of a sequent as a circular list of 
formulas. We call this logic NCL for ‘circular logic’. 

4.1. NcL proof rules 

The system NCL includes the I, Cut, @,9, ?W, ?C, ?D, and !S rules of linear 
logic, with each sequent treated as a circular list of formulas instead of as a 
multiset. The following two rules of inference are also included in NCL: 

?E bl-,iY,?A kr,A 

k r, ?A, 2’ 
- R. 
IA, r 
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These rules allow one to permute and exchange the reusable (?) formulas 
arbitrarily, and to rotate the entire sequent of reusable and nonreusable formulas. 
As our previous discussions of linear logic accepted exchange as ‘part of the 
system’ by considering sequents to be multisets of formulas, we will now consider 
the exchange rules ?E and R implicitly, by regarding sequents as circular lists of 
linear logic formulas. 

4.2. NCL is undecidable 

We will show the word problem for semi-Thue systems has a straightforward 
encoding in NCL. Since we have already shown that full linear logic is undecidable, 
the fact that full noncommutative linear logic is undecidable is not too surprising. 
But since NCL is a fragment of noncommutative linear logic which does not 
contain the additive connectives, the earlier construction of and-branching 
two-counter machines in full liner logic would fail in NCL. However, the 
and-branching used in that construction was required in order to encode zero-test 
in a commutative setting. In a noncommutative setting a zero-test operation may 
be encoded easily without any sort of and-branching. This situation is analogous 
to that for commutative versus noncommutative semi-Thue systems, where the 
noncommutative version allows the encoding of a zero-test leading to unde- 
cidability, whereas the commutative version is unable to simulate zero-test and 
has been shown to be decidable [26]. In fact, since NCL closely resembles 
semi-Thue systems, we will demonstrate undecidability of NCL by a reduction 
from semi-Thue systems. 

Although the reduction is simple, the proof of its correctness requires some 
elaborate machinery. In particular the proof of cut-elimination given in Appendix 
A has been given in such a way that it applies to NCL as well as linear logic. 

Lemma 4.1 (Cut-elimination revisited). Zf there is a proof of sequent t r in NCL, 
then there is a cut-free proof of 1 r in NCL. 

Proof. The cut-elimination theorem for full linear logic in Appendix A is 
presented in a way which gives a cut elimination procedure for NCL. The only 
violations of the list-ordering of rules are those which correspond to the 
permutation of reusable formulas, such as in the case of principal cuts of @ 
versus !S. However, these cases are legal NCL cut-proof steps, since we are 
assuming the NCL proof rules ?E and R are built into the NCL system. Thus the 
cut-elimination procedure for full linear logic may be employed to remove cuts 
from NcL proofs. q 

Corollary 4.2 (Subformula property revisited). Any formula in any cut-free NCL 

proof of k r is a subformula of IT 

Proof. Immediate. 0 
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4.3. NCL theories 

We will define theories as for the commutative case (see Section 3.2), and show 
that cut-standardization (see Lemma 3.1) again holds in this logic. 

Formally, an NCL axiom may be any NCL sequent of the form 

Gpi:,pi:, . . . , pif , where C is any NCL formula not including modal operators 
(? or !), and the remainder of the sequent is made up of negative literals. Any 
finite set of NCL axioms is an NCL theory. For any theory T, we say that a sequent 
k r is provable in T exactly when we are able to derive t r using the standard set 
of NCL proof rules and NCL axioms from T. Thus each axiom of T is treated as a 
reusable sequent which may occur as a leaf of a proof tree. As before we will 
write 

for a leaf sequent which is a member of the theory T. 
We recall the definition of a directed cut: a directed cut is one where at least 

one premise is an axiom I- C, pIi, pt , . . . , pt in T, and C is the cut-formula in 
that axiom. We call any axiom premise of a directed cut where the cut-formula in 
that axiom is not a negative literal a principal axiom of that directed cut. By 
definition, all directed cuts have at least one principal axiom. A cut between two 
axioms is always directed, and if the cut-formula of such a cut is nonatomic, that 
cut has two principal axioms.A directed or standardized proof is a proof with all 
cuts directed. 

Lemma 4.3 (NCL cut-standardization). if there i.s a proof of t- r in theory T in NCL, 
then there is a directed proof of I- r in theory T in NCL. 

Proof. The proof of cut-standardization in full linear logic (Lemma 3.1) applies 
to this case with little modification. In fact there are fewer cases here since the 
constants and additive connectives are not present in NCL. Cl 

The earlier translation from theories into pure linear logic is also a translation 
of NCL theories into pure NCL. For convenience, we repeat the definition here: the 
translation [T] of an NCL theory T with k axioms is the list of NCL formulas: 

[{tit f2, . . ’ , &)I = ?[t,l, qt21r . . . 9 ?[hclr 
where [tl] is defined for each axiom ti as follows: 

[k C, p,‘, pbl, . . . ,p:]~(c~p,llBp,lo...;Bp:)’ 

= (P* @ * . . @‘Pb @pa 63 C’). 

Note that the pf’s are negative literals. 

Lemma 4.4 (NCL theory +). For any finite set of axioms T, E r is provable in 
theory T only if t [T], r is provable. 
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Proof. The proof of Lemma 3.2 carries over to NCL without modification, since 
the ?E and R rules are considered implicit. q 

Lemma 4.5 (NCL theory e). For any finite set of axioms T, k r is provable in 
theory T if I- [T], r is provable. 

Proof. Similarly, the proof of Lemma 3.3 given earlier applies here without 
modification in the system where the ?E, R rules are considered part of the NCL 

system. 0 

4.3.1. Semi-Thue systems 
A semi-Thue system 9 over alphabet .X is a set of pairs (x4 y ), where x and y 

are strings over .Z. Each pair in F is called a production, and we use them as 
rewrite rules. We call x the left-hand side and y the right-hand side of a 
production (x ---, y ) . U rewrites to V in system 9 with a production (g + g’ ) if U 
and V are words over .Z, and there exist possibly null words r and s such that 
U = rgs and V = rg’s. We write 

if U rewrites to V using some production. We use the notation 

if there exists a (possibly empty) sequence of words U,, . . . , U,, such that 

The word problem for a semi-Thue system F is the problem of determining, for 
a given pair of words U and V, whether or not U +* V in system 9. This 
problem is known to be undecidable [39]. The problem remains undecidable if we 
add the condition that V be a singleton (word of length one) 12 such that n does 
not occur in U or in the right-hand side of any production, and only appears as a 
singleton on the left-hand side of productions. This restriction is analogous to 
requiring that a Turing machine have a unique final state without any outgoing 
transitions. The semi-Thue word problem also remains undecidable if there is a 
special end marker symbol m which is preserved by any rules which involve it 
except rules involving n. That is, the initial word U begins with a symbol m which 
does not occur anywhere else in U, and every rule in which m appears is of the 
form (mwi+ mwj) or is of the form (mwi *n) for some words wi and wj not 
containing m. This restriction is analogous to requiring that a Turing machine 
have only a one-way infinite tape. 

To show that the above restrictions preserve undecidability, it suffices to give a 
transformation from a general word problem to a word problem of the restricted 
class. Specifically, given a word problem from U to V, with set of productions 5, 
we may add the production mV--,n where m and n are new symbols which are 
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added to 2’. We then ask the new word problem from mU to n (with the new and 
the original productions), in the alphabet .Z U {m, n}. This problem is solvable if 
and only if the original problem is. However this new problem is of the restricted 
class defined above. 

4.4. From semi-Thue systems to noncommutative linear logic 

We overload the definition of translation [.] to include the case of words-the 
translation of a word [ab - - . z] is the list of NCL formulas p,‘, pi, . . . , pi. We 
also define [ab - . + z]l to be the NCL formula pz @I . . * @pb @p.. Finally, as a 
notational convenience, we let y(T) designate ambiguously any formula which 
could be derived from r by applications of the % rule. In other words, y(T) is the 
result of replacing some number of commas separating formulas in r by %. 

Given a semi-Thue system Y = {(al-, b,), (a2-, b2), . . . , (ak+ bk)}, we 

define the NCL theory derived from 3 as the following set of sequents: 

For a word problem P consisting of the pair U, V we define the translation t(P) 

of this problem into a NCL sequent as: 

Now, we show that the word problem P is solvable within system 9 if and only 
if the translation t(P) is provable in the theory derived from Y. We state the two 
parts of the equivalence as Lemmas 4.6 and 4.7. 

Lemma 4.6. The word problem P is solvable in the semi-Thue system 9 only if 

t(P) is provable in the theory derived from 3. 

Proof. We proceed by induction on the length of the derivation of U +* V. If the 
derivation is trivial, that is U = V, then we must show that the sequent 

!- [VI? [V 
is provable. Since we assume the word problem has the restricted form with V a 
singleton, this sequent actually has the form t [n], [n]l, which by definition of 
notation is Ipi, pn. This is provable by identity. 

Suppose the derivation of U +* V is a nonempty sequence: 

U * U, + U, 3 . * . * u, 3 v. 

Since U + Q,, there is some rule (g-g’) in 9, and possibly null words r and s 
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such that 

[~l=[~g~l=P~...p~p~,...p~p~...p~, 

[W = [WIL = [SIL[glL[r]‘, 

[&I = [r&s] =pk. . -p,fpi.. -p;Lp;. . .psl,, 

[UI]’ = [rg’s]l = [s]L[g’]L[r]L. 

By induction we assume that we have a proof of E [U,], [V]l, and construct from 
this a proof of the following form: 

In this partial deduction there are as many applications of the 43 rule as there are 
separate formulas in [g’]. This is because each application of 42 replaces a comma 
by a 42 in the y([g’]) formula. 

The following concrete example illustrates the intended simulation. Assume 
that the first rule applied in the sequence of reductions is (cd +-xy ). Then g in 
the above schema is cd, and g’ is xy. Also, [g] is p:, pi, [g’] is pi, pi, and 
y([g’]) is (p:Op,l). Also assume that r is mab, s is ef, and [VI’ is pn. 

Thus, by induction, given a sequence of reductions which solves a word 
problem, we may simulate the solution in NCL. q 

Lemma 4.1. The word problem P is solvable with productions 3 if t(P) is 
provable in the theory derived from 3. 

Proof. We remember that the target word V of the word problem is a singleton 
and that there is a special market symbol m at the beginning of U which is 
preserved by all the productions in 3. 

The construction of a rewrite sequence begins with any proof of z(P), and then 
produces a directed proof by cut-elimination. We may read any directed proof of 
r(P) as a solution to the word problem P, since each directed cut corresponds 
directly to the application of one reduction in the semi-Thue system. 
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In more detail, given a proof which ends in a sequent l-l- where 1 r is equal to 
z(P), possibly with some of the commas in r(P) replaced with 9, we apply the 
NCL cut-standardization Lemma 4.3, and obtain a directed proof of t r. We now 
prove by induction on the length of the directed proof that this proof may be 
mimicked by the corresponding semi-Thue system. 

In the case that t r is equal to t [VI, [V]l (for example, this proof may be a 
single application of the identity rule), then the solution to the word problem is 
trivial, i.e., no productions are required, since U = V. 

In the induction step, t r cannot be provable with the identity rule. Inspecting 
the other rules of NCL, we see that @ and the ? and ! rules are inapplicable, since 
the conclusion sequent does not contain any occurrences of 8, ? or !. If % is the 
last rule applied in the proof, then we appeal to the induction hypothesis, since 
then we simply have replaced fewer commas with Ig. The only remaining case is 
Cut, and by cut-standardization, we know one hypothesis is an axiom, and the 
cut-formula in that axiom is not a negative literal. Inspecting the axioms in the 
theory corresponding to the productions of a semi-Thue system, we see that the 
cut-formula must always be a formula [g’]l, This formula is built up from positive 
literals connected by @. The cut-formula in the other hypothesis then must be 
built from negative literals connected by 8. 

Since the start marker m on the initial word U is preserved by each production 
in Y, we know that the NCL theory derived from ~7 has a special property: the 
translation pm of m may not be a subformula of the cut-formula of a directed cut 
unless it also appears in the first nonprincipal position following the cut-formula 
in the axiom. Thus the start marker participates in a directed cut if and only if it is 
the first symbol in the sequence of symbols replaced by the cut. It follows that the 
translation pm of the start marker is preserved in any directed proof of any 
well-formed word problem. This allows us to conclude that no rule is applied 
‘around the end’ of a word through some convoluted use of the rotation rule, and 
thus that the semi-Thue system may mimic the NCL proof by applying the 
corresponding production to the string. By induction, we have our result. 0 

Theorem 4.8. The provability problem for NCL is recursively unsolvable. 

Corollary 4.9. The provability problem for NCL augmented with the additive (& 
and 8) and constant (I, 1 and T) rules is recursively unsolvable. 

This corollary follows from the theorem by a conservativity result which is 
easily derived from the cut-elimination and subformula properties of NCL. 

4.5. Other noncommutative logics 

As mentioned previously, there is a family of logics which share a strong 
resemblance to NCL. All of the ones we can sensibly imagine have undecidable 
decision problems. 
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In all formulations of noncommutative linear logic the key rule is 63. In a sense 
which we make more precise later, the constants and additive connectives of 
linear logic are inherently commutative. Also, the D rule follows the 63 rule in its 
commutativity. Thus noncommutative linear logic is quite sensitive to the exact 
formulation of 6.9. However, there are some minor variations on the syntactic 
presentation of the other proof rules which first bear some notice. 

4.51. Rotate rule versus embedding 
One motivation for the particular formulation of NCL studied in the previous 
section (in particular, the introduction of the R rule) is so that we may make use 
of the same formulation of linear logic rules given in Appendix B, and refer to 
the previously demonstrated lemmas about linear logic with as little modification 
as possible. Without the R rule we would have to modify the formulation of other 
rules, such as the JQ rule, to allow its application within a sequent, instead of 
requiring its application at one end of a sequent. To see this, compare the original 
version of B on the left with the modified version on the right below: 

42 
kE,AA, B tZ, A, B, l- 

t-2, (A%B) FLY, (A4?B), I- 
%2. 

We will call the ;92 rule the embedded equivalent of the D rule. The use of JI?2 in 
noncommutative linear logic without the R rule directly corresponds to the use of 
9 in NCL with R rule considered part of the system. We will use ENCL to stand for 
the system derived from NCL by removing the R rule, and replacing all other rules 
by their embedded equivalents, and adding a symmetric identity rule. 

Lemma 4.10. A sequent k r is provable in NCL if and only if it is provable in ENCL. 

This lemma follows by induction on the length of proofs, and from this lemma 
we obtain undecidability for this system. 

Corollary 4.11. The provability problem for NCL without the R rule, and with 
every other rule replaced by its embedded equivalent is recursively unsolvable. 

4.5.2. NCL without ?E 
The earlier proof of undecidability fails in NCL without the ?E rule, since some 

of the requisite lemmas about theories fail. However, we may omit this rule, and 
replace ?C with the following ?C2 rule to restore our results, and many other 
properties of noncommutative linear logic: 

?C 
12, ?A, ?A I-2, ?A, r, ?A 

k.X,?A ’ k 2, r, ?A 
?C2. 

This contraction rule essentially states that what may be proven from two not 
necessarily contiguous assumptions of a reusable formula, may be proven from 
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one assumption of that reusable formula. It is the case that the ?C2 rule is 
derivable from the ?E and ?C rules in NCL. 

Lemma 4.12. A sequent t r is provable in NCL if and only if it is provable in NCL 

without the ?E rule, and with the ?C rule replaced by ?C2. 

This lemma may be proven by induction on the length of proofs. Essentially, in 
NCL one may contract and then exchange the reusable formula to any desired 
position, while in the other system one may contract the formula directly into 
position. On the other hand, to permute a reusable formula in NCL, one simply 
applies exchange, while in the other system one must contract the formula into 
position, and then weaken away the formula in its previous position. Using this 
lemma, we may obtain the following undecidability result. 

Corollary 4.13. The provability problem for NCL without the ?E rule, and with the 

?C rule replaced by the ?C2 rule is recursively unsolvable. 

4.53. Alternate 60 

There are two quite reasonable versions of the 60 rule in noncommutative 
linear logic, one as used above defined in Appendix B, and the other using a 
different sequent order in the conclusion: 

c3 
tZ,A tB,l-- tz; A t l-, B 

kZ, (A ‘8 B), l-’ tZ,(A@B) 
82. 

The two formulations are equivalent in the presence of unrestricted exchange 
(commutative linear logic), but are subtlely different in the context of noncom- 
mutative linear logic. In a noncommutative linear logic with 63 replaced by 82, 
the definition of negation must change. In particular, the negation of the 
multiplicative connectives wuld be defined as follows: 

(A@,)-A’BBI, (AlgB)+Ai@BBI. 

We define the translation o(T) of a sequent r to be the sequent r with all 
occurrences of formulas of the form A @ B replaced by B 8 A. 

Lemma 4.14. A sequent t r is provable in NCL if and only if a(r) is provable in 

NCL with the @ rule replaced by the @2 rule. 

Lemma 4.15. A sequent t a(r) is provable in NCL if and only if T is provable in 

NCL with the @ rule replaced by the 82 rule. 

This lemma follows by induction on the height of proofs. 
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Lemma 4.16. The provability problem for NCL with the @ rule replaced by the 692 
rule and alternate definiton of negation is recursively unsolvable. 

This lemma follows from the above two,which simply state that by reversing 
the order of all tensor (8) formulas, we pass from NCL to this new logic, and back 
again. Thus a decision procedure for one implies a decision procedure for the 
other, and by Theorem 4.8, we know there is no decision procedure for NCL. 

4.54. Mix and match 
The above modifications of NCL do not interfere with cut-elimination, nor with 

the basic undecidability result for NCL. It is also the case that even in combination 
the above three modifications (R versus embedding, ?E versus ?C2 and GO versus 
@2) do not interact. That is, any combination of these medications retains the 
character of NCL, including the properties of being undecidable, and having a 
cut-elimination theorem. 

4.6. Degenerate noncommutative linear logics 

Some variations on the NCL system are not as benign as the above. In fact, it is 
much easier to create nonsense than a coherent logic by altering proof rules 
haphazardly. 

The main focus of this section is to consider plausible but degenerate variants 
of the rules based on interleaving the circular orders of hypotheses. 

4.6.1. Intermingling @ 
At first glance, it might seem interesting to study the systems obtained when 

binary rules in NCL are replaced with rules which allow intermingling of the 
hypotheses in the conclusion. For example, 

83 
tE,A kB,Z 

kA,(A@Z3) ’ 
where A is some interleaving of Z and r. 

Somewhat surprisingly, the system obtained by replacing 8 with @3 in NCL is 
equivalent to a commutative version of NIL. 

Lemma 4.17. A sequent k Z is provable in the system obtained by replacing @ with 
@3 in NCL if and only if that sequent is provable in the system obtained by adding 
the unrestricted exchange rule to NCL. 

This lemma follows by induction on the length of cut-free proofs. Formally, we 
need a cut-elimination procedure for both logics. The cut-elimintion procedure 
for full linear logic suffices to eliminate cuts from NCL with unrestricted exchange. 
Cut-elimination for NCL with @ replaced by 83 is possible to prove directly, 
although the principal 83 versus D case is quite difficult. Cut-elimination in this 
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case may be accomplished with the addition of an ‘intermingling cut’ rule which 
along with the nonintermingling cut-rule may be eliminated from any proof. The 
key reason this lemma holds is that 8 and JQ are the only binary connectives of NCL 
and allowing (A @ B) to be equivalent to (B @A) in this context causes (A %I?) 
to be equivalent to (BJQA). 

Corollary 4.18. A sequent l-r is provable in the system obtained by replacing @ 

by @3 in NCL augmented with additives and constants if and only if that sequent is 

provable in the system obtained by adding the unrestricted exchange rule to NCL 

augmented with additives and constants. 

This corollary follows from the fact that the constants and additive connectives 
are inherently commutative, and may be proven by induction on the length of 
proofs. 

4.6.2. Intermingling Cut 

A problem similar to that which occurs with 83 arises if we allow the Cut rule 
to interleave its conclusion. Define Cut2: 

cut2 
t.Z,A I-T,A’ 

tA ’ 
where A is some interleaving of 2 and r. 

As for the previous alteration, the system NCL with Cut replaced by Cut2 would 
be commutative. We can achieve the effect of the unrestricted exchange rule 
using the Cut2 rule: 

Note that for any formula A, there is always a proof of IA, AL in noncommuta- 
tive (as well as commutative) linear logic. The above partial deduction shows that 
unrestricted exchange may be simulated in noncommutative linear logic with Cut 

replaced by CUM. Somewhat more concretely, the following shows a deduction of 
a sequent which is not derivable in NCL: 

------I -----I 

FPI, p: kP2, P: ~ 

FPl, (P: @Pi), P2 kP1, P:I “t2 

1 (P: @Pi), Pl, Pz 

Notice in the final conclusion that p1 and p2 have changed places, in a way 
impossible without the use of the Cut2 rule in NCL. Thus using Cut2 we could 
prove any sequent which is provable in the commutative fragment of linear logic 
corresponding to NCL. However, it would be impossible to prove some such 
sequents in NCL without Cut2, and thus cut-elimination fails in this logic. 
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However, since there is a proof of a sequent in this logic if and only if there is a 
proof of that sequent in (commutative) linear logic, we may as well use linear 
logic, which does have a cut-elimination theorem. 

5. The multiplicative fragment 

We now consider the fragment of linear logic which includes only the 
multiplicative connectives. In Section 5.1, we show that the decision problem for 
this fragment is in NP, and in Section 5.2 we show that the multiplicative 
fragment with a rule of unrestricted weakening is NP-complete. 

5.1. Multiplicatives 

We have two results which characterize the complexity of this fragment 
incompletely. The exact complexity of this fragment is one of the significant open 
problems. In short, we find that this fragment is in NP, and if we introduce the 
structural rule of unrestricted weakening into this fragment, it becomes NP- 

complete. 
The pure multiplicative fragment (without additive connectives or storage 

operators) is the simplest fragment of linear logic that we have investigated. 

Theorem 5.1. Multiplicative linear logic is in NP. 

Proof. The proof is straightforward: each connective in the conclusion sequent is 
the principal connective in exactly one proof step in any cut-free proof, thus 
giving a polynomial bound on the size of cut-free proofs. Thus the entire proof 
may be guessed in polynomial time. q 

5.3. Direct logic 

We have been unable to prove the multiplicative fragment of linear logic 
Nr-complete. We now believe that this may be difficult, due to the lack of 
redundancy in this problem statement [12]. As part of our investigation of the 
need to discard arbitrary resources to achieve NP-completeness, we studied 
propositional multiplicative linear logic with unrestricted weakening, but without 
contraction. We will call this direct logic or DL, as it is similar to the direct logic 
of [25]. DL is also considered in considerable detail in [7]. The rules for this 
system are the identity and cut-rules, the rules for the multiplicatives, constants, 
and the structural rule W of unrestricted weakening: 

We first demonstrate cut-elimination for DL, yielding consistency, which will 
facilitate our later proof of NP-completeness. 
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Lemma 5.2. A sequent is provable in DL if and only if it is provable in DL without 
using the cut-rule. 

Proof. This lemma, as the cut-elimination theorem for full linear logic, is proven 
by giving a cut-elimination procedure. This procedure takes any proof as input, 
and produces a cut-free proof of the same sequent. 

We modify the procedure given in Appendix A. More specifically, we modify 
the procedure given in Lemma A.1 to handle the extra cases brought about by 
the presence of weakening, and we define the formula A in the above 
presentation of W to be the principal formula of W. 

Thus we need to present two reductions, one in the case that the cut-formula is 
principal, and in case it is not principal. 

We will follow the notation used in Appendix A, where Cut* is used to 
ambiguously refer to the Cut rule or the extra rule of inference introduced in the 
Appendix called Cut!. 

First, we consider the nonprincipal W case: 

The above reduction is very similar to the case of nonprincipal ?W. 

In the case of principal W, we have the following reduction: 

By combining these two reductions with the procedure given in Lemma A.l, 
we have a cut-reduction lemma for DL. 

Fortunately, Lemma A.2 and Theorem A.3 then follow without modification. 
Formally, we must show that although the lemmas in Appendix A apply to full 
linear logic, they would not take a proof in DL into a proof outside DL. By 
inspection of the reductions used for the subset of the connectives of DL, we see 

that this holds. 
Therefore, given any DL proof of sequent 1 r in theory T, we can construct a 

cut-free proof of b r in theory T. 0 

Lemma 5.3. The provability problem for DL is in NP. 

Proof. The membership in NP of the provability problem for DL follows from a 
polynomial bound on the size of cut-free DL proofs. Each subformula occurrence 
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in the conclusion is analyzed in at most one rule application in any cut-free proof 
of that conclusion. Thus, given a provable sequent, it is possible to nondeter- 
ministically generate and check a cut-free proof in polynomial time. q 

The proof of the Np-hardness of provability for DL is obtained by a 
transformation from the Vertex Cover problem which can be stated as: Given a 
graph G = (V, E) and a bound k, find a subset U of k or fewer vertices from V 
such that every edge in E is incident on some vertex in CJ. Given an instance of 
the Vertex Cover problem, we construct y(V, E, k), a DL sequent which is 
provable exactly when (V, E) has a vertex cover of fewer than k vertices. Let 
deg(v, E) denote the degree of vertex u, i.e., the number of edges in E incident 
on u. The definition of y is given by 

YV, 6 k)=kmk, 40', E), E(E), 

For example, given V = {a, b, c, d} and E = {(a, b), (c, d), (b, c)}, and k = 2, 
the sequent y(V, E, k) is 

A vertex cover in this example is obviously {b, c}. The corresponding 
deduction in DL of y(V, E, k) can be constructed in stages. In the first stage, the 
formulas encoding vertices a and d are weakened and the formulas encoding 
vertices b and c are reduced as shown below: 

tx;, xii, x:, x:, e(E) 
kxii> x;, (x:%x:), e(E) 

B 
D 

,I 
tm, ml1 t (xbl%‘xbl), (x:%x,‘), c(E) * 

km,m tm, (xblJl?xbl), m1 C3 (x,%x,), E(E) 

km, m, mL C3 (x:~?x;), ml 63 (x:%x:), E(E) @ 

km, m, ml 8x,‘, ml @ (xblJl?xbl), ml 63 (x:%x:), ml @xx,‘, E(E) 
W 

The remaining subgoal in the above deduction can be proved in the next stage. 
The vertex literals corresponding to the vertex cover can be paired off with 
literals in the edge encodings to demonstrate that there is at least one vertex 
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literal for each edge: 

txbl, x,, xb 

txbi, (x,*xb) 
4? 

t&t, d, d, (&*xd) @ (xbqxc) 

txbl, x,i, x:, x:, (x,*x,) @ (xcQxd) @ (xbg-%) 

@ ~ 

The next three lemmas are stated without proof. They are used in the proof of 
Lemma 5.7 to establish that when a vertex cover for V, E and k exists, then 
y(V, E, k) is provable. 

Lemma 5.4. Zf 16 k, then there exists a deduction of t rnk, Z from t ml, ZY 

Lemma 5.5. Given V, E and U c V, let Z be the multiset containing deg(u, E) 
occurrences of xi for each u in U, and let 1 be IUI. There is a deduction of 
F ml, $(V, E), A from F T, A. 

Lemma 5.6. Zf Z is a multiset of literals such that for each (u, v) in E there is a 
distinct occurrence of either xi or x: in r, then F T, E(E) is provable. 

Lemma 5.7. Zf G = (V, E) h as a vertex cover U of k or fewer vertices, then 
y(V, E, k) has a DL proof. 

Proof. Let I= (U( be the cardinality of U. By Lemma 5.4 and the definition of y, 
the required conclusion tmk, @(V, E), e(E) can be deduced from l-m’, $(V, E), 
e(E). Let r be the multiset of literals containing deg(u, E) occurrences of xi for 
each u in U. By Lemma 5.5, there is a deduction of km’, @(V, E), e(E) from 
tr, e(E). Since deg(u, E) is the number of occurrences of x, in e(E), the 
sequent Fr, e(E) is provable by Lemma 5.6. 0 

Lemma 5.8 states some straightforward properties about weakening, and is 
given below without proof (see [7, p. 1381). A formula occurrence is said to be 
weakened in a proof if it is the principal formula of an application of the 
weakening rule. The lemma essentially captures the idea that if all subformulas of 
a formula occurrence are weakened, then the formula itself can be weakened 
instead; and if even a single conjunct in a conjunction is weakened, then the 
entire conjunction can be weakened instead. Lemma 5.8 is used repeatedly in the 
proof of Lemma 5.9 to maximize the size of any formulas that are weakened in a 
proof. 
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Lemma 5.8. For any proof ;rd in DL of a sequent k r, one can obtain a proof 8 of 
k r such that 

(1) for any formula occurrence (A @ B), neither A nor B is weakened in 8; 
(2) for any formula occurrence (AB B), A and B are not both weakened in 13; 

and 
(3) any weakening of formula occurrences in r occurs below any application of 

non-weakening rules in 8. 

Lemma 5.9. Given a graph G = (V, E) and a bound k, if y(V, E, k) is provable 
in DL, then G has a vertex cover of size less than k. 

Proof. Given a proof of y(V, E, k), first take the set U of vertices u such that 
Fx,, x,’ is an axiom in the proof of y(V, E, k). There are two possible ways in 
which U might not be a vertex cover. One way is if for some edge encoded by 
(xv 43x,), neither X, nor x, appears in an axiom. Then the literals x, and x,, must 
have been subformulas of some weakened formulas. By Lemma 5.8 the given 
proof can be transformed to one in which both x, and x, are not weakened, and 
neither is (x,,,~?x~) since it is a conjunct. Therefore the entire edge encoding E(E) 
would have to be weakened below any nonweakening rules, and as a result 
kmk, Cp(V, E) would have to be provable. Since Imk, $(V, E) contains no 
positive occurrences of literals x, for v in V, a proof of t-mk, $(V, E) cannot 
contain axioms of the form k xv, xi. Again, by Lemma 5.8, each formula in 
$(V, E) must be weakened below any application of logical rules. Such a proof 
would contain a deduction of l-m k. However, tmk is unprovable for any k, 
contradicting the assumption that F y(V, E, k) is provable. 

The only remaining way in which the set ZJ with 1 = ) UI might fail to be a vertex 
cover is if 1 > k. The negative literals xi in axioms l-x”, xi only occur in the 
formulas in Cp(V, E). By Lemma 5.8, the given proof can be transformed to a 
proof 8 in which 1 of the formulas in Cp(V, E) are not weakened, because each 
formula in @(V, E) contributes at most one vertex to the set U. Since each 
unweakened formula in r$(V, E) is of the form ml @A for some A, Lemma 5.8 
implies that 0 contains at least 1 axioms of the form F m, ml. However, there are 
only k positive occurrences of the literal m in the conclusion sequent t y(V, E, k), 
and each occurrence can appear in at most one axiom of the form F m, ml, thus 
contradicting the claim that l> k. 

Therefore, the construction of U from a DL proof of t y(V, E, k) does yield a 
vertex cover for G = (V, E) of size bounded by k. q 

The encoding y transforming an instance of the Vertex Cover problem to the 
provability of a DL sequent is clearly of polynomial complexity. Together, Lemma 
5.7 and 5.9 yield the following result. 
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Theorem 5.10. Multiplicative linear logic with unrestricted weakening is NP- 

complete. 

In this reduction, weakening appears essential since an edge may be covered by 
selecting one endpoint or both, and weakening allows both cases to succeed. Only 
with additives would it be possible to encode such behavior in linear logic, and 
including the additives would take DL out of NP. In fact, DL with additive 
connectives becomes PsPAcE-complete. 

6. Conclusion 

We have investigated the complexity of the provability problem for several 
fragments of propositional linear logic. Our most significant results are that 
provability for full propositional linear logic is undecidable, but that provability 
becomes PsPAcE-complete when the modal storage operator is removed. One may 
view these results in terms of the non-modal multiplicative-additive linear logic as 
the facts that provability in this logic without nonlogical axioms is PSPACE- 

complete, and with nonlogical axioms provability becomes undecidable. In fact, 
even if the nonlogical axioms are of an extremely restricted class, the provability 
problem remains undecidable. 

These results point out the greater complexity inherent in linear logic, when 
compared with classical or intuitionistic logic. This extra complexity is the price 
one should expect to pay in a logic as detailed, or as specific, as linear logic. In 
fact, we show that linear logic is a computational logic. That is, linear logic can 
exactly represent computations, to the point where not only is there a 
correspondence between derivable conclusions and machine configurations that 
eventually reach an accepting state, but there is an exact correspondence between 
(standardized) proofs and accepting computations. 

We have also shown that provability for the noncommutative fragment of linear 
logic (even without additive connectives) is also undecidable. Finally, we show 
that the decision problem for the multiplicative fragment is in NP, and becomes 
NP-complete in the presence of unrestricted weakening. 

Although we have gained some insight into the expressive power and 
combinatorial properties of propositional linear logic, some open problems 
remain. We have been unable to establish tight bounds for the multiplicative 
fragment or settle the decidability of the multiplicatives with the ! operator. This 
seems particularly difficult, since a positive solution would involve an extension of 
the reachability algorithm for Petri nets. The other open problem of interest to us 
is the decidability of various fragments of linear logic without the modal operators 
? and !, and without nonlogical axioms, extended with propositional quantifiers. 
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Appendix A. Cut-elimination 

The cut-elimination theorem, in general, states that whatever can be proven in 
the full version of a logic may also be proven without the use of the cut-rule. This 
theorem is fundamental to linear logic, and was proven by Girard shortly after 
the introduction of the logic by presenting a cut-elimination procedure for proof 
nets [15]. In our proof of undecidability, we make use of the syntax, or exact 
form of a cut-elimination procedure for the sequent calculus formulation of linear 
logic. Since Girard demonstrated the correspondence between proof nets and the 
sequent calculus presentation of linear logic, we could have relied on Girard’s 
proof of cut-elimination. However, for the purposes of our undecidability proof, 
and other results, it is much more clear to present a cut-elimination procedure 
native to the sequent calculus. 

The following demonstration of the cut-elimination theorem consists of a linear 
logic proof normalization procedure which slowly eliminates cuts from any linear 
logic proof. The procedure may greatly increase the size of the proof, although of 
course it will still be a proof of the same sequent. For technical reasons, we add a 
derived rule of inference, Cut!, which simplifies the proof of termination. We 
then give a set of reductions which apply to proofs which end in Cut or Cut!, and 
using these we eliminate all uses of Cut and Cut! from a proof. 

The proof structure is very close to the well-known proofs of cut-elimination in 
classical logic [19], but is complicated by the extra information which must be 
preserved in a linear proof. The Cut! rule defined below is reminiscent of 
Gentzen’s MIX rule [14], and serves the same purpose, which is to package 
together inference rules. As in Gentzen’s work, we add this extra rule, and then 
show that it (along with Cut) may be eliminated entirely from any proof. Thus we 
show that this new rule and Cut are redundant in linear logic. 

Let us begin with some definitions. First, we define the following new rule of 
inference, 

Cut, t2, (?A)” I- A, !A1 
. 

t&A ’ 
n 2 1. 

(?A)” is meant to denote a multiset of formulas. For example, (?A)3 = 

?A, ?A, ?A. As stated in the side condition, the Cut! rule is only applicable when 
n is at least 1. This rule of inference is derivable; that is, it may be simulated by 
several applications of contraction (?C) on the left hypothesis and then one 
application of the standard Cut rule. The original Cut rule and Cut! coincide 
when n = 1. Adding this extra derived rule of inference simplifies the termination 
argument substantially by packaging together some number of contractions with 
the cut that eliminates the contracted formula. This package is only opened when 
the contracted formulas are actually used with the application of the ?D rule, 
thrown away by the ?W rule, or split into two packages by the 8 and Cut* rules. 
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We will use the symbol ‘Cut*’ as a general term for the original Cut rule and the 
new Cut! rule ambiguously. 

We will call a formula which appears in a hypothesis of an application of Cut or 
Cut!, but which does not occur in the conclusion a cut-formula. In the list of 
linear logic rules in Appendix B the cut-formulas in the Cut rule are the formulas 
named A and A’, and in the Cut! rule above, the cut-formulas are ?A and !AL. 

We also define the degree of a Cut or Cut! to be the number of symbols in its 
cut-formulas. For concreteness, we define here what is meant by number of 
symbols. We will consider each propositional symbol pi to be a single symbol. We 
also consider the negation of each propositonal symbol pf to be a single symbol. 
Finally, we count each connective and constant, @, 8, 63, &, ?, !, 1, I, 0, T, as 
a single symbol, but do not count parentheses. It is important to note that 
negation is defined, and therefore is not a connective. This method of accounting 
has the pleasant property that any linear logic formula A and its negation AL 
have exactly the same number of symbols. (One may prove this by simple 
induction on the structure of the formula A). Thus it does not matter which 
cut-formula we count when determining the degree of a cut. We also define the 
degree of a proof to be the maximum degree of any cut in the proof, or zero if 
there are not cuts. 

The principal formula of an application of an inference rule is usually defined 
to be any formula which is introduced by that rule. For example, the formula 
(A @ B) is the principal formula of the @ rule, since that is the formula which is 
introduced by that rule. We follow the standard convention of considering the 
contracted formula in an application of ?C principal, even though it is not 
introduced by the rule. For convenience, we extend the notion of principal 
formula in the following nonstandard ways. We will consider any formula 
beginning with ? appearing in the conclusion of the !S, @‘, Cut or Cut! rules to be 
principal. By this definition all formulas in the conclusion of !S are principal, and 
the only rule in which a formula beginning with ! may be principal is !S. This 
definition of principal formula simplifies the structure of the following proof 
somewhat. 

Operationally, the cut-elimination procedure defined below first finds one of 
the ‘highest’ cuts of maximal degree in the proof. That is, an application of Cut* 
(Cut or Cut!) for which all applications of Cut* in the derivation of either 
hypothesis is of smaller degree. Then a reduction is applied to that occurrence of 
Cut*, which simplifies or eliminates it, although it may replicate some other 
portions of the original proof. We iterate this procedure to remove all cuts of 
some degree, and then iterate the entire procedure to eliminate all cuts. In this 
way, any linear logic proof may be normalized into one without any uses of the 
Cut or Cut! rules, at the possible expenses of an (worse than) exponential blowup 
in the size of the resulting proof tree. 

Technically, we begin with a lemma which constitutes the heart of the proof of 
cut-elimination. Although the proof of this lemma is rather lengthy, the reasoning 



298 P. Lincoln et al. 

is straight-forward, and the remainder of the proof of cut-elimination is quite 
simple. 

Lemma A.1 (Reduce one cut). Given a proof of the sequent 1 r in linear logic 
which ends in an application of Cut* of degree d > 0, and where the degree of the 
proofs of both hypotheses is less than d, we may construct a proof of t r in linear 
logic of degree less than d. 

Proof. By induction on the number of proof rules applied in the derivation of 
l-r. 

Given a derivation which ends in a Cut*, we perform case analysis on the rules 
which were applied immediately above the Cut*. One of the following cases must 
apply to any such derivation: 

(1) the cut-formula is not principal in one or both hypotheses; 
(2) the cut-formula is principal in both hypotheses. 

In each case we will provide a reduction, which may eliminate the cut entirely, or 
replace it with one or two smaller cuts. Since this is a proof by induction on the 
size of a derivation, one may view this proof as a procedure which pushes 
applications of Cut* of large degree up a derivation. Informally, this procedure 
pushes applications of Cut* up through proof rules where the cut-formula is 
nonprincipal, until the critical point is reached where the cut-formula is principal 
in both hypotheses. In Girard’s proof of cut-elimination for linear logic using 
proof nets, the nonprincipal cases are circumvented by following proof links. In 
both approaches, however, the principal cases require significant detailed 

analysis. 

A. 1. Cut of nonprincipal formulas 

If the derivation of a hypothesis ends in a rule yielding a nonprincipal 
cut-formula, then the rule must be one of the following: 69, 9, @, &, ?W, ?C, 
?D, I, T or Cut*. The rules I, !S and 1 are absent since those rules have no 
nonprincipal formulas in their conclusions. The later analysis of principal formula 
cuts considers these three cases. 

A.l.1. ‘8 
If the last rule applied in one hypoothesis is 63, the cut-formula is not the main 

formula introduced by that application of 8, and the cut-formula does not begin 
with ?, then we may propagate the Cut* upward, through the application of @: 

tZ,A kB,A,C i 

t2, (A 8 B), A, C@ kl-, CL 

12, (A 8 B),A,T 
cut+ 1 ;,A 

tB,A,C t-r,C’ 

kB,A,l- ut 

t~,(A’8B), A,l- ’ 
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For the rules such as @ with two hypotheses, we give the reduction for the case 
where the nonprincipal cut-formula appears in the right-hand hypothesis of the @ 
rule, and appears in one specific position in that sequent. The symmmetric case of 
the cut-formula appearing in the left-hand hypothesis is very similar, and is 
always omitted. Since some notion of exchange is built-in to the system, sequents 
are considered multisets. Thus the exact position of formulas in sequents is 
unimportant. (Note that in noncommutative linear logic the relative position 
becomes vitally important.) 

The proof ending in Cut after this transformation is smaller than the original 
proof, since the entire proof of kZ”,A, and the last application of @ are no 
longer above the Cut. Thus by induction on the size of proofs, we can construct 
the desired proof of degree less than d. 

Note that the Cut! rule only applies to formulas which begin with ?, and thus 
this reduction, which is only used if the cut-formula does not begin with ?, applies 
only to Cut and not to Cut!. Thus, we have disambiguated this case, and write 
only of Cut, where we present transformations later in terms of Cut*, in order to 
cover both possibilities simultaneously. The reduction given later (in Section 
A.2.9) handles the case of Cut!. 

A.1.2. 4? 
If the last rule applied in one hypothesis is -P, and the cut-formula is not 

main formula introduced by that application of 9, then we may propagate 
Cut* upward, through the application of 47: 

the 
the 

tz: A, B, C 

t-2, (A4?B), C* ’ 
3 

bZ,A, B, C tr, CL 

r-r, CL tz: A, B, r 
cut* 

t-2, (AgB), r 
Cut* 

‘tX, (AlgB), I-% 

Again, the proof above the Cut* is smaller after this transformation, and thus 
by induction we have our result. 

A.1.3. @ 

Applications of Cut* involving the two symmetric CB rules (where the 
cut-formula is not principal, that is, not introduced by this application of @) may 
be eliminated in similar ways: 

kZ:,A, C 

12, (A@B), C@ ’ 
* 

tE,A, C tr, C’ 

tr, CL 
Cut* 

FL-, A, r @y 

k/Y, (A fI3 B), r I-Z (A@B),r 

The second case of this rule is the same except the conclusion would contain the 
formula (B @A), instead of the formula (A @ B) seen above. 
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A.1.4. & 

It is the elimination of this type of cut (among others) which may lead to an 
exponential blowup in the size to cut-free proofs. The only other cut-elimination 
steps which may lead to a proof expansion are those involving !S: 

kZ,A,C kaZ,B,C ; 

tZ,(A&B),C & kr,cl 

12,(A&B),r 
Cut* 

u. . 

kZ,A,C kr,C' tZ,BB,C tr,C' 

kE,AA,r 
Cut* 

I-ZBB,r 
cut* 

k_X,(A&B),r 
& 

The increase in proof size comes from replicating the entire proof tree above 
k r, Cl. Note that even though there are now two cuts instead of one, we may 
assume that both may be reduced in degree to less than d by induction on the size 
of the derivations. That is, there are fewer proof rules applied above each Cut* 

than there were about the single application of Cut* originally. 

A.1.5. ?W 
For this and the remaining cases, we omit discussion and simply 

reduction: 

k.Z,A 

t.Z,A,?BTW * kI-,Al 
* 

kE,A I-r,Al 

-,rr,, 
cut* 

12, r, ?B 
cut* 

tz: r, ?B' 

indicate the 

A.1.6. ?C 

k.T,A,?B,?B .: 

t.Z,A,?B ?' kr-,Al 

~ kZ,A,?B,?B kr,Al 

cut* 
kZ,r,?B,?B 

cut* 

k2, r, ?B l-Z,r,?B?C 

A.1.7. ?D 

I-.Z,A,B : tE,AA,B kI',Al 

kZ,A,?BTD kr,Al 
3 

cut* 
t-7 r, B 7D 

Cut* 

tz: r, ?B 12, r, ?B' 
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A.l.8. 1 

A.1.9 T 

t.Z,A, TT tr,AL 
cut* 

3 tz,r,TT 

k2: r, T 

A.1.10. Cut 
If the proof of one hypothesis ends in Cut*, then we know that it has degree 

less than d. If the cut-formula of the lower degree d application of Cut* begins 
with ?, then it is considered principal (by definition) in the upper application of 
Cut*, and will be handled in Section A.2.8. Otherwise, we know the formula 
does not begin with ?, and thus the lower Cut * must actually be Cut : 

kZ,A,C tr,c' 

tz:A,r cut* kA,Al =$ 

tz, A, r 
cut 

tE,A,C bA,Al 

I-2, A, C 
cut . 

tr, cl 
cut* 

~~,A,r 

Here we know that the number of symbols in the formula A is d, and the number 
of symbols in the formula C is less than d. Thus by induction we know that we 
can construct a proof of degree less than d of l-2, A, C, and from that we can 
construct our desired proof of F 2, A, r. 

A. 2. Cut of principal formulas 

If the proof of each hypothesis ends in a rule with the cut-formula as its 
principal formula, then the two last rules above the cut must be one of these 
combinations: I versus any, @ versus 8, @ versus &, ?W versus !S, ?C versus 
!S, ?D versus !S, !S versus !S, Cut* versus !S, 63 versus !S, or I versus 1. Note 
that since there is no introduction rule for 0, the T rule cannot participate in a cut 
of principal formulas. Since all formulas in the conclusion of !S are considered 
principal, the analysis of !S at this stage of the proof is rather complex. 

In many of these cases, we know that the Cut! rule is inapplicable, since the 
cut-formula has just been introduced, and it does not begin with a ?. When we 
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know this, we will disambiguate the reduction, and show the applications of Cut 

and Cut! separately. 

A.2.1. Z versus any 
If the last rule applied in either hypothesis is I (identity), then regardless of the 

rule applied in the other hypothesis we may remove the cut, and the application 
of identity: 

Note that the identity axiom only applies to atomic propositions, and thus we 

know that Cut! is inapplicable. 

A.2.2. (8 versus 49 

bB,A kr,Bl,Al 
k.Z,A tr,A,Ai 

cut 

tr,A,2 
cut 

In this case, as in most of the principal formula cut-elimination steps, we need not 
appeal to the induction hypothesis of this lemma. We have eliminated the Cut of 
degree d, and replaced it with two applications of Cut of degree smaller than d. 

A.2.3. & versus CB 

The symmetric case of CFI is similar. Again, we need not appeal to the induction 
hypothesis, and the cut-formula does not begin with ?, and thus we know that 
Cut! does not apply. 

A.2.4. ?W versus !S 

For this and subsequent cases involving !S, ‘packaging’ is a useful analogy. We 
build packages containing a number of contractions and a single Cut! when we 
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reduce principal cases involving ?C versus !S. We shrink the package in cases of 
?W versus !S, and we actually use the contents of the package as cases of ?D 
versus !S. We let packages pass by each other at cases of !S versus !S, and at cases 
of Cut! versus !S and of 63 versus !S we break one package into two. 

For this case, ?W versus !S, there are two possibilities, depending on whether 
the cut in question eliminates more than one occurrence of the cut-formula from 
the weakened sequent. Informally, the possibilities turn on whether there is only 
one thing in the package. If so, we do not need the package. If there are more 
things in the package, we shrink the package. 

In the first possibility, the cut eliminates the one occurrence of the cut-formulla 
introduced by the ?W rule, and thus this application of cut may be eliminated 
entirely: 

t2 t?r, AL 

t 2, ?ATW t ?l-‘, !A 
.!S 3 

t2l 
y-?W 

cut* ------?W 
tz: ?r tE’,?l- 

However, the second possibility, where the Cut* is actually a Cut! and eliminates 
more than one occurrence of the cut-formula from the weakened sequent, we 
perform the following reduction: 

t 2, (?A)“-’ t?I’, AL 

t2, (?A)” ?w t ?r, !A 
.!S 3 : 

t?r, AL 

Cut! 
t 2, (?A)“-’ t ?r, !A ‘!’ 

a, ?r t-2, ?r Cut! 

In the first possibility we have our result immediately, since the Cut* has been 
eliminated. In the second possibility, we appeal to the induction hypothesis. 

A. 2.5. ?C versus !S 
In this case we make critical use of the Cut! rule. Without this extra rule of 

inference this reduction is especially difficult to formulate correctly, and the 
induction required is complicated: 

t2, ?A, ?A 
?C 

t?r, Al 

t.Y, ?A t ?r, !A 
,!S 

* ! t?r, Al 

cut* 
t 2, ?A, ?A t ?I-, !A 

,!S 

t.z, ?r tz: ?r Cut! 

Here we know that the cut-formula begins with a ?, and thus Cut! may apply to 
it. We thus produce a Cut! regardless of whether the original Cut* was a Cut or a 
Cut!. 
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A. 2.6. ?D versus !S 

As for the previous ?W versus !S case, here we have two cases, depending on 
whether the Cut* in question eliminates more than one occurrence of the 
cut-formula from the derelicted sequent. Again, informally, the two cases turn on 
the size of the package. If there is only one thing in the package, we simply make 
use of it, and throw away the wrapping. If there are more things in the package, 
we take one out, and move the smaller package along its way. 

In the first case, the cut eliminates the one occurrence of the cut-formula 
introduced by the ?D rule, and thus the following reduction applies: 

l-x.2 A 
-----‘q) 

t-?I’, AL 

t 2, ?A’ t ?I’, !A 
,!S 

tZ,?r 
Cut* 

tZ,A !-?I’, AL 

t2, ?l- 
cut 

However, in the second case, where the cut is actually a Cut! and eliminates more 
than one occurrence of the cut-formula from the derelicted sequent, we perform 
the following reduction: 

t 2, ?A”-‘, A 

?D 
t ?r, AL 

t 2, ?A” t?r, !A* 
!S 

tx.?r Cut! 

u 

t ?r, AL 

t 2, ?A”-‘, A t ?I-, !A 
.!S 

tz,?r, A C”t! t ?r, AL 

t 2, ?r, ?r cut 

?C 

Note that the second case requires the duplication of the proof above the 
application of !S. Since A has fewer symbols than ?A, the lower Cut in the second 
case is of degree smaller than d. By induction, we may assume that the upper 
application of Cut! is reducible in degree. 
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A. 2. 7. !S versus !S 
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t ?X, ?A, B t?l-‘, Al 

t ?Z, ?A, !B !’ t ?r, !ALiS 3 

k ?z: ?l-, !B 
cut* 

t?r, AL 

t ?aZ’, ?A, B t ?I-, !ALtS 

t ?Z, ?I’, B 
cut* 

t ?Z, ?r, !B !S 

Here we appeal to the induction hypothesis to produce a proof degree less than 
d of 1 ?_X, ?r, B, and then construct the desired proof from that. 

A. 2.8. Cut* versus !S 

There are two possibilities here, which correspond to whether it is necessary to 
split a package into two pieces. The case where the package needs to be split is 
one of the most tricky aspects of the entire cut-elimination procedure. 

If the lower application of Cut* is applied to formulas which may all be found 
in one hypothesis of the upper application of Cut*, then we apply the same 
reduction as in the nonprincipal Cut case (Section A.l.lO): 

t_Z’, A t A, (?C)n, AL t v-, CL 

t Z, A, (?C)n ‘“** 1 ?r, !cI!’ 
t.x, A, ?r cut* 

t ?r, cI 
t A, (?C)n, AL t ?I-, !CLis 

tx.2, A t A, ?r, A’ 
cut* 

12, A, ?r cut* 

In the more complex case, when the cut-formulas descend from both hypotheses 
of the upper Cut*, we use the following reduction: 

I-.X,?C”, A tA,?C",Al 

__hJ1A?mtm__c 
k?r,c' 

ut* t?r, ICI 
!S 

t‘z,A,?r 
Cut! 

u 

t?r,c' 
,!S 

t?r,cI 
kiY,?C",A t?r,!c 

t.x,?r,A 
Cut! 

FA, ?C",A' t?r, !CLfs 

kA,?r, AL 
Cut? 

~2, ?r,d,v- 
cut* 

?C 
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A.29 8 versus .!S 
There are two possibilities here, which correspond to whether it is necessary to 

split a package into two pieces. The case where the package needs to be split is 
again one of the most tricky aspects of the entire cut-elimination procedure. 

If Cut* is applied to formulas which may all be found in one hypothesis of 63, 
then we apply the same reduction as in the nonprincpal 63 case (Section A.l.l): 

tZ,A t-B, A,(?C) 

kz:(A@B), A,(X)" @ 

k?lq,C' 

k?r,!c 
.!S 

t-aZ,(A@B),A,?r 
cut* 

u 

k?r-, CL 

IB, A, (?C)” k ?r, !P 
k.X,A IB, A,?r 

cut* 

kZ,(A@B), A,?r 
c3 

In the more complex case, when the cut-formulas descend from both hypotheses 
of 63, we use the following reduction to push the cut above the 63 rule: 

tZ,?C",A t-B, A,?C” 

k2, (AE'B), A,?C"+" @ 
k ?r, cl 
er, ds 

kZ,(A@B),A,?r 
Cut! 

t?r, cI 
,!S 

t?r, cl 

tz, ?C”, A t ?r, !C 
tx,?r,A c ! 

ut EB, A,?C” k?r, !CLis 
tB, A,?r 

Cut! 

tZ,?r,(A@B), A,?r 
@ 

?C 

kZ,(A @B), A, ?r?' 

A.2.10. I versus 1 

Again, we know that the Cut* involved here is Cut, since the formula 1 was 
just introduced. 
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This exhausts all the cases. 0 (Lemma A.l) 

Thus, we have a procedure which given a proof which ends in Cut* of degree 
d, and which has no applications of Cut* in the proof of either hypothesis of 
degree greater than or equal to d, produces a proof of degree less than d. 

Lemma A.2 (Lower-degree cuts). If a sequent is provable in linear logic with a 
proof of degree d > 0, then it is provable in linear logic with a proof of degree less 
than d. 

Proof. By induction on the height of the derivation tree of the conclusion, we 
show that given any proof of degree d of F Tin propositional linear logic, we may 
find a (possibly much larger) proof of t r in linear logic of degree less than d. 

We examine the proof of l-r. Since the degree of this proof is greater than 
zero, there must be some Cut* in the proof. If the last rule is not Cut*, then by 
induction we may form proofs of its hypotheses of degree less than d. Applying 
the same rule to the resulting reduced degree hypotheses produces the desired 
proof of degree less than d. 

In the case that the last rule is Cut*, we have the following situation for some 
,Z and A which together (in multiset union) make up r: 

kZ,A kA,Al 
where 2 U A = r. 

tr 
cut* 

By induction, we can produce proofs of t 2, A and t A, A’ of degree less than 
d. By a single application of Lemma A.1 to the resulting proof constructed from 
the modified hypotheses, we obtain a proof of t r of degree less than d. II! 

Theorem A.3 (Cut-elimination). If a sequent is provable in linear logic, then it is 
provable in linear logic without using the Cut rule. 

Proof. By induction on the degree of the assumed proof. We may apply Lemma 
A.2 at each inductive step, and at the base case the degree of the proof is zero, so 
therefore by definition of proof degree there are not cuts, and we have our 
desired cut free proof. 0 

Note that the proof can explode hyperexponentially in size during the 
cut-elimination process. 

A. 3. Subformula property 

Above we have demonstrated that all cuts may be eliminated from a proof, at 
the possible expense of increasing the size of the proof hyperexponentially. This 
normalization is worthwhile, however, since it grants one various kinds of 
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control over the form of proofs of given sequents. One of the finest forms of 
control, and historically the most important, is the subformula property. 

The class of subformulas of a given formula or sequent is defined by the 
following: A is a subformula of A. If A is a subformula of B, then A is also a 
subformula of the following formulas: ?B, !B, B@C, C@BB, BBC, C4?B, 
B & C, C&B, B @ C, C @ B. If A is a subformula of B, then A is also a sub- 
formula of the sequent t- q, B, G. 

Corollary A.4 (Subformula property). Any formula in any cut-free proof of t r is 
a subformula of lY 

Proof. Each rule of linear logic except Cut has the property that every 
subformula of the hypotheses is also a subformula of the conclusion. For 
example, in the C3 rule, any subformula of either hypothesis is either a 
subgormula of Z’,, A, B or Z;. However, any such formula is also a subformula of 
the conclusion. In fact, we may have ‘added’ a subformula: (A 63 B) is a 
subformula of the conclusion, but might not be a subformula of the hypotheses. 

Therefore, by induction on the size of proofs, we have that any subformula of 
any step of a cut-free proof of a sequent is a subformula of the original 
sequent. q 

It is easy to see that the subformula property is not true of proofs with cut: the 
subformulas A and AL in the hypotheses of cut might not appear in the 
conclusion. 

Appendix B. Propositional linear logic proof rules 

A linear logic sequent is a I- followed by a multiset of linear logic formulas. 
Note that in standard presentations of sequent calculi, sequents are often built 
from sets of formulas, where we use multisets here. This difference is crucial. We 
assume a set of propositions pi given, along with their associated negations p,/. 
Below we give the inference rules for the linear sequent calculus, along with the 
definiton of negation and implication. The reader should note that negation is a 
defined concept, not an operator. 

The following notational conventions are followed throughout this paper: 

pi: positive propositional literal; 
pf: negative propositional literal; 

A, B, C: arbitrary formulas; 
2, r, A: arbitrary multisets of formulas. 

Thus the identity rule (I below) is restricted to atomic formulas, although in fact 
the identity rule for arbitrary formulas @A, A’) is derivable in this system. For 
notational convenience, it is usually assumed that +Z and C3 associate to the right, 
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and that 60 has higher precedence than -o. The notation ?Z is used to denote a 

multiset of formulas which all begin with ?. The English names for the rules given 

below are identity, cut, tensor, par, plus, with, weakening, contraction, derelic- 

tion, storage, bottom, one and top, respectively. Note that there is no rule for the 

0 constant. 

I: 

cut: 

8: 

8: 

$: 

&: 

?W: 

?C: 

?D: 

!S: 

I: 

1: 

T: 

tPi, PI 
t2,A tT,Al 

t2, r 

k.Y,A I-B,r 

tx.C,(A@B),r 

kz;A,B 

kZ',(A4?B) 

t2,A tX,B 

tZ(A@B) tZ(ACl3B) 

t2,A t&B 

tE,(A&B) 

k.x 

k.X,?A 

tZ,?A,?A 

k.Y,?A 

kZ:,A 

tZ,?A 

k?Z,A 

k?lZ, !A 

tz 

12, I 

Linear negation is defined as follows: 

(Pi)'4Pf, (Pf)"Pi, 

(A@B)'~B*%'AL, (AOB)-BL@AL, 

(A@B+AL&BL, (Ac%B)~~A'@B~, 

(!A)l h ?Al, (?A)lg !Al, 

(l)lP I, (1)lA 1, (O)l 4 T, (T)lp 0. 
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Linear implication -o is defined as follows: 
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