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Preface

Denotational semantics is concerned with the mathematical meaning of program-
ming languages. Programs (procedures, phrases) are to be interpreted in cate-
gories with structure (by which we mean sets and functions to start with, and
suitable topological spaces and continuous functions to continue with). The main
goals of this branch of computer science are, in our belief:

e To provide rigorous definitions that abstract away from implementation
details, and that can serve as an implementation independent reference.

e To provide mathematical tools for proving properties of programs: as in
logic, semantic models are guides in designing sound proof rules, that can
then be used in automated proof-checkers like LCF.

Historically the first goal came first. In the sixties Strachey was writing
semantic equations involving recursively defined data types without knowing if
they had mathematical solutions. Scott provided the mathematical framework,
and advocated its use in a formal proof system called LoF. Thus denotational
semantics has from the beginning been applied to the two goals.

In this book we aim to present in an elementary and unified way the theory of
certain topological spaces, best presented as order-theoretic structures, that have
proved to be useful in the modelling of various families of typed A-calculi con-
sidered as core programming languages and as meta-languages for denotational
semantics. This theory is now known as Domain Theory, and has been founded
as a subject by Scott and Plotkin.

The notion of continuity used in domain theory finds its origin in recursion
theory. Here the works of Platek and Ershov come to mind: in Stanford and Novo-
Sibirsk, independently, they both exploited the continuity properties of recursive
functionals to build a theory of higher-order recursive functions. Recursion the-
ory is implicit in the basics of domain theory, but becomes again explicit when
effective domains are considered.

The topic is indebted to lattice theory and topology for ideas and techniques,
however the aims are different. We look for theories that can be usefully applied to
programming languages (and logic). Therefore a certain number of complications
arise that are not usually considered. Just to name a few:
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o The topologies we are interested in satisfy only a weak separation axiom
(To). This stands in sharp contrast with classical topology based on T, or
Hausdorfl spaces, but it relates to the subject of pointless topology [Joh82].

e In applications it is difficult to justify the existence of a greatest element,
hence the theory is developed without assuming the existence of arbitrary
lub’s, that is we will not work with complete lattices.

e There are several models of computation, certainly an important distinction
is the possibility of computing in parallel or in series, hence the development
of various notions of continuous, stable, and sequential morphisms.

e There is a distinction between an explicitly typed program and its untyped
run time representation, hence the connection with realizability interpreta-
tions.

One of our main concerns will be to establish links between mathematical
structures and more syntactic approaches to semantics, often referred to as oper-
ational semantics. The distinction operational vs. denotational is reminiscent of
the distinction between “function as extension, or as a graph” (say, of a partial
recursive function) and “function as a rule, or as an algorithm” (say, the speci-
fication of a Turing machine). The qualities of a denotational semantics can be
measured in the way it matches an independently defined operational semantics.
Conversely, an operational semantics, like any formal system, can be “blessed”
by soundness or even completeness results with respect to some denotational
semantics.

We shall therefore describe operational semantics as well as denotational se-
mantics. In our experience it is essential to insist on these two complementary
views in order to motivate computer scientists to do some mathematics and in
order to interest mathematicians in structures that are somehow unfamiliar and
far away from the traditional core of mathematics.

A description of the contents of each chapter follows. Unless stated otherwise
we do not claim any novelty for the material presented here. We highlight this
by mentioning some of the papers which were most influential in the writing of
each chapter.

Chapter 1 introduces the first concepts in domain theory and denotational
semantics: directed complete partial orders, algebraicity, Scott topology. A basic
link between Scott continuity and computability (Myhill-Shepherdson theorem)
is established. As an application, the denotational semantics of two simple im-
perative languages are presented, and are shown to be equivalent to their formal
operational semantics [Sco72, Plo83].

Chapter 2 introduces the untyped A-calculus. We establish several of the
fundamental theorems of A-calculus using a labelling technique due to Lévy. In
this way we prove the Church-Rosser property, the standardization theorem, and
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the finite developments theorem. The same technique also yields the strong
normalization property for the simply-typed A-calculus. Finally, we show the
Syntactic Continuity theorem (a further evidence of the role of continuity in
the semantics of programming languages) and the Sequentiality theorem, which
motivates the semantic study of sequentiality [Lev78, Ber79].

Chapter 3 is a case study of the fundamental domain equation D = D — D,
which provides models of the untyped A-calculus. We detail the construction of
the D., models, obtained as suitable limits. The chapter is also a case study of
Stone duality: the D, models can also be constructed out of certain theories of
“types”, or functional characters [Bar84, CDHL82].

Chapter 4 is an introduction to the interpretation of simply-typed and un-
typed A-calculi in categories. In particular we develop the categorical models
of simply typed and type free A-calculus and illustrate the techniques needed to
prove the soundness and completeness of the related interpretations [LS86, Sco80]

Chapter 5 gives a complete presentation of the problem of classifying the
largest cartesian closed categories of algebraic directed complete partial orders
and continuous morphisms, which was solved by Jung, following earlier work by
Smyth. Two important classes of algebraic cpo’s come out of this study: bifinite
domains, and L-domains [Jun88, Smy83a].

Chapter 6 presents the language PCF of Scott-Plotkin-Milner. This is a sim-
ply typed A-calculus extended with fixpoints and arithmetic operators. For this
calculus we discuss the full abstraction problem, or the problem of the correspon-
dence between denotational and operational semantics [Sco93, Plo77].

Chapter 7 presents the basic apparatus for the solution of domain equations.
It also includes material on the construction of wniversal domains, and on the
representation of domains by projections [Sco72, SP82, DR93, Sco76, ABLS6].

Chapter 8 studies A-calculi endowed with a reduction strategy that stops at A-
abstractions. We analyse in particular a call-by-value A-calculus and a A-calculus
with control operators. We introduce the semantic aspects of these calculi via a
unifying framework proposed by Moggi and based on the idea of computation-
as-monad [Plo75, Plo85, Mog89, Bou94].

Chapter 9 concentrates on powerdomains constructions (loosely speaking a
powerset construction in domain theory) and their applications to the semantics
of non-deterministic and concurrent computations. On the denotational side we
develop the theory of Plotkin’s convex powerdomain. On the syntactic side we
introduce a process calculus (Milner’s Ccs) and its operational semantics based
on the notion of bisimulation. We interpret CCS using a domain equation which
involves the convex powerdomain and relate the denotational semantics to the
operational one [Plo76, Mil89, Abr9la].

Chapter 10 presents Stone duality (originally the correspondence between
Boolean algebras and certain topological spaces), applied to domains. Algebraic
domains can be reconstructed from their compact elements, or from the opens
of their Scott topology, which can be viewed as observable properties. Elements
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are then certain kinds of filters of properties. This idea can be exploited to the
point of presenting domain theory in logical form, as advocated by Martin-Lof
(a program which was carried out systematically by Abramsky) [Joh82, ML83,
Abr91b].

Chapter 11 introduces the problem of the categorical interpretation of a typed
A-calculus with dependent and second order types along the lines established in
chapter 4. We first develop some guidelines in a categorical framework, and then
we apply them to the specific cases of categories of complete partial orders and
Scott domains. Two popular fragments of this typed A-calculus are considered
in greater detail: the system LF of dependent types, and the system F of poly-
morphic types [Gir86, CGW88, AL87, Gir72, Rey74, HHP93].

Chapter 12 presents another theory of domains based on the notion of stable
morphism. Stability was introduced by Berry, as an approximation of the sequen-
tial behaviour of A-calculus. The definition of a stable function formalizes the
property that there is always a minimum part of a given input needed to reach
a given finite output. We develop the theory along the lines of chapters 1 and 5:
we study stability on meet cpo’s, dI-domains and event structures (and coherence
spaces), stable bifinite domains (with an application to the construction of a re-
traction of all retractions), and continuous L-domains [Ber79, Ama9la, Ama95].

Chapter 13 is devoted to linear logic. The simplest framework for stability -
coherence spaces - led Girard to the discovery of a new resource-sensitive logic.
In linear logic, hypotheses, or data are consumed exactly once, and multiple uses
(including no use) are re-introduced by explicit connectives. Linear logic has a
rich model theory. We present only a few models: the stable model, Ehrhard’s
hypercoherence model (which is closer to capturing sequential behaviour), and
Winskel’s bistructures model (which combines the continuous and the stable
models). Also continuity can be recast in the light of linear logic, as shown
by Lamarche [Gir87, Ehr93, Win80].

Chapter 14 addresses the semantic notion of sequentiality, which is aimed at
capturing sequential computation, as opposed to inherently parallel computation.
We start with Kahn-Plotkin sequential functions, which do not lead to a cartesian
closed category. But sequential algorithms, which are pairs (function, computa-
tion strategy) yield a model of Pcr. They actually model, and are fully abstract
for and extension of PCF with a control operator catch. Sequential algorithms
lend themselves to a game interpretation. On the other hand, a term model of
Pcr, from which a fully abstract model of PcF is obtained by a quotient, can
also be described in a syntax-independent way using games. Games semantics
therefore appear as a powerful unifying framework, which is largely undeveloped
at the time this book is written [Cur86, AJ92].

Chapter 15 is an elementary introduction to the ideas of synthetic domain
theory via the category of partial equivalence relations (per). The category of
per’s is a useful tool in semantics; we exhibit an interpretation of system F, of a
type assignment system, and of a subtyping system. Towards the interpretation
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of recursion we introduce various reflective subcategories of per’s. In this context
we prove a generalized Myhill-Shepherdson theorem [HylI88, Ros86, FMRS92,
Ama9lb].

Chapter 16 discusses some connections between the functional and concurrent
computational paradigms. As a main tool for this comparison we introduce the
basics of m-calculus theory, a rather economical extension of Milner’s Ccs. We
show that this calculus is sufficiently expressive to adequately encode a call-by-
value A-calculus enriched with parallel composition and synchronization operators
[MPW92, ALT95].

Two appendices provide the basic material on recursion theory and category
theory (see [Rog67, Soa87] for the former and [ML71, BW85, AL91] for the latter).
We refer to [Bar84, GLT89] for more advanced results on the syntactic aspects
of A-calculus.

Most people never manage to read a scientific book from the beginning to the
end. We guess this book will be no exception. In first approximation a precedence
relation > among the chapters can be defined as follows.

1,2=3=4%6=8%9 =16
4% 59,10
612> 13 14

5% 7w 11 15

Clearly there are plenty of possible shortcuts. When using the book in an intro-
ductory graduate course or seminar it is perhaps a good idea to modulate the
amount of domain-theoretical constructions which are presented.

This book arises out of a joint effort to develop and integrate lecture notes
for graduate courses taught by the authors in the years 1991-1996 in a number of
research institutions. A preliminary report of our work had appeared in [AC94].
Constructive criticisms and corrections are welcome and can be addressed to
amadio@gyptis.univ-mrs.fr or curien@dmi.ens.fr.
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Notation

Set theoretical.

0 empty set

w natural numbers

B two elements set

u,n union, intersection of two sets

U,N union, intersection of a family of sets
Xc¢ complement of X

P(X) parts of X

Prin(X) finite subsets of X

XCh Y X is a finite subset of YV

X g;n Y X is a finite and non-empty subset of ¥
£X cardinality of X

R* reflexive and transitive closure of R
{d;}icr indexed set

{0 }ncw, {Tntnew, {Tn}n>0 equivalent notations for an enumerated set
= f(z), Aa.f(2) ~ equivalent functional notations

Category theoretical.

C,D categories

C[a,b] morphisms from a to b
fog  composition of morphisms
(f,g pairing of morphisms

L - L left adjoint to R

:U\/

11
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Domain theoretical.

(P, <)

(<)== (P, <)

UB(X)
MUB(X)
VX
AX

z Ty

T <y
TX, ]} X
(0]

d—e
K(D)

Syntax.

Semantics.

BNF

NOTATION

preorder (reflexive and transitive)

f is monotonic if it preserves the preorder
upper bounds of X

minimal upper bounds (mub’s) of X

least upper bound (lub)

greatest lower bound (glb)

elements with an upper bound (compatible elements)
immediate predecessor

smallest upper, lower set containing X
poset {L, T} with L < T

step function

compact elements

Backus-Naur form for grammars

VI[U/z] substitution of U for 2 in V/
FV (M) free variables of M
BT (M) Bohm tree of M

w(M)

syntactic approximant of M
vector of terms

fle/d] environment update, fle/d](z) = { e ife=4d

f(z) otherwise

Recursion Theoretical.

{n}, ¢, function computed by the n-th Turing machine

convergence, divergence predicate

Kleene’s equality on partially defined terms



Chapter 1

Continuity and Computability

As the computation of a computer program proceeds, some (partial) information
is read from the input, and portions of the output are gradually produced. This
is true of mathematical reasoning too. Consider the following abstraction of a
typical highschool problem for simple equation solving. The student is presented
with three numerical figures — the data of the problem (which might themselves
be obtained as the results of previous problems). Call tem u,v, and w. The
problem has two parts. In part 1, the student is required to compute a quantity
x, and in the second part, using part 1 as a stepping stone, he is required to
compute a quantity y. After some reasoning, the student will have found that,
say, * = 3u + 4, and that y = © — v. Abstracting away from the actual values of
u, v, w, z, and y, we can describe the problem in terms of information processing.
We consider that the problem consists in computing @ and y as a function of
u,v,w, ie., (z,y) = f(u,v,w). A first remark is that w is not used (it was
probably placed there on purpose to confuse the student...). In particular, if
computing w was itself the result of a long, or even diverging, computation, the
student would still be able to solve his problem. A second remark is that =
depends on u only. Hence, again, if finding v is very painful, the student may
still achieve at least part 1 of his problem. Finally, ¥ depends on both u and wv.
If the actual value of y is needed to get the highest mark, then the student has
no escape but to solve the other problem whose output is v.

We use the symbol L to mark the absence of information. All what we have
described with English words can be formalised as follows (we assume u, v # L):

f(L L, 1) = (L, 1)
F L 1) = (utd L)
flu,vo, L) = (Bu+4,3u+4) —v).

Input and output data may be ordered according to their information contents.
Therefore we write:

(L, L
L, L

(

, L) < (,J_J_)g(qu_)
) < (3u 1)< Bu+4,3u+4)—v).

13
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The function f is monotonic with respect to this order, i.e.,if (z,y,z) < (2, vy, 2'),
then f(x,y,z) < f(a/,y,2"). We are not concerned here with the order relation
between numbers. It is not relevant in the analysis of the student’s information
processing activity. We are also confident that he or she is good at computing
additions and multiplications (he might have a calculator...).

Another example involving an open-ended view of computation is offered by
some popular programs running in the background at many academic institutions,
which compute larger and larger prime numbers. In this case, larger and larger
lists of prime numbers are obtained from scanning larger and larger portions of the
(infinite) list of natural numbers, and making the appropriate primality checks.
The currently produced list of prime numbers is an approximation of the infinite
sorted list of all prime numbers, which is the ideal total output information.
Continuity arises as the formalisation of the slogan: “any finite part of the output
can be reached through a finite computation”. The primality of an arbitrarily
large number can be (in principle) checked in finite time and by scanning a finite
portion of the sorted list of natural numbers.

Complete partial orders and continuous functions are introduced in section
1.1. The following two sections sketch links with topology and recursion theory.
In section 1.2, we show that complete partial orders can be viewed as (quite
special) topological spaces. In section 1.3, we indicate where all this came from:
a theorem of recursion theory, due to Myhill and Shepherdson, shows that, in a
suitable sense, computability implies continuity. In section 1.4, we come back to
the order-theoretic treatment, and present basic domain constructions (product,
function space, smash product, lifting, and different kinds of sums). In section 1.5,
we apply the material of the previous sections to give a denotational semantics
to a toy imperative language. In section 1.6, we consider a small extension of
this language, and we introduce continuation semantics (continuations will be
considered again in chapter 8).

1.1 Directed Completeness and Algebraicity

After giving the basic definitions concerning directed complete partial orders
and continuous functions, we immediately arrive at a simple, but fundamental
fixpoint theorem, which will be used to give meaning to loops (section 1.5) and
to recursive definitions (section 6.1).

Definition 1.1.1 (depo) Given a partial order (D, <), a non-empty subset A C
D is called directed if

Ve,ye A dze A <z and y < z.

In the sequel, A Cg D stands for: “A is a directed subset of D7 (when clear
from the context, the subscript is omitted). A partial order (D, <) is called a
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directed complete partial order (depo) if every A C D has a least upper bound
(lub), denoted \/ A. If moreover (D, <) has a least element (written L), then it
is called a complete partial order (epo).

Definition 1.1.2 (monotonic,continuous) Let (D, <) and (D', <) be partial
orders. A function f: D — D' is called monotonic if

Veye D x<y= f(z) < fly)

If D and D' are depo’s, a function f : D — D' is called continuous if it is
monotonic and

VA Cu X f(VA) =\ F(A).
(Notice that a monotonic function maps directed sets to directed sets.) A fixpoint

of f: D — D is an element x such that f(x) =x. A prefizpoint of f: D — D is
an element @ such that f(x) < x. If f has a least fizpoint, we denote it by fix(f).

The most noteworthy example of a directed set is an infinite ascending se-
quence xg < 11 < --- < x,--- . Actually they are the ones that matter. Most
of domain theory can be formulated with partial orders that are complete only
with respect to ascending chains.

Definition 1.1.3 (w-dcpo) A partial order (D, <) is called an w-dcpo if every
ascending sequence {x, o, has a lub.

Clearly, dcpo’s are w-depo’s. We stick to directed sets, which have a more abstract
flavour.

Exercise 1.1.4 Show that the identity functions are continuous, and that the compo-
sition of two continuous functions is continuous.

Definition 1.1.5 The category Dcpo is the category of directed complete partial
orders and continuous functions. The category Cpo is the full subcategory of
Dcpo whose objects are the cpo’s.

Example 1.1.6 1. Given any set X, define X; = X U{L} (where L ¢ X), and
r<y&s(x=_Lorx=uy). Cpo’sdefined in this way are called flat. The two
elements flat domain { L, T} is written O. The boolean flat domain { L, tt, ff'} is
written T.

2. All partial orders without infinite ascending chain are depo’s (this includes all
finite partial orders).

3. X =Y (the set of partial functions between two sets X, Y ), endowed with
the following order, is a cpo:

f<ge (f@) = (g(x) | and [(x) = g(z)))

(where f(x) | means “f(x) is defined”), or equivalently graph(f) C graph(g)
(where graph(f) = {(x,y) | f(z) L and f(z) = y}). The least element is the

everywhere undefined function, and lub’s are set-theoretic unions (of graphs).
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The following proposition is the key to the interpretation of recursively defined
programs or commands.

Proposition 1.1.7 (Kleene’s fixpoint) If D is a cpo and f : D — D is con-
tinuous, then \/ ¢, f"(L) is a fizpoint of f, and is the least prefirpoint of f (hence
it is the least fizpoint of f) .

ProoOF. From L < f(L), we get by monotonicity that L, f(L),..., f"(L),...1is
an increasing chain, thus is directed. By continuity of f, we have

FOV (L) =V i) =V .
new new nEw
Suppose f(z) < x. We show f"(L) < a by induction on n. The base case is clear
by minimality of L. Suppose f"(L) < x: by monotonicity, f***(L) < f(z), and
we conclude by transitivity. a

More assumptions on D make it possible to prove the existence of least fix-
points for all monotonic functions.

Exercise 1.1.8 (Tarski’s fixpoint) Let D be a complete lattice (i.e., D is a partial
order in which every subset has a lub). Show that any monotonic function f: D — D
has a least fizpoint, which is N{z | f(z) < x}, and that the set of fizpoints of f is a
complete lattice.

An alternative proof of the first part of Tarski’s theorem appeals to a cardi-
nality argument, as suggested in the following exercise.

Exercise 1.1.9 Let D be a complete lattice, and f: D — D be a monotonic function.
Set fO = 1, f = fo f*, and fz) = Vier [5(2), for all x, where k is an ordinal,
and X is a limit ordinal. Show that there is an ordinal p such that f* = fix(f). Describe
a dual construction for the greatest fixpoint.

Next we introduce compact elements, which are used to model the notion of
finite information.

Definition 1.1.10 (compact) Let D be a depo. An element d € D is called
compact (some authors say isolated) if the following implication holds, for each
directed A:

dg\/A:>E|x€A d<zx.

We write K(D) for the collection of compact elements of D, and we let d, e range
over compact elements.

Exercise 1.1.11 Show that the lub of two compact elements, if any, is compact.

'Why this fact is named after Kleene is explained in remark 1.3.3.
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Definition 1.1.12 (algebraic) A dcpo D is called algebraic if for all x € D the
set {d € K(D) | d < x}, is directed and has lub x. It is called an w-algebraic depo
if it is algebraic and K(D) is denumerable. The elements of {d € K(D) |d <z}
are called the approximants of x, and K(D) is called the basis of D. We denote
by Adcpo and wAdcpo the full subcategories of Depo consisting of algebraic
and w-algebraic depo’s, respectively. We also write

Acpo = Cpon Adcpo, wAcpo = CpoNwAdcpo.

Thinking of a directed set A as describing the output of a possibly infinite
computation, and of the elements of A as describing the larger and larger portions
of the output produced as time passes, then the property of d being compact
means that only a finite computing time is required to produce at least d. The
algebraicity requirement says that we want to bother only about those abstract
elements which can be described as the “limits” of their finite approximations.

Example 1.1.13 /. We have seen that X — Y is a cpo. It is actually an
algebraic cpo: the compact elements are the functions that have a finite domain

of definition.

2. The powerset of natural numbers, P(w), ordered by inclusion, is an w-algebraic
epo.

3. Consider a signature ¥ consisting of symbols f with an associated arity
arity(f). Define possibly infinite terms as partial functions S from w* to ¥ sat-
isfying the following property:

S(un) L= 3f S(u) = f with n < arity(f).

The order is the restriction of the graph inclusion order on w* — X,

4. The following is a minimal example of a non-algebraic cpo:

y=>bor
D =wU{a,b} withx <y iff r=aor
r=m,y=mn, and m <n.

Exercise 1.1.14 Let D be a depo, and K C K(D) be such that for any @ € D the
set {d € K| d < z} is directed and has lub x. Show that D is algebraic, and that
K =K(D).

Exercise 1.1.15 Define a notion of (w)-algebraic w-depo (cf. definition 1.1.3), and
show that w-algebraic w-depo’s and w-algebraic depo’s are the same.

The following proposition formalises the idea that continuous means “finite input
only is needed to produce finite output”.



18 CHAPTER 1. CONTINUITY AND COMPUTABILITY

Proposition 1.1.16 (eé-continuity) Let D and E be algebraic depo’s.

1. A function f: D — E is continuous iff it is monotonic, and for each e € K(F)
and x € D such that e < f(x), there exists d < x such that d € K(D) and
e < f(d).

2. {(d,e) € K(D) x K(E) | e < f(d)}, denoted by graph(f) and called graph of

f determines f entirely.?

PRrROOF. (1) We first prove («<). Let A be directed. We have \/ f(A) < f(VA)
by monotonicity. To show f(V A) <V f(A), it is enough to prove that for any
compact e < f(\/ A) there exists § € A such that e < f(§). By assumption there
exists d <V A such that d € K(D) and e < f(d), and the conclusion follows by
compactness of d. Conversely, if f is continuous and e < f(x), take a directed
A C K(D) such that @ = \V A. Then by continuity we can rephrase ¢ < f(x) as
e <V f(A), and we conclude by compactness of e. For the second part of the
statement, notice

fl)y=\{ele< f(z)} =\{e|3d d <z and e < f(d)}.
a

Definition 1.1.17 (effective continuity) If D and E are w-algebraic depo’s,
and if two surjective enumerations {d, } <., and {e,},<. of the compact elements
of D and E are given, then f : D — FE s called effectively continuous iff it is
continuous and the set {(m,n) | e, < f(dy)} is recursively enumerable.

Since a continuous function is determined in terms of compact elements, it is
natural to ask for a characterisation of those sets of pairs that arise as graph of
a continuous function.

Definition 1.1.18 (approximable relation) If D and E are algebraic depo’s,
a relation R C K(D) x K(FE) is called an approximable relation if it satisfies:

(ARy) (d,e1),(d,eq) € R = e Te
(ARQ) (dae)e Radl §d7€§€1 = (d1,€1)€ R

Proposition 1.1.19 The approximable relations are exactly the graphs of con-
tinuous functions.

PROOF. Clearly, the graph of a continuous functions satisfies (AR;) and (ARz).
Conversely, let R be an approximable relation. We define f by

f(x)=\/{e|3d <z (de) e R}

?This definition of graph is a variant of the set-theoretical definition used in example 1.1.6
(3), which is well suited for continuous functions over algebraic cpo’s.
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We show that f is well-defined. We have to check that {e | 3d < z (d,e) € R}
is directed. Let (dy,e1),(dz, e2) € R, with dy,dy < x. By algebraicity there exists
a compact d such that di,dy < d < 2. Then (d,e1),(d,e3) € R by AR,, and
(d,e) € R for some e > €1, ey by ARy, hence e fits. The proofs that f is mono-
tonic and graph(f) = R are easy. O

Next we show how algebraic dcpo’s correspond to a completion process, similar
to that for obtaining real numbers from rationals.

Definition 1.1.20 (ideal) Given a preorder (P, <), an ideal I is a directed,
lower subset of P. Write Ide(P) for the collection of ideals over P, ordered by
set-theoretic inclusion. An ideal I is called principal if (3z € P [ =] ).

Proposition 1.1.21 (ideal completion) 1. If P is a preorder, then Ide(P) is
an algebraic depo whose compact elements are exactly the principal ideals.

2. If D is an algebraic depo, then D and 1de(K(D)) are isomorphic in Dcpo.

PRrOOF. (1) (1) Let A be a directed set of ideals. Define \/ A as the set-theoretic
union of the ideals in A. Tt is easily checked that this is an ideal, thus it is the lub
of A'in Ide(P). The directedness of {| x || x C I} follows from the directedness
of I. The rest of (1) follows from the following obvious facts: I = U{} = |{ « C I},

and principal ideals are compact.

(2) The two inverse functions are v — {d € K(D) |d <z} and [ — V. O

Ideal completion is a universal construction, characterised by an adjunction.
(The notion of adjunction is recalled in appendix B.)

Proposition 1.1.22 (ideal completion free) [deal completion is left adjoint
to the forgetful functor U : Dcpo — P, where P is the category of partial orders
and monotonic functions, and where U takes a depo to the underlying partial order
and a continuous function to the underlying monotonic function. Less abstractly,
given any partial order X and any depo D, any monotonic function f: X — D
extends uniquely to a continuous function f :lde(X) = D.

PROOF. We define the counity of the adjunction by n(xz) =} x. Take a monotonic
J + X = D. The unique continuous extension f of f to Ide(X) is defined by

(D) = Vaer f(2). =

In a different perspective, ideal completion determines an equivalence of cat-
egories.

Proposition 1.1.23 The ideal completion and the transformation D — K(D)
determine an equivalence between Adcpo and the category of partial orders and
approximable relations.
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PROOF. First we make sure that partial orders and approximable relations form
a category. Composition is defined as graph composition:

R'oR={(d,d")|3d (d,d) e R and (d',d") € R'}.

We only check that R'o R satisfies AR;y. Let (d,d}) € R, (dy,d") € R, (d,d},) € R,
and (d},dy) € R'. Then

(d,d") € R for some d > dy,d, by AR,

(d',d}) e R, (d,d)) e R by AR,

1 2

(d',d") € R for some d" > d,dy by AR, .

The rest of the proposition follows easily from propositions 1.1.21 and 1.1.19. O

Exercise 1.1.24 Consider the finite partial terms over a signature ¥ U {Q} (disjoint
union) including a special symbol Q of arity 0, ordered as follows: s < t iff Fs <t
can be established by the following rules:

|_51§t1 }_Sngtn
"Qgt f(Sl,,Sn) Sf(t177tn)

Show that the ideal completion of this partial order is isomorphic to the set of finite
and infinite terms as defined in example 1.1.13.

1.2 Dcpo’s as Topological Spaces

Any partial order (X, <) may be endowed with a topology, called Alezandrov
topology, whose open sets are the upper subsets of X. It has as basis the sets 1 z,
where = ranges over X. Conversely, with every topological space (X,QX), one
may associate a preorder, called specialisation preorder, defined by

<y ifft VUeQX 2eU=yel.

A Ty topology is by definition a topology whose associated preorder is a partial
order, i.e., if # # y, then either there exists an open U such that « € U and y € U,
or there exists an open U such that y € U and = ¢ U. Classical topology assumes
a much stronger separation axiom, known as Ty or Hausdorff: if @ # y, then there
exist disjoint opens U and V such that € U and y € V. The topological spaces
arising from dcpo’s are not Hausdorff. They are not even T, where T} is the
following intermediate property: if @ # y, then there exists an open U such that
x € U and y ¢ U. (Clearly, if 1} holds, then ¢ < y = = = y.) We seek a 1j
topology associated with a depo in such a way that:

the specialisation order is the dcpo order, and

order-theoretic continuity coincides with topological continuity.

Recall that the opens of a topological space X are in one-to-one correspondence
with the continuous functions X — {1, T}, where the only non-trivial open
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of {L, T} is {T}. Precisely, the correspondence associates with an open its
characteristic function, and maps any f to f~!(T). The specialisation order for
this topology on { L, T} yields the flat cpo O (cf. section 1). So the open sets of
a dcpo D must be the sets of the form f~'(T), for f continuous from D to O, in
the order-theoretical sense. This motivates the following definition.

Definition 1.2.1 (Scott topology) A subset A C D of a depo D is called Scott
open if:

1. xe€Aandx <y=ye€ A,

2. A directed and VA € A= 3dz € A z € A

The collection Qs(D) of Scott opens (which is clearly a topology) is called Scott
topology over D.

Exercise 1.2.2 Show that U, = {y € D |y £ x} is Scott open.

Lemma 1.2.3 The specialisation order on (D,Qs) is (D, <). In particular, Qg
s To.

PRrROOF. Call <’ the specialisation order. It is obvious from the definition of Scott
topology that < C <’. Conversely, let <"y and suppose © £ y, i.e., v € U, (cf.
exercise 1.2.2). Then y € U, by definition of <', contradicting reflexivity. O

Proposition 1.2.4 Let D, E be depo’s. The continuous functions (in the topo-
logical sense) from (D,Qs) to (E,Qg) are exactly the morphisms in Dcpo.

PROOF. Let f be Qg-continuous. By lemma 1.2.3, f is monotonic (a continuous
function is always monotonic with respect to the specialisation order). Suppose
FIVA) £ Vf(A), ie, VA € f_l(U\/f(A)). Thus f(d6) € Uy ya) for some
d € A, since f_l(U\/f(A)) is Scott-open. But this contradicts f(d) <V f(A).

The converse is easy and left to the reader. O

Proposition 1.2.5 (Scott basis) If D is algebraic, then the sets T d, for d
compact, form a basis of Qs.

PRrROOF. The sets T d are Scott-open, by definition of compactness. We have to
show that if 1 d N1 d # 0, then T d" Ctd Nt d,for some d”, that is, d,d < d".
Let x et d N1 d', that is, d,d € {e € K(D) | e < x}. We find d” by directedness.
We also have to show that if U is open and x € U, then « €1 d C U for some d:
this trivially follows from the definition of opens and by algebraicity. O

Exercise 1.2.6 gives a topological justification of ideal completion. Recall that
opens of a topological space can be viewed as the morphisms from that space
into O. Suppose that we are interested in the dual exercise. We have an abstract
topology, consisting a partial order of “opens” with arbitrary lub’s and finite
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greatest lower bounds (glb’s) distributing over them. Such a structure is called a
frame. (The set of opens of a topological space, ordered by inclusion, is a frame.)
Dually to the way of obtaining opens out of points, a way to recover points from
(abstract) opens is to take the frame morphisms from A to O (i.e., those that
preserve the frame structure), where O is considered as a frame. The construction
that takes a topological space to its frame of opens, then to the set of points of
this frame, is called soberification. All these notions of abstract topology will be
developped in section 10.1.

Exercise 1.2.6 (ideals/points) Let (X, <) be a partial order. Show that ideals of X
are in one-to-one correspondence with the points of the Alexandrov topology over X,
i.€., the frame homomorphisms from Q2X to O. In other words, ideal completion is an
instance of soberification.

1.3 Computability and Continuity

We give a recursion-theoretic characterisation of the set (w — w) =g (w — w)
of effectively continuous functions from w — w to w — w. Let {¢,},<n be an
enumeration of the set PR of partial recursive functions. We have

Kw—=w)CPRCw— w.

We recall theorem A.3.1: if A is a subset of PR such that {z | ¢, € A} is

recursively enumerable (r.e.), then for any partial recursive f:
f € A iff there exists a finite function # < f such that § € A.

In particular, A is an upper subset.

Theorem 1.3.1 (Myhill-Shepherdson) 1. Let f be a total recursive function
that is extensional, i.e., Qp(my = Qf(n) whenever ¢, = ¢,. Then there is a unique
continuous function F : (w = w) — (w — w) “extending” f, i.e., such that
F(én) = dg(ny for all n. Moreover, I is effectively continuous.

2. Conversely, any effectively continuous function F : (w = w) — (w = w)
maps partial recursive functions to partial recursive functions, and there is a
total (extensional) recursive function f such that F(¢,) = ¢y for all n.

PROOF. (1) Define Fyy : PR — PR by Fo(¢,) = ¢4(n). The key property of I is:
(%) Folg)(m) L n iff Fy(0)(m) | n for some finite § < g (g € PR).

We get this by theorem A.3.1, taking A = {g € PR | Fo(g)(m) | n} (m, n fixed):

a procedure in p that terminates when ¢, € A is given by:
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computing f(p), and then,
computing ¢y(p)(m) and checking ¢, (m) = n.

Since [’ has to extend Fp, it extends a fortiori the restriction of Fy to finite
functions, thus there is no choice for the definition of F":

F(g)(m) |l n iff Fo(0)(m) | n for some finite § < g (g € w — w).

(Hereafter § always ranges over finite functions.) We show that F' is well defined.
Suppose that Fy(0)(m) | n and Fo(8')(m) | n' for some finite 6,6 < ¢g. By
(%), we have Fy(g)(m) | n and Fy(g)(m) | n’, which forces n = n’. F extends
Fy by definition. It is also continuous by definition. We show finally that F'is
effectively continuous. A procedure in (encodings of) 0, ', which terminates when
0 < F(0) = Fy(0), is obtained as a sequence of procedures in #, which terminate
when Fy(0)(m) | n, for all m, n such that 6’(m) = n. Such procedures can be
obtained by prefixing the procedure considered above with a (total) procedure
taking ¢ to an index p such that § = ¢,.

(2) Conversely, let F' be effectively continuous. We build f as in the statement
by a simple application of the s-m-n theorem A.1.5: it is enough to show that
(p,m) — F(¢,)(m) is partial recursive. This in turn is equivalent to proving
that F(¢,)(m) | n is r.e. in p, m, n. We know from the effectivity of the
continuity of /' that the predicate F'(8)(m) | n is r.e. in 6, m, n. Whence
the following procedure for p, m, n: try in parallel the successive 0’s, checking
whether 6§ < ¢, and F(6)(m) | n, and stop when one such # has been found.
Continuity guarantees that the procedure will succeed if F(¢,)(m) | n. O

Exercise 1.3.2 Let F' be as in the statement of Myhill-Shepherdson’s theorem 1.3.1.
Show that the least fizpoint of I is in PR.

Remark 1.3.3 Forgetting about minimality, exercise 1.53.2 can be reformulated
as follows: for any total and extensional recursive function f : w — w, there
exists ng such that ¢,y = Pny. This is known as Kleene’s recursion theorem.
The proof followed here uses the (computable = continuous) direction of theorem
1.3.1 and the proposition 1.1.7.

1.4 Constructions on Dcpo’s

In this section we show how to construct new depo’s out of depo’s. First we
consider the product and function space constructions. Then we consider other
basic domain constructions: lifting, smash product and sum.

Let D, FE be two dcpo’s. The product D x F of D and E in the category
of sets becomes a product in the category of dcpo’s (for the categorical notion
of product, see appendix B), when endowed with the following componentwise
order:

(x,y) < (2',y) iff z<z’andy<y'.
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Proposition 1.4.1 (dcpo of pairs) If D, I are depo’s, then D x F ordered as

above is a depo. The statement also holds, replacing “depo” by “cpo”.

ProoF. If A is directed in D x E, define Ap = {z | Jy (x,y) € A}, and
symmetrically Ag. Then (V Ap,V Ag) is the lub of A. If D, F are cpo’s, then
(L, L) is the minimum of D x K. O

If the depo’s are algebraic, the product in Dcpo coincides with the product
in Top, the category of topological spaces.

Exercise 1.4.2 Let D, E be dcpo’s, let Qg be the Scott topology on D x FE, and
let T be the product of the Scott topologies on D and E (a basis of T is {U X V|
U,V Scott open}). Show v C Qg. Show that if D, E are algebraic, then T = Qg. (See
exercise 1.3.12 in [Bar84] for a situation where 7 # Qg.)

In general topology, it is not true that a continuous function of several argu-
ments is continuous as soon as it is continuous in each argument, but this is true
for dcpo’s.

Proposition 1.4.3 (argumentwise continuity) Let D, D', and E be depo’s.
A function f: D x D' — FE is continuous iff for all x € D the functions f, :
D' — E, and for all y € D' the functions f, : D — E, defined by f.(y) = f(x,y)
and f,(x) = f(x,y), respectively, are continuous.

PRrROOF. Let f: D x D' — E be continuous, and A be a directed subset of D’.
Then (z,A) = {(x,d) | § € A} is a directed subset of D x D’. Thus

Fo(VA) = f(V (2, 8) =\ f(z,8) =V fo(D).

Suppose conversely that f is continuous in each argument separately. Let A be
directed in D x D'. Let Ap and Aps be as in the proof of proposition 1.4.1. Then

f(\/A) = f(\/ADa\/AD’):\/f(AD:\/AD’)
= VIV /(6 Ap) |6 € Apt =\ f(Ap,Ap).
It remains to show V f(Ap,Ap) = V f(A). One side is obvious since A C

Ap x Apr. Conversely, one uses directedness of A to check that each element of
Ap x Ap: has an upper bound in A. a

Next we consider the construction of function spaces.

Proposition 1.4.4 (dcpo of functions) Let D, E be depo’s. The set D —.on
E of continuous functions from D to FE, endowed with the pointwise ordering

defined by

[ < [l Yo f(z) < f()
is a depo. (We shall omit the subscripts cone and o until chapter 12.) Moreover,
if £ is a cpo, then D — E is a cpo.
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PROOF. Let A be a directed set of functions. Define f(z) =V A(x). Let A’ be
a directed subset of D. Then

FVAY) = VAN A)=V{Vg(A) [ge Al =V AL
= V{VA@) [ e A=V f(A).

For the last part of the statement, notice that the constant function Az.L is the
minimum of D — E. o

Exercise 1.4.5 (fiz continuous) Show that the fizpoint functional fix : (D — D) —
D of proposition 1.1.7 is continuous.

The material needed to show that D x Ef and D — F are categorical product
and function spaces are collected in exercises 1.4.6 and 1.4.7. We refer to sec-
tion 4.2, and in particular to exercises 4.2.11 and 4.2.12, for the full categorical
treatment.

Exercise 1.4.6 Show the following properties: (1) The projections 7y and 74, defined
by m(z,y) = = and m(x,y) = y, are continuous. (2) Given continuous functions
f:D — Eand g: D — F', the pairing (f,g) defined by (f,g9)(z) = (f(z),g(x)) is
continuous.

Exercise 1.4.7 Show the following properties: (1) The evaluation defined by ev(z,y) =
x(y) is continuous. (2) Given f: Dx D' — E, show that A(f) : D — (D' — FE) defined
by A(f)(z)(y) = f(2,y) is well-defined and continuous.

What is the situation for algebraic dcpo’s? Unfortunately, if D, £ are alge-
braic, D — E may fail to be algebraic. The story seems to begin well, though.
The following lemma shows how compact functions can be naturally constructed
out of compact input and output elements.

Lemma 1.4.8 (step functions) (1) Let D, E be cpo’s, d € D and e € K(F).
Then the step function d — e, defined as follows, is compact:

(d—)e)(:p):{e Ya=zd

L otherwise .
(2) If D and E are algebraic, then f =\{d — e | (d—e) < f}, for any f.

Proor. (1) If d = e < VA, then e = (d — ¢)(d) < V{f(d) | f € A}. Since e is
compact, we get e < f(d) for some f, i.e.,d — e < f.

(2) Notice that {d = e|(d—¢e) < f} <giff (e < f(d) = e < g(d)) for all d, e
iff f<g. O

The trouble is that the sets {g | ¢ < f and g compact} are not directed in
general (see exercise 1.4.15). They become directed under a further assumption

on the domains. The following observation motivates the next definition: if
d—e< f,d —¢e < f,and d T d', then also e T €.
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Definition 1.4.9 (Scott domain) A dcpo satisfying the following axiom is called
bounded complete (some authors say consistently complete):

Ty = xVy exists, for any  and y.
Bounded complete and algebraic epo’s are often called Scott domains.

Exercise 1.4.10 Show that a depo D is bounded complete iff any non-empty upper
bounded subset of D has a lub iff any non-empty subset of D has a glb.

Exercise 1.4.11 Show that an algebraic dcpo is bounded complete iff d 1 d' = d Vv
d' exists, for any compacts d and d'.

Suppose that F is bounded complete; then define, for compatible d — e and
d — e
eVe xz>dand x> d
€ x>dand z 2 d
e xZdand x> d

1 otherwise .

It is easily checked that f is the lub of d — ¢ and d' — €.

Theorem 1.4.12 (Scott CCC) If D is algebraic and F is a Scott domain, then
D — FE is a Scott domain. The compact elements of D — E are exactly the
Junctions of the form (dy — e1) V-~V (d, — €,).

PROOF. Let A be the set of Tub’s of finite non-empty bounded sets of step func-
tions (which always exist by a straightforward extension of the above construction
of h). Then f=\V{d — ¢e|(d— ¢e) < f} implies f = V{g € A | g < f}, which
shows that D — [ is algebraic, since {g € A | g < f} is directed by defini-
tion, and since A is a set of compact elements (cf. exercise 1.1.14). Bounded
completeness for compact elements obviously follows from the definition of A. O

The terminology “CCC” is a shorthand for “cartesian closed category” (see
appendix B and section 4.2).

Remark 1.4.13 The lub’s of finite sets of step functions, when they exist, are
described by the following formula:

((di = e) V-V (dy = en))(x) = \H{e | & <z}

Exercise 1.4.14 Show that an algebraic cpo is a lattice (i.e., it has all finite lub’s and
glb’s) iff it has all finite lub’s (cf. exercise 1.4.10). Show that if D, E are algebraic
lattices, then so is D — F.

There are larger full subcategories of algebraic dcpo’s and algebraic cpo’s that
are closed under the function space construction. This will be the subject matter
of chapter 5.
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Exercise 1.4.15 (non-algebraic —) Consider example (A) in figure 5.1 (ahead).
Show that D is w-algebraic and that D — D is not algebraic. Hints: (1) Show:

a—a,b—=b< f<id = f®) Cw, fla)=aand f(b)=10>

new
where

_ ) fld) ifd ¢ w or (d=7 and m < n)
fn(d)_{ fm+1) ifd=mandm >n.

(2) Notice that f = f,, entails that f becomes constant, contradicting f < id. (3)
Conclude that the set of approzimants of the identity is not directed.

The following constructions play an essential role in the semantics of call-
by-value, which is addressed in chapter 8, we introduce call-by-value semantics.
Most of the proofs are easy and omitted.

Definition 1.4.16 (lifting) Let D be a partial order. Its lifting D is the partial
order obtained by adjoining a new element L (implicitly renaming the L element
of D, if any) below all the elements of D:

r<yimD, & a=Lor(z,y€e D andx <y in D).

In particular, the flat domains, introduced in example 1.1.6, are liftings of discrete
orders.
Definition 1.4.17 (partial continuous, strict) Let D, £ be depo’s.

1. A partial function f: D — FE is called continuous if the domain of definition
dom(f) of [ is Scott open, and if f restricted to dom(f) is continuous (in the
sense of either definition 1.1.1 3 or proposition 1.2.4).

2. If D and E are epo’s, a continuous function f : D — FE is called strict if
f(L)= L.
3. If D, D', and E are cpo’s, a continuous function f: D x D' — E is called
left-strict ifvVa'e D' f(L,2') =1,
right-strict  ifVae e D f(x,L)= L.
Given two depo’s D, K, the following sets are in bijective correspondence (in fact,

they are order-isomorphic):

1. the set of partial continuous functions from D to F,
2. the set of continuous functions from D to F,
3. the set of strict continuous functions from D to £ .

The transformations (all denoted as f — f) are:

3More precisely: if f(\/ A) |, then f(\/ A) = V{f(8) |§ € A and f(§) |} (notice that since
dom(f) is open, the right hand set is non-empty).
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o (1) to (2): f(x):{ flo) if fz) )

1 otherwise .

e (2) to (1): f is the restriction of f to {z | f(z) # L} (notice that this set

is open, cf. exercise 1.2.2).

o (2) to (3): f(x) :{ Ji(x) iﬁﬁ i i

e (3) to (2): f is the restriction of f to D.

The following proposition characterises this relationship in a more abstract man-
ner. We define the image of a functor I’ : C — C’ as the subcategory of C" whose
objects are (the objects isomorphic to) Fa for some a € Obg, and whose arrows
are the morphisms F'f for some morphism f of C.

Proposition 1.4.18 (lifting as adjunction) 1. The lifting of a dcpo is a cpo.
Lifting ts right adjoint to the inclusion functor from Dcpo to the category Pdcpo
of depo’s and partial continuous functions.

2. The lifting functor is faithful, and its image is the category Scpo of cpo’s and
strict continuous functions.

3. Lifting is left adjoint to the inclusion functor from Scpo to Cpo.

PrOOF. We only show how (3) follows from (1) and (2) by categorical “abstract
nonsense”. Suppose that we have an adjunction F 4 G, with £ : C — C’ and
G : C'" — C, Then call Cy the image of GG, and Cs the full subcategory of C
whose objects are those of Cy. There are inclusion functors Ine; : C; — Ca
and Incy : Co — C. It is easy to see that £ o Incy 4 Inc; o GG. If moreover
(' is faithful, and faithful on objects (i.e., if Ga’ = GV implies ¢’ = V'), then
G : C' — Cj is actually an isomorphism of categories, so that, composing with
G//G~!, the adjunction becomes

GoFolncylIne; oGoG™t = Ine.

If we take C = Dcpo, C' = Pdcpo, and the inclusion and lifting functors as F
and (G, respectively, we obtain (3). O

Remark 1.4.19 The two adjunctions have actually nothing to do specifically
with continuity, and can be reformulated in categories of partial orders and (par-
tial) monotonic functions (see section 8.2).

Definition 1.4.20 (smash product) Let D and E be two cpo’s. Their smash
product is the subset D @ £ of D x E defined by

Do FE={(x,y)|(e# Landy# L) or(x =L andy = 1)}

and ordered by the induced pointwise ordering.
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Smash products enjoy a universal property.

Proposition 1.4.21 1. The smash product of two cpo’s D, D" is a cpo, and the
function @ : D x D" — D ® D' defined as follows is continuous:

) = { (z,2")  if(z,2)e DO E
| (L, L) otherwise.

~

®(w, @

2. The function @ is universal in the following sense: for any E and any contin-
wous function f: D x D" — FE that is both left-strict and right-strict, there exists
a unique strict continuous function f D ® D — E such that f o®=f.

Several notions of sums have been used to give meaning to sum types.

Definition 1.4.22 (coalesced, separated sum) Let D, I be two cpo’s. Their
coalesced sum D + F is defined as follows:

D+ E={(l,x) |z e D\{L}}U{(2,y) |y e E\{L}} U{L}.
The separated sum of D and E is defined as Dy + F .

Thus, in a colesced sum, the two L’s are identified, while in the separated sum, a
new 1 element is created and acts as a switch, because any two elements above
L are either incompatible or come from the same component D or E. None of
these two sum constructors yields a categorical coproduct in Cpo. The situation
is different in Dcpo.

Exercise 1.4.23 Let D and F be two depo’s. Show that their disjoint union, ordered
in the obvious way, is a categorical coproduct in Dcpo.

1.5 Toy Denotational Semantics

Let us illustrate the use of domains with a denotational semantics for a simple
imperative language IMP, whose set of commands is given by the following syntax:

Commands c:=a|skip|cc|if bthen ¢ else ¢| while b do ¢

where b and a range over two unspecified sets Bexp and Act of boolean expressions
and of actions, respectively. The set of commands is written Com. We define
the meaning of the commands of this language, first by means of rules, second
by means of mathematical objects: sets and functions with structure. Thus we
specify their operational and denotational semantics, respectively, as discussed
in the preface. In IMP, these two semantics agree. We shall see later that it is
difficult to achieve this goal in general (see section 6.4).

With the unspecified syntactic domains Bexp and Act we associate unspecified
denotation functions [] : Beap — (¥ — B) and [] : Act — (¥ — X), where ¥
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[a]o = o (co,0) =" (c1,0") = 0"
(a,0) = o' (skip,c) = o (co;¢1,0) — o
[b]lo =ttt (co,0) — o [blo=f (ci,0) =0’
(if b then cg else ¢y,0) — o’ (if b then ¢y else ¢y,0) — o’
[b]lo = ff [blo=tt (c,0) =o' (while b do ¢,0") = ¢
(while b do ¢c,0) — o (while b do c,0) — o”

Figure 1.1: The operational semantics of IMP

is an unspecified set of states (for example an environment assigning values to
identifiers), and B = {tt, ff'} is the set of truth values.

The operational semantics of IMP is given by the formal system described in
figure 1.1. In this figure, there are so-called judgments of the form (¢,o) — o',
which should be read as: “starting with state o, the command ¢ terminates and
its effect is to transform the state o into the state o’”. A proof, or derivation, of
such a judgment is a tree, all of whose nodes are instances of the inference rules.
The rules show that IMP has no side effects. The evaluation of expressions does
not change the state.

Lemma 1.5.1 (while rec) Set w = while b do ¢. Then
w = if bthen (c;w) else skip

where & is defined by: co ~¢; iff Vo,0' (cy,0) = 0" & (¢1,0) = o',

PROOF. By a simple case analysis on the last rule employed to show (¢, o) — o,

where ¢ stands for w and for if b then c¢;w else skip, respectively. a

Exercise 1.5.2 The following is a specified version of Bexp and Act (the actions are
assignment commands, therefore we introduce a syntactic category Aexp of arithmetical
expressions):

Bexp bu=tt|ff|le=ele<e|-b|bAb|bVD

Aexp enx=i|X|etele—el|exe

Act  az= (X :=¢)
where © ranges over the set w of natural numbers, and X ranges over a set Loc of
locations. The set 3 is defined by ¥ = Loc — w. (1) Complete the description of the
operational semantics, by rules like:

(b,o) = tt
(—b, o) — ff (X,0) = o(X)
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2) Prove that the evaluation of expressions is deterministic:
( P
(e,0) = m and {(e,0) — n = m = n (similarly for Bexp)

(hint: use structural induction, that is, induction on the size of expressions). (3) Prove
that the evaluation of commands is deterministic:

(c,0) = 0" and (¢,0) = 0" = o' = 0"

(hint: use induction on the size of derivations). (3) Prove Ao’ {(while tt do ¢,0) — o',

(hint: reason by contradiction, with a minimal derivation).

The denotational semantics of IMP is given by a function
[]: Com — (¥ — %)

i.e., a function that associates with every command a partially defined function
from states to states. This function extends the predefined [] : Act — (¥ —
Y). The semantics employs the partial functions type ¥ — X, because loops
may cause non-termination, like in while tt do skip. The meaning of skip and
command sequencing are given by the identity and by function composition,
respectively. The meaning of conditionals is defined by cases. In other words,
the meanings of these three constructs is an obvious rephrasing of the operational
semantics:

[skip]lo = o

lsede = [ed(ledo)
. [co]o if [b]o = tt
[if b then o else ci]o = { lei]o if [blo = f7 .

The denotational meaning of while is a fixpoint construction suggested by lemma
1.5.1. The full definition of [_] by structural induction is given in figure 1.2.

Theorem 1.5.3 (op/den equivalence) The following equivalence holds, for
any ¢, 0, 0': (¢c,0) = o' & [c]o ="

PROOF HINT. (=): This is easily proved by induction on derivations.
(«<): This is proved by structural induction, and in the while case, by math-
ematical induction. Let [while b do c]o =o', i.e., fix(P)(o) = o', where

O = Aop.cond o ([b], (@0 [c], skip)).

Then since graph(fir(®)) = U,so graph(®"(L)), we have (o,0') € graph(®"(L))

for some n. Hence it is enough to prove

Vn (®"(L)(o) | = (while bdo ¢,0) — ®"(L)(0))
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[skip] = id
[co;er] = [ea] o o]
[if b then co else ¢1] = cond o ([b],{[co], [c1]))
[while b do ¢] = fix(Ap.cond o ([b], (o [c],id)))

o (_,_) is the set-theoretical pairing of f and g (cf. exercise 1.4.6).

e cond : B x (X x X) — X is the conditional function: cond(tt,(o,0')) = o,
and cond(ff,(o,0')) =0’

o fir: (¥ —3Y)—= (¥ —1%)) = (¥ — X) is the least fixpoint function (cf.
proposition 1.1.7).

Figure 1.2: The denotational semantics of IMP

by induction on n. The base case is obvious, because ®(L) = L has an empty
graph. For the induction step, there are two cases:

1. [b]e = tt: then ®"t(L)(c) = ®"(L)(¢’), where [c]Je = ¢’; by induction
(byo) — tt, (c,o0) — o', and (while b do ¢,0') — ®"(L)(¢’). Hence, by the
definition of the operational semantics:

(while b do c,o) — ®"(L)(c) = "t (L)(o).

2. [b]o = ff: then ®"*1(1)(c) = o, and by induction (b,a) — ff. Hence, by the

definition of the operational semantics, (while b do c¢,0) — o = ®"*}(L)(s). O

1.6 Continuation Semantics *

The language IMmp lacks an essential feature of imperative programming: control opera-
tors, which allow to break the normal flow of a program. In chapter 8, we shall discuss
control operators in the setting of functional programming. Here, we briefly present a
simple imperative language IMP’, which is IMP extended with a go to statement. The
commands of IMP’ are written using the following syntax:

Commands c:=a|skip|c;c|if bthen ¢ else ¢|gotol|l:c

where Bexp is as in IMpP, and where [ ranges over a set Lab of labels. We impose a
further condition: in a command, any occurrence of goto must always be in the scope
of a previously declared label: e.g. (I : ¢);gotol is ruled out. Formally, we define the
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following simple deductive system, whose judgments have the form L F ¢, where L is a
(finite) subset of labels:

LFa L+ skip
L"CO L"Cl L"CO Ll_Cl
LEcoiq L Fif b then cq else ¢q
lel Lu{l}Fec
L+ gotol LFIl:¢

The set Com’ of the commands of language IMP’ is defined as the set of the commands
¢ such that L - ¢ for some L.

The semantics for IMP’ is more difficult than that of IMP. The inclusion of goto
complicates the task of determining “what to do next”. In our first language, a com-
mand acted as a state transformer, and handed its resulting state to the next command.
The presence of goto creates a new situation. In a command cg; ¢y, ¢g may jump to
a completely different area of the program, so that ¢y is possibly not the “next com-
mand”. Consequently, we can no longer consider an interpretation where ¢g produces
a state that ¢y can start with. An appropriate way of approaching the semantics of
goto is by means of continuations. The main idea is that, since possible jumps make
future — or continuation — of the program unpredictable, then future must become a
parameter of the semantics. This guides us to the definition of the following sets:

Cont = X —~X%
Fnv = Lab— Cont.

Cont is called the set of command continuations, and Fnv is called the set of environ-
ments; ; 6, p range over Cont, Env, respectively. The semantic function []’ for Imp’
has the following type:

[c]" : Env — (Cont — Cont).

First, we define [_]" on the subset Act of Com/, for which the function [] : Act —
(¥ — X)) is available. Then the definition of []" is extended to Com’. The full
definition is given in figure 1.3. The tests are interpreted with the predefined function
[-] : Bexp — (£ — B) of section 1.5.

Exercise 1.6.1 Show that if L & ¢, then [c]'p1 = [c]'ps if p1(l) = p2(l) for alll € L.

Exercise 1.6.2 (while/goto) A while command can be encoded in IMP’. Specifically,
the effect of (while b do c¢) can be achieved by (1 : if b then (c;goto l) else skip). Use
this encoding to define a translation (J)* from IMP to IMp’, and show [c] = [¢*]' Lid,
Sfor every ¢ € Com.

We turn to the operational semantics of Imp’. The key idea is to implement contin-
uations by using a stack to store them. (In chapter 8, similar techniques will be used
to implement an extension of A-calculus with control operators.) The judgments have
the form (¢, p, S,0) — o', where ¢ is a command, p is a partial function from labels to
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[al'p6 = 6od]
[skip] = id
[cosai]’p = [eol'pofel’p
[if b then cq else c1])'pbo = cond([b]o, [co] pbo, [c1] pbo)
[goto ['p = p(1)
[:lph = (0 Llple'/06)

Figure 1.3: The denotational semantics of IMP’

commands such that dom(p) - ¢, S is a stack — or list — of pairs (¢, p), and o, ¢’ are
states. It is convenient to use a slightly different syntax for commands c:

d:=a|skip|if bthen celse ¢|gotol|l:ec
cu=emply |d-c.

In other words, sequencing is also treated stackwise, with empty acting as an end
marker. The operational semantics is specified as follows:

[a]o = o’ (¢,p,S,0"y — o (c,p,S,0)— o
((a;¢),p,S,0) = " ((skip; c), p, S,0) = o'
[b]e = tt ((cos€),p, S,0) — o' [b]le = ff {(e150),p,S,0) = o
((if b then cq else ¢1);¢,p,S,0) — o’ ((if b then cq else ¢1);¢,p,S,0) — o’
<Co7p[60/l]7(017p)-S,O’>—>UI <p(l)7p7570'>—>0'/
((l:eco);e1,p,5,0)— 0 ((goto l);¢,p,S,0) — o’

(¢,p,S,0)— o
<empty7pla (Ca P) ’ Sa 0> — OJ

Exercise 1.6.3 (op/den-IMpP’) * Show that the operational and denotational seman-
tics of IMP' agree in the following sense: (c,p, S,a) = o' < [c][p]is1lS]o = o', where
the meanings of syntactic environments p and of syntactic continuations S are defined
as follows:

Iple(ly = [p(D]lple  (recursive definition, where 8 is a fized parameter)
[empty] id
[(e.p)- ST = [ellplgs;LST -

In particular, we have (c,0, empty, o) — o' < [cJemptyido = o’.



Chapter 2

Syntactic Theory of the
A-calculus

This chapter introduces the untyped A-calculus. We establish some of its funda-
mental theorems, among which we count the syntactic continuity theorem, which
offers another indication of the relevance of Scott continuity (cf. section 1.1 and
theorem 1.3.1).

The A-calculus was introduced around 1930 by Church as part of an investiga-
tion in the formal foundations of mathematics and logic. The related formalism
of combinatory logic had been introduced some years ealier by Schonfinkel, and
Curry. While the foundational program was later relativised by such results
as Godel’s incompleteness theorem, A-calculus nevertheless provided one of the
concurrent formalisations of partial recursive functions. Logical interest in A-
calculus was resumed by Girard’s discovery of the second order A-calculus in the
early seventies (see chapter 11).

In computer science, the interest in A-calculus goes back to Landin [Lan66]
and Reynolds [Rey70]. The A-notation is also instrumental in MacCarthy’s LISP,
designed around 1960. These pioneering works have eventually lead to the de-
velopment of functional programming languages like Scheme or Standard ML.
In parallel, Scott and Strachey used A-calculus as a metalanguage for the de-
scription of the denotational semantics of programming languages. The most
comprehensive reference on A-calculus is Barendregt’s reference book [Bar84]. A
more introductory textbook has been written by Hindley [HS86]. We refer to
these books for more historical pointers.

In section 2.1, we present the untyped A-calculus. The motivation to prove a
strong normalisation theorem leads us to the simply typed A-calculus, Typed A-
calculi, and extensions of them, will be considered later in the book, particularly
in chapters 4, 11, 16. In section 2.2 we present a labelled A-calculus which
turns out to be a powerful tool for proving many fundamental theorems of the
A-calculus. One of them is the syntactic continuity theorem. The proof of this
theorem is a bit technical, and is the subject of section 2.3. Finally, section 2.4

35
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motivates the study of sequentiality, which will be undertaken in section 6.5 and
chapter 14. Another fundamental theorem of the A—calculus is Bohm’s theorem.
It is stated (but not proved) as theorem 3.2.10.

2.1 Untyped A-Calculus

We present the A-calculus, and its basic computation rule — the 3-reduction. A
proof of the confluence property is sketched, and the notion of standardisation is

defined.

Definition 2.1.1 (A-calculus) The syntax of the untyped A-calculus (A-calculus
for short) is given by
M:u=x| MM | e M

where x is called a variable, My M, is called an application, and Ax.M is called
an abstraction. The set of all A-terms is denoted by A.

The following are frequently used abbreviations and terms:

Aey-orx,. Moo= Axg (- Ae, M)
MNy---N, = (- (MN;)---N,)

I =Xx.x K =\vyx
A =dv.ar S =Avyz.(xz)(yz) .
Definition 2.1.2 (head normal form) A term Axy---x,.aM;--- M,, where x

P’
may or may not be equal to one of the x;’s, is called a head normal form (hnf for

short).

Remark 2.1.3 Any A-term has exactly one of the following two forms: either it
is a hnf, or it is of the form Axy---x,.(Ae. M)My--- M, (n >0, p>1).

We next introduce occurrences, which provide a notation allowing to manip-
ulate subterms. Another tool for that purpose is the notion of context.

Definition 2.1.4 (occurrence) Let M be a term, and u be a word over the
alphabet {0,1,2}. The subterm of M at occurrence u, written M/u, is defined as
follows:

M/u=N
M/e=M Ar.M/0u =N
Ml/u:N MQ/UZN

Mle/lu:N MlMQ/QU:N
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[Ji[Nv---No] = N
z[N] = a
(CICZ)[N] = OI[N]CZ[N]
(Az.C)[N] = Az.(C[N])

Figure 2.1: Filling the holes of a context

where € is the empty word. The term M/u may well not be defined. If it is
defined, we say that u is an occurrence of M. The result of replacing the subterm
M /u by another term N is denoted M[N/u]. We often write M[N/u] just to say
that M/u = N. We write:

o u<w (uisaprefixof v) if Jw (v =uw), and

o ul v (uandv are disjoint) if neither u < v nor v < u, or equivalently if

Aw,wy (uwy = vw,y).
Example 2.1.5
(Ar.zy)/02 =y (Arv.ay)[z/02] = Av.ax

Definition 2.1.6 (context) The contexts with numbered holes are defined by
the following syntax (where i € w):

Cu=[)ilz]|CC|Ax.C.
If only one hole [ |; occurs in a term, we denote it [ | for short.

In figure 2.1, we define the operation of filling the holes of a context by a (suffi-
ciently long) vector of terms. Occurrences and contexts are related as follows.

Proposition 2.1.7 (occurrences / contexts) For every term M and every
occurrence u of M, there exists a unique context C' with a unique hole occcur-
ring exactly once, such that M = C[M/u]. Such contexts are called occurrence
contexts.

Free occurrences of variables are defined in figure 2.2 through a predicate

Free(u, M). We define Bound(u,v, M) (u is bound by v in M) by

M/v=Xx.P u=v0w M/u=z Free(w,P)
Bound(u,v, M)
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Free(e, x)
Free(u, M) Free(u, N) Free(u, M) M/u # x
Free(lu, MN) Free(2u, M N) Free(Ou, Ax. M)

Figure 2.2: Free occurrences

If we are not interested in the actual occurrences at which variables appear bound
or free, we can define the sets F'V(M) and BV(M) of free and bound variables
of M by

FV(M) = {2|3u M/u=xz and Free(u, M)}
BV(M) = {z]|3Ju,v M/u= =z and Bound(u,v, M)} .

If M is a term and @ € F'V(M), one often says that x is fresh (relatively to M).

The definition of substitution of a term for a (free) variable raises a difficulty
(there is a similar difficulty for the quantifiers in predicate calculus). We expect
Ay.z and Az.x to be two different notations for the same thing: the constant
function with value z. But careless substitution leads to

(Aya)ly/z] =gy (Az2)ly/a] = Azy .

We want Az.y, not A\y.y, as the result. We thus have to avoid the capturing of
free variables of the substituted term. This leads to the definition of substitution
given in figure 2.3. The choice of z satisfying the side condition in the last clause
of figure 2.3 is irrelevant: we manipulate terms up to the following equivalence
=, called a-conversion:

(@) CPaM]=Cy.(Mly/=])] (y & FV(M))

for any context ' and any term M.
The basic computation rule of A-calculus is F-reduction.

Definition 2.1.8 (S-rule) The G-rule is the following relation between \-terms:
(8) Cl(Ax.M)N] — C[M[N/xz]]

where C' is an occurrence context and M, N are arbitrary terms. A term of the
form (Ax.M)N s called a redex. The arrow — may be given optional subscripts
u (to witness the occurrence of the redex being reduced) or 3 (to clarify that the
reduction is a (-reduction).
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z[N/x] = N

y[N/z] =y (y # )

(MiM2)[N/z] = (Mi[N/z])(Ma[N/x])

(Ay.M)[N/z] = Ae(M[z/y][N/z]) (2 ¢ FV(M)UFV(N))

Figure 2.3: Substitution in the A-calculus

(Ax.M)N — M[N/x]

() M — M’ () N — N’ (f) M — M’
"N SN Y MN S M e M — da M

Figure 2.4: B-reduction

In figure 2.4, we give an alternative presentation of -reduction, by means of an
axiom and inference rules.

Definition 2.1.9 (derivation) We denote by —5 (or simply —~) the reflexive
and transitive closure of —p, and use —* to express that at least one step is
performed. The reflexive, symmetric, and transitive closure of —+5 is denoted
simply with =g. A derivation is a sequence of reduction steps M —,, M,y --- —,

M, , written D : M —* M,,, with D = uy---u,.

n

Example 2.1.10

IT—1 SKK —*1

The last two examples show that there are infinite reduction sequences. Moreover,
the last example indicates how fixpoints can be encoded in the A-calculus. If we
set

Y = Af.(Ax.f(za))( Az f(aa))
then we have Y f =5 f(Y f).

Another rule, in addition to (3, is often considered:

(n) CAxz.Mz]— C[M] (x & FV(M)).
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This is an extensionality rule, asserting that every term is a function (if it is
read backwards). The n-rule is not studied further in this chapter, but will be
considered in chapter 4.

Remark 2.1.11 Any reduction sequence starting from a head normal form
Azy - xpaMy--- M,

consists of an interleaving of independent reductions of My, ..., M,. By this we
mean:

P=Xxy---a2,.aNy--- N, and

(Azy - apaMy-- M, =»* P)=3N;,...N, {Vigp M; —* N; .

We omit most details of the proofs of the next results (see e.g. [HS86]).

Lemma 2.1.12 1. If M — M’, then M[N/x] — M'[N/z].
2. If N = N', then M[N/xz] —* M[N'/x].

Lemma 2.1.12 is the key to the proof of the following property, called local con-
fluence.

Proposition 2.1.13 (local confluence) The S-reduction is locally confluent:
if M — N and M — P, then N —* Q) and P —* Q) for some ().

The following is one of the fundamental theorems of the A-calculus.

Theorem 2.1.14 (Church-Rosser) The 3-reduction is confluent: If M —* N
and M —* P, then N —* Q) and P —* Q) for some Q).

PROOF HINT. In section 2.2, the theorem will be proved completely as a conse-
quence of a powerful labelling method. Here we sketch an elegant direct proof
due to Tait and Martin-Lof. A strongly confluent relation is a relation = that
satisfies

M= N, M = P impliesd3Q N = @ and P = Q.

By a straightforward paving argument, the strong confluence of a relation = im-
plies the confluence of =*. Unfortunately, #-reduction is not strongly confluent:

(A )N (A )N N N

(by —22, we mean that the reduction from -+ N -+ N ---to--- N'--- N’ .- takes
at least two steps). But parallel reduction, defined in figure 2.5, is strongly con-
fluent. In a parallel reduction, several redexes can be simultaneously reduced

in one step. For example, we have ---N---N-.. = ... N'... N'.... Finally,
the confluence of — easily follows from the following inclusions, which hold by
definition of parallel reduction: — C = C —*. O

The following exercise states a negative result due to Klop [Klo85].
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M=M N= N
M=M (Ae. M)N = M'[N'/x]

M=M N=N' M= M
MN = M'N' Az M = Az M’

Figure 2.5: Parallel S-reduction

Exercise 2.1.15 * Suppose that three constants D, F, S are added to the A-calculus,
together with the following new rewriting axiom:

(SP) D(Fz)(Sz) — x.

Show that confluence fails for f+(SP). Hints [CHY4]: (1) Consider the following

so-called Turing fixpoint combinator:

Yr = (Avy.y((zz)y) (Avy.y((ze)y).

The advantage of this term over Y (cf. example 2.1.10) is that Y f is not only equal
to, but reduces to, f(Yrf). Set C =Y (Aay.D(F(Ey))(S(E(zy)))) and B =Y C, where
E is a free variable. (2) Notice that B —* A and B —* C'A, where A= E(CB). Show
that A and C' A have no common reduct, by contradiction, taking a common reduct with
a mintmum number of E’s in head position.

Another fundamental theorem of the A-calculus is the standardisation theo-
rem. It will fall out from the general technique of section 2.2, but we shall need
part of it to develop this technique. As a first approximation, a reduction from
M to N is standard when it does not reduce a redex if there is no need to reduce
it. For example

Az y)(AA) =2 (Az.y)(AA) = y

is not standard, because the final term y of the sequence could have been reached
without reducing the redex at occurrence 2 in (Az.y)(AA), since we have, directly:

(Az.y)(AA) =, y.

The standardisation theorem asserts that any derivation M —* N can be trans-
formed to a standard derivation from M to N. To formalise the notion of standard
reduction, we need to define the notion of residual, which formalises what a redex
in a term M becomes after the reduction of a different redex of M.

Definition 2.1.16 (residual) If u, v are redex occurrences in a term M, and
if M —, N, then v/u, the set of residuals of v after the reduction of u, is defined
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{v} (ufvorv<u)
0 (v=u)

{uw'w | Bound(ulOw',ul, M)} (v = u2w)
{uw} (v =ulOw) .

v/u =

The notation is easily extended to V] D, where V stands for a set of redex occur-
rences, and D for a derivation.

Viu = UHv/u|veV}
V/i(uD) = (V/u)/D .

Here is an informal description of v/u. Let M/u = (Ax.P)Q and M /v = (Ay.R)S:

e The second case is obvious: a redex is entirely “consumed” when it is
reduced.

e The first and the last cases of the definition correspond to the situation
where the redex at v “remains in place”.

— If u Yv, then N/v = M/v.

— If v < u, then M/u is a subterm of R or S, say of R, and N/v has the
form (Ay.R')S for some R'.

— If v = ul0w, the occurrence of the redex at v has to be readjusted,
and moreover the redex gets instantiated:

Plw = ((Ax.P)Q)/10w = M/v = (Ay.R)S
Njuw = (P)[Q[z]/w = (P/w)|@/x] = (Ay-R[Q/2])S[Q/x]

e In the third case, the subterm at occurrence v is a subterm of ), and gets
copied by the substitution which replaces x by (). In particular the redex
(Ay.R)S may be duplicated if there is more than one free occurrence of
in P. If on the contrary @ ¢ F'V(P), then v has no residual.

Example 2.1.17 For M = [((Ax.([z)x)(Az.l2)), we have:
220/2101 = {220} /2= {c} 2/2=10 2101/2 = {21} 220/2 = {212,22}.

Definition 2.1.18 (left) Ifu, v are redex occurrences of M, we say that u is to
the left of v if

u<v or FJwu, v (u=wlu and v =w2")

or equivalently, if the first symbol of the redex at u is to the left of the first symbol
of the redex at v.
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Definition 2.1.19 (standard) A derivation D : M = Mo —,, My --- —,
is called standard if

M,

n

Vi,g 1 <i<j<n= Autotheleft of u; such that u; € u/D;;
where D; @ M;_y —vy; M-+ — ) M;_y. We then write M stnd *M,. A special
case of standard derivation is the normal derivation, which always derives the
leftmost reder. We write M "% *N if N is reached from M by the normal
derivation. We denote with Val(M) the abstraction, if any, characterised by

My=M =5 *Val(M) = M, and Vi <n M, is not an abstraction.

Example 2.1.20 The derivation (Az.y)(AA) =2 (Az.y)(AA) —. y is indeed
standard. Set uy = 2 and uy = €. Then ¢ = ¢/2 = ¢/ D3, and € is to the left of 2
in (Az.y)(AA).

stnd

Lemma 2.1.21 If D : M — *Xx.N, then D decomposes into
M 2% =Vl (M) 228 =Xz N.

PRrROOF. By induction on the length of D. If M is already an abstraction, then the
statement holds vacuously. If M = M, --- M, then all its reducts have the form
Ny -+ N,, hence the statement again holds vacuously. If M = (Ax. M)M; --- M,
and the first step in D does not reduce the leftmost redex, then the definition
of standard implies that the terms in D all have the form M = (Az.P)P; --- P,.
Hence the first step of D must be the first step of the normal derivation. The
conclusion then follows by induction. a

2.2 The Labelled M-Calculus

In this section, we introduce simple types, and show that simply typed terms are
strongly normalisable. Next we introduce Lévy’s labelled A-calculus, and prove a
more general strong normalisation theorem. The following fundamental theorems
of the A-calculus appear as simple consequences of this general theorem:

the confluence of 3-reduction,

the standardisation theorem,

the finite developments theorem of the A-calculus,
the syntactic continuity theorem.

In this section and in the following one, we follow [Lev78] and [Ber79].

Definition 2.2.1 (strongly normalisable) A A-term M is called strongly nor-
malisable if there ts no infinite B-derivation starting from M. We denote by SN
the set of strongly normalisable expressions. A term which cannot be further
reduced is called a normal form.
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Definition 2.2.2 (size,reduction depth) 7he size of a term M is defined as
follows:

size(x) =1, size(MN) = size(M) + size(N) + 1, size(Ax.M) = size(M) + 1.

If M € SN, the mazximal length of a derivation starting from M is called the
reduction depth of M, and is denoted depth(M).

Confluence and normalisation are the cornerstones of (typed) A-calculus and
rewriting theory. They ensure that any term has a unique normal form, which is
a good candidate for being considered as the final result of the computation. The
two properties! imply the decidability of the equality, defined as the reflexive,
transitive and symmetric closure of —. To decide whether two terms M, N are
F-equal, reduce M, N to their normal form, and check whether these normal
forms coincide (up to a-conversion). As a stepping stone for our next results, we
show the standardisation theorem for strongly normalisable terms.

Lemma 2.2.3 [f M € SN and M —* N, then M *23 *N.

Proor. By induction on (depth(M),size(M)). The only non-trivial case is
M - MlMQ.

o If N = NN, and M; —* Ny, My —* Ny, then M, 224 *N,, M, 228 *N, by
induction, and we have M; M, stnd *Ny M, stnd *Ni N,

o Otherwise, MMy —* (Ax.N1)Ny — Ni[Ny/x] —=* N, with M7 —* Az. Ny and
M, —* N,. By induction and lemma 2.1.21:

M, % <\ P 2 <N N

Hence M, M, "% P[My/z]. Also, by lemma2.1.12, P[Ms/x] —* N follows from

stnd

P —* Ny, My —* Ny and Ny[Ny/x] —* N. Hence, by induction, P[Msy/x] —
*N. We conclude by observing that prefixing a standard derivation with a normal
derivation yields a standard derivation. a

Lemma 2.2.4 The following implication holds:

stnd (M =~ M\y.Q and Q[N/z] —=* P) or
MIN/z] == "hy.P = { M —* M'=2M]--- M, and M'[N/x] —* Ay.P .

PROOF HINT. The statement follows quite easily from lemma 2.1.21. a

We now engage in an attempt to show that any term M is strongly normal-
isable. We know by the example AA — AA that this property does not hold

TActually, only the existence of an effective way to reduce a term to a normal form is
sufficient for this purpose.
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for arbitrary terms. But it holds for typed terms (and more generally for labelled
terms whose labels are bounded, as we shall see in section 2.2). Types will be
introduced right after we discover a failure in our proof attempt.

We proceed by induction on size(M ), as in the proof of lemma 2.2.3. We
examine all the reduction paths originating from M. The only non-trivial case is
M = M M,. If My and M, never interact, then we conclude by induction on the
size. Otherwise, we have M; —* Ax. Ny, My —* Ny, and M —* N;[Ny/x]. By
induction, Ny, N, are strongly normalisable. Hence, strong normalisation can be
proved from the following property:

(cSN) M,N € SN = M[N/x] € SN.

Let us see how an attempt to prove (o SN) by induction on (depth(M), size(M))
fails. The only interesting case is

M = MlMQ, Ml[N/l'] —* /\yP and MQ[N/ZL’] —* N2
(as above). We want to prove:
(1) PNyl € SN,

By induction and lemma 2.2.3, we can apply lemma 2.2.4. We thus consider two
cases:

(A) My = Ay.QQ and Q[N/x] == P: Consider M' = Q[M3/y]. The conclusion
P[Ny/y] € SN follows from:

— M —*% M, hence depth(M') < depth(M), and M'[N/z] € SN by
induction.

M'[N/z] = Q[N/2][Ma[N/x]/y] , )
~ Q[N/z] =" P and My[N/z] —* ;32 } = M'[N/x] =* P[N2/yl.

(B) My =* M'=aPy--- P, and M'[N/xz] —* Ay.P: This is where we get stuck.
Think of AA.

To get around the difficulty, it would be enough to have a new measure ¢ for
which we could show, in case (B):

(2) A(N2) < ¢(N).
Then we could carry the whole argument, by induction on
(¢(N), depth(M), size(M)).

Let us briefly revisit the proof atttempt. Case (A) is unchanged, since the in-
duction is applied to M'[N/x|, for which the first component of the ordinal is
the same as for M and N. Case (B) is settled by the decreasing of the first
component of the ordinal. The simply typed A-calculus offers such a measure ¢.
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Definition 2.2.5 (simple types) The simple types are defined by the following
syntlax:
cu=k|o—=o

where k ranges over a collection K of basic types. The size of a type o is defined
by
size(k) =1 size(o — 1) = size(o) + size(r) + L.

In other words, types are built from a collection of basic types (like natural
numbers, or booleans) by a unique constructor, the function space constructor.
Next we introduce a syntax of raw typed terms.

Definition 2.2.6 (raw typed) The raw simply-typed terms are A-terms, all of
whose occurrences are labelled by a type. Formally, they are the terms P declared
by the following mutually recursive clauses:

M=z | PP|x.P
Pi=M7.

To a raw typed term P we associate an untyped term by stripping all type super-
scripts. We denote the resulting term by erase(P).

Definition 2.2.7 (typed) The typed terms, or A7 -terms, are the raw typed
terms P satisfying the following constraints:

1. All the free occurrences of x in P have the same superscript.
2. If P= (M7 M2)%  then oy = 0y — 03.

3. If P=(Ax.M?)72, then 03 = 05 — o1 for some o3, and all free occurrences
of x in M have superscript os.

The typed B-reduction is defined by
(67) PlAw.MT)7ZTN? [u] =, PIMT[N?[x7]/u].

In this chapter, we consider typed A-calculus only in passing, on our way
to Lévy’s labelled A-calculus. Our presentation of the simply typed A-calculus
in definition 2.2.7 is rather ad hoc. A more standard presentation is by means
of sequents. Natural deduction and sequent presentations of the simply typed
A-calculus are discussed in section 4.1.

Lemma 2.2.8 (subject reduction) If erase(M?) — N, then M7 — N'° for
some N'7 such that erase(N'7) = N.

Theorem 2.2.9 (strong normalisation — simple types) [In the simply typed
A-calculus all terms are 37 -strongly normalisable.
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PROOF. The argument attempted above now goes through. We prove
(6SN™) M7,N? € SN = M"[N° /2] € SN

by induction on (size(o), depth(M), size(M)). The typed version of the crucial
case (B) is:

M™ = M7= Mg

Mf"—)'r _y* Mo =T = xo'l—>~~~—>0'n—>0"—>TP10'1 Pnan
M/a’—)q—[Na/xa] _y* )\y‘P’T

Mg'[N? [27] —* Ny .

with o = 01y = -+« = 0, = 0’ = 7. Then size(c’) < size(o). Hence, defining
d(N7) as the size of the type of N, condition (2) holds. O

We now turn to a more general system of labels.

Definition 2.2.10 (labels) We define a calculus of labels by the following syn-
tax:
az=clala|aa.

where e ranges over an alphabet E of atomic labels (E stands for “éliquette”).

We let o, 3 range over labels. The height of a label [ is defined as follows:
height(e) =0 (e € E)
height(a) = height (@) = height(a) + 1
height(af) = max{height (), height(3)} .

Labelled terms are defined in the same way as (raw) typed terms.

Definition 2.2.11 (labelled terms) Labelled terms P are defined by the fol-
lowing mutually recursive syntax:

M :=z|PP|Ax.P
Pa=M".

We write a - MP = M°P | and height(M®) = height ().

Substitution for labelled terms is defined in figure 2.6. We define M[P/z], where
M ranges over labelled terms and P ranges over labelled terms or unlabelled
variables (the latter arise from a-conversion). As for the typed terms, the erasure
of a labelled term is obtained by stripping off the labels. The labelled version 3%
of #-reduction is defined relatively to a predicate P on labels:

(B4) Pl((\e.PY*Q)fu] —u PI3 -~ Pla-Q/a)/u] if P(a) holds.

The label « is called the degree of the redex. Unrestricted labelled restriction is
defined as the labelled reduction with respect to the full predicate consisiting of
all labels.
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[P/ z] = a-P (P is a labelled term)
%[z /] = 2z°

y*[P/x] = v (y # )

(P By)[P[a] = (P[P[e]Py[P[x])”

(Ay.P)*[P[z] = (A=z.M[z[y][P/=])* (2 & FV(M)U FV(N))

Figure 2.6: Substitution in the labelled A-calculus

Definition 2.2.12 (¢-bounded) Let ¢ € w. A g-bounded predicate is a predi-
cate P such that (Yo P(a) = height(a) < q).

Theorem 2.2.13 (strong normalisation — labels) IfP isg-bounded for some
q, then all labelled terms are strongly B%-normalisable.

PROOF HINT. Similar to the proof of theorem 2.2.9. We prove
(0SN%) P, N® € SN = P[N“/z] € SN

by induction on (g — height (), depth(P), size(erase(P))). The labelled version
of the crucial case (B) is:

P=(PP)

Py —* Pl = (- (27P)% -+ Py
PN /[x] = (A\y.Q1)”

PQ[NQ/J/’] —* Q2 .

Since P[N/z] == ((A\y.Q1)?Q2)° — §-3- Q13- Q2/y], property (2) is rephrased
here as height(a) < height(3 - (Q2). A fortiori it is enough to prove height (o) <

height(3) (notice the use of underlining). This will follow from the following
claim:

Claim. (- (MSP)Pr - P,)Pn == (A\y.Q)? = height () < height(j3)

We prove the claim by induction on the length of the derivation. The only
interesting case is M = Az.P. If n =0, then ( = 3. If n > 0, then

(---(MCPl)ﬁl ...pn)ﬁn — (...(51.f.p[g.pl/x])...pn)ﬁn

and we conclude by induction, since height(¢) < height (B, - ¢ - P[¢ - Py /x]).
Applying the claim to ( = vya and M¢ = ~ - N we get height(a) <
height(() < height (). O
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Now we show how the confluence property and the standardisation theorem
(general case) follow from theorem 2.2.13.

Lemma 2.2.14 If D : P —-* Q and v € u/D, then P/u and Q) /v have the same
degree.

Proposition 2.2.15 [f P is g-bounded, then (35- reduction is confluent.

PRrROOF. We get local confluence by proving a labelled version of lemma 2.1.12,
using lemma 2.2.14. Then we use Newman’s lemma (see exercise 2.2.16): 35 is
confluent, since it is locally confluent and strongly normalising. O

Exercise 2.2.16 (Newman) Prove that any locally confluent and strongly normalis-
ing system is confluent. Hint: use induction on the depth of the term from which the
two derivations originate.

Next we transfer labelled confluence to the unlabelled calculus. We start
with a term M, which we label arbitrarily. That is, we construct £ such that
erase(P) = M. If M —* M; and M —* My, then, with unrestricted labelled

reduction, we get
P =" P, P —" P, with erase(Py) = M, erase(FPs) = M.

Next we construct a predicate P that fits the situation: P(«) iff « is the degree
of a redex reduced in P —* P, or P —* P,. This predicate is finite, hence
bounded. Thus we can complete P, —* P, P, —* P; by B5-reduction, by
proposition 2.2.15, and we get M; —* erase(Ps) and My —* erase(Ps). This
gives an alternative proof of theorem 2.1.14.

Theorem 2.2.17 (standardisation) If M —* N then M 2% *N .

PROOF. By theorem 2.2.13 and (a labelled version of) lemma 2.2.3, using P
defined as follows: P(«) iff « is the degree of a redex reduced in M —* N. O

Corollary 2.2.18 (normal) If M has a normal form N, then M % *N.

Proor. By theorem 2.2.17, we have M stnd <N, If at some stage the leftmost

redex was not reduced, it would have a residual in N: contradiction, since N is
a normal form. O

Next we define the notion of development, and we prove the finite develop-
ments theorem.

Definition 2.2.19 (development) A derivation M —,, My --- —,, M, is rel-
ative to a set F' of redex occurrences in M if uy € F, and u; is a residual of an
occurrence in I, for all © > 1. If moreover M,, does not contain any residual of

F, then M —, My --- —, M, is called a complete development (or development
for short) of M relative to F.
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Theorem 2.2.20 (finite developments-1) Let M, I be as above. All reduc-
tions relative to F' terminate, and they terminate on the same term.

PrROOF. Take P such that erase(P) = M, and define P by: P(a) iff a is the
degree of a redex of F. The conclusion then follows by lemma 2.2.14. O

In the following exercises, we propose a stronger version of the finite develop-
ments theorem, and we indicate how simple types can be related to labels.

Exercise 2.2.21 (finite developments-2) * I[fM —, N and v is a redex occurrence
of N that is not a residual of a redex occurrence in M, we say that v is created by u. (1)
Let «, 3 be the degrees of the redexes w in M and v in N. Show height(3) > height(«),
(2) Show that if D : M —* N and D' : M —* N are two developments of M relative
to F, then G/D = G /D' for any derivation G originating from M. Hints: There are
three cases of redex creation:

(Azy. M )N Ny (u=1,v=r¢)
I(Az.M)N (u=1l,v=r¢)
(Az.ClzN])(Ax.M) (u = ¢,v = any occurrence of [ ]) .

Qverlining is crucial in the proof of (1). Choose the initial labelling of M such that the
degrees of F' are distinct letters of F.

Exercise 2.2.22 * Derive theorem 2.2.9 as a corollary of theorem 2.2.13. Hints: Take
as E the finite collection of the types of the subterms of M (the term we start from).
Define = from labels to types by

Ela)=(c —-71) Ea

E@=r Ela)=o0 E(af) = Z(a)

Define P(a) as E(a) |. For P whose labels all satisfy P, define Z(P) as the term
obtained by applying = to all labels. Say that P is well-behaved if all its labels satisfy
P and if Z(P) is well typed. Show that any ﬂé;-reduct Q) of a well-behaved term P 1is
well- behaved, and that Z(P) 7 -reduces to =Z(Q).

[
)
4
2
11
=
l
11
=

E(o)=o0

There exist many other proofs of finite developments, of confluence, and of
standardisation. In exercise 2.2.23, we propose a particularly simple recent proof
of finite developments due to Van Raamsdonk [vR96]. In exercises 2.2.24 and
2.2.25, we propose proofs of confluence and of standardisation based on finite
developments.

Exercise 2.2.23 Consider the set of underlined A-terms, defined by the following syn-
tax:

M=a|MM| M| (Ax.M)M.

Consider the least set F'D of underlined terms containing the variables, closed under
abstraction and application, and such that, for all underlined M, N :

(M[N/z] € FD and N € FD) = (Ae.M)N € FD.
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Show that FD is the set of all underlined terms, and exploit this to show the finite
developments theorem. Hint: finite developments amount to the strong normalisation

of underlined (B-reduction (Ax.M)N — M[N/z].

Exercise 2.2.24 Show confluence as a consequence of finite developments. Hint: con-
sider any development as a new notion of one step reduction.

Exercise 2.2.25 Show the standardisation theorem as a consequence of the finite de-
velopments theorem, by the following technique, which goes back to Curry. Let D :
Mo —yy My =y, My =" M, be the reduction sequence to standardise. Tuke a left-
most (cf. definition 2.1.18) occurrence w in the set of redex occurrences of M that
have a residual reduced in D. Let M —, My, and build the reduction sequence
Moy —* Mj; = M;1y where each step is a finite development of u/u;, where (because
w is leftmost) M; —,, My;, and where uw = u;. Continue the construction, applying it
to the sequence Dy : Moy —* M;y — Mo —* M,,, which is shorter than D.

2.3 Syntactic Continuity *

Recall that a head normal form is a term of the form Azy ---2,.2M; ---M,. We define
an algebraic (or symbolic) semantics for the A-calculus. We interpret the (finite) A-
terms as (potentially) infinite terms. For this purpose, we need to introduce partial
terms (cf. exercise 1.1.24) to allow for a description of finite approximations.

Definition 2.3.1 (Bohm trees) The set N is defined by

AjeN - A eN
QeN Azywp.wAy - A, €N

N is a subset of the set of partial A\-terms, also called Q-terms, defined by
M::=Q|a| MM | .M
and inherits its order, defined by:

My < M| M, < M, M< M
Q<M My M, < M{M] o.M < Aa. M

The elements of the ideal completion (cf. proposition 1.1.21) N of N are called Béhm
trees. For any A-term M, we define w(M) € N, called immediate aproximation of M,
as follows:

| Awccagaw(My) ow(My) i M = Ay - a My - M,

where p > 1 is assumed in the first case. The function w is extended to 2-terms by
setting w(Azy - - -2, QM ---M,) = Q.

Lemma 2.3.2 If M — N, then w(M) < w(N).
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Proor. By induction on the size of M. Uf M = Azy---2,.2M;---M,, then the
reduction occurs in one of the M;’s, and induction can be applied. a

Definition 2.3.3 For any A-term M we define BT(M) = \/{w(N) | M —* N}.
BT (M) is called the Bohm tree of M.

By lemma 2.3.2 and by confluence, {w(N) | M —* N} is directed, for fixed M,
hence B6hm trees are well defined. The immediate approximation w(M) can be un-
derstood as the current approximation of BT(M), obtained (roughly) by replacing
the redexes with Q’s. It is sometimes called a partial normal form. If computation
proceeds, with M —* N, then w(N) may be a better partial normal form of M.

Example 2.3.4

If M € SN, then BT (M) is the normal form of M.
BT(AA) = Q.
BT((Aw.f(zx))((Az.f(z@))) = Vyzo [7(Q).

The last example shows that Béhm trees can be infinite.

Proposition 2.3.5 If M — N, then BT (M) = BT(N).

PRrROOF HINT. Use the confluence property. a
Lemma 2.3.6 If M and N differ only by the replacement of some (disjoint) occur-
rences of subterms of the form Az - - -z, QM - - - M, by Q or vice-versa, then BT (M) =
BT(N).

ProOF HINT. If M, N are as in the statement, then w(M) = w(N); moreover, if
M — M’ then either w(M') = w(N) or w(M') = w(N') for some N’ such that
N — N’ O

Let M be a A-term, and F be a set of redex occurrences in M. Then F determines
a context Cyy r such that M = Cyr p[R], where R enumerates

{M/u]ueFand (v<u=v¢gF)}
Lemma 2.3.7 Let M, I be as above. Then w(Chy p[€)]) = w(M).
Proor. By the definition of w and by simple induction on the size of M. a
We say that a derivation M —,, M --- —,,, M, does not touch a set I’ of redex
occurrences in M if none of the w;’s is a residual of an occurrence in F. We write

M =5 pr

Lemma 2.3.8 IfD: M N *N, then C’M7F[Q)] —* CN,F/D[Q]-
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ProoF. The one step case implies the multistep case straightforwardly. Let thus
D = u: There are two cases:

Juy € F uy < u: Then uy/u={u}, hence CNF/u[_'] C’Mf[f_l'].
Vug € F (u < ugorufuy): Then Cprp[Q ]—>UCNF/M[ ]

When F is the set of all redexes in M, we write C'[M] == M <N for C[M] 25 =N,

Lemma 2.3.9 (inside-out) If C[M] —* P, then there exist N, Q such that
M == N, CIN] 22 =@, and P —* Q
where M —* N has the obvious componentwise meaning.

ProoF. Once more, we use labelled reduction. Assume that C[M] is labelled. Let P
consist of the degrees of the redexes reduced in C[M] —* P. Let N be the B5-normal
forms of M. By ﬂ%;—conﬂuence7 we have P —* () and 0[1\7] —* @, for some Q). Let u
be an occurrence of a §-redex in N. Since the components of N are normal, the degree
of u, which by lemma 2.2.14 is the degree of all its residuals, does not satisfy P, hence
u is not reduced in the derivation C[N] —* Q. ]

Informally, the lemma says that reductions can be first carried out “inside” (in the
terms M), and then “outside” only. In this outside phase, the actual nature of the
redexes in NV is irrelevant, as formalised by the next lemma.

Lemma 2.3.10 If D : C[N] 2% *Q, then w(Q) < BT(Clw(N)]).

PRroOF. Let F be the famlly of all the redex occurrences in N. By lemma 2.3.8 we
have C, CINLF p1Q =" Cq r/plQ 3. Hence w(Q) = w(Cq,rplQ Q) < BT(Cpi CINLF #19]); by
lemma 2.3.7 and by definition of Bohm trees. We are left to prove

BI(C gy p18) = BI(Clo(N))
which follows from lemma 2.3.6. O

Finally, we can prove the main result of the section: the context operation is con-
tinuous. This result is due to Hyland and Wadsworth, independently [Wad76, Hyl76].
We follow the proof of Lévy [Lev78].

Theorem 2.3.11 (syntactic continuity) For all contexts C, for any M and any
B ¢ N, the following implication holds:

—

B < BT(C[M])= (3AeN (A< BT(M) and B < BT(C[A])).
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Proor. If B < BT(C[M]), then C[M] —* P for some P such that B < w(P). By

lemma 2.3.9, there exist N, Q such that M —* N, C’[Z\_f] N *@Q, and P —* Q. We

have:
w(P) <w(Q) by lemma 2.3.2, and

w(Q) < BT(C[w(N)]) by lemma 2.3.10 .
Take A = w(]\_f) Then

B < w(P) < w(Q) < BT(C[A]),

- = O
A < BT(M), by definition of B6hm trees.

Thus, informally, the proof proceeds by organizing the reduction in an inside-out
order, and by noticing that the partial information gathered about the Béhm trees of
M during the inside phase is sufficient.

Exercise 2.3.12 (C-cont) Let M, N be Q-terms such that M < N. Show that
BT(M) < BT(N). This allows us to define C' : N — N for any context C,

by
C(A) = \/{BT(C[B]) | B< A and B is finite}.

Show that C(BT(M)) = BT (C[M]), for any M.

2.4 The Syntactic Sequentiality Theorem *

The context operation is not only continuous, but also sequential. The syntactic se-
quentiality theorem, due to Berry [Ber79], which we present in this section, motivates
a semantic investigation of sequentiality, which is covered in section 6.5 and chapter
14. Two technical lemmas are needed before we can state the theorem.

Lemma 2.4.1 If M is an Q-term and M —* M', then there exists a mapping T from
the set {vy,...v,} of occurrences of Q in M’ to the set of occurrences of Q in M such

that N —* M'[(N/v]) /vy, ..., (N/v}) /v,], for any N > M.
In particular, if M —* M’ and N > M, then there exists N’ > M’ such that N —* N’

Lemma 2.4.2 If the normal derivation sequence from M contains only terms of the
Jorm M' = Xay - a,.(Ax. PYM{ - - - M], then BT'(M) = Q.

PrOOF. As in corollary 2.2.18. Suppose BT (M) # €. Then there exists a derivation
M —* M" =gy -z, yM] - M}

and we can suppose that this derivation is standard, by theorem 2.2.17. But the shape
of M"” forces this derivation to be actually normal. a

The following theorem asserts that the function BT is sequential. A general defi-
nition of sequential functions will be given in section 14.1
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Theorem 2.4.3 (syntactic sequentiality) The Béhm tree function satisfies the fol-
lowing property: for any Q-term M and any u such that BT (M)/u= Q and BT (P)/u #
Q for some P > M, there exists v, depending on M, u only, such that whenever N > M
and BT (N)/u+# Q, then N/v # Q

ProoFr. By induction on the size of u. Suppose BT(M)/u = Q, M < N, and
BT(N)/u+# Q. We distinguish two cases:

1. BT (M) # Q. Then

M —* M'=Xxq---x,.yM]---M] and
BT(M) = BT(M') = Az, -2,y BT(M]) --- BT (M) .

We observe that any N’ > M’ has the form N’ = Aay---2,.yN{--- N[, and also
that BT'(N') = Azy -+ -2,.y BT (N]) - -- BT'(N}). Then woccurs in some BT (M),
so that we can write BT'(M’)/u = BT (M]) /v (= Q), for an appropriate proper
suffix ' of u. On the other hand, let N > M with BT(N)/u # , and let
N’ > M’ be such that N —* N’. Then N! > M! and BT (N/)/v' = BT (N')/u =
BT(N)/u # €. We can thus apply induction to M/, ', and obtain an index
v at M’', u. It remains to bring this index back to M. This is done thanks to
lemma 2.4.1: the index at M, u is v!, in the terminology of this lemma. Indeed,
if N > M and N/vf = Q, then by the lemma:

N —=* N’ hence BT (N) = BT(N’)
with N> N and N'/v =Q hence BT (N')/Ju=Q .

Putting this together, we have BT(N)/u = Q, which shows that v is a sequen-
tiality index.

2. BT (M) = Q. Suppose that the leftmost reduction sequence from M contains
only terms of the form M’ = Azy---a,.(Ax.P)M{---M]. Then the normal
sequence from N is the sequence described by lemma 2.4.1, whose terms are of
the same shape, which entails BT (N) = Q by lemma 2.4.2. Hence the leftmost
reduction sequence from M contains a term M’ = Aay---2, QM| ---Mj. The
only chance of getting BT (N') # Q for an N’ > M’ is to increase M’ in his head
Q, which is therefore a sequentiality index at M’, u. As above, we use lemma
2.4.1 to bring this index back to M. a

Exercise 2.4.4 (C-seq) Show, as a corollary of theorem 2.4.3, that the function C
defined in exercise 2.3.12 is sequential. (The reader can refer to definition 14.1.8, or
guess a definition.)
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Chapter 3

Do Models and Intersection
Types

In this chapter we address the fundamental domain equation D = D — D which
serves to define models of the A-calculus. By “equation”, we actually mean that
we seek a D together with an order-isomorphism D = D — D. Taking D = {1}
certainly yields a solution, since there is exactly one function f : {1} — {L}.
But we are interested in a non-trivial solution, that is a D of cardinality at least
2, so that not all Ad-terms will be identified! Domain equations will be treated in
generality in chapter 7.

In section 3.1 we construct Scott’s Do, models as order-theoretic limit con-
structions. In section 3.2 we define A-models, and we discuss some properties of
the D, models. In section 3.3, we present a class of A-models based on the idea
that the meaning of a term should be the collection of properties it satisfies in a
suitable “logic”. In section 3.4 we relate the constructions of sections 3.1 and 3.3,
following [CDHL82]. Finally in section 3.5 we use intersection types as a tool for
the syntactic theory of the A-calculus [Kri91, RAR93].

3.1 D, Models

In chapter 1, we have considered products and function spaces as constructions
on cpo’s. They actually extend to functors (and are categorical products and
exponents, as will be shown in chapter 4). Here is the action of — on pairs of
morphisms of Depo.

Definition 3.1.1 (— functor) Let D, D', E. E" be depo’s and f: D' — D and
g: E — E be continuous. Then f — g: (D — E) — (D' — E') is defined by

(f = 9g)(h)=gohof.

Notice the “reversal” of the direction: f goes from D’ to D, not from D to D’.
This is called contravariance (cf. appendix B).

57
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The association D — D — D is not functorial in Cpo, because it is both
contravariant and covariant in D. But it becomes functorial in the category of
cpo’s and injection-projection pairs.

Definition 3.1.2 (injection-projection pair) An injection-projection pair be-
tween two cpo’s D and D' is a pair (1 : D — D', 5 : D' — D), written (1,7) :
D —, D', such that

jor=1d and 107 <d
where < is the pointwise ordering, cf. proposition 1.4.4. If only 7 01 = id holds,
we say that (i,7) is a retraction pair and that D' is a retract of D. Injection-
projection pairs are composed componentwise:

(41,71) © (12, 72) = (41 042,72 0 J1)
and the identity injection-projection pair is (id,id).

Proposition 3.1.3 If (i,j) : D —, D' is an injection-projection pair, then i
determines j. Moreover, if D is algebraic, then j is defined as follows:

=\ li(y) <"}
PROOF. Suppose that (7, ;') is another pair. Then observe:
=idoj =joioj <joid=j.

The second part of the statement follows from the fact that an injection-projection
pair is a fortiori an adjunction, i.e., i(d) < 2" iff d < j(2'). Then V{d | i(d) <
'} =V{d | d < j(2)} = j(2). =

Proposition 3.1.4 . For any injection-projection pair (1,5) : D —;, D', 4
maps compact elements of D to compact elements of D’.

2. 1If D, D" are algebraic depo’s, a function v : D — D' is the injection part of

an injection-projection pair (i,7) iff i restricted to K(D) is a monotonic injection

into K(D') such that for any finite M C (D), if i( M) is bounded by d’" in K(D'),

then M is bounded in K(D) by some d such that i(d) < d'.

Proor. (1) Ifi(d) < VA', then d = j(u(d)) < j(VA") = Vj(A) implies

d < j(4') for some §" € A’. Then i(d) < @(j(5’)) < 9.
y (1

(2) Let (z,7) be an injection-projection pair. ), @ restricted to K(D) is a
monotonic injection into X (D). Suppose i(M) < d’ Then M = j(i(M)) < j(d').
Hence M is bounded in D, from which we deduce M < d for some d < j(d')

by algebraicity and by ﬁnlteness of M. Then d fits since i(d) < «(j(d')) < d'.
Conversely, let ¢ : K(D) — K(D') be as in the statement. It extends to a
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continuous function 7 : D — D't i(x) = V{i(d) | d < z}. Let 7 : D' — D be

defined by
') = \H{d ] i(d) <},

We prove that j is well-defined. We have to check that {d | i(d) < 2’} is directed.
If i(dy),1(dy) < a’, then by algebraicity i(dy),i(dy) < d’ for some d' < 2/, and by
the assumption {dy,ds} < d with i¢(d) < d'. This d fits since a fortiori i(d) < z'.
It is easy to check joi =id and 107 < id. O

Remark 3.1.5 [f moreover the lub’s of bounded subsets exist (cf. exercise 1.4.11),
then the statement (2) of proposition 3.1.4 simplifies: “if i(M) is bounded by d' in
K(D"), then M is bounded in K(D) by some d in K(D) such that i(d) < d'” can
be replaced by: “if i(M) is bounded in K(D'), then M is bounded in K(D) and
(VM) =Vi(M)”. Indeed, from i(M) < d', we deduce as above M = j(i(M)) <
J(dy, ice., VM < 3(d'), from which i«(\NV M) <i(j(d")) < d" follows.

The characterisation of injection-projection pairs at the level of compact elements
will be rediscussed in chapters 7 and 10.

Definition 3.1.6 (D.,) Let (1,5) : D —;, D' be an injection-projection pair.
We define (i) = (.4) =+ (i,]) (D = D) —5iy (D —eom D) by

(fy=iofoj j(f)=jof oi.
Given a cpo D, we define the standard injection-projection pair (ig, jo) : D —4p
(D — D) by
o(x)(y) ==z Jo(f) = f(L).
The cpo D, is defined as follows:

Do ={(z0y.. s &pny...) |V 2, € Dy, and x, = Jp(2py1)}

where (xg, ..., &n,...) is an infinite tuple, standing for a map from w to |J

new Dn;
and
DO =D Dn—l—l = Dn — Dn (in-l—lajn-l—l) = (Znajn) — (Znajn)

so that (i,, jn) : Dy —ip Doyr for alln. We write x,, for the nth component of « €
D.. In the description of an element of D., we can omit the first components,
for example (xq,...,xn,...) determines (Jo(x1), X1, ..\ Ty ...).

Remark 3.1.7 There may be other choices for the initial pair (ig, jo). For exam-
ple the chosen (g, jo) is just the instance (11,71 ) of the family (14, j4) (d € K(D))
defined by

igle) = d—e (step function)

) = f(d).

Hence the construction of Dy, is parameterised by D and (ig, jo).



60 CHAPTER 3. D, MODELS AND INTERSECTION TYPES

The lub’s in D, are defined pointwise: (\/ A), = V{z, | + € A} (the conti-
nuity of the j,’s guarantees that \/ A indeed belongs to D).

Lemma 3.1.8 The following define injection-projection pairs from D, to D, :
tnoo(@) = (kno(2), oo kun(2)y s kpm (), .. )
]nOO(x) = In

where kypy, 2 D, — D, is defined by

Jm © K1) (n>m)
id (n=m)

Z'm—l O kn(m—l) (n < m) .

knm =

We shall freely write x for i,..(x). Under this abuse of notation, we have

z €D, = T, == m<n = x, <,
x e D, = Zn(flf) = (:I/'n)m = ZLmin(n,m)
r €Dy = jn(:r) <z x = \/nZO Ty .

PrOOF. We check only the second implication and the last equality.

o 2 €D, = i,(x) =2 i,(x) stands for i(,41ye0(2n(2)), that is,

(Fanyo(in()), -+ s Ky (in(2)), 10(2), -5 Knaym (in (), - )
which is (kno(2),. ..,z 00(2),. .., kum(2),...), that is, 2.
o v =V, 7, By the continuity of j,, we have
(V 2a)y = (V 2a)p = V (2n)p = \ 2 = 2.
n20 nzp nzp nzp
a

Remark 3.1.9 As a consequence of v = \/,,59 Tn, a compact element of D, must
belong to D,,, for some n.

Lemma 3.1.10 The following properties hold:
1. Vn<px€ Do,y €D, x(y,) = xp11(y),
2. Vn<p,x€Dpp1,y € Dy wnpa(y) = 2(yp)n-

Proor. We check only the case p=n + 1.
(1) By definition of i,,41, we have i,41(2) = 1,02 07,. Hence, as claimed, we have

i1 (2)(y) = (2 (a(y)) = a(2(yn)) = 2(yn)- (2) (2(@(Y))n = Ja(2(in(y))) =

Jnt1(2)(y) = Tns1(y). O
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Definition 3.1.11 We define «: Do, X Doy — Doo and G : (Dog — Do) — Do
by
Ty = \/”20 xn+1(yn)

where G, (f) € Dy is defined by G,.(f)(y) = f(y)n.

It is straightforward to check that these mappings are continuous.

Lemma 3.1.12 The following properties hold:

1. Ifx € Dpy1, then oy = x(y,).
2. Ify e D,, then (zvoy), = n41(y).

PRrOOF. (1) Using lemma 3.1.10, we have

y= \/ Tip1(ys) = \/ ((Yi)n) = z(Yn).

>n >n

(2) By continuity of j,. and by lemma 3.1.10, we have

(x°y)ﬂ = \/ (xp-i-l yp \/ In-{—l = $n+1(y).

p>n p2>n

O

Theorem 3.1.13 Let F(z)(y) = x+y. The maps F' and G are inverse isomor-
phisms between Do, and Dy, — D

PROOF. o (G o F' = id: Thanks to lemma 3.1.12, we have G, (F(z)) = xnq1.
Hence G(F'(z)) = Vyso0 g1 = 2.

e ['oG = id: We have to prove G(f)ex = f(z) for any f : D, — D, and
x € Do. By continuity, we have G(f)ex = V,50 Gn(f)ex. Since G, (f)er =
Go(f)(x,) by lemma 3.1.12, we have G(f)o;c = V30 f(2n)n. On the other hand

we have f(z) = V5o f(x,) by continuity, hence f(z) = V,50p5n f(2n)p- Finally,
observing that f(z,), < f(x,),, we have

G(f)w =V faa)a =\ flea), = f(x).

n>0 n>0,p>n

a

We have thus obtained a solution to the equation D = D — D. The heuris-
tics has been to imitate Kleene’s fixpoint construction, and to build an infinite
sequence Dy = D, ..., H"(Dy),..., with H(D) = D — D. In fact it can be
formally shown that:
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e D is in a suitable sense the least upper bound of the D,’s, and, as a
consequence,

e D is in a suitable sense the least D’ “above” D for which “H(D") < D"
holds, and that moreover “H(D') = D'” holds.

This is fairly general, and will be addressed in chapter 7 (see also exercises
3.1.14, 3.1.15 for an anticipation).

Exercise 3.1.14 Show that, for any D" with a collection of (Pnoo, Ynoo) : Dn —>ip

D" such that (¥ n (dneos Pnoe) = (Pt 1)00s V(nt1)so) 0 (iny Jn ), there exists a unique
pair (o, 00) 1 Doy —ip D' such that

Vn (¢7¢) © (inmajnm) = (¢nmv¢nm)'

(Hint: define ¢(x) = \ dn(2,), ¥(Y)n = Yueo(y).) Recover the definition of
(F,G): Do —ip HDoo by taking

D' = HD.
(¢(n+1)oov¢(n+l)oo) = (anooa ¢noo) — (¢nooa 77Z)noo) .

Exercise 3.1.15 Define an (ig, jo)-H-algebra as a pair of two injection-projection

pairs (o, 3) : Do —ip D' and (v,6) : HD' —;, D' such that

(v,0)0 H(a,3) 0 (i0,J0) = (o, )  where H(a, B) = (a, B) = (e, )

and define an (1o, j0)-H -algebra morphism from ((«, 3), (v, 8)) to ((cn, B1) : Do —>ip
Dllv(fylv(sl) : HD/I —ip Dll)
as a morphism (p,v) : D" —;, D} such that

(M?V) © (avﬁ) = (alaﬁl) and (M?V) © (775) = (71751) © H(/Lvy)'

Show that ((i0c0, Joso ), (G, F')) is an initial (iq, jo)-H-algebra, that is, it has a
unique morphism into each (iq, jo)-H-algebra.

We end the section with a lemma which will be needed in the proof of lemma

3.4.7(3).
Lemma 3.1.16 For any f € D,41 we have G(ipe0 0 f 0 Jpoe) = f.
PROOF. We have Gt © f 0 Jnoo) = Vpsn Gpline © f 0 juso). Let y € Dy, From

Gp(inoo ofo ,]noo)(y) = inOO(f(jnOO(y)))p

we get G700 0 f 0 Jnoo ) (y) = f(yn) (with our abuse of notation), hence G (700 ©
J 0 Jneo) = k(ng1)(p+1)(f) by lemma 3.1.10, and the conclusion follows. O
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3.2 Properties of D, Models

We have not yet shown with precision why a solution to D = D — D gives a
model of the A-calculus. We shall first give a few definitions: applicative structure,
prereflexive domain, functional A-model, and reflexive domain. The D, models
are reflexive, as are many other models of the A-calculus. A fully general (and
more abstract) definition of model will be given in chapter 4. Then we discuss
some specific properties of D, models.

Definition 3.2.1 (pre-reflexive) An applicative structure (X,¢) is a set X
equipped with a binary operation «. The set of representable functions X — .., X
is the set of functions from X to X defined by

X—= o X={feX=>X|dye X VeeX f(z)=ywu}

A pre-reflexive domain (D, F,G) is given by a set D, a set [D — D] of functions
from D to D, and two functions F': D — [D — D] and G : [D — D] — D such
that F'o G = id. The uncurried form of I is writlten . Hence a pre-reflexive
domain D is an applicative structure, and D —,.., D = F(D) =[D — D]. If
moreover D is a partial order and (G, F) forms an injection-projection pair, then

(D, F,G) is called coadditive.

Notice that the conjunction of F'o G > id and G o I’ < id is an adjunction
situation. In coadditive pre-reflexive domains, we thus have

G(f) <z e f<Fe)
which entails that:

o (& preserves existing lub’s (f < F(G(f)), g < F(G(g)) entail fV g <
F(G(f) v G(g)))-

e ( maps compact elements to compact elements (cf. proposition 3.1.4).

The functions F' and (G can serve to interpret untyped A-terms. As in uni-
versal algebra and in logic, the meaning of a term is given relative to a so-called
environment p mapping variables to elements of the model. Thus the meaning of
a term is to be written as an element [M]p of D, read as: “the meaning of M at
p”. This motivates the following definition.

Definition 3.2.2 (A-model) A functional A\-model (A\-model for short) is a pre-
reflexive domain (D, F,G) such that the interpretation of A-terms given by the
equations of figure 3.1 is correctly defined. In these equations, the point is to

make sure that A\d.[M]p|d/z] € [D — D].
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[]0 = plo)
[MN]p F([M]p)([N]p)
DaMlp = GOd[M]p[d/2])

Figure 3.1: The semantic equations in a functional A\-model

Proposition 3.2.3 (soundness) In a A-model, the following holds:
if M —5 N, then [M]p = [N]p for any p.
PROOF HINT. Since F o G = id, we have

[(Az. M)N]p = F(G(Ad[M]pld/]))([N]p)

= [M]p[[N]/x] .
Then the conclusion follows from the following substitution property, which can
be proved by induction on the size of M: [M[N/x]]|p = [M]p[[N]p/x]- 0

We refer to chapter 4 for a more detailed treatment of the validation of 3

(and n).

Definition 3.2.4 (reflexive) A pre-reflexive domain (D, F,G) is called reflex-
ive if D is a cpo and [D — D] =D — D.

Proposition 3.2.5 A reflexive domain is a functional A\-model.

PROOF. One checks easily by induction on M that Ad. [[M]]p[cf/:i"] is continuous.
In particular, Ad.[M]p[d/z] € [D — D]. O

The D., models are reflexive. The additional property Go F' = id which they
satisfy amounts to the validation of the n-rule (see chapter 4).

Remark 3.2.6 [t should come as no surprise that the D., models satisfy n as
well as 3, since for B we expect a retraction from Do, — Do, to D.,, while the
construction exploits retractions from D, to D, — D, which are the other way
around.

We now come back to D, and prove a result originally due to Park: the
fixpoint combinator is interpreted by the least fixpoint operator in D.,. The
proof given here is inspired by recent work of Freyd, and Pitts, about minimal
invariants, a notion which will be discussed in section 7.2.
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Proposition 3.2.7 Letd;: (Do = Do) = (Do — Do) be the function defined
by
S;(e)=Go(e—id)oF

where — is used in the sense of definition 3.1.1. The function 65 has the identity
as unique fixpoint.!

PROOF. Let ¢ be a fixpoint of §;. Considering ¢, id as elements of D, we shall
prove that, for any n, €, = id,, i.e., (forn > 1), ¢, = id : D,_y — D,_1. The
general case (n > 2) is handled as follows, using lemma 3.1.12:

ra(@)y) = (6= id)sa(@)y) = ((c = id)(@))nsa(y)
= (0 anly) = 20y

On the other hand:

(2 0 €up1)(y) = 2(€nt1(y)) = 2(e(y)n) = (0 €)(Y)n-

Then we can use induction:

ers2(2)(y) = (2 0 )Y)a = (0 €ua)(y) = (w0 id)(y) = a(y).

Hence €,12(x) = x, and €,12 = id. We leave the base cases n = 0,1 to the reader
(hint: establish first that, in D, Ley = L, and x¢(y) = zo = z(Lo)). O

Remark 3.2.8 1. Proposition 3.2.7 does not depend on the initial choice of Dy,
but the proof uses the fact that the initial pair (io, jo) is the standard one (this is
hidden in the hint).

2. The functional 65 may seem a bit ad hoc. A more natural functional would be
 defined by: 6(e) = Go(e — e)oF'. More generally, for a domain equation of the
form D = H(D), with a solution given by inverse isomorphisms F': D — H(D)
and G': H(D) — D, we can set 6(e) = Go H(e)o k. But replacing 65 by 6 in the
proof of proposition 3.2.7 fails to work in the base cases n = 0,1. On the other
hand, we shall see (proposition 7.1.23) that the functional § works well with the
initial solution of D = H(D). (Remember that we are not interested in the trivial
inttial solution {L} of D=D — D.)

A fortiori, the identity is the least fixpoint of §;. This fact can be used as
a tool to prove properties of D., by induction. We illustrate this with a simple
proof (adapted from [Pit95]) of Park’s result.

Proposition 3.2.9 (Park) Let Y = Ay.(Az.y(az))(Az.y(zx)). then [Y] in Du
is the least fixpoint operator (cf. proposition 1.1.7 and exercise 1.4.5).

'The subscript J in §; comes from the term J = Y (Afzy.z(fy)) (see the discussion on the
relations between D, and Bohm trees, later in this section).
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PrROOF. Let f: D — D. Let Ay = [Az.y(az)]plf/y] = Gz — f(xex)). We
have to prove ApeAy < fiz(f) (the other direction follows from soundness, since
YM =5 M(YM)). Consider

E={e: Do — Do | e <id and e(Ay)eAs < fiz(f)}.

By continuity, £ is closed under directed lub’s; also, obviously, 1 € E. We have
to show that id € F. By proposition 3.2.7, it is enough to show that if e € F|
then d;(e) € £. We have:

or(e)(Ap)eAy = G((e = id)(x — flzex)))eAy
(e = id)(Ax.f(xex))(Ay)

= fle(Ay)ee(Ay))

< f(e(Af)'Af) since e < id
< f(fiz(f)) since e € I/
= fiz([) .

a

D, models and Bohm trees. The rest of the section is an overview of early
independent work of Wadsworth and Hyland, relating D, models and Bohm
trees (cf. definition 2.3.1) [Wad76, Hyl76]. They proved that the following are

equivalent for any two A-terms M and N:

1. M <,, N, which means (cf. definition 2.1.6)
v C (C[M] has a head normal form = C[N] has a head normal form).

2. BT(M)"<" BT(N) (the meaning of 7 <" is sketched below)

3. [M] £ [N] in D (for any choice of Dy, but with the standard initial
(iO: .]0))
The equivalence (1)< (3) is called a full-abstraction property (cf. section 6.4).
We briefly indicate the techniques used to prove these equivalences.

(1) = (2) : This is the hard core of the theorem. It is proved by contradiction, by
the so-called Bohm-out technique. Roughly, the technique consists in associating
with a subterm P of a term M a context C' with the property that C[M] =g, P.
In the proof by contradiction of (1)=-(2) we use a context associated with an
occurrence u where the two Bohm trees differ. If BT (M)/u # Q and BT(N)/u =
), the associated context witnesses rightaway M £,, N (remember that for a
partial A-term P, by definition w(P) = Q exactly when P is not a hnf). (As
for the case where BT(M)/u # Q and BT(N) # €, see theorem 3.2.10.) The
following example should suggest the contents of 7 <. Consider (cf. proposition
3.2.7)
I'= Xz and J =Y (Afzy.x(fy)).
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It can be proved (as in proposition 3.2.9) that [/] = [/] in Ds. But the Bohm
tree of [ is just I, while the Bohm tree of J is infinite:

Aezo.x(Azr.20(Aze.21 ..o .
These two Bohm trees get equalised through infinite n-expansion of I:

I = Xezo.wzo = Aezow(Azr.z021) = oo

(2) = (3) : This follows from the following approximation theorem:
[M] = \VAIAT| A < BT(M)}.

(3) = (1) : A corollary of the approximation theorem is the adequacy theorem:
[M] = L < M has no head normal form < BT(M)= Q).
Therefore M <,, N can be rephrased as:
Ve ([CIN] = 1) = ([C[M]] = 1),
This holds, because we have [C[M]] < [C[N]], by the compositionality of the

interpretation in D,,. The Bohm-out technique was first used in the proof of
Bohm'’s theorem, which we now state.

Theorem 3.2.10 (Béhm) Let M, N be A-terms which have both a n-normal
form, and whose (Bn-normal forms are distinct. Then any equation P = @) tis
derivable from the system obtained by adding the axiom M = N to [3n.

PRrROOF HINT. Given fixed M, N as in the statement, the proof consists in asso-
ciating with any pair of terms P,Q a context Cpg such that C[M] =5, P and
C[N] =g, Q. The induction is based on the size of M, N. We only describe a
few typical situations. First we can assume without loss of generality that M
and N have no head M’s, since they can be brought to that form by contexts of
the form [ ]y ...x,. Notice that here n-interconvertibility is crucial, since in this
process, say, Az.Nx and N are identified. We now briefly discuss examples of the
differents cases that may arise:

1. Base case: M = M and N = yﬁ (y # x). Then we take
C = (Azy.[ )AL P)(Av.Q).

2. M = aM; and N = xN;{Ny. We turn this difference in the number of
arguments into a base case difference, in two steps. First, a context [ |yiy2,
with yq, yo distinct, yields @ Myy y2 and 2Ny Nayiys. Second, we substitute
the term ay = Azy292.22129, called applicator, for x. Altogether, we set
D = (Ax.] Jy1y2)az, and we have

D[M] =gy Y2M1y, and D[N] =3y, Y1 N1 N2y

which is a base case situation.
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3. M =aMMy, N =xN{Ny: Then M #g, N implies, say, Ny #z, Na. It is
enough to find D such that D[M] =g, My and D[N] =g, N3, because then
one may conclude by an induction argument. In first approximation we
are inclined to substitute the projection term my = Az125.29 for x, yielding
My[my/x] and Ny[my/x]. But we do not want the substitution of 7y in M,
and N,. To avoid this, we proceed in two steps: First we apply the two
terms to a fresh variable z and substitute ay for x, then we substitute
my for z. Formally, we take D = Dy[Dy], where Dy = (Az.[ |z)ag, and
Dy = (Az.[])ma. Then

D[M] =g, Ma[az/x] and  D[N] =g, Na[az/x].

The substitution of a3 turns out to be harmless. We make such substitu-
tions by applicators into a parameter of the induction, together with P, @),
so that above we can have by induction a context Cpg o,/ With the prop-
erty that

Cp.asfelMalos/a]] =g, P and  Cpg ay/e[Nolaz/z]] =p, Q.
For full details on the proof, we refer to [Kri91]. O

In other words, adding M = N leads to inconsistency. To prove the theorem,
one may assume that M, N are distinct normal forms, and the place where they
differ may be “extracted” like above into a context C' such that C[M] =5 Azy.x
and C[N] =5 Axy.y, from which the theorem follows immediately. As a last
remark, we observe that Bohm’s theorem gives us already a limited form of “full
abstraction”.

Corollary 3.2.11 Let M, N be A-terms which have a [Bn-normal form. Then
[M] =[N] in D iff M =5, N.

PROOF. @ M =g, N = [M] = [N]: by soundness.

o [M]=[N]= M =3, N: if M, N have distinct normal forms, then by B6hm’s
theorem and by soundness [P] = [Q] for any P, @; in particular [2] = [y], which
is contradicted by interpreting these terms with a p such that p(z) # p(y) (Dw
contains at least two elements). O

3.3 Filter Models

In this section we introduce the syntax of intersection types, which leads to the
definition of a class of reflexive domains. Intersection types provide an extended
system of types that allows to type all terms of the A-calculus. Therefore the
philosophy of these “types”, which were originally called functional characters in
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[CDC80], is quite different from the main stream of type theory, where the slogan
is: “types ensure correction in the form of strong normalisation” (cf. theorem
2.2.9). Coppo and Dezani’s characters, or types, are the simple types (built with
— only, cf. definition 2.2.5), supplemented by two new constructions: binary
intersection and a special type w, with the following informal typing rules (see

exercise 3.3.14):

any term has type w,
a term has type o A 7 iff it has both types o and 7.

As an illustration, to type a self application of a variable z to itself, we can
give to x the type (0 — 7) A o, and we get that xz has type 7. On the other
hand, it can be shown that the application of A = Ax.zzx to itself can only be
typed by w. In section 3.5, we shall further discuss the use of intersection types
in the investigation of normalisation properties.

Turning to semantics, functional characters can be used to give meaning to
terms, using the following philosophy: characters are seen as properties satisfied
by terms, in particular, the property ¢ — 7 is the property which holds for a
term M if and only if, whenever M is applied to a term N satisfying o, M N
satisfies 7. The meaning of a term is then the collection of properties which it
satisfies.

Another way to understand the language of intersection types is to see them
as a formal language for presenting the compact elements of the domain D which
they serve to define. Recall that the topological presentation of domains (section
1.2) provides us with a collection of properties: the opens of the Scott topology,
or more specifically the opens in the basis of Scott topology, that is, the sets of
the form 1 d, where d is a compact of D. Hence, in this approach:

e Types o, 7 represent compact elements d, e of D, the association being bi-
jective, but antimonotonic (observe that d < e iff T e CT d).

e 0 — 7 represents the step function (cf. lemma 1.4.8) d — e : D — D,
which is a (compact) element of D, since it is intended that D = D — D.

e o AT represents dV e, and w represents L (intersection types give a lattice:
all finite lub’s exist).

These remarks should motivate the following definition.

Definition 3.3.1 (eats) An extended abstract type structure (eats for short) S
is given by a preorder (S, <), called the carrier, whose elements are often called
types, which:

e has all finite glb’s, including the empty one, denoted by w, and

o is equipped with a binary operation — satisfying:
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(=1) (c=m)N(0c—=7)<oc—=(nAT)
o <o r<7

(c—=71)<(0 =7

(w) w<w—=w.

Remark 3.3.2 1. The structure of a preorder having all finite glb’s can be az-
tomatised as follows:

o<o 01 < 02,03 < 03
o< w o < o3

cANT<oc oAT<T c<o 1t<7
c<oANco (cnT)<(d"ANT)

2. Inequation (—3) expresses contravariance in the first argument and covariance
in the second argument (cf. defintion 3.1.1).

3. Thanks to inequation (—3), the two members of (—1) are actually equivalent.

Lemma 3.3.3 In any eats, the following inequality holds:
(o1 = 1) AN(o2 = 72) < (01 Aoz) = (11 A T2).
PROOF. The statement is equivalent to
(o1 = 1) AN (o2 = 12) < ((o1 ANoa) = 71) A ((01 AN oa) — T2)

which holds a fortiori if oy — 71 < (01 A o) = 71 and 03 = 75 < (07 A 03) = .
Both inequalities hold by (—»). O

A way to obtain an eats is via a theory.

Definition 3.3.4 Let T be the set of types constructed from a non-empty set At
of atoms and from a signature {w”, A*, —?*} (with the arities in superscript). The
formulas have the form o < 7, for o,7 € T. A theory consists of a set Th of
formulas closed under the rules defining an eats. Thus a theory produces an eats
with carrier 1'. We denote this eats also by Th. For any set X of formulas,
Th(X) denotes the smallest theory containing ¥. We denote with Thy the free
theory Th(().

Remark 3.3.5 The assumption At # ( is important: otherwise. everything
collapses, since w =2 w Aw = w — w, where = is the equivalence associated with

the preorder <.

Another way to obtain an eats is by means of an applicative structure.
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Definition 3.3.6 (ets) Let (D,+) be an applicative structure. Consider the fol-
lowing operation on subsets of D:

A= B={deD|Vee A dee € B}.

A subset of P(D) is called an extended type structure (ets for short) if it is closed
under finite set-theoretic intersections and under the operation — just defined.

Lemma 3.3.7 An ets, ordered by inclusion, is an eats.

We have already observed that the order between types is reversed with re-
spect to the order in the abstract cpo semantics. Accordingly, the role of ideals
is played here by filters.

Definition 3.3.8 (filter) A filter of an inf-semi-lattice S is a nonempty subset

x of S such that
o, TEXT=>0NTEX
c€rxando<1t=TC=x.

The filter domain of an eats S is the set F(S) of filters of S, ordered by inclusion.

Remark 3.3.9 Fquivalently, in definition 3.3.8, the condition of non-emptyness
can be replaced by: w € .

The following properties are easy to check:

o For each o € 5, 1 o is a filter.

e Given A C S, the filter A generated by A (i.e., the least filter containing
A) is the intersection of all filters containing A. It is easily seen that

Z:U{T(Tl/\---/\rn) | 71,00, 7 € A}

e In particular for a finite A = {ry,...,7,}, we have A =1 (1y A -+ A 7).
Proposition 3.3.10 If S is an eats, then F(S) is an algebraic complete lattice.

PRrROOF. The minimum and maximum elements are T w and S, respectively. The
nonempty glb’s are just set-theoretic intersections. The lub’s are obtained by
VA =UA. Two instances of lub’s can be given explicitly:

o If A is directed, then [JA is a filter, hence VA = [JA. To see this, let
o,7 € JA. Then o € x, 7 € y for some x,y € A. By directedness o,7 € z for
some z € A; since z is a filter, we have 0 A 7 € z, hence o A 7 € |J A.

o tovtr={o,7}=1(cAT).

It follows that {T o | o € &} is directed, for any filter x, and since it is clear that

r=U{T o | o € x}, weobtain that F(S) is algebraic and that the finite elements
are the principal filters T o. O
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Definition 3.3.11 Let S be an eats, let x,y € F(5), and [ be a function F(S) —
F(S). We define:

xoy = {r|Jo€y o—71E}
G(f) = {e=1lref(ta)}.

We write F' for the curried form of .

Lemma 3.8.12 For any z,y € F(5), axswy is a filter, and the operation « is
continuous.

PROOF. We check only that xey is a filter:

o wE zoy: Take 0 = w. Then w € zey since w < w — w implies w = w € .

e C(Closure under intersections: Let 7,75 € zsy, and let 01,05 € y such that
o1 — 71,09 = 7o € x. Then oy Aoy — 71 A7 € x, by lemma 3.3.3, hence
TL N\ Tg € Tey.

e Upward closedness: by covariance. a

Remark 3.3.13 Notice the role of the ariom w < w — w, which guarantees the
non-emptyness of xey.

Exercise 3.3.14 Consider the following interpretation of A-terms:

[2]p = p(2)
[MN]p = (IM]p)«(IN1p)
[NeM]p = G [M]p[d/z])
where F' and G are as in definition 3.3.11 and where p maps variables to filters. (Unlike
in definition 3.2.2, we do not suppose F'o G = id.) On the other hand, consider the
formal typing system of figure 3.2, involving judgments of the form I' = M : o, where
M is an untyped A-term, o € S, and U is a partial function from (a finite set of)
variables to S, represented as a list of pairs of the form x : 0. (A slightly different one

will be used in section 3.5.) Show [M]p={o | '+ M : 0}, where p(x) =1 0 whenever
z:0isin .

We next examine how F' and (G compose.
Lemma 3.3.15 In an eats, the following holds for any o,7 € S,z € F(S):
c—»TErESTE T O

ProOOF. (=) This follows obviously from o €1 0. Conversely, 7 € x+ T o implies
o' — 7 € z for some ¢’ > o, hence 0 — 7 € ¥ by contravariance. a

Lemma 3.3.16 Let F, G be as in definition 3.3.11. Then G o F < id.
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z:0€l
'z:0
''r-M:0—-717I'EN:0o r'{z:o}-M:7
'EMN:71 'cXaM:0—r7
'-M:c TEM:7 TTEM:0 6<1
r=M:w F'=M:oNT r=M:r

Figure 3.2: Intersection type assignment

PROOF. Let f = F(y) = Ax.(yox). If 0 € G(f), then 0 > (67 = 1) A---A(o, —
7.), where 7, € yo T 0, (1 < i < n), or, equivalently, o; — 7 € y, from which
o € y follows, by definition of a filter. a

Proposition 3.3.17 Let F,G be as in definition 3.3.11. We have

FoG>id onF(S)— F(9)
FoG=1id onF(S) . F(5).

PROOF. @ F oG > id: We have to prove f(x) C G(f)sx, for every f: F(S5) —
F(S) and every filter x. If 7 € f(x), then by continuity 7 € f(1 o) for some
o € x. Hence 0 — 7 € G(f) by definition of (¢, and 7 € G/(f)sx by definition of

o oG <id: Since F(S) —.p F(S) = F(F(S5)), we can reformulate the state-
ment as F'o G o I < F; it then follows from lemma 3.3.16. O

The situation so far is as follows. An eats gives rise to a coadditive prereflexive
domain based on the representable functions. This domain does not necessarily
give rise to a A-model, because there may not exist enough representable functions
to guarantee that Ad.[M]p[d/x] is always representable. The following proposi-
tion characterises the eats” which give rise to reflexive domains, with the above

choice of F, .

Proposition 3.3.18 For any eats S, F(S) =, F(S) = F(S) = F(S) (and
hence (F(9), F,G) is reflexive) if and only if (for any types)

(Frefl) (o1 =m)N-N(on = m)So—=T7=>Nrn|o<lo} <71
PRrOOF. We begin with two observations:

1. By proposition 3.3.17, any representable function f is represented by G(f).
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2. The compact continuous functions in F(S) —.,n F(5) are the functions
of the form f = (T oy =T 1) A+ A(T 0, =T 7), i.€., such that

flz) =1 /\{Ti | oi € x}

(cf. remark 1.4.13). In particular, 7; € f(1 o;) for every i, hence 0; — 7; €

G(f)-

Suppose first that all continuous functions are representable. Then the above
[ is represented by G(f). Let 0,7 be as in the assumption of (Frefl). We have

reG(f)rto=fto)=t N{rlo<oi}
since 0 = 7 € G(f) and F oG =id. Hence A{r; | 0 < o;} < 7.

Conversely, suppose that (Frefl) holds. We show that the compact functions
f (cf. observation (2)) are representable. We first show:

G(f) =T (o1 = 11) AN A(oy, = T0).

o T (o = m)AN---N(o, = 7,) CG(f): this follows from o; — 7 € G(f),
shown above.

o G(f) Tt (o1 = )N A(o, = 7,): it is enough to show that 7 € f(1 o),
implies (oy — 1) A -+ A (0, = 7,) < o — 7. That is, the converse of
(Frefl) holds. This is proved using lemma 3.3.3:

(o1 = 7m)AN- Ao, = T1,) < /\ (o0; = 7)

{ilo <o}
< /\ o; —» /\ Ti
{ile <o} {ilo<oi}
< o—>T.

Now we can prove that G(f) represents f, that is, for all o:

G(f)et o=t Nnlo<al.

o G(f)+ 1o C f(1 o) Let 7 € G(f)* T o, that is, let ¢ > o be such that
o' = 7 € G(f). Then (o7 — )A---A(oy = 7,) < 0’ = 7.. By (Frefl), we
have A{r; | o/ < o;} < 7. A fortiori A{r; | 0 < o;} <7, that is, 7 € f(1 o).

o f(T0)C G(f) T o: This always holds, by proposition 3.3.17.

Finally, consider an arbitrary continuous function f, and let A be the set of
its approximants. Then

GV Aer = (\ G(A)wr = \/ G@)er =\ 3(x) = (V A)(a).

SEA SEA
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Many eats’ satisfy (Frefl), including Thy (next exercise), and the theories
Thy defined in section 3.4.

Exercise 3.3.19 Show that Thy satisfies (Frefl). Hint: reformulate the goal for an
arbitrary formula o < 7, exploiting the fact that an arbitrary formula can be written
as an intersection of formulas which are each either w, or an atom, or of the form
gy — 03.

3.4 Some D, Models as Filter Models

We are now interested in recasting some D., models in terms of “logic”, that is
in terms of filter models built on a theory. We restrict our attention to an initial
Dy which is an algebraic lattice.

Exercise 3.4.1 Show that if Dg is an algebraic lattice, then so is Dy, for an arbitrary
choice of (i, jo)-

Definition 3.4.2 Let (D, F,G) be a reflexive (coadditive) domain. Let v : D —
D" and w: D" — D be inverse order-isomorphisms. Let F', G’ be defined by

F'(2") = vo F(w(z")ow
G'(f) = v(Gwo flov)).

Then (D', F',G"), which is clearly a reflexive (coadditive) domain, is called iso-
morphic to (D, F, ).

In the following definition we “officialise” the inversion of order involved in
the logical treatment.

Definition 3.4.3 Let D be an algebraic lattice. We set
K(D)= {1 d|de k(D))
and order it by inclusion. (Hence, up to isomorphism, K(D) is (K(D),>).)

Theorem 3.4.4 If D is an algebraic lattice and if (D, F',G") is a reflexive coad-
ditive domain, then K(D) can be equipped with an eals structure in such a way

that the associated (F(K (D)), F,G) is isomorphic to (D, F',G").

PRrROOF. By lemma 3.3.7 applied to the applicative structure D, it is enough to
prove that K(D) is closed under finite intersections and under the — operation.

We have
(Td)A(Te)=1(dVe)
T 1L=0D.
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We show:
td—=te=1G(d— e

where the left — denotes the operation introduced in definition 3.3.6, and where
d — e is a step function. Indeed, we have

zetfd—=teszd>es Fl(z)>2d—es 2> G(d—e)

where the last equivalence follows by coadditivity. Hence K(D) forms an ets
(notice that G'(d — €) is compact by coadditivity). The filters over K(D) are in
order-isomorphic correspondence with the ideals over K (D). We finally check that
the operations F, G are the operations F’,G', up to isomorphism. For z,y € D,
we have

{rrlf<ap{tdld<yt={teldd<y (G'(d—e) <)}
So what we have to show is
e<azwys Id<y (G'(d—e) <)
which by coadditivity is equivalent to
e<F'(z)(y) & IFd<y (d—e< F'(z))
which follows by continuity of F'(z). Matching GG against G' amounts to show
P16 9 ={td—=tele<g(d)}

which can be rephrased as

M fIfF<G(g)}=A where A={tG'(d—e)|d—e<g}

o {1f]f<G'(g)} C A: By the continuity of G, if f < G'(g), then
[<G(dy — e V---Vd, —e,)
for some dy,ey,...,d,, e, such that d; - ¢e; <g,...,d, = ¢, <g. Hence
TG (dy = er),..., TG (dy = €,) € A
Then, since GG’ preserves lub’s,

TG/(d1—>€1\/"'\/dn—>€n) = T( l(dlﬁel)V"'VG/(dn—}Gn))
= TG’(dléel)ﬂﬂTG'(dn%en) € A

from which we get 1 f € A.
e AC{Tf|f<G'(g)}: Ttisobvious that AC {1t f| f < G'(g)} O

Now we investigate under which conditions a filter domain can be presented
by a theory (recall definition 3.3.4).
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Definition 3.4.5 Suppose that S is an eats, and that an interpretation V . At —
S (which obviously extends to V : T — S) is given. Then S,V induce a theory
Sy ={oc <7 | V(o) <V(r)}.

Lemma 3.4.6 [fS is an eats and V' : At — S is such that its extension V : T —
S is surjective, then Sy is isomorphic to S, in the sense that their collections of
filters are isomorphic.

PROOF. The inverse maps are x — V/(z) and y — V7'(y). The surjectivity
of V guarantees that V(V~'(y)) = y. In the other direction, @ C V='(V(x))
holds obviously. If ¢ € V=1(V(x)), then V(o) = V(7) for some 7 € x, hence

7 <o € Sy, from which ¢ € z follows since z is a filter. O

Summarizing, to get a presentation of a domain by a theory, we should make
sure that the domain is an algebraic lattice, is reflexive and coadditive, and we
should find a surjection from types to the compact elements of the domain. We
apply this discussion to the D, models (D, F, G) constructed from a lattice Dy.

Lemma 3.4.7 [fV : At — K(Dy) is such that for each d € K(Dy) there exist
o €T such that V(o) =1d, then V: T — K(D.,) is surjective.

PrOOF. Recall that by remark 3.1.9 a compact element of D, is a compact
element of D, for some n. We use induction over n. The case n = 0 is the
assumption. Take a compact element ¢ = (ay — by) V --- V (a, — b,) of D, 4.
We have by induction

tar=V(e),....7a,=V(e) and  th=V(n),....T7b =V(m).

Hence:
V(O’i — Ti) = T a; —>T bi
= T G'(a; = b;) by theorem 3.4.4
= T (a; = b) by lemma 3.1.16, and
SINce 100 0 (@; — b;) 0 Jroo = a; — b; .
We conclude that T e=V((o1 = 1) A Ao, = 7). O

We now define a theory for the D, model based on Dy = {L, T} and the
standard pair (ig, jo) (cf. definition 3.1.6). We take At = {x}, and define V(x) =1
T. Then obviously V satisfies the assumption of lemma 3.4.7. So all we need now
is a syntactic characterisation of Thy as Th(X) for some finite set ¥ of axioms.

Theorem 3.4.8 Let D,V be as above. Set ¥ = {k < w — k,w — K < K},
Then Thy = Th(Y). Hence Dy, is isomorphic to F(Th(Y)).
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PROOF. The second part of the statement follows from the first part:

D is isomorphic to  F(K (D)) by theorem 3.4.4
F(K(Ds)) isisomorphicto F(Thy) by lemma 3.4.6 .

We also deduce from these isomorphisms that Thy satisfies (Frefl), by proposi-
tion 3.3.18. We now show the first part.

o Th(X) C Thy: It suffices to check V (k) = V(w — k):
tEVw—=r)(=TLT) & Vyay=T & 2=T.

The latter equivalence follows from the fact that D.’s T element (T,...,T,...)
is Do’s T, since io(T) = Ax. T is Dy’s T element, and since it is easily seen that
i(T) =T implies ¢'(T) = T where (z,5) = (1,7) — (,7).

o Thy C Th(X): We pick (¢ < 7) € Thy and proceed by induction on the
sum of the sizes of o, 7. Clearly, it is enough to prove o’ < 7' € Th(X) for some
o', 7" such that o = o', 7 = 7' € Th(X) (in particular for ¢ =¢ o, where = is
the equivalence associated with the preorder <y of Thy). Clearly, from any o we
can extract ¢’ =y o such that o' has a smaller size than o and has one of the
following forms:

w or
(of =2 03) A~ A(o} = 0oy)(n>1)or
(cf = a) N~ A(of = 0o3) Ak (n>0).

Similarly for 7. Exploiting this fact, the problem of verifying (o < 7) € Th(Y)
can be limited without loss of generality to 7 =k and 7 = 74 — T:

o 7 = k: We consider the three possible forms of o:

— 0 = w: this case is impossible, since w <k & Thy.
— o= (o 52 0) AN A(o] = ay): Then 0 < (w — k) € Thy, since
(0 < k)€ Thy. Let I = {i |w < ai € Thy}. By (Frefl), we have:
Nic1 0% < & € Thy. We can apply induction to both w, A,; o} and
Nic1 05, 5, from which o < 7/ € Th(X) follows by lemma 3.3.3, where
T=w—oKk=kKk=T.

—o=(of 52N A(o] = 0oF) Ak

Then obviously o <; 7.

e 7 =7 — 75: We consider the three possible forms of o:

— 0 = w: Replacing w by w — w, we get w < 7 by (Frefl), and
w < 7y € Th(X) by induction applied to w, 72. Hence o/ < 7 € Th(Y),
with o/ =w = w =0.
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— o =(of =5 a3) A - A(o} — o%): The reasoning is the same as for the
corresponding case for 7 = k. We define now [ = {i | 7y <o} € Thy},
and we apply induction to 7, A;cy o) and A;c; o5, .

—o=(of 3N Ao} = 0}) A&:

The reasoning is a variation of the previous case. We replace k by

w — K, we keep the same [, and we apply induction to 7, A;e; of and
Nier 05 N\ K, To. O

There are more liberal conditions allowing to get Th = Th(X) for some finite

X,

Exercise 3.4.9 Let Th be a theory satisfying (Frefl), and in which every atom k is
equivalent to a finite conjunction o, of types of the form w — k or k1 — k3. Show that

Th = Th(X), where
Y=(ThN{ri A+ ANEp <K|Kly..o,km, K € At})U{k =0, | kK € At}.

Hints: (1) Reason by induction on the number of occurrences of —. (2) The inequations
K1 A A Ky < K might lead to loops when replacing k1, ..., Km, K bY Ok, y. .., 0k, O,
hence they are added explicitly.

Exercise 3.4.10 (Park’s D. ) Apply exercise 3.4.9 to show that the D, model based
on Do = {1, T} and (i, j1) (cf. remark 3.1.7) is isomorphic to F(Th(SP**)), with
vk — L = k — k). Hint: use the same function V, but notice that, unlike in the
standard D, model, it is not the case here that Dy’s T is Do ’s T, since it(L) = Ax.x
is not Dy1’s T element.

3.5 More on Intersection Types *

In this section, following original work of Coppo and Dezani, we study intersection
types from a syntactic point of view (and without considering an explicit preordering
on types, as we did in order to construct a model). Intersection types are used to give
characterisations of the following predicates over A-terms: “has a head normal form”,
“has a normal form”, and “is strongly normalisable”. The first two characterisations
can be derived as corollaries of a logical formulation of the approximation theorem (cf.
section 3.2). Our presentation follows [Kri91].

Systems D) and D. Recall the set T' of intersection types from definition 3.3.4.
The typing system D is defined in figure 3.3. The only difference with the system
presented in figure 3.2 is the replacement of the last rule by the more restricted rules
(AF1) and (AE2). Another difference is that we let now M range over Q-terms (cf.
definition 2.3.1). The rule (w) allows to type Q.

The restriction of D) obtained by removing w in the BNF syntax of T, as well as
the rule (w), is called D. In D only A-terms, i.e., terms without occurrences of €2, can
be typed.
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x:o0€el

I'kFaz:o
'-M:0—-7I'FN:o r{z:o}-M:71
I'EMN :7 'cXaeM:0— 1

'-M:c 'EM:T

(w) '-M:w (M) 'EM:oNT
I'-M:oNT I'-M:oNT
(AED) '-M:o (AE2) '-M:o

Figure 3.3: System DS}

Remark 3.5.1 Because of ariom (w), in a provable judgement 't M : o of DR, all
free variables of M are not always declared in I'. This property holds however in D.

We state a number of syntactic lemmas.

Lemma 3.5.2 (weakening) IfI' =M :0 and T’ C T (that is, if v : 0 is in T' then it
isinT’), thenT'F M : 0.

Lemma 3.5.3 If',zy :0y,...,2p: 0 0, =M 0, if Ny,..., N are A-terms, and if
't N;:o; for all i’s such that ; € FV (M), then T = M[Ny/2y, ..., Ny/ag] : 0.

PrOOF HINT. By induction on the length of the proof of I',zy : 01,...,25 10 = M : 0.
O

Remark 3.5.4 Lemma 3.5.3 encompasses both substitution and strengthening. Substi-
tution corresponds to the situation where I' = N; : o; for all v < k. Strengthening corre-
sponds to the situation where xv,...,xp € FV(M): then U 2y :04,...,0:0p, - M : 0
impliesI'= M : 0.

Lemma 3.5.5 I[f,z:0 M :7, then U,z : o Ao’ - M : 7 for any o',
ProoFr. By induction on the length of the proof of I'yz : 0 = M : 7. We only look at

the base cases:

Ie:obaz:0: Thenl,z:oANd’'Fa:0A0,and I,z : 0 Ao’ o : o follows by
(AE).

e:oby:r (y#a): Thenalsol'z:oAd' Fy: T, a
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Lemma 3.5.6 IfTFM:0candI"HM : 0, then T WI' - M : o, where the variables
declared in T W T are those declared in T' or T', and where (viewing the environments
as functions)

AT ifl(z)=T1and "(z) =1
Fwl(z)=<% 7 if T'(z) =7 and T () is undefined
! if I"(z) = 7" and T'(x) is undefined .

ProoF. The statement follows from lemma 3.5.2 and from a repeated application of
lemma 3.5.5. U

Definition 3.5.7 (prime type) An intersection type is called prime if it is either an
atomic type Kk or an arrow type ¢ — 7. Fvery type is thus a conjunction of prime types
(called its prime factors) and of some w’s, and, by (AE), if T = M : o and if o' is a
prime factor of o, then ' = M : o',

Lemma 3.5.8 Let I' = M : o, with o prime. Then:
1. If M =, then (z : 0') € I', where o is a prime factor of o',
2. If M =Xx.N , theno=0y oy and ',z : 01 = N : 09,

3. IfM =M M,, then TEMy:7 and T'F My : 7 — o', for some 7,0', such that o is
a prime factor of o’'.

PrRoOF. First we claim that a proof of I' = M : ¢ contains a proof I' = M : ¢’ which
does not end with a (AI) nor (AE) rule and is such that ¢ is a prime factor of ¢’. To
prove the claim, we generalise the assumption “a proof of I' - M : ¢” to: “a proof of
' M : ¢" where o is a prime factor of ¢"”. We proceed by induction on the length
of the proof of I' = M : ¢"” and consider the last rule used:

(AI) Then ¢” = oy A 02, and o, being a prime factor of ¢”, is a prime factor of oy or
09, thus we can apply induction to the left or right premise of the (AI) rule.

(AFE) Then the premise of the rule is of the form T'H M : ¢”" At or T'H M : 7 Ao,
and o, being a prime factor of ¢”, is also prime factor of ” A7 or 7 A d”.

The claim is proved. Let ' = M : ¢/ be as in the claim; it is a conclusion of one of
the three rules of the simply typed A-calculus (without intersection types):

M=u=: Then (z:0') € I
M = Xx.N: Then ¢/ = 0y — 04, hence ¢’ is prime, which entails o = o’.
M = M{Ms : Obvious.

ad

Proposition 3.5.9 (subject reduction) If['FM :0 and M —3 M', then T - M":
.

PrROOF HINT. In the crucial axiom case, use lemmas 3.5.8 (case 2) and 3.5.3. ad
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Lemma 3.5.10 (expansion) 1. InDQ, if '+ M[N/x]: 7, then ' - (Ae.M)N : 7.
2. InD, if ' M[N/z]:7 and if T' = N : o for some o, then I' = (Aa. M)N : 7.

Proor. We prove (1), indicating where the additional assumption comes in for (2).
We may assume by lemma 3.5.3 that  is not declared in I'. The statement follows
obviously from the following claim:

do 'FN:ocand a:oF M:T).
The claim is proved by induction on (size(M), size(T)):
o 7 = w: Obvious, taking o = w.
e 7 =1 ATy By (AFE) and by induction, we have

'-N:0y I'No:ogyEFM:7m
'-N:oy Tyx:ooFM:1y.

We set 0 = 01 A 03, and we conclude by (Al) and lemma 3.5.5.
e T prime:

— M = z: Then the assumptionis ' - N : 7. Take ¢ = 7.

— M =y # x: Then the assumption is ' -y : 7. Take ¢ = w (in D, take the
assumed type of N).

— M = A\y.P: By lemma 3.5.8 (2) we have 7 = 1y — 72 and
[,y:m F P[N/z]: .
By induction we have
Ny:mHEN:o and T,z:0,y:7FP:m.

Since we can (must) make sure that y is not free in NV, the conclusion follows
from lemma 3.5.3.

— M = M;M,: We can apply induction since size(M;), size(Ms3) < size(M).
Using lemma 3.5.8 (3), we have

'N:oy Tha:on M :7" =7
'EN:oy Tyz:oob My: 7"

with 7 prime factor of 7/. As above, we set 0 = oy A 73. a

Remark 3.5.11 Unlike subject reduction, which holds widely in type systems, lemma
3.5.10 is peculiar of intersection types.

Theorem 3.5.12 (subject equality) IfI'+M : 0 and M =5 M’, then I' = M’ : 0.
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PRrROOF. One direction is proposition 3.5.9 and the other is easily proved by induction
using lemmas 3.5.10 and 3.5.8. o

We shall prove the strong normalisation theorem and the approximation theorem
making use of an elegant technique called the computability method. The method will
be used again in sections 6.3 and 11.5.

Definition 3.5.13 (V-saturated) Let N C A. A subset X C A is called N -saturated
if

VNeN VM Ny,...,N, € A (M[N/2z]N;...N, € X = (Ae.M)NN;...N, € X)
(in this implication n is arbitrary, in particular it can be 0).

Proposition 3.5.14 The N -saturated sets form an ets. (cf. definition 3.3.6).

Proor HINT. The statement is obvious for intersections. As for function types, the
N;’s in the definition of saturated set serve precisely that purpose. a

Lemma 3.5.15 For any interpretation V' (cf. definition 3.4.5) by N -saturated sets
such that Yo V(o) C N, for any provable xy : o1,...,2 : op = M : o, and for any
Ny € V(oy),..., Ny € V(ok), we have M[Ny/xy,...,Np/xg] € V(o).

Proor. By induction on the length of the proof of 2y : 0y,..., 2 10, - M : 0.

e 'z :0: The conclusion is one of the assumptions.

Application: By induction we have
M[Ny/xy,...,NyJag] € V(o — 1) and  N[Ny/zy,...,Np/ag] € V(o)
hence (MN)[N1/z1,...,Ng/zx] € V() by definition of V(¢ — 7).

e Abstraction: We have to prove (Az.M[Ny/zq,...,Np/xp])N € V (1), for any
N € V(o). By induction we have M[Ny/zy,..., Ny/ag][N/z] € V(r), and the
concusion follows by the definition of A-saturated set, noticing that a fortiori
N € N by assumption.

e (w): Obvious, since V(w) = A.
e (AI): Obvious by induction, since V(o A1) = V(o) AV (7).

e (AE1) (or (AE2)): Follows from the implicit order: V(e A 1) C V(o). o

Remark 3.5.16 Notice that we have used induction on types to construct V(o) at all
types, and that we have used induction on (typing proofs of ) terms to prove the state-
ment. The core of the computability method indeed resides in this elegant separation
of inductions, to be contrasted with their combinatorial combination in the proof of
theorem 2.2.9.
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The following characterisation of strongly normalisable terms, provides in particular
an alternative proof of strong normalisation for the simply typed A-calculus (theorem

2.2.9).

Theorem 3.5.17 (strong normalisation — intersection types) Any A-term M is
strongly normalisable iff ' = M : o is provable in D for some ', 0.

Proor. (<) We take N' = SN, the set of strongly normalisable terms, and we
interpret the atomic types k by setting V(x) = N. Our proof plan goes as follows. We
show, for all o:

1. V(o) is N-saturated,
2. 2 € V(o) for all variables z,
3. V(o) CWN.

By these conditions lemma 3.5.15 can be applied, with Ny = z1,..., Nx = zy, yielding
M € N. Therefore all we have to do is to prove the three conditions.

(1) By lemma 3.5.14, the condition boils down to the verification that N is N-
saturated. We proceed by induction on depth(N) + depth(M[N/z]Ny...N,) (cf. defi-
nition 2.2.1). It is enough to prove that all the one step reducts P of (Az.M)NN;y...N,
are in NV:

e P = M[N/z]N;y...N,: By assumption.
e P=(Ax.M')NNj...N,: By induction, since

depth(M'[N/z]Ny...N,) < depth(M[N/«z]Ny...Ny).

If the reduction takes place in one of the N;’s, the reasoning is similar.

P = (Ax.M)N'Njy...N,: By induction, since depth(N') < depth(N) (notice that
if © ¢ FV(M), then the depth of M[N/z]Ny...N,, does not change; whence the
notion of AM-saturated).

(2) and (3) We actually strengthen (2) into
2/. No Q V(O‘)
where Ny = {aM;...M, | p>0and Vi < p M, € N}. We shall prove (2') and (3)

together, as a consequence of the following properties, which we shall establish first:

(A) My CWN,
(B) No C (./\/ —>./\/’0)7
(C) (M = N) CN.

(A) Any reduct of 2 My ... M, is of the form Ny ...N, where the N;’s are reducts of
the M;’s. Therefore all elements of Ny are strongly normalisable.

(B) The My, ..., M, in the definition of N serve precisely that purpose.
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(C) Let M € Ny — N. Then Ma € N, and a fortiori M € N.

Now we can prove (2') and (3). The two properties hold at basic types because we
have chosen V (k) = N, and by (A). The intersection case is obvious. Let thus ¢ =
o1 — 02. By induction we have V(o1) C N and Ny C V (02), hence N — Ny C V(o),
and (2') at o then follows by (B). Similarly, we use induction and (C) to prove (3) at
o.

(=) By induction on (depth(M), size(M)), and by cases:

o M = Xay...xp.aNy...N,, with & # 21,...,2,: By induction and by lemmas
3.5.6 and 3.5.2, we have A - Ny : 0¢,...,AF N, : 0, for some A = ',z :
Tlyevos Ty @ Ty, @ 0 7. Then we have, using lemma 3.5.5:

Da:TA(or—= =0, 2Rk EM:iTi = = 7 = K

o M =Axy...xp.2;N1...N,: Similar to the previous case.

e M = Azqy...2p.(Ax.N)PNy...N,: Then by induction A - P : ¢ and A I
N[P/z]Ny...N, : 7 for some A = T 2y : T,y @y @ Ty We claim that
A F (Ax.N)PN,...N, : 7, from which ' - M : 7y —» --- = 7,, = 7 follows.
This is proved by induction on n (cf. theorem 3.5.12), the base case n = 0 being
lemma 3.5.10 (2). O

In the following three exercises, we present the logical approximation theorem, and
derive as corollaries characterisations of the terms having a head normal form and of
the terms having a normal form. We follow [RdR93].

Exercise 3.5.18 (logical approximation) * We define the following notion of “par-
allel normal reduction”, denoted with == :

(Az.P)YQM; ... M, =% P[Q/x]My ... M,

P=Q M =N
aMy ... Mi—yPMiyq ... M, == oMy ... M;_1QM;qq ... M, o.M =\ N
Show that the following implication holds, for any I', M, o:

I'-M:06 = 3N M%H*NandFl—w(N):a.

Hints (refering to the proof of theorem 3.5.20): (1) The following easy property is
useful: in DQ, if 'F M :0 and M < N, then ' = N : 0. (2) One should now deal
with typed versions of the predicates N and Ny. Specifically, set

N({,0) = {MeA|IN (M =Z*NandT Fw(N):0)}
No(T,o0) = {MeN(T,0)|M has the form My ... M,} .

(3) Formulate and prove typed versions of properties (A) (B), and (C) (plus a property
saying that the predicates at o A T are the intersections of the predicates at o and 7),
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as well as of properties (1), (2'), and (3) (in the latter the type should be restricted to
a non-trivial one, see exercise 3.5.19. (4) In the proof of (C), observe that if

then
M =2 =Ny M R < Ay Ply/ «).

(5) Formulate interpretations of the form V(I',o) (making use of the operation ¥ de-
fined in proposition 3.5.6 for the arrow case), and prove a version of lemma 3.5.15.

Exercise 3.5.19 Show that the following are equivalent for a A-term M :

1. M =g N for some head normal form N,
2. M ™% *N for some head normal form N (cf. definition 2.1.19),
3. M is typable with a non-trivial type in D).

where the non-trivial types are defined as follows: atomic types are non-trivial, o A T
s non-trivial provided one of o or T is non-trivial, and o — 7 is non-trivial provided
T 18 non-trivial. Hints: Q can ony have a trivial type. Any term M, ... M, is typable
moany environment £ 1w — - — w — 0.

Exercise 3.5.20 Show that the following are equivalent for a A-term M :

1. M s normalisable,
2. the leftmost reduction from M terminates (cf. proposition 2.2.18),
3. I'EM 0 inDS2 for some I',o where w does not occur.

On the way, show the following properties:

o IfI'+ M : o, where M is a f-normal form and where w does not occur inI', o,
then Q does not occur in M.

o Fwvery B normal form M is typable in D.

Exercise 3.5.21 Show that the logical approximation theorem still holds, replacing the
type system D by the type system of figure 3.2. (Warning: this involves revisiting a
number of syntactic lemmas, typically lemma 3.5.8.)



Chapter 4

Interpretation of \-Calculi in

CCC’s

In first approximation, typed A-calculi are natural deduction presentations of
certain fragments of minimal logic (a subsystem of intuitionistic logic). These
calculi have a natural computational interpretation as core of typed functional
languages where computation, intended as [n-reduction, corresponds to proof
normalization. In this perspective, we reconsider in section 4.1 the simply typed
A-calculus studied in chapter 2. We exhibit a precise correspondence between the
simply typed A-calculus and a natural deduction formalization of the implicative
fragment of propositional implicative logic.

Next, we address the problem of modelling the notions of n-reduction and
equivalence. It turns out that simple models can be found by interpreting types
as sets and terms as functions between these sets. But, in general, which are the
structural properties that characterize such models? The main problem consid-
ered in this chapter is that of understanding what is the model theory of simply
typed and untyped A-calculi. In order to answer this question, we introduce in
section 4.2 the notion of cartesian closed category (CCC). We present CCC’s
as a natural categorical generalization of certain adjunctions found in Heyting
algebras. As a main example, we show that the category of directed complete
partial orders and continuous functions is a CCC.

The description of the models of a calculus by means of category-theoretical
notions will be a central and recurring topic of this book. We will not always
fully develop the theory but in this chapter we can take advantage of the sim-
plicity of the calculus to go into a complete analysis. In section 4.3, we describe
the interpretation of the simply typed A-calculus into an arbitrary CCC, and we
present some basic properties such as the substitution theorem. The interpreta-
tion into a categorical language can be seen as a way of implementing a-renaming
and substitution. This eventually leads to the definition of a categorical abstract
machine.

In section 4.4, we address the problem of understanding which equivalence is

87
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induced on terms by the interpretation in a CCC. To this end, we introduce the
notion of A-theory. Roughly speaking, a A-theory is a congruence over A-terms
which includes (fn-equivalence. It turns out that every CCC induces a A-theory.
Vice versa, one may ask: does any A-theory come from the interpretation in a
CCC? We answer this question positively by showing how to build a suitable
CCC from any A-theory. This concludes our development of a model theory for
the simply typed A-calculus. Related results will be presented in chapter 6 for
Por, a simply typed A-calculus extended with arithmetical operators and fixed
point combinators.

In section 4.5 we introduce logical relations which are a useful tool to establish
links between syntax and semantics. In particular, we apply them to the problem
of characterizing equality in the set-theoretical model of the simply typed A-
calculus, and to the problem of understanding which elements of a model are
definable by a A-term.

In section 4.6 we regard the untyped A-calculus as a typed A-calculus with a
reflexive type. We show that that every CCC with a reflexive object gives rise
to an untyped A-theory. We present a general method to build a category of
retractions out of a reflexive object in a CCC. We give two applications of this
construction. First, we hint to the fact that every untyped A-theory is induced
by a reflexive object in a CCC (this is the analogue of the result presented in
section 4.4 for the simply typed A-calculus). Second, we adopt the category of
retractions as a frame for embedding algebraic structures in A-models. Following
Engeler, we describe a method to encode standard mathematical structures in
A-models.

This chapter is mainly based on [LS86, Sco80, Cur86] to which the reader

seeking more advanced results is addressed.

4.1 Simply Typed A-Calculus

In chapter 2, we have presented a simply typed A-calculus in which every subterm
is labelled by a type. This was well-suited to our purposes but it is probably
not the most illuminating treatment. So far, we have (mainly) discussed the
A-calculus as a core formalism to compute functions-as-algorithms. The simply
typed A-calculus receives an additional interpretation: it is a language of proofs
for minimal logic. Let us revisit simple types first, by considering basic types as
atomic propositions and the function space symbol as implication

At w=rk |k
o u=Alt|(c—o0).

Forgetting the terms for a while, we briefly describe the provability of formulas
for this rudimentary logic. We use a deduction style called natural deduction
[Pra65]. A formula o is proved relatively to a list oy,. .., 0, of assumptions. The
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1<:<n
1y, 0n oy
Oy, Op, 0T
01y, 0pFo— T
O1y...,opFo—=71 01, 0, F0
Oy, 0, b T

Figure 4.1: Natural deduction for minimal implicative logic

formal system described in figure 4.1 allows us to derive judgments of the form
o1,...,0, F o, which are called sequents.

An important remark with a wide range of possible applications [How80] is
that proofs in natural deduction can be encoded precisely as A-terms. To this
aim hypotheses are named by variables. Raw terms are defined by the following
BNF (in the following, we feel free to spare on parentheses):

A context I is a list of pairs, x : o, where x is a variable, all variables are distinct,
and o is a type. We write z : 0 € I" to express that the pair = : ¢ occurs in I'. A
judgment has the shape I' = M : 0. Whenever we write I' = M : ¢ it is intended
that the judgment is provable. We also write M : o to say that there exists a
context I' such that ' M : 0. A term M with this property is called well-typed.
Provable judgments are inductively defined in figure 4.2. We may omit the labels
on the A-abstractions when the types are obvious from the context. It is easily
seen that any derivable judgment admits a unique derivation, thus yielding a
one-to-one correspondence between proofs and terms.

Yet another presentation of the typing rules omits all type information in the
A-terms. The corresponding typing system is obtained from the one in figure 4.2
by removing the type o in Az : .M. In this case a term in a given context can
be given several types. For instance the term Az.z can be assigned in the empty
context any type ¢ — o, for any o. To summarize, we have considered three
styles of typing:

(1) A totally explicit typing where every subterm is labelled by a type (see
section 2.2).

(2) A more economic typing, where only the variables bound in abstractions are
labelled by a type. This style is known as “typing a la Church”.
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(o) 7
(=) Fe:ocFM:T
! 'FXe:oM:0—rT
(=) '-M:c0—-7 I'EN:o
v TFMN:7

Figure 4.2: Typing rules for the simply typed A-calculus

e assignment system, where an untyped term receives a type. is is
3) A typ g t system, wh typed t i type. This i
known as “typing a la Curry”.

In the first system, the term itself carries all the typing information. We
note that once we have labelled free variables and A-abstractions the label of
each subterm can be reconstructed in a unique way. In the two other systems,
a la Church and a la Curry, a separate context carries type information. In the
system a la Church, the context together with the types of bound variables carry
all the necessary information to reconstruct uniquely the type of the term. In
the system a la Curry, a term, even in a given environment, may have many
types. In general, the problem of deciding if an untyped A-term has a type in
a given context is a non-trivial one. This is referred to as the type-inference or,
equivalently, type reconstruction problem.

Type reconstruction algorithms are quite relevant in practice as they relieve
the programmer from the burden of explicitly writing all type information and
allow for some form of polymorphism. For the simply typed discipline presented
here, it can be shown that the problem is decidable and that it is possible to
represent by a type schema (a type with type variables) all derivable solutions
to a given type reconstruction problem [Hin69]. On the other hand, the type-
inference problem turns out to be undecidable in certain relevant type disciplines
(e.g. second order [Wel94]).

In this chapter, we concentrate on the interpretation of A-terms with explicit
type information. We regard these calculi a la Church as central, by virtue of
their strong ties with category theory and proof theory. The interpretation of
type assignment systems has already been considered in chapter 3, and it will be
further developed in chapter 15.

Exercise 4.1.1 This exercise gives a more precise relation between the three systems
mentioned above. Let M7 be a totally explicitly typed term. Let x{',... 20" be its
free variables. Let erase be the function that erases all type information in a A-term.
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Show that zy : 01,...,2, : 0, I erase(M) : o is derivable. Define a function semi-
erase such that xy : oy,...,2, : 0, = semi-erase(M) : o is a la Church derivable.
Conversely, from a derivation a la Curry of 1 : 01,...,2, : 0, & M : 0, construct a
totally explicitly typed term N7, whose free variables are z{',... 2", and such that
erase(N?) = M. Design a similar transformation from a derivation a la Church.

Investigate how these transformations compose.

Exercise 4.1.2 Show that the structural rules of exchange, weakening, and contraction
are derived in the system above, in the sense that, if the premises are provable, then
the conclusion is provable.

(exzch) T,z:0,y:7,I'EFM:p = Dy:rz:0l'EM:p
(weak) TEFM:1tandz:0¢l = TDa:obM:7
(contr) I'yz:0,y:obM:1 = [,z:0F M[z/x,z/y]: 7 (z fresh) .

We consider two basic axioms for the reduction of terms (cf. chapter 2)

(B) (Ax:o0.M)N — M[N/x]
(n) Xx:o(Mz)— M ifad¢ FV(M)

we denote with — 4, their compatible (or contextual) closure (cf. figure 2.4), and
with —%,  the reflexive and transitive closure of —4,.

Exercise 4.1.3 (subject reduction) Show that well-typed terms are closed under re-
duction, formally:

'tEM:o0and M =g, N = I'FN:o.

Theorem 4.1.4 (confluence and normalization) (1) The reduction relation
—+7, is confluent (both on typed and untyped A-terms).

(2) The reduction system — s, is strongly normalizing on well-typed terms, that
is if M : o then all reduction sequences lead to a Bn-normal form.

We have already proved these properties in chapter 2 for the untyped (-
reduction. Using subject reduction (exercise 4.1.3) the proof-techniques can be
easily adapted to the typed case. The following exercise provides enough guide-
lines to extend the results to #n-reduction.

Exercise 4.1.5 In the following —<' means reduction in 0 or 1 step.

1) If M —, M, and M —, M, then there is an N such that My —3' N and
( 7 7 7

M, —>7§1 N.

2) If M —, My and M —gz M, then there is an N such that M; —SU N and
( n B 8

My —7 N.

(3) If M =, - —p N then M —p - —p N or M —p5 - —, N, where M —p, - —p, N
stands for 3P (M —pr, P and P —pg, N).
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(Asmp) x:0€l (x1) '-M:0 'EN:7T
I'Fz:o I'E(M,N):0xT
'-M:oxrT '-M:oxT

() '-mM:o (Xp2) ' meM 7

Figure 4.3: Typing rules for a calculus of conjunction

4.2 Cartesian Closed Categories

The reader will find in appendix B some basic notions of category theory. Next,
we motivate the introduction of CCC’s as the combination of two more elementary
concepts.

Example 4.2.1 (conjunction and binary products) Let us consider a sim-
ple calculus in which we can pair two values or project a pair to one of its com-

ponents.
Types: At ==r|rs"|---
o u=Al]|(oc x o)
Terms: v ==z ]y]|---

M c=v|(M,M)|mM|rM

This calculus corresponds to the conjunctive fragment of minimal logic. Its typing
rules are shown in figure 4.3.

[t is intuitive that a cartesian category (i.e. a category with a terminal object
and binary products) has something to do with this calculus. Let us make this
intuition more precise:

(1) We interpret a type o as an object [o] of a cartesian category C. The
interpretation of the type o x 7 is the cartesian product [o] x [7].

(2) If types are objects, it seems natural to associate terms to morphisms. If M
is a closed term of type ¢ we may expect that its interpretation is a morphism
f:1— [o], where 1 is the terminal object. But what about a term M such that
1 :01,...,0, 0, & M : 07 The idea is to interpret this term as a morphism
Pl (Ux foad) % o % [oul) = [o].

This example suggests that types can be seen as objects and terms as morphisms.
We do not wish to be more precise at the moment (but see section 3) and leave
the following as an exercise.

Exercise 4.2.2 Define an interpretation of the typed terms of the calculus of conjunc-
tion into a cartesian category.
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There is a well-known correspondence between classical propositional logic
and boolean algebras: a formula is provable iff it is valid in every boolean algebra
interpretation. Heyting algebras play a similar role for intuitionistic (or minimal)
logic.

Definition 4.2.3 (Heyting algebras) A Heyting algebra H is a lattice with
lub operation V, glb operation N\, greatest element 1, least element 0, and with a
binary operation — that satisfies the condition

rANy<z iff e<y—=z.

Exercise 4.2.4 Heyting algebras abound in nature. Show that the collection Q of open
sets of a topological space (X, Q) ordered by inclusion can be seen as a Heyting algebra
by taking

U=sV=JWeQ|WcC(X\U)uV}.

For our purposes the important point in the definition of Heyting algebra is
that the implication is characterized by an adjoint situation (in a poset case), as
for any y € H the function _A y is left adjoint to the function y — _

Vye H(_Ay)d(y— ).

In poset categories the interpretation of proofs is trivial. For this reason Heyting
algebras cannot be directly applied to the problem of interpreting the simply
typed A-calculus. However combined with our previous example they suggest
a natural generalization: consider a cartesian category in which each functor
_ x A has a right adjoint (_)4. In this way we arrive at the notion of CCC. The
adjunction condition can be reformulated in a more explicit way, as shown in the
following definition.

Definition 4.2.5 (CCC) A category C is called cartesian closed if it has:
(1) A terminal object 1.

(2) For each A, B € C a product given by an object A x B with projections
Ta:AXxB— Aand mg: Ax B — B such that:

VO eCVf:C—-AVg:C - B3lh:C - Ax B(raoh=fandmpoh=yg).

h is often denoted by (f,q), where (_,_) is called the pairing operator. m and m;
are equivalent notations for ma and wg respectively.

(3) For each A, B € C an exponent given by an object BA with ev: BAx A — B
such that

YCECVYf:CxA— BIh:C— B*(evo(hxid) =f).

h is often denoted by A(f), A is called the currying operator, and ev the evaluation
morphism.
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In the following B4 and A = B are interchangeable notations for the exponent
object in a category.

Exercise 4.2.6 Given a CCC C, extend the functions Prod(A,B) = A x B and
Exp(A, B) = BA to functors Prod : C x C — C and Fxp: C? x C = C.

Exercise 4.2.7 Show that a CCC can be characterized as a category C such that the
following functors have a right adjoint: (i) the unique functor ! : C — 1, (ii) the
diagonal functor A : C — C x C defined by A(c) = (¢,¢) and A(f) = (f, f), (iii) the
functors _x A: C — C, for any object A.

It is possible to skolemize the definition of CCC, that is to eliminate the
existential quantifications, using the type operators 1, (_x _), () and the term
operators *, (_, ), A(_). In this way the theory of CCC’s can be expressed as a
typed equational theory as shown in the following.

Exercise 4.2.8 Show that a CCC can be characterized as a category C such that the
following equations hold.

o There are 1 € C and x4 : A — 1, such that for all f: A — 1,
(') f:*A .

o There are my : AX B — Aand 7y : AXx B — B, for any A,B € C, and (f,g) :
C—AxXB forany f:C — A, g:C — B, such that for all f: C — A, g: C — B,
h:C— Ax B,

(Fst) mo(f,9)=/f

(Snd) mo(f,9)=g

(SP) (mioh,meohy=nh.

o There are ev: BA x A — B for any A,B € C, and A(f) for any f : C' x A = B,
such that for all f :C' x A— B, h:C — B4,

(Beat) €vo (A(f) xid) = f
(Deat) A(evo (h xid))=h

where f X g = (fom,gom).
Exercise 4.2.9 Referring to exercise 4.2.8 prove that (SP) is equivalent to

(DPair) (f,g)oh={(foh,goh)
(FSI) (1, ) = id

and that (Beqt) and (neqt) are equivalent to

(Beta) evo(A(f),g)= fol(id, g)
(DA)  A(f)oh =A(fo(hxid))
(AI)  Aev)=1d .
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Exercise 4.2.10 Show that the following categories are cartesian closed: (a) (Finite)
Sets. (b) (Finite) Posets and monotonic functions. On the other hand prove that the
category pSet of sets and partial functions is not cartesian closed. Hint: consider the
existence of an isomorphism between pSet[2 X 2,1] and pSet[2, 4].

One can now formally prove that the category of directed complete partial
orders (dcpo’s) and maps preserving lub’s of directed sets is cartesian closed
using propositions 1.4.1 and 1.4.4. Exercise 1.4.6 does not say directly that the
product construction in Depo yields a categorical product. This follows from
the following general (meta)-property.

Exercise 4.2.11 Let C,C’ be categories, and F : C — C’ be a faithful functor. Sup-
pose that C' has products, and that for any pair of objects A and B of C there exists
an object C' and two morphisms a: C' — A and f: C' — B in C such that:

F(C) = F(A) x F(B), F(a)=m, F(8)=m

and for any object D and morphisms f: D — A, g : D — B, there exists a morphism
h:D — C such that F(h) = (F(f),F(g)). Show that C has products. Erplain why
this general technique applies to Depo.

In a similar way one can verify that the function space construction in Depo
yields a categorical exponent. The check is slightly more complicated than for the
product, due to the fact that the underlying set of the function space in Dcpo
is a proper subset of the function space in Set.

Exercise 4.2.12 Let C, C' be categories, and F : C — C' be a faithful functor.
Suppose that the assumptions of exercise 4.2.11 hold, and use X to denote the cartesian
product in C. Suppose that C' has exponents, and that for any pair of objects A and
B of C there exists an object C' of C, a mono m : FC — FB'* and a morphism
v:C x A — B such that: (1) F(vy) = evo (M x id), and (2) for any object D and
arrow [ : DXA — B, there exists a morphism k : D — C' such that moF (k) = A(F(f)).
Show that C has exponents. Apply this to Dcpo.

Theorem 4.2.13 (Dcpo CCC) Decpo is a cartesian closed category. The or-
der for products is componentwise, and the order for exponents is pointwise. Cpo
is cartestan closed too.

PRrROOF. We can apply the exercises 1.4.6 and 4.2.12. A direct proof of cartesian
closure is also possible and easy. For the last part of the statement, notice that
(L, L) is the minimum of D x K, and that the constant function Ad.L is the
minimum of D — F. O
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(Asmp) [zy:01,...,¢p 0, b0 =ma,
(—1) [TFXe:oM:o— 7] =A([Tyz:0F M:7])
(—r) [T'HMN :7] =evo(['FM:oc—7],[TFN:0o])

Figure 4.4: Interpretation of the simply typed A-calculus in a CCC

4.3 Interpretation of A-Calculi

We explain how to interpret the simply typed A-calculus in an arbitrary CCC.
Suppose that C is a CCC. Let us choose a terminal object 1, a product functor
X : C x C — C and an exponent functor =: C? x C — C. Then there is an
obvious interpretation for types as objects of the category which is determined by
the interpretation of the atomic types. The arrow is interpreted as exponentiation
in C. Hence given an interpretation [«] for the atomic types, we have:

[o = 7] =[c] =[] -

Consider a provable judgment of the shape x; : o¢,...,2, : 0, F M : 0. Its
interpretation will be defined by induction on the length of the proofas a morphism
from [I'] to [¢], where we set I' =y : 0q,...,2, : 0, and [I'] =1 x [ou] x ... %
[o,.]. We will take the convention that x associates to the left. We denote with
Tni o [I'] — [oi] (i =1,...,n) the morphism: myom0---om, where my is iterated
(n — 1) times.

The interpretation is defined in figure 4.4. The last two rules need some
explanation. Suppose C' = [I'], A = [o], and B = [7].

o (—;) If there is a morphism f : C'x A — B then there is a uniquely determined
morphism A(f): C — B4

o (—g) If there are two morphisms f : C — B# and ¢g : ¢ — A, then one
can build the morphism (f,g) : ¢ — B* x A and composing with ev one gets
evo(f,g): C— A.

Sometimes, we write [M] as an abbreviation for [I'F M : ¢]. When compos-
ing the interpretation of the judgment I' F M : 7 with an environment, that is
a morphism in C[1, [I']], we will freely use the notation [M]o (dy,...,d,) which
relies on an n-ary product.

In section 4.5 we will work with a simply typed A-calculus enriched with a set
of constants . We suppose that each constant is labelled with its type, say ¢°.
The typing system is then enriched with the rule:

TFeo (4-1)
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We denote with A(C') the collection of well-typed terms. The interpretation is
fixed by providing for each constant ¢ a morphism f.: 1 — [o]. The judgment
I' - ¢: o is then interpreted by composing with the terminal morphism:

[T'F ¢ o] = feol (4.2)

The interpretation in figure 4.4 is defined by induction on the structure of a
proof of a judgment I' = M : 0. In the simple system we presented here a
judgment has a unique proof. However, in general, there can be several ways of
deriving the same judgment, therefore a problem of coherence of the interpretation
arises, namely one has to show that different proofs of the same judgment receive
the same interpretation. Note that in the simply typed calculus the coherence
problem is avoided by getting rid of the structural rules. This trick does not
suffice in more sophisticated type theories like LF' (see chapter 11) where the
derivation is not completely determined by the structure of the judgment. In this
case term judgments and type judgments are inter-dependent.

Exercise 4.3.1 Show that if ' M : 7 and x : 0 ¢ I' then ';z : o = M : 7 (cf.
exercise 4.1.2) and [,z :o - M : 7] =['F M : 7] omy.

Exercise 4.3.2 Given two contexts I';x : o,y : 7,1" and U,y : 7,2 : o,1" define an
isomorphism ¢ between the corresponding objects. Hint: if T' = z : p and T' is empty
then ¢ = ((myomy,ma), meom): (C'x A) X B— (C x B) x A. Show that (cf. exercise
4.1.2)

[Tz:oy:r,T'EM:p]=[T,y:7m,2:0,T"F M:plog.

The next step is to analyse the interpretation of substitution in a category.

Theorem 4.3.3 (substitution) /f 'z : o M : 7, and I' = N : o then (1)
I'E M[N/z]:7,and (2)[I'F M[N/z]: 7] =l a:0F M :7]o(id,[I' F N : o]).

ProOOF. (1) By induction on the length of the proof of I'yz : o = M : 7. The
interesting case arises when the last deduction is by (—7):

Fzx:oy:7TEM:7
Fx:obFXy:7M:7— 171

We observe (A\y : 7.M)[N/z] = Ay : 7.M[N/z]. We can apply the inductive
hypothesis on I';y : 7,2 : o & M : 7’ (note the exchange on the assumptions) to
get I'yy : 7 = M[N/x] : 7/ from which ' = (Ay : 7. M)[N/z] : 7 — 7/ follows by
(—=1)-

(2) We will use the exercises 4.3.1 and 4.3.2 on the interpretation of weakening
and exchange. Again we proceed by induction on the length of the proof of



98 CHAPTER 4. INTERPRETATION OF A\-CALCULI IN CCC’S

Iz : 0= M : 7 and we just consider the case (—7). Let:

h=[CFXy:7.M[N/z]:7— 7] :C— B'®

g =[ly:7F M[N/z]: 7] :CxB— B
fo=[l,z:0bdy:7.M:7—=7] :CxA— B?
=y :mx:0FM:7] (CxB)xA—=PB
fa=['FN:0d] 0 — A
ga=[y:7FN:0] :CUxB— A

gy =[l,x:oy:7FM:7] (CxA)xB—=B".

We have to show f; = f; 0 (id, f3), knowing by induction hypothesis that g; =
g2 0 (id, g3). We observe that fi = A(q1), f2 = A(gy), and ¢, = ¢2 0 ¢, where
¢ = ((myomy,mg), M 0my) is the iso given by exercise 4.3.2. Moreover g3 = f3 0.
We then compute

f2 o <Zd7 f3> = A(g;) © <Zd7 f3>
= Mgy 0 ((id, f3) x 1d)) .

So it is enough to show ¢, = ¢} o ((id, f3) x td). We compute on the right hand

side
gy 0 ((id, f3) x id) = gy oo ({m, fz0m),m2)
=920 ¢0((m1,93), m2)
= (@20 <Zd, g3> .
a
The categorical interpretation can be seen as a way of compiling a language
with variables into a language without variables. The slogan is that variables are
replaced by projections, for instance [¢ F Az : 0.2 : 0 — o] = A(m). In other
words, rather than giving a symbolic reference in the form of a variable, one
provides a path for accessing a certain information in the context. ' As a matter
of fact the compilation of the A-calculus into the categorical language has been
taken as a starting point for the definition of an abstract machine (the Categorical
Abstract Machine (CAM), see [CCM8T]) in the style of Landin’s classical SEC D
machine [Lan64] (see [Cur86] for a comparison). The purpose of these machines
is to provide a high-level description of data structures and algorithms used to
reduce efficiently A-terms. In the CAM approach, a fundamental problem is that
of orienting the equations that characterize CCC’s as defined in exercise 4.2.8. In
the following we drop all type-information and we restrict our attention to the
simulation of J-reduction (the treatment of the extensional rules raises additional
problems). Hardin [Har89] has studied the term rewriting system described in
figure 4.5. The most important results are:

e & is confluent and strongly normalizing .

1de Bruijn conventions for the representation of variables as distances from the respective
binders, as well as standard implementations of environments in abstract machines (cf. chapter
8) follow related ideas.
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(Beta) evo(A(f),g) — fo(id,g)

(fog)oh — fo(goh)

ido f — f
m 01d — ™
Ty 0 1d — Ty

(5) 7T10<f7.g> _>f

7T2O<fvg> — 9

(frghoh = (foh,goh)
A(f)yoh = A(fo(hom,m))

Figure 4.5: A rewriting system for the g-categorical equations

o &+ Betais confluent (on a subset of categorical terms which is large enough
to contain all the compilations of A-terms).

The proof of strong normalization of £ is surprisingly difficult [CHR92]. Sim-
pler results have been obtained with a related calculus called Ao-calculus [ACCL92].
More results on abstract machines which are related to the CAM are described
in chapter 8.

4.4 From CCC’s to A\-Theories and back

We study the equivalence induced by the interpretation of the simply typed A-
calculus in a CCC. It turns out that the equivalence is closed under #n-conversion
and forms a congruence.

Definition 4.4.1 (A-theory) Let T be a collection of judgments of the shape
I'EM=N:0suchthatl'=-M:0 and ' N :0. T is called a M\-theory if it is

equal to the smallest set containing T and closed under the rules in figure 4.6.

We note that the congruence generated by the axioms # and 7 is the smallest
A-theory. To every CCC we can associate a A-theory.

Theorem 4.4.2 Let C be a CCC and let [ | be an interpretation in the sense
of figure 4.4 of the simply typed A-calculus defined over C. Then the following
collection is a A-theory.

ThiC)={I'EFM=N:oc|lF-M:0,'FN:o,[I'FM:o]=[I'FN:o]}.
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(appl)

(asmp)

'FXex:oN:o—71 yé¢ FV(N)

I'FAy:oNy/zl=dx:0N:o—rT

'F(Az:0.M)N:T

I'E(Az:oM)N=M[N/z|:7

I'FXe:o(Mz):o =71 ¢ FV(M)

I'FXz:o(Mz)=M:0—T

'FM=N:oc z:7¢T

'e:7FM=N:0o

'-M:o
'tEM=M:o
'FM=N:0o
'EN=M:o

' M=N:c TEFN=P:o

I'M=P:c

v:cFM=N:71

I'tXdXz:oM=Xx:0N:0c—>T1

'-M=N:6c6-57 ITEFM=N":0

I'-MM =NN':7

'-M=N:0€eT

I'M=N:o

Figure 4.6: Closure rules for a typed A-theory
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PrROOF. We have to check that Th(C) is closed under the rules presented in
figure 4.6. For (a) we observe that [ || is invariant with respect to the names of
bound variables.

(B) Let [I'E (Aa: 0. M)N : 7] = evo(A(f),g), where f =[x :0F M : 7] and
g = [I' = N : o]. By the substitution theorem [I' = M[N/z] : 7] = f o (id, g),
and we compute

folid.g) = evo (A(f) x id) o (id, g) = ev o (A(f).g) -

(n) By the following equations:

[I'EXx:oMz:o— 7]
=ANevo([l'e:obM:o—7],[I a0k a:0]))
=Alevo([T'FM:0— 7]om,m))
=ANevo([I'FM:0— 7] x1id))
=['FM:0—r71].

For (weak) we use the exercise 4.3.1. The rules (refl), (sym), (trans) hold since
Th(C) is an equivalence. Finally, (£), (apl) follow by the definition of the inter-
pretation of abstraction and application. a

Exercise 4.4.3 Show that there are infinitely many A-theories. Hints: Interpret the
atomic types as finite sets and consider the resulting A-theory. Then analyse the [(n-
normal forms of type (k = k) = (K — K).

Next, we show how to generate a CCC starting from a A-theory. The con-
struction consists essentially in taking types as objects of the category and
(open) terms quotiented by the A-theory as morphisms (cf. Henkin’s term model
[Hen50]). We take the following steps:

(1) We extend the language with constructors for terminal object and product,
as well as the relative equations:

Types: At ==r|r']|...
o uw=At|l]loxo|lo—o
Terms: v ===z |y]...

M =v|*x|(M,M)|mM]|mM | v:oM|MM .

1. Typing Rules. The rules of the simply typed calculus (figure 4.2), plus the
rules for conjunction (figure 4.3), plus:

) Tt
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2. Equations. The rules of the pure A@n-theory (figure 4.6) plus:

'EM:1 '-M:oxrT
A SP) T mi) = M o <7
(1) I'F(M,N):0xrt (m2) I'F(M,N):0xrt
T En (M NY=M:0 ¥ TrmMN)=N:7

We denote with T” the collection of judgments provable in the A-theory T
extended with the constructors and rules given above.

(2) We now associate to 1" a CCC C(1") as follows.
1. The objects are the types of the extended language.

2. The morphisms are equivalences classes of terms according to the equiva-
lence induced by T’. More precisely

C(T)[o,r]={lx:oF-M:7]|a:0FM:7}
[r:oFM:7]={y:cFN:7|FXz:oM=Xy:o.N:oc—s1eT'}.

3. The structure associated to every CCC is defined as follows:
id) [t:0F a: 0]
comp) [z:7FM:ploy:obN:7t]=[y:0F M[N/z]: p]
term) l,=[x:oF x:1]
) m=lzioxThkma:io] my=[x:0oxX Tk mx:T]
pair) ([r:pbEM:o),[x:pE N :7T))=[x:pF (M,N):0 x 7]
eval)  evy,=[x:(0 = 7)x 0o b (ma)(me) : 7]
curry) A[z:pxob M :7))=ly:pbAz:0M[{y,z)/z]:0—T].

4. We leave to the reader the verification of the equations associated to a CCC.

(3) Finally we have to verify that the A-theory associated to C(7T") is exactly T".
To this end one checks that [z;: 01,...,2, 10, F M 0] =[z:7F M[r,z/z]:
o], where 7 = (- (1 X 0y) X -+ X 0,,).

We can summarize our constructions as follows.

Theorem 4.4.4 (from A-theories to CCC’s) Given any A-theory I' over the
simply typed calculus with products and terminal object we can build a CCC C(T)
such that the A-theory associated to C(T) coincides with T'.

Remark 4.4.5 (1) It is possible to see the constructions described here as repre-
senting an equivalence between a category of CCC’s and a category of A-theories
[LS86].

(2) 1t is possible to strengthen the previous theorem by considering a theory
1" over the simply typed \-calculus without products and terminal object. Then
one needs to show that it is possible to add conservatively to T' the equations (x),
(m1), (m2), and (SP) (see [Cur86], chapter 1, for a description of suitable proof
techniques).
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4.5 Logical Relations

Logical relations are a quite ubiquitous tool in semantics and in logic. They
are useful to establish links between syntax and semantics. In this section, log-
ical relations are defined and applied to the proof of three results of this sort:
Friedman’s completeness theorem [Fri73], which characterizes fn-equality, and
Jung-Tiuryn’s and Siebers’s theorems [JT93, Sie92] on the characterization of
A-definability.

Logical relations are predicates defined by induction over types, relating mod-
els of a given A-calculus with constants A(C'). To simplify matters, throughout
the rest of this section, we make the assumption that there is only one basic type
k. We define next (binary) logical relations, to this end we fix some terminology.
Recall that an interpretation of simply typed A-calculus in a CCC C is given as
soon as the basic type & is interpreted by an object D" of C. We shall summa-
rize this by calling the pair M = (C, D*) a model. We write [¢] = D7, hence
D77 =D = D7,

If there are constants, then the constants must also be interpreted, but we
leave this implicit to keep notation compact.

We shall make repeated use of the hom-sets of the form CJ[1, D]. It is thus
convenient to use a shorter notation. We shall write, for any object D of C:

C[1,D]=D.
As a last preliminary to our definition, we point out the following instrumental
isomorphisms which hold in any cartesian closed category, for any objects A and
B:
C[A, B] = C[1, BY] .

Here is the right-to-left direction (the other is left to the reader):

A

f=Afom).

Definition 4.5.1 (logical relation) Let M = (C, D*) and M’ = (C', D'*) be
two models. A logical relation is a relation R* C D* x D™. These relations
are extended to all types (including product types) by the following definitional
equivalences:

R = {(id.id))
(d,e) R7*7{d',¢"y & (dR°d and e R" €')
FRTTf & Vd,d (dR°d = (evo(f,d))R™ (evo (f,d)).

Thus, at every type, R C D% x D". We shall write, for any f, f': D — D7:

fROT ' whenever R f7.
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A logical relation is called C-logical if [¢Jpm R [e]amv, for all constants (where o
is the type of ¢). Notice that if C is empty, i.e. if our language is the simply
typed A-calculus without constants, then C'-logical is the same as logical.

Remark 4.5.2 The above definition is much in the spirit of the computabilily
predicates used in section 3.5. The only difference is that computability predicates
are defined on terms, while logical relations are defined on elements of models.

The following is known as the fundamental lemma of logical relations.

Lemma 4.5.3 Let R be a C-logical relation, then, for any closed term M of type
o:

IF MJm R [F M]amr -

Proor HINT. We extend the statement to open terms as follows. For any
T1:01, ..., &, 0, 5 M:7, and for any dy R°* d},...,d, R d,:

[M]o(di,....d,) R™ [M]ol{d,....,d,).

The proof of this extended statement is by induction on the size of M. For
the abstraction case, one uses the following equation, which is consequence of the
equations characterizing CCC’s (cf. exercise 4.2.8): evo(A(f)od,e) = fo(d,e). O

A more concrete description of models, and of logical relations, can be given
when the models are extensional, i.e. when the morphisms of the model can be
viewed as functions.

Definition 4.5.4 (enough points) A category C with terminal object 1 is said
to have enough points if the following holds, for any a,b and any f,qg € Cla,b]:

Vh:l—a (foh=goh) = f=g.

If the underlying category of a model M has enough points, we say that M is
extensional.

Extensional models and logical relations can be described without using the
vocabulary of category theory. The price to pay is that the definition is syntax-
dependent. We leave it to the reader to convince himself that the following
constructions indeed define (all) extensional models and logical relations.

A simply-typed extensional applicative structure (cf. section 3.1) M consists
of a collection of sets D7, such that, for all o, 7, D777 is (in bijection with) a set
of functions from D7 to D7.

With any sequence o7, . .., 0, of types we associate a set D71»»7" (abbreviated

as D7) as follows. With the empty sequence we associate a singleton set {x}, and
we define D% = D7 x D7,
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An interpretation function is a function [_] mapping any typing judgement
Tyt 01,..., 2y 2 0 B M : 7 to a function from D? to D7 (for closed terms
F M : 7, we consider freely [F M : 7] as an element of D7), which has to satisfy
the following (universally quantified) properties:

[Fec:o] e
[[xl:al,...,:pn_:)anl—xi:ai]]() =d; ) )
[T'H MN :7](d) =([TFM:o—7)(d)([TFN:a](d)

(ILFAz:0. M:o—7)(d)(e) =[L,x:0F M:7](de).

There is an additional condition dealing with weakening, which we omit here,
and which serves in the proof of theorem 4.5.13. These clauses characterize the
interpretation function except for constants.

An extensional model M consists of an extensional applicative structure to-
gether with an interpretation function [ (the subscript is omitted when clear
from the context).

In this concrete framework, a logical relation is now a relation R* C D" x D™
extended to all types (using function types only) by the following definitional
equivalence:

FROZT & Ydd (dR°d) = (f(d) R f(d)) .

We shall freely use this concrete presentation in the sequel, when dealing with
extensional models.

Exercise 4.5.5 FEstablish formal links between the above formulations and categories
with enough points. Hint: given a model described concretely, consider the category
whose objects are sequences (o1, ...,0,) of types and whose morphisms are vectors
(dy,....dy) : (01,...,0m) = (T1,...,Ty) where d; € D7V 7927 for all i.

Exercise 4.5.6 (extensional collapse) Let M = (C, D") be a model, and consider
the logical relations R defined by R* = {(d,d) | d € D"}. Consider the category [C]
whose objects are the types built freely from k using finite products and function types,
and whose arrows from o to T are equivalence classes with respect to R”". Show that
[C] is a CCC with enough points, called the extensional collapse of C.

We next give two applications of logical relations. The first application is
in fact itself a family of applications. Logical relations may be useful to prove
inclusions of theories, thanks to the following lemma.

Lemma 4.5.7 Let R be a logical relation between two models M and M’. Sup-
pose that R? is functional for all o, i.e. for all d,d,d":

dR°d and dR°d" = d' =d".
Then, for any closed terms M, N of the same type:
[Mlave=[Nm = [M]ae = [N]aw
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PROOF. Let ¢ be the common type of M, N and let d be the common value of
[M]am and [N]am. By two applications of lemma 4.5.3 we have d R? [M] s and
dR? [N] s, and the conclusion follows from the assumption that R is functional.
O

We would like to have sufficient conditions on R” to prove that R is functional.
Clearly, one should require R” to be functional to start with. In practice R* may
be more than functional. Often we want to compare (extensional) models which
interpret basic types the same way and which differ in the choice of the functions
(or morphisms) in the interpretation of function types. In other words, R* is
often the identity (an example is provided by exercise 4.5.6). It turns out that
surjectivity (a property a fortiori enjoyed by the identity) is a useful property to
carry along an induction. Indeed, let us attempt to prove that if R* is functional
and surjective, then R” is functional and surjective for all o.

Once we know that R? is functional, we freely say that R?(d) is defined and
equal to d' if dR? d’. Also, we assume that we have proved surjectivity at type o
by building a function i” : D' — D7 such that :“(d')R? d for all d’. Equivalently,
we assume that at type o, there exists a partial function R7 : D7 — D' and
a total function i” : D' — D” such that R 0 = id. Similarly, we suppose
that these data exist at type 7. We want to show that R“77 is functional, and
to construct 77 such that R777 01777 = ud.

e Functional: Using the formulation of R and R” as partial functions, the

definition of f R777 f' reads:
Vae DT B(d) L > PR = BT(A))
Suppose that f R777 f’. Then, for any d' € D'?:

fi(dy = [f'(R7(:°(d"))) by surjectivity at o
= R7(f(:°(d"))) by the definition of 777 .

Hence f’ is unique. More precisely:
Rg_M—(f)\L = RU—M’(.}(‘):RTOJCOZ'O"

e Surjective: We claim that all we need to know about 177 is the following,

for any f'e€ D777
(1) VdeD” Ro(d) | =77 (f')(d) = 7 (f(R(d))) -

Let us prove that if :”77 satisfies (), then R777 0”77 = id, that is, by
the definition of R777, for any f’': D'7":

Vde DT R(d) L= F(RI(d) = B (i (f)(d).
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Indeed, we have, under the assumption that R7(d) }:

RT(i777(f")(d)) RT(7(['(R7(d)))) by (f)
F(R7(d)) by surjectivity at 7 .

In the above proof schema, we have used extensionality of both M and A/. The
proof schema is easily instantiated in the following theorem.

Theorem 4.5.8 (Friedman) Let F = {D"} be the full type hierarchy over an
infinite set D*, i.e. F = {D"} is the extensional model for which D777 is the
set of all functions from D7 to D7. Then, for any A-terms:

[Mlz =[Nz & M =3 N .
PROOF. (<) Since F is extensional, it validates (7.

(=) We turn syntax into an extensional model, by setting D' to be the set
of all #n equivalence classes of (open) terms of type o. That this makes an
extensional model is proved as follows. We define an application function « by
[M]s[N] = [M N]. Suppose that for all [P], [M]s[P] = [N]+[P]. Then in particular,
for a fresh z, [Mz] = [Nz], i.e. Mx =g, Nx. Then:

M =g, Ae. Mz =g, \e Nz =g, N .

Therefore we have an extensional model. Now we are ready to use the proof
schema, with the term model as M’, and F as M. We need a surjection from
D% to D'". Tt is clearly enough to live with a denumerable set of variable names.
Therefore we can consider the set of terms as denumerable. The sets D'” are
then at most denumerable. They are not finite, since we can have infinitely
many different gn-normal forms x, xxy, z2y---2,,... at any given type o. In
particular, D™ is infinite and denumerable. Then, given any infinite D", we can
pick a (total) surjection R" : D* — D'™. More precisely, we can pick a function
1% 2 D' — D" such R" 01" = id. We are left to exhibit a definition of 7777
satisfying (7). But property (}) actually gives a definition of the restriction of
1777(f") to the domain of R?. Since we are in the full type hierarchy, we can

choose any value for (77 (f')(d) when R?(d) 1. O

The above proof, which is essentially the original proof of [Fri73], uses the
fullness of model F quite crudely. There exists another proof of Friedman’s
theorem, as a corollary of a powerful theorem known as Statman’s 1-section
theorem, whose range of applications to various completeness theorems seems
wider than what can be achieved by the above proof schema.

Statman’s theorem states that in order to prove a completeness theorem, it
suffices to prove it for terms of type a@ = (k = kK — k) = kK — k. What is special
about this type? If there are no constants, the closed normal forms of type «
are exactly the (encodings of) binary trees constructed over a signature {f,c}
consisting of a symbol f or arity 2 and a symbol ¢ of arity 0.
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Theorem 4.5.9 (1-section) Let C be a class of models of the simply-typed -
calculus. The following properties are equivalent:

(1) For any type o, and any closed terms M, N of type o:

YMeC [“_M]]M:[['_N]]M = MZﬁUN'

(2) For any closed terms M, N of type a = (k = K = K) = K — K:
YMelC [“_M]]M:[['_N]]M = MZQUN.

PROOF. Statement (1) obviously implies (2). The other direction is an immediate
consequence of the following lemma 4.5.11. a

Definition 4.5.10 (rank) The rank of a simple type T is defined as follows:

rank(k) =0 (x base type)
rank(ty — -+ = 7, — &) = 1 + (max{rank(m) |1 =1...k}) .

We say that a type T is at most rank n if rank(7) < n. If there is only one base
type K, the types of rank at most 1 are thus the types k™, where:

Y=k K"t =K K",

Lemma 4.5.11 If M, N are closed simply-typed X-terms of type o, and if M #g,
N, then there exists a closed simply-typed A-term P of type 0 — « (where a is
as in the statement of theorem 4.5.9) such that PM #s, PN.

PrOOF HINT. The proof makes use of the notion of extended fn-normal form.
An extended n-normal form of type o1y — -+ — 0, — k is a term of the form
Azy - xgu(Myxy - ay) - (Mgay -+ - 2,), where each M; is itself an extended
fn-normal form. Note that extended fn-normal forms are not normal forms in
general, whence the qualification “extended”. Using strong (31 normalisation, it
is easily shown that for any M there exists a unique extended #n-normal form N
such that M =g, N. The proof of the statement is decomposed in two claims.

1. Let M, N be two different closed extended (3n-normal forms of a type o of
rank at most 2. Then there exists a closed term L of type 0 — o depending
only on o, such that LM #g, LN.

2. Let M, N be two different closed extended Bn-normal forms of type oy —
-++ — 0, — K. Then there exist terms Vi, ..., V,, whose free variables have
types of rank at most 1, such that MV; ---V,, #5, NV, --- V.
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The statement follows from these claims, taking:
P=Xe.L(Ay.aVy--- V)

where ¢ is a list of the free variables in Vi,...,V,, and where L is relative to
Ay.MVy, ...V, and Ay.NV, ... V,.

Both claims are proved by induction on the size of M, N. For claim 1 let us
fix o =01 — -+ = 0, = k. We pick free variables z : k and g : kK =+ k — £k and
define the following terms:

0=z (i+1)=(gai).
Suppose, say, that o; = k =+ k — k. Then we set:

P; = Ay1y2.9i(gy1y2) -

Finally, we take:
L = w g z.wby--- P,

which depends on ¢ only. Suppose, say, that M = AZ. x;(M,Z)(M;Z). Then:
LM =g, Agz.gi(g(My P)(M,P)) .

If N has a different head variable, say z;, then similarly LN is n-equal to a
term which starts with Agx.gj, which cannot be 37 equal to a term starting with
Agz.gi (these prefixes are preserved until the normal form is reached). Suppose
thus that N has the same head variable, i.e. N = AZ. z;(N1Z)(N,&). Since the
type of x; has rank 1, M;Z has type &, i.e. M; has type o. Similarly, M;, Ny,
and Ny have type . On the other hand M #5, N implies, say, My #g5, N;. We
can thus apply induction to My and Ny:

Mlﬁ =gy LM1gz #p, LN1gx =5, Nlﬁ .
On the other hand, since:
LN =g, Agz.gi(g(N1P) (N, P))

LM =g, LN would imply M, P =g NiP and M,P =gy N, P. Contradiction.

We turn to the second claim. The interesting case is again when M and N
have the same head variable. We suppose that M, N, and o; are as above. Now
M7 is not necessarily of base type. By induction applied to M; and Ny, there is
a vector U of terms Uy,..., U, such that MU 61 N, U at type k. In particular
m > n, where n is the length of Z. We set (with h,y;,ys fresh and of rank at
most 1):

Vi= Ay1yz-h(y1Un+1 T Um)(Ui%yz)
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and V, = U, if p # ¢ and p < n. The trick about V; is the following property:
(x) Vi[duv.w/h] =g, U;

from which (M1‘7Un+1-~-Um)[/\uv.v/h] = Mlﬁ follows, and similarly for Nj.
Therefore: B B
MVUny1-+ - Up #py NyVUpy -~ Uy,

which entails the claim, since MYV reduces to a term which starts with
h(MV Uy - Up)

and similarly for Ny. a

We now show how theorem 4.5.9 yields Friedman’s theorem as a corollary. All
we have to check is that if two trees built only using application from variables
g:k — k — kand ¢: k are different, then their semantics in F are different. We
assume more precisely that D" is w, and we pick a pairing function pair which
is injective and such that:

Ym,n (m < pair(m,n) and n < pair(m,n)) .

Then we interpret g by (the curried version of) pair, and ¢ by any number, say
0. It is easy to prove by induction that if s, ¢ are two distinct trees, then their
interpretations are different, using these two properties of pair. This shows the
hard implication in the equivalence stated in theorem 4.5.9, and completes thus
our second proof of Friedman’s theorem.

We now come back to logical relations. As a second kind of application, we
consider the so-called definability problem. Given an extensional model M, is
it possible to characterize the elements d such that d = [M] for some closed
M? A positive answer was given by Jung and Tiuryn [JT93]. It is an elegant
construction, based on Kripke logical relations, which we define next (in the
particular setting we need).

Definition 4.5.12 A Kripke logical relation over an extensional model M is
given by a family of sets RS C (D7 — D7) satisfying the following so-called
Kripke-monotonicity condition:

fER: = (Yo fome€R: ).

where W(CZ; J/) =d. A Kripke logical relation is extended to all types as follows:
FERI & Vo, ge R, \d. f(d)(g(d,d)) e R7. .
We write R™ for R% when & is of length 0. An element d € D7 is called invariant

under R if d € R7. A Kripke C-logical relation is a Kripke logical relation such
that [[c] is invariant for all ¢ € C.
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Each set RL can be viewed as a relation over D7 whose arity is the cardinality
of D?. In this sense, Kripke logical relations are of variable arities. It is easy to
check that Kripke-monotonicity extends to all types:

fER; = (Vo' fom€RL ;).

Theorem 4.5.13 Let M be an extensional model. Then d is definable, i.e. d =
[M] for some closed term M, if and only if d is invariant under all Kripke
C-logical relations.

PrOOF. (=) 'This is a variant of the fundamental lemma of logical relations.

The statement needs to be extended to subscripts & and to open terms. The

following extended statement is proved straightforwardly by induction on M.
For any @y :7y,...,2, : 7, = M : 7, for any &, for any f1 € RZ',..., [, € R}

[[M]]O<f17"'afn> € R;‘ .

(<) We actually prove a stronger result. We exhibit a single Kripke logical
relation which characterizes definability. This relation S is defined as follows:

S={[M]|Z:0F M :K}.

The proof that S satisfies Kripke-monotonicity requires an additional assumption
on the interpretation function in the concrete description of extensional model,
which we detail now. If #: &+ M : 7 is a provable judgment, then 7 : &, 27 : o/
M : 7 is also provable, for any o'. We require:

[Z:G,2 0’ M:7]=[T:3FM:7]or.
Kripke monotonicity follows straightforwardly. We next claim:

Vr, o S;={[M]|Z:6M:7}.

Then the statement follows, taking the empty &. We prove the two inclusions of
the claim by mutual induction on the size of the type 7, for 7 = 7 — 7:

(C) By induction applied at 7 (D), we have:

[Z:0,y:mtFy:m]eSE

6!77—1 '
Let f € S;'7"™. By definition of S at 7 — 72, we have

—

Mdy. f(d)(dy) € ST

o,71 °

By induction applied at 75 (C), there exists & : o,y : 1 = M : 75 such that, for
all d,d,:

-

[7: .y :m b M:n)(ddy) = F(d)(dy)
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It follows that [Az.M] = f.
(2) Let #:6F M:7 — 7. Let g € S, By induction applied at 7 (<),

there exists ¥ : &, 2/ : o/ b N : 74 such that ¢ = [N]. We have to prove:
[ : G,z o'k MN ; n] €57,
which holds by induction applied at =, (D). O

If we restrict our attention to terms whose type has at most rank 2, and if
we require that the constants in ' also have a type of rank at most 1, then we
can get around variable arities. The following theorem is due to Sieber. It was
actually obtained before, and provided inspiration for, theorem 4.5.13. Given an
extensional model M = { D7}, and a function f € D7, given a matrix {d;; }i<p j<n,
we wonder whether there exists a closed term M such that, for each line of the
matrix, i.e., for all + < p:

[M](dir) -~ (din) = f(dir) -+ (din)

and we consider to this aim C-logical relations of arity p, containing the columns
of the matrix. If we can exhibit such a logical relation which moreover does not
contain the vector (f(dy1)---(din), .-, f(dp1) -+ (dp)), then the answer to our
question is negative, by the fundamental lemma. Sieber’s theorem asserts that
this method is complete.

Theorem 4.5.14 Consider a set C of constants whose types have at most rank
1. Let M be an extensional model for A(C), and let 0 = 0y — -+ — 0, = K be
a type with rank at most 2. Let {d;;}i<p j<n be a matriz where d;; € D, for any
1,7, and let, for all v < p:

e; = f(din) - (din) -

The following properties are equivalent:

(1) There eaists b M : & such that, for all i < p:
[M](dir) -~ (din) = €i .
(2) For cvery p-ary C-logical relation R, the following implication holds:
(1) (Vj<n (dyys....dy;) € R7) = (er,...,c,) € R* .
(3) The logical relation S defined at r by:
S5 = {(a1yya,) [T F Niw Vi<p [N)(dn)--- (don) = a5}

contains (€1,...,€p).
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PRrROOF. (1) = (2) This implication holds by the fundamental lemma.

(2) = (3) Suppose that we have shown that S is C-logical. Then, by (2),
S satisfies (). The conclusion will follow if we prove that S in fact satisfies
the hypothesis of (). If N and (ay,...,qa,) are as in the definition of S*, it is
convenient to call N a witness of (aq,...,a,). If (dij,...,d,;) is at base type,
then we take AZ.x; as witness. If (dy;,...,d,;) have types of rank at most 1, say

x*, we have to check, for any (ay,...,a,), (by,...,b,) € S

(dyj(ar)(bu), .. dy(a,)(b,)) € 5° .

Since G and b are at base type (this is where we use the restriction on types of
rank 2 in the statement), by definition of S* there are witnesses N and P for
them. Then A\Z.z;(NZ)(PZ) is a witness for (dy;(a1)(b1),...d,;(a,)(b,)).

The argument to show that S is C-logical is similar to the argument just used
(left to the reader).

(3) = (1) Obvious by definition of 5. O

If the base domain D" is finite, then all the D?’s are finite, and the complete
behaviour of f can be described by a matrix. By the characterization (2) of
theorem 4.5.14, the definability problem is then decidable at rank at most 2: try
successively all C-logical relations R (there are finitely many of them).

The following proposition, due to Stoughton [Sto94], paves the way towards
a more realistic decision procedure. We call intersection of two logical relations
Sp and S, the relation S; defined at « by:

SE=Srn Sy

We write S3 = 51N 53. We can similarly define an arbitrary intersection of logical
relations. When (' consists of constants whose types have at most rank 1, then
any intersection of C-logical relations is C-logical.

Proposition 4.5.15 The relation S in theorem 4.5.14(3), is the intersection of
all the C-logical relations satisfying Vi < n (dy;,...,d,;) € R".

PROOF. Let S’ be the intersection mentioned in the statement. We have S C
S%. Conversely, if (ay,...,a,) € S*, then, by definition of S, there exists an N
such that Vi <p [F N](da)- - (din) = a;, which implies (ay,...,a,) € S* by the
fundamental lemma, and by the definition of 5. a

By this proposition, it is enough to construct progressively S’, starting from
the assumptions that S” contains the vectors (dyj,...,d,;) (7 < n). If the con-
struction finishes without having met €, then there is no M for f and {d;; }i<p j<n-
We illustrate this with an example which will be important in the sequel.
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Very Finitary Pcr. Weset C = {1, T,if _then _}. We set D* = O, the flat
domain {L, T}, and we build the model in the category of partial orders and
monotonic functions. The meanings of - L : k and - T : k are L € D" and
T € D”. The last constant is a unary test function:

if Lthend=1 if T thend=d .

This language is known as Very Finitary PcF (Finitary PCF is coming next, and
PcF is the subject of chapter 6). We claim that there is no closed term M in
this language such that:

[MI(L)(T)=T

[M(T)(L)=T

[MI(L)(L) = L.
We begin the construction of 5’. It should contain the two columns (L, T, L) and
(T, L, L). Since it has to be a C-logical relation, it also has to contain (L, L, 1)
and (T, T,T). It is easy to see that this set of pairs makes if _ then _ invariant.
We have completed the definition of S’. Since S’ does not contain (T, T, L),
there is no M meeting the above specification.

On the other hand, if the decision procedure yields a positive answer, it would
be nice to produce the defining term as well. Here is an indication of how this
may be done. We refer to [St094] for details. We now consider a function F' :
(k = kK — k) — & such that:

Flg)=T Flg)=T F(L)=1

where ¢; is a function such that ¢(T)(L) = T, g2 is a function such that
g2(L)(T) = T, and L is the constant L function. We exhibit a closed term
M such that:

[M](g1) =T [M](g2) =T [M](L)=L.

We begin the construction of 5" as we did in the previous example, but now
we build pairs (cf, P), where d is a member of S’ and where P is a term. We
start with ((L, L, L), L), ((T,T,T), T),and ((¢1,62,L),9), where g is a variable
of type kK = k — k. By definition of a logical relation, S’ has to contain:

(g1 (T)(L); g2 T)(L), L(TH(L)) = (T, L, L)

We form the pair ((T, L, L),g(T)(L)) to keep track of how we obtained this new
vector. Similarly, we obtain ((L, T, L),¢g(L)(T)). Finally, taking these two new
vectors as arguments for g, we build the vector which we are seeking:

(T, T, 1), g(g(TH(L))(g(L)(T))) -

The term M = Ag.g(g(T)(L))(g(L)(T)) satisfies the requirements, by construc-
tion.
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Finitary PcF. The same counter-example and example also live in the follow-
ing language, called Finitary PCF. We now set C' = { L, tt, [f,if _ then _ else _}.
We set D* = B, the flat domain {L, ¢, ff}. Again, we build the model in the
category of partial orders and monotonic functions. The meanings of - L : &,
Fitt:k,and - ff 1 kare L € D* tt € D", and ff € D”*. The last constant is the
usual conditional:

if L thend else e= L if tt then d else e =d if [f then d else e = ¢ .

The advantage of Finitary PCF (and of its associated model) over Very Fini-
tary PCF is that it allows for an elegant characterization of the C'-logical relations
(also due to Sieber), which we give now.

Definition 4.5.16 ((Sieber-)sequential) The C-logical relations for Finitary
Pcr and its monotonic function model are called sequential relations. Consider
the following n-ary relations S} g over By, where AC B C{l,...,n}:

(diy..ydn) €Sty & (3i€Adi=1)or(Vi,j€B d=d).

A Sieber-sequential relation is an n-ary logical relation S such that S* is an
intersection of relations of the form S} g.

The word “sequential” will be justified in section 6.5.

Theorem 4.5.17 A logical relation over Finitary PCF is sequential if and only
if it is Sieber-sequential.

(<) All base type constants are invariant, since constant vectors satisfy trivially
the second disjunct in the definition of S7 . We check only that the conditional
is invariant. If its first argument d = (dy,...,d,) satisfies the first disjunct, or
the second disjunct with the common value equal to L, then the result vector e =
(e1,...,€,) satisfies the same property by strictness of the conditional function.
Otherwise, if, say, d; = 0 for all « € B, then the coordinates ¢; for i € B are those
of the second argument. Since A C B, this entails e € 5% .

(=) Let R be n-ary and sequential, and let S be the intersection of all S7% ,’s
containing R". We prove S C R*. We pick d = (d1,...,d,) € 5, and we show,
by induction on the size of C' C {1,2,...,n}:

de=(e1,...,e,) € R" (VieC e =4d;).

If ¢ =i} is a singleton, then we choose ¢ = (d,, ...,d;). We suppose now that
$C > 2, and we distinguish cases.

1. d; = L for some: € C:
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R™ C 5¢\ .0t Then d € 50\ ¢y ¢, by definition of 5, and either dj, = L

for some k € C\{i}, or all d;’s are equal, for j € C'. Since d; = L, the
latter case is rephrased as: all d;’s are L. Recalling that §C' > 2, we
have thus, in either case:

ke O\ dp = L.

We apply induction to both C\{¢} and C'\{k}, obtaining v € R" and
w € R, respectively. There are again two cases:

i. If v; =d;(= L), then v works for C.

. If v; # L, say, v; = tt, consider the term:

M = Azy. if x theny else x

and set:

f=1IM] and e =(f(o)(wr), ., f(vn)(wn)) -

First, e € R" by sequentiality of R. Second, we show that e
coincides with d over C'. By definition of M, for any z,y, we have
flz)(y) =z or f(x)(y) =y. This implies that e does the job over
C\{7,k}, over which v and w coincide. Since v coincides with d
over C\{i}, we have vy = d;, = L, hence f(v)(wy) = L = di,
since f is strict in its first argument. Finally, since v; = ¢, we

have f(v;)(w;) = w; = d;.

R € Stngiyet Let w € R\SE, 1y oo By definition of 5S¢, ;, o, there
exists & € C such that

ur # u; (negation of Vj, k € C uj = uy)
ur # L (negation of 35 € C\{i} u; = 1).

We suppose, say, that u; = tt. Let, as in the previous case, v and w
be relative to C\{i} and C\{k}, respectively. We now consider the
term N = Axyz. if x then y else z, and we set:

g=IN] and e = (glun)(wr)(wr),. .., glw)(v,)(w,)

We check that e works for C'. Let j € C'\{i}, since u & S¢\ ;¢ We
have u; # L. Hence g(u;)(v;)(w;) passes the test, and is either v,
or wj. For j € C\{i,k}, both are equal to d;. Suppose now that
J = k. We have g(ug)(vg)(wi) = vp = di. Finally, let 7 = 1. We
know from above that u; # ug. If u; = L, then g(u;)(v;)(w;) = L =d;
since ¢ is strict in its first argument. If v, # L, then u; = ff, hence

g(u;)(vi)(w;) = w; = d;.
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2. Vie C d; # L: We treat this case more briefly. There are two cases:

(a) R* C Sg ot Then d € S¢ ¢ by the definition of S, and we can take a
constant vector e.

(b) R* & S¢ o We take u € R" such that u; # L for all # € C' and such
that u; # u; are different for some 7,7 in C, say, u; = #t and u; = ff.
Let:

01:{k60|uk:u2} 02:{k60|uk:u]}

We can apply induction to C; and (3, obtaining v and w. Then the
proof is completed with the help of N = Axyz. if x then y else z. O

Here is an example of the use of Sieber-sequential relations, taken from [Sie92].

Exercise 4.5.18 Show that there is no term of Finitary PcF of type (k - k — k) — K
such that:
F(g1) =1t F(g2)=1tt F(gs)=1tt F(L)=1

where g1, g2, g3 are such that:

Hints: (1) Notice that (0,0,0,1) ¢ Sfl 2.37.{1,2
53173}7{173} arise when trying to prove that (g1, g2, g3, L) € Sf[l1,2,3},{1,2,3,4}'

3.4} (2) The relations 53172}7{172} and

Exercise 4.5.19 Let g1, g2 be the functions whose minimal points are described by:

G () (L)L) =4 a(et)(e)(it) =t
G2 L)) (L) =f g2(tt)(tt)(ff) = 1t .

Show that there is no closed term M of Finitary PcF of type (k - k = k = K) = K
such that gy and gy are the only minimal points of [M]. Generalise this to first-order
functions gy et gy (of the same type) whose minimal points are described by:

g1(Ag) = ag  g1(Bo) = bo
92(A1) = Qg 92(31) =b

where aop # bo, aop # bl; AO T Al (26 A4 A Z A07A1), BO /J7/B1, BO /,VAI and AO /,VBI
(Hint: Find g5 such that (g1, g2, 93) € 5?1,2},{1,2,3}')

It is presently unknown whether the definability problem for Finitary PCF is
decidable at all types. (See also the related open problem at the end of section
6.4.) On the other hand, Loader has shown that definability is undecidable for
“Finitary A-calculus”, that is, A-calculus without constants, and whose base types
are interpreted by finite sets [Loa94].
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4.6 Interpretation of the Untyped A-Calculus

We recall the grammar and the basic computation rule of the untyped A-calculus
(cf. chapter 2).

Terms : va=za|y|...
M=o (M.M)| (MM)
f-reduction : (Ae.M)N — M[N/z] .

In order to use the work done in the typed case, it is useful to represent the
untyped calculus as a typed calculus with a special type §, and the following
typing rules:

x:0€el Ix:0FM:06 I'EM:6 'FN:S
'Faz:6 TFXe:0.M:6 'EMN:§

Observe that if a type 6 — d could contract into a type 4 in the introduction rule,
and vice versa, if the type ¢ could expand into a type § — 4 in the elimination
rule, then we would have the same rules as in the simply typed A-calculus. In
other words, we can apply the standard apparatus provided we have a type whose
elements can be seen both as arguments and as functions. The following definition
makes this intuition formal.

Definition 4.6.1 An object D in a CCC C is called reflexive if there is a pair
(1,7), called retraction pair, such that:

i:D” =D, j:D—=D”, joi=id.
We simply write D « D to indicate the existence of a retraction pair.

The domain-theoretical construction described in section 3.1 can be used to
build reflexive objects in the category of cpo’s. Next, we describe a different
construction with a set-theoretical flavour that serves the same purpose. The
resulting models are usually called graph-models.

Example 4.6.2 (graph-model) Let A be a non-empty set equipped with an in-
jective coding (_,_) : Prin(A) x A — A In the following we denote with a,b,...
elements of A; with o, 3,... elements of Pri(A); and with XY, ... elements of
the powerset P(A). We define for f € Depo[P(A), P(A)]:

Graph(f) = {(ea) | € f(a)} € P(A)
Vice versa for X € P(A), we define Fun(X):P(A) = P(A) as follows:

Fun(X)(Y)={a|Ja((a,a) € X and a CY)} .
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Proposition 4.6.3 Given any non-empty set A with an injective coding (_, _) :
Prin(A) X A — A the complete lattice P(A), ordered by inclusion, is a reflexive
object in Dcpo, via the morphisms Graph and Fun.

Proor. We take the following elementary steps:
e Graph is monotonic: f < g = Graph(f) C Graph(g).

o Graph preserves directed lub’s, namely { f; }ics directed implies Graph(V,cr{fi})

C Uies Graph(f;). We observe (a, a) € Graph(\/iel{fi}) iff a € (Viel{fi})(a) =
User fila) iff @ € fi(a), for some ¢ € 1.

e [un is monotonic in both arguments: if X C X' Y C Y’ then Fun(X)(Y) C
Fun(X")(Y").

e Fun is continuous in both arguments: if {X;}ier, {Y;}jes are directed then
Fun(Uier Xi)(Ujes Yi) € Uierjes Fun(Xi)(Y;).
o (Graph, Fun) is a retraction: Fun(Graph(f))(X) = f(X). Notice that this is

the only condition that depends on the assumption that the coding is injective. O

The construction of the graph-model is parametric with respect to the choice
of the set A and of the coding (_, ). If we define a coding (_,_) : Pin(w) xw — w
where w is the collection of natural numbers, then we obtain a family of reflexive
objects also known as P(w) graph-models.

Exercise 4.6.4 Build an example of a coding (_,_) : Pgin(w) X w — w.

The so called D4 graph-models are obtained by a “free construction” of the
coding function. Let At be a non empty set. We suppose that elements in At are
atomic, in particular they cannot be regarded as pairs. Define:

/40 ::/4t
Ay = A U{(a,a) | a € Prin(Ay),a € AL}
A = Uncw An -

Exercise 4.6.5 Verify that (_,_) : Pin(A) x A — A defined as (o, a) = (o, a) is the
desired coding.

Having verified the existence of various techniques to build reflexive objects in
CCC’s, we introduce in figure 4.7 the interpretation of the untyped A3-calculus
in these structures. This is the same as the interpretation of the simply typed
A-calculus up to insertion of the maps ¢, 7 which collapse the hierarchy of types to
D. The notion of A-theory (cf. definition 4.4.1) is readily adapted to the untyped

case.
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(Asmp) [a1:6,...,x,: 0zt 0] =may
(—1) [T'F Az :6.M: 6] =10 A([lz:6F M:4])
(—=r) [I'FMN:J] =evo(jo[[['FM:4],[I'F N:d])

Figure 4.7: Interpretation of the untyped A-calculus in a CCC

Definition 4.6.6 Let T be a collection of judgments of the shape ' = M = N : §
such that ' M : 6 and ' N : 6. T is an untyped A-theory if it is equal to the
smallest set containing T and closed under the rules obtained from figure 4.6 by
replacing all types with the type §.

Every interpretation induces an untyped A-theory.

Theorem 4.6.7 Let C be a CCC with a reflexive object D and [ || be an in-
terpretation of the untyped A-calculus defined over C in the sense of figure 4.7.
Then the following collection is an untyped A-theory

Th(C)={TFM=N:6|TFM:6TFN:§[TFM:6]=[FN:d]}.

PROOF HINT. The proof of this result follows the same schema as in the typed
case. The crucial point is to verify the substitution theorem. O

Next we describe a general construction, called Karoubi envelope that given a
reflexive object D in a CCC, produces a new CCC of retractions over D. Apart
for its intrinsic interest, this construction can be adapted to reverse the previous
theorem, namely to show that every untyped A-theory is the theory induced by a
reflexive object in a CCC; a result very much in the spirit of theorem 4.4.4. The
construction is similar to that described next in the proof of theorem 4.6.9. The
difference is that rather than starting with a reflexive object in a CCC one starts
from a A-theory and the related monoid of terms and composition (see [Sco80]
for details).

Definition 4.6.8 (Karoubi envelope) Let C be a CCC and D be a reflexive
object in C. The Karoubi envelope is the category Ret(D) of retractions over D
defined as follows:

Ret(D)={r: D —=D|ror=r}
Ret(D)[r,s]={f:D — D|sofor=f}.

Theorem 4.6.9 [f C is a CCC and (D,i,7) is a reflexive object in C then
Ret(D) is a CCC.
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PROOF. The proof is a matter of translating A-calculus encodings into the cate-
gorical language and checking that everything goes through. Here we just remind
the reader of the encoding. When we write A-terms for building morphisms it is
intended that one has to take the interpretations of such A-terms.

In the untyped Af-calculus we can define a fixed point combinator ¥ =
A .(Az.f(zz))(Az. f(xx)), and terms for pairing and projections:

[ ] = Az Ay Ap.pry, pr = Ap.p(Az.Ay.x), p2 = Ap.p(Az.Ay.y)

so that pi[z,y] = @, p2lz,y] = y.

e Terminal Object. In a CCC we have a unique morphism * : D — 1. Moreover
if we take Y (Azx.x) we get a morphism from 1 to D. From this follows 1 « D.
Then we take the retraction determined by 1 as the terminal object in Ret(D).

e Product. The pairing and projections defined above show that D x D <« D via
a retraction that we denote with (_,_) : D x D — D, (m,m): D — D x D. If r
and s are retractions then we define their product as:

rx s =Ax.(r(m(x)),s(m(x))) .

e Exponent. If r and s are retractions then define their exponent as:

r—s=Ari(soj(z)or).

O

As a second application of the category of retractions, we use Ret(D) as a
frame for an abstract formulation of Engeler’s theorem [Eng81] on the embedding
of algebras in A-models. In the following, C is a CCC with enough points (cf.
definition 4.5.4) and D is a reflexive object in C. Let ¥ = {0/" };c1 be a finite
signature, that is a finite collection of names of operators o; with the relative arity
n;. We are interested in a notion of X-algebra in which the carriers are objects
in Ret(D) and the operators are maps in Ret(D) of the appropriate type.

Definition 4.6.10 (X p-algebra) A Yp-algebra is a pair (r,{fi}icr) where r €
Ret(D), and for allv € I, f; : D™ — D, r™ stands for r x --- xr n; times, and
ro fior™ = f,. A morphism of Xp-algebras h : (r,{fi}ict) = (', {gi}icr) is a
morphism h : D — D such that v ohor = h, and for all i € I, ho f;or™ =
gio(hor)™.

Theorem 4.6.11 (embedding X p-algebras) There is a Xp-algebra (id,{F;}icr)
such that any other ¥p-algebra (r,{fi}icr) can be embedded into it by a monomor-
phism.
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PROOF. For the sake of simplicity we just consider the case ¥ = {o*}. Assume
that (_, _), and 7y, m are, respectively, the pairing and the projections definable in
the A-calculus as in the proof of theorem 4.6.9. We take F' = A(xy, x3).(m2x1 )22 .
We note that recursive definitions are available in the untyped A-calculus thanks
to the fixed point combinator. Given the ¥ p-algebra (r,{f}) we define recursively
a morphism p: D — D as follows:

pla) = {a, Aa.p(f(a,m2)) .

The basic idea of the embedding is to put into the data the information on the
behaviour of the operations defined on them. In the first place let us observe that
p is a mono as (we use the enough points hypothesis):

pla) = p(b) = a=mi(p(a) = ma(p(b)) = b.

Clearly por:r — idin Ret(D) as por = idoporor. Also since r(f(ra,ry)) =
f(ra,ry) we have:

F(p(ra),p(rb)) = (Az.p(f(ra,mz)))p(rb) = p(f(ra,mip(rb)))
= p(f(ra,rb)) = (por)(f(ra,rb)).

Therefore por: (r,{f}) = (id,{F}) is a ¥ p-algebras mono-morphism. O

Remark 4.6.12 The following describes a schema for coding finite signatures
which suggests how to generalize the previous proof. Given ¥ = {o, f,..., ["}

define:
pla) = (a,
<,0(f16€),
<)\;1:.p(f2a(7rlx)),
Az . Awg.p(foa)(miay) - (may), %) - )
where:

Fy = Aa.my(ma(maa))
Fy = Xa.my(ma(ma(ma)))

F,=Xe.my(mg -+ (max) ) withn+1my's .



Chapter 5

CCC’s of Algebraic Dcpo’s

In this chapter, we provide a finer analysis of algebraicity. The central result —
which was conjectured by Plotkin and was first proved in [Smy83a] — is that there
exists a maximum cartesian closed full subcategory (full sub-CCC) of wAcpo (the
category of w-algebraic cpo’s). Jung has extended this result: he has characterised
the maximal cartesian closed full subcategories of Acpo and Adcpo (and of
wAdcpo as well).

In section 5.1, we define continuous dcpo’s. Theyr are dcpo’s where approxi-
mations exist without being necessarily compact. Continuous lattices have been
investigated in depth from a mathematical perspective [GHK*80]. Our interest
in continuous dcpo’s arises from the fact that retracts of algebraic dcpo’s are not
algebraic in general, but are continuous. Much of the technical work involved
in our quest of maximal full cartesian closed subcategories of (d)cpo’s involves
retracts: they are smaller, hence easier to work with. In section 5.2, we intro-
duce two cartesian closed categories: the category of profinite dcpo’s and the
category of L-domains, both with continuous functions as morphisms. In section
5.3, we show that the algebraic L-domains and the bifinite domains form the two
maximal cartesian closed full subcategories of Acpo, and derive Smyth’s result
for wAcpo with little extra work. In section 5.4, we treat more sketchily the
situation with Adcpo. The material of sections 5.3 and 5.4 follows [Jun88]. In
section 5.5, we show a technical result needed in section 5.3: a partial order is a
dcpo if and only if all its well-founded subsets have a lub.

5.1 Continuous Dcpo’s

In order to define algebraic depo’s, we first introduced the notion of compact
element, and then we defined algebraicity. The definition of continuous dcpo’s is
more direct, and more general.

123
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Definition 5.1.1 (continuous dcpo) Let D be a depo. For elements x,y € D,
we say that x is way-below y, and write v < y, if

A directed, y <\/A =35 € A = <.

D is called continuous if for any x in D, || * ={y | y < a} is directed and has
x as lub.

Notice that by definition x is compact iff © < x. We leave the proof of the
following easy properties as an exercise:

If + <y, then z < y.
If o' <o <y<y', then 2’ < y'.

Clearly, algebraic dcpo’s are continuous, but the converse does not hold.

Exercise 5.1.2 (cont-nonalg) Show that the interval [0, 1] of real numbers is contin-
uwous but not algebraic. Hint: Prove that x < y iff t =0 or x < y.

Lemma 5.1.3 In a continuous depo, v < y holds iff the following implication
holds:
A directed, y =\/ A =35 € A <6

PROOF. Suppose y = VA = 36 € A z < 4, for all A. Since y = V({} y), we
have x < ' for some ' < y. Hence x < y since » <y’ < v. O

Lemma 5.1.4 Let D be a depo and o € D. If A Cl} v is directed and x =\ A,
then || @ is directed and v = \/({ ).

Proor. If y < z, ¥y < x, then by definition y < a, 3y’ < o for some a,a’ € A.
By directedness we have a,a’ < y” for some y” € A. Hence y,y' < y"” €l} x. The
inequality @ < \/({} «) follows from the obvious inequality V A < V(| z). O

The density property of the real line is generalised as follows.

Lemma 5.1.5 (interpolation) In a continuous depo D, if ¢ < y , then there
exists z € D such that * < z < y.

PrOOF. Consider A = {a € D | 3¢’ € D a < ¢ < y}. If we show that
A is directed and VA = y, then we can conclude, since by definition ¢ < y
implies < a for some a € A, hence + € A. The set A is non-empty, since
the directedness of || y implies a fortiori its non emptyness. Thus one can find
at least an ¢’ < y, and then at least an ¢ < a’. Suppose that ¢« < ¢’ < y
and b < b < y. By directedness, there exists ¢ € D such that ', 0/ < ¢ < y.
Hence a,b < ¢, and by directedness again a,b < ¢ < ¢ for some ¢, which
is in A since ¢ € ¢ < y. Hence A is directed. Since ¢ <« o < y implies
a < y, we have VA <V || y. Conversely, if v/ < y, then |} vy € A, hence

\/Uy:\/y/euy\/l}ylg\/A O
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Lemma 5.1.6 In a continuous depo D, minimal upper bounds (mub’s) of finite
sets of compact elements are compact.

PRrROOF. Let A C K(D) be finite, and @ € MUB(A). Let a € A. Sincea < a < z,
we have ¢ < z. By directedness there exists 2’ €} @ N UB(A). Then 2/ < z
and x € MUB(A) imply 2’ = z. Finally, * = 2’ < = means exactly that z is
compact. O

We move on to retractions and projections (cf. definition 3.1.2, and exer-
cise 4.6.9, which shows important ways of constructing retractions out of other
retractions).

Definition 5.1.7 (retraction, projection) In a category, an arrowr : D — D
is a retraction, or an idempotent, if ror = r. In Dcpo the image of a retraction,
endowed with the induced ordering, is called a retract. If a retraction r is such
that r < id, we say that r is a projection.

Projections are determined by their images.

Proposition 5.1.8 For two projections p, p' over the same depo D, one has
p<p ilf p(D) < p(D').

PROOF. Suppose p < p/. If y € p(D), then y = py) < p'(y) < y since
p < p <id, hence y = p'(y) € p'(D). Conversely, notice that for any projection
p and any x € D one has p(z) = max{y € p(D) | y < x}. Then p < p’ follows
obviously. O

Lemma 5.1.9 Fix a depo D and x € D.
1. L xis aretract of D.
2. If x s compact, then T x is a retract of D.

Proo¥r. (1) | 2 = r(D) where

) ={ 0 T

x otherwise .

We check that r is continuous. If VA < z, then V6 € A § <z, hence r(VA) =
VA =Vr(A). f VA Lz, then 36 € A § £ x. Then we have r(§) = z, which
implies Vr(A) =z =r(V A).

(2) If 2 = d is compact, we have T d = s(D) where

d@z{x if £ >d

d otherwise .
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If VA > d, then 36 € A d < §. We set A’ = AN 1 §; since obviously
s(VA) =V s(A'), we deduce s(VA) = Vs(A). VA 2 d, thenVéde A §2d,
so that s(VA) = d and s(A) = {d}, hence s(VA) =V s(A). O

Retractions are at the heart of our interest in continuous dcpo’s. Indeed,
retracts of algebraic depo’s are not algebraic in general, but only continuous (see
exercise 5.1.11).

Proposition 5.1.10 (continuous retracts) A retract (D) of a depo D is a
subdepo. If D is continuous, then r(D) is continuous.

PrROOF. Let A C r(D) be directed. Then r(VA) = Vr(A) = VA, since
Vé§eA r(§) =4. Suppose that @ < y € r(D). We show that r(x) is way-below
yin r(D). If y < VA, with A C r(D), then 2 < y implies z < § for some
§ € Aj hence r(x) <r(d) =4. Sincey =r(y) =r(V ly) =V{r(z) | » < y}, we
conclude by lemma 5.1.4. a

Exercise 5.1.11 Show that any continuous depo D is isomorphic to a projection of

Ide(D).

We end the section with a topological exercise. Continuous lattices were met
(and named so) by Scott in his quest of spaces whose topology could be entirely
understood from an underlying partial order [Sco72].

Exercise 5.1.12 Let D be a continuous cpo. Show the following properties:

1. Az is Scott open, and these opens form a basis of Scott topology.
2. If D is a complete lattice, then Ve € D v =\V{A\U |z € U}.
3. x Ly y€ (ta) (the interior of T x).

Exercise 5.1.13 (injective spaces) A topological space D is called injective if when-
ever X € Top, Y C X, and f:Y — D are given, with f continuous for the induced
subspace topology, there exists a continuous extension f: X — D of f. Show that the
following properties are equivalent for a Ty space:

1. D 1is injective,
2. D 1is a retract of a product of copies of O,
3. D is a continuous lattice and its topology is Scott topology.

Hints: Every space X is homeomorphic to a subspace of a product llycqx O of copies
of O. An injective subspace Y of a space X is a retract of X: take idy : X — Y.
O is continuous, and continuous lattices are stable under products and retractions (cf.
proposition 5.1.10). If D is a continuous lattice, Y C X, and f:Y — D, then define

Foy: fla) =VIMS W) lyeYnU} |z €U}
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5.2 Bifinite Domains and L-Domains

Recall that, if D and E are algebraic, then the step functions d — e are compact
(lemma 1.4.8) , but D — FE need not be algebraic (exercise 1.4.15). One way
to ensure algebraicity is to impose bounded completeness (theorem 1.4.12) on D
and £. But this assumption can be weakened.

Definition 5.2.1 Let (P, <) be a preorder, and let A C P. The set of minimal
upper bounds (mub’s) of A is denoted MUB(A), and is called complete if

Vye UB(A) 3o € MUB(A) z <y.

Consider a continuous function f, and two step functions d — e < f, &' —
¢/ < f. We want to constuct a compact upper bound h of d — ¢ and d' — ¢
such that » < f. Suppose that MUB(d,d") is complete. Then we may choose e
such that ¢” < f(d") for each d” € MUB(d,d'), and set hy(d") = €”. In general,
one has to consider in turn the compatible pairs df,d) € MUB(d,d'), leading
to the construction of a new function h,, and so on. At each step we have by
construction h, < f. There are two different further assumptions that allow us
to stop this chain, and to ensure that each h, is monotonic (which implies its
continuity by construction) and compact.

1. Strengthen the completeness assumption to:
Vye UB(d,d') 3la € MUB(d,d') = <y.

Then the sequence of the h,’s stops at hy, since there are no compatible
distinct minimal upper bounds of {d,d'}. Moreover, the above ¢” can be
defined canonically as the only member of MUB(e,¢’) below f(d"). This
canonicity allows us to prove that hy is compact (hint: if Ay < VA, take
f € A such that e < f(d) and €' < f(d'), and show h; < f).

2. Impose finiteness conditions on minimal upper bounds: if MUB(d,d") is
finite, and if the process of taking minimal upper bounds of minimal upper
bounds, and so on, terminates, then the above construction stops at some
h,. Moreover the finiteness of the description of h,, allows to prove that it
is compact.

This discussion had only a motivating purpose, since we only addressed the
construction of a compact upper bound of compacts of the form d — e, not of any
pair of compact approximations of f. The two kinds of assumptions correspond to
L-domains and profinite domains, respectively. The rest of the section is devoted
to their study. We first introduce the profinite dcpo’s (a terminology due to
Gunter) and show that they form a cartesian closed full subcategory of Adcpo.
We recall that Depo is a cartesian closed category and that lub’s of functions
are defined pointwise.
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Definition 5.2.2 (profinite) Let D be a depo D. A projection is called finite if
its image is finite. We say that D is profinite if the finite projections p: D — D
form a directed set whose lub is the identity. We denote with Prof the category
of profinite dcpo’s and continuous functions. A profinite dcpo which is moreover
a cpo is called bifinite. We denote with Bif the full subcategory of bifinite cpo’s.

The terminology “bifinite”, due to Taylor, comes from a more categorical
characterisation of profinite and bifinite dcpo’s to be found in chapter 7: they are
limits and colimits at the same time (whence “bi”) of families of finite (d)cpo’s.
The bifinite domains have been first explored in [Plo76], under the name SFP
(Sequence of Finite Projections). The following proposition justifies the name of
finite projections.

Proposition 5.2.3 Let D be a cpo and p : D — D be a projection such that
im(p) is finite. Then every element in tm(p) is compact in D and p is compact
in D — D. Moreover, if D is bifinite, then all compact projections over D have
a finite image.

Proor. We suppose x = p(z) and © <\ A, with A directed in D — D. Then:

r<\VA = a=pl)<p\/A)=\pA)

Since im(p) is finite, there is § € A such that \/ p(A) = p(d), hence « < p(d) < 6.
Next, we suppose p < VA, with A directed set in D. We have just proven that:

Vo € im(p)3é, € A(x = p(x) < §,.(2))

Since 1m(p) is finite, we have that 36 € AVa € im(p)(x < §(x)). Hence
Vy (ply) < d(p(y)) < d(y)). Finally, suppose D is bifinite, say id = V,crps
with im(p;) finite. Let p be a compact projection. Then p = V,;c;(pi o p), and
there is 7 such that p < p;op <idop < p. Hence p=p; 0op and im(p) C im(p;)
which is finite. O

Proposition 5.2.4 (profinite - CCC) 1. Every profinite depo D is algebraic,
with:

2. Profinite depo’s (bifinite cpo’s, respectively) and continuous maps form a carte-
stan closed category.

PRrROOF. (1) If D is profinite, then x = \/{p(z) | p finite projection}, for any z. It
is enough to show that p(x) is compact, for any finite projection p. If p(z) <V A,
then p(z) = p(p(z)) < Vp(A). Since p(A) is finite, there exists § € A such that
Vp(A) = p(d). Then p(z) < p(5) < &

(2) It is enough to check that if D, E € Prof are profinite, then D x K, D —
FE € Prof. For D x E, take the set of projections p x ¢ = (p o m1, g 0 m2), where
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p, q are finite projections. For D — F, define, for any pair of finite projections
p,gon D, E:

r(f) = (z = q(f(p(x))))
(cf. exercise 4.6.9) Clearly f is the lub of these r(f)’s. As for the finiteness of

im(r), observe:
e there are finitely many functions from p(D) to ¢(F);

e every f such that r(f) = f restricts to a function f : p(D) — ¢(F), and is
determined by this restriction, because f(x) = f(p(x)) for any z. O

When there are only denumerably many finite projections, a profinite dcpo is
called w-profinite. This name is justified by the following exercise.

Exercise 5.2.5 Show that an w-profinite depo is w-algebraic.
We shall give an alternative characterisation of profinite depo’s.

Definition 5.2.6 (properties m, M) We say that a partial order (Y, <)

e satisfies property m (notation Y |=m) if for all X Cg, Y the set MUB(X)
of mub’s of X is complete, i.e., (Vy € UB(X) Ja € MUB(X) z <y).

o satisfies property M (notation Y |= M) if it satisfies property m, with the
additional condition that MUB(X) is finite for any finite subset X.

Theorem 5.2.7 Let D be an algebraic cpo. D is a bifinite domain iff the fol-
lowing properties hold:

1. K(D) E m,

2. UR(X) = Unew UM(X) is finite for any finite subset of compact elements
X, where U is an operator on subsets defined by

U(X) = UMUB(Y) | Y Cp XD,

PRrROOF. Notice that in particular, X C U(X) for any X, and MUB(X) C U(X)
if X is finite. Therefore properties (1) and (2) imply that X(D) E M . .

(=) Let D be a bifinite domain. We recall that (D) = U{p(D) | p finite projection}.

If X Cg, K(D), then X C p(D) for some p, by directedness and proposition 5.1.8.
Call Z the set of mub’s of X in p(D), which exists, is finite, and is complete in

L Algebraic decpo’s D such that K (D) satisfies property M are sometimes called 2/3 SFP.
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p(D), since p(D) is finite. We first show: Z C MUB(X). Indeed suppose z € Z,
z' € UB(X), and 2z’ < z. Then

p(z") € UB(X) since p(X) =X
p(z') <z since p(z') < 2.

This contradicts the definition of Z. Thus Z C MUB(X). We next show that
Z is a complete set of mub’s of X in D. Take y € UB(X); then, as argued
above, p(y) € UB(X), and by completeness of 7 one may find z € 7 such that
z < p(y), and a fortiori z < y. The completeness of Z forces 7 = MUB(X).
Therefore MUB(X) is finite and complete, and MUB(X) C p(D). Similarly,
MUB(Y) C p(D) for any Y Cg,, X. From there we deduce that U*(X) C p(D)
for any n, observing that each subset of X is a fortiori included in p(D).

(<) Let A be a finite set of compacts. Then we claim:
Vye D U™(A)N ]y is directed

(i.e., according to a terminology which will be introduced in definition 7.4.6,
U™ (A) is normal).

This is shown as follows: if x,2" € U*(A)N | y, then MUB(xz,2") C U*(A),
and by completeness MUB(z,2")N | y # (). By the claim we can set

paly) =\ (U=(A)N | y).

It is left to the reader to check that this gives a directed set of finite projections
having ¢d as lub. O

Notice that, in the proof of (<), we have used only mub’s of pairs. The
following result goes in the same direction.

Lemma 5.2.8 Let (D, <) be a partial order. If MUB(X) is complete and finite
for every subset X such that §Y < 2, then MUB(X) is complete and finite for
every finite subset X .

ProoF. Let X = {a,....a,}. We construct

My = MUB(ay,az2) ..., M, = U MUB(x,ay).
fL’EMn—l

If 2 is an upper bound of X, then by completeness  dominates an element of
M,. Continuing in the same way, we find an element y of M,, below x. Suppose
moreover @ € MUB(X): then = y, since by construction M,, C UB(X). We
have proved MUB(X) C M,,. Since M, is finite, MUB(X) is a fortiori finite. O

Exercise 5.2.9 Let X be finite. Show that if there exists Y Cp,T X such that Va €7
X JyeY y <z, then MUB(X) is finite and complete.
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(A) D=wU{L,a,b} (wherew = {7 | n € w} is a copy of w), ordered as follows:

xr= 1 or

) r=aand y € or
<

vy iff r=band y € or
x=n,y=m, and m <n
In this example, U({a,b}) fails to be complete.

(B) D ={a,b} Uw, ordered as follows:
Vn a,b<n
In this example, U({a,b}) fails to be finite.

(C) D =Ha,b} Uwy, Uwp (where wy, = {ny | n € w} and wp = {np | n € w}),
ordered as follows:

Vm,n a,b<mp,ng
m<n=my; <n;and mp < ng
m<n=my <ngand mp < ny,

In this example, U*({a,b}) fails to be finite.

Figure 5.1: Dcpo’s that fail to be profinite

Exercise 5.2.10 Show that D is bifinite iff the conditions stated in theorem 5.2.7 hold,
replacing the operator U by the operator U'(X) = J{MUB(Y) | Y C X and Y < 2}.
Show that if D is bifinite, then U (X) = U'™(X).

Figure 5.1 illustrates how an algebraic dcpo may fail to be profinite. The
function spaces of examples (A) and (C) are not algebraic (cf. exercise 1.4.15
and proposition 5.3.7). The function space of example (B) is algebraic, but not
w-algebraic. It is an example of [.-domain, which we shall introduce next.

Definition 5.2.11 (L-domain) An L-domain® is a cpo D such that
VACsz, D Yae UB(A) ly <z ye MUB(A).

Notice that in the definiton of [.-domain we have traded the finiteness condi-

tion of property M against a uniqueness assumption.

2See also definition 12.5.4 and exercise 12.5.6.
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Example 5.2.12 The following is a minimal example of a finite partial order
which is not an L-domain: D = {a,b,c,d, e} with a,b <c¢,d < e.

For algebraic cpo’s, we can limit ourselves to finite sets of compact elements.
Exercise 5.2.13 Show that an algebraic cpo is an L-domain iff
VACp, K(D) Vz e UB(A) Aly <z ye MUB(A).

Hint: if A = {x1,...,2,}, consider the sets {e1,...,e,}, where the e;’s approzimate
the x;’s.

Exercise 5.2.14 (1) Show that one can restrict definition 5.2.11 to the A’s which have
cardinal 2 without loss of generality (hint: the uniqueness is essential). (2) Show that,
if D is algebraic, we may restrict ourselves to compacts, i.e., A Cg, K(D).

Hence [-domains are “locally” bounded complete: any bounded subset is
bounded complete.

Proposition 5.2.15 A c¢po D is an L-domain iff
D Em and U*(A) = U(A) for all finite subsets A of D.

PROOF. (=) Property m holds a fortiori. To show U*(A) = U(A). it is enough
to prove U?(A) C U(A). Let x € MUB(B), for a finite B C U(A), and let A; be a
finite subset of A of which bis a mub, for any b € B. We show @ € MUB(Uycp As).
By construction @ € UB(Uyep As). Suppose & >y € UB(Uyep Asy). By property
m, y > b for some mub b’ of A,. By uniqueness of the mub of A, below z, we
get b/ =b. Hence y > B and y = .

(<) Let « > A Cgq, D. By property m there exists a € MUB(A) such that
a < z. Let @’ < be such that «' € MUB(A). By applying m again, there exists
b € MUB(a,d') such that b < x. Since U*(A) = U(A), we have b € U(A), i.e.,
b€ MUB(A') for some A" C A. Since a,a’ € UB(A), we get a« = b = a'. This

proves the uniqueness of «. a

So far, we have made use of the dcpo structure only. The following proposition
involves step functions, which are defined with the help of L.

Proposition 5.2.16 (L-CCC) The category of L-domains and continuous func-
tions is cartesian closed. The full subcategory L of algebraic L-domains is carte-
sian closed.

PROOF. Suppose that f,g < h arein D — FE. Then f(x),g(x) < h(x). Define
k(x) as the minimum upper bound of f(x),g(x) under h(x). This function k is
the minimum upper bound of f, g under h (to check the continuity of k, given A,
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one works in | A(\/ A)). If D and E are algebraic, then we already know that any
h is the lub of the set of compact functions below it. We have to check that this
set is directed. This follows from the bounded completeness of | h (cf. theorem
1.4.12). O

As a last result in this section we show that the terminal object, products,
and exponents in a full subcategory of Depo, if any, must be those of Dcpo.

Proposition 5.2.17 Let C be a full subcategory of Depo. We denote by x,
— the product and the exponent in Dcpo. We write D = E when D and K
are isomorphic in Depo, which amounts to D and E being isomorphic in the
category of partial orders. Then the following properties hold:

1. If C has a terminal object 1, then 1 is a one point cpo.
2. If C has a terminal object 1 and products DX E, then DXE =~ D x E.

3. If C has terminal object 1, binary products, and exponents DE, then
DSE=D — F.

Proor. (1) If 1 is terminal and has distinct elements z,y, then the constant
functions z — x,z — y : 1 — 1 are continuous and distinct: contradiction. In
the sequel we freely confuse x € d and z : 1 — D.

(2) Let D, E € C. Consider the products:

(DX E,7y,73) in C with pairing denoted by Z,S
(D x E,m,m5) in Cpo  with pairing (,) .

We show that (77,73) : DXE — D x E is an isomorphism in Cpo:

o (71,m) is injective: We have, for any x, 2’ € | — DX E:

(mi,m)ox =(m,ma) 02 & mox=moa and Tpox =moa
& Zﬂ,fr}Sox:Zﬂ,ﬂSox’
&S r=2a.

~

o (w1, m3) is surjective: Let (y,z) € D x E. We have: (y,z) = <7/r\1,7/r§>(2y,z>),

))

(y, 2
(y,z

~ ~

since ™ ((y, z)) = y and T5( z.

o If (y,2) < (¥/,7'), then 5 < Zy’,z’g: We can assume the existence of an
object C' € C containing at least two elements ¢, ¢/, such that ¢ < ¢: indeed, if
C only admits objects of cardinality 1 then the proposition is trivially true, and

if C contains only discretely ordered sets, then in particular D, F are discretely
ordered, and so are DX E (as an object of C) and D x E (by the definition of
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product in Depo). With this fixed C, for any D and z, 2" € D such that @ < a’,
we can build a continuous map f; ;v : €' — D as follows:

x ify<e

Fot) = { %

2! otherwise .

With the help of these functions, we have

Zyv 25 = /<\fy,y’7 fZ,Z’§ oc Zy/7 Zl; = nyyylv fz,z’§ oc.

o~ ~ o~ ~ o~ ~

Thus, by monotonicity of (f, ., f..1), we get (y,z) < (¥, z").

(3) Given (1) and (2), we may work directly with the standard product x.
Consider the exponents:

A

(DS E,€év)  in C, with currying denoted by A
(D — FE,ev) in Cpo, with currying denoted by A .
We show that A(év) : (DS E) — (D — E) is an iso.
o A(€v) is injective: If A(€v)(h) = A(€v)(h’), then €vo (h x id) = €v o (b X id)
by the bijectivity of A. This entails:
h=Avo(hxid)=Aevo(h xid)=h.

A~

o A(ev) is surjective: Let f: D — K. We have f = A(ev)(A(ev)(f)) since
A(€v) o A(ev) = A(évo (A(ev) x id)) = A(ev) = id.

~

e g<g = Alev)(g) < A(ev)(g’): Consider f, ,: C — (D — F). We have

A~

Alev)(g)

Let k = A(ev o (fyq x id)). Then A(ev)(g) = k(c¢) and A(ev)(g’) = k(c); The

conclusion follows. O

5.3 Full Sub-CCC’s of Acpo *

This section is devoted to Jung’s classification theorem for algebraic depo’s. Both L-
domains and bifinite domains satisfy property m. We shall first prove that this property
is necessary. Actually we prove that bicompleteness is necessary (which is stronger).
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Definition 5.3.1 (bicomplete) A partial order (D, <) is called bicomplete if both D
and D? = (D, <) are directed complete.

Proposition 5.3.2 If (D, <) is bicomplete, then it satifies property m.

Proor. By Zorn’s lemma. Consider A Cg,, D and # € UB(A). Let B =] 2N UB(A).
In B, every chain is a fortiori codirected in D, and its glb is clearly in B. Hence B has
a minimal element, which is clearly a minimal upper bound of A. a

Jung’s theorem relies on three propositions: 5.3.3, 5.3.6, and 5.3.7. We shall also
need a theorem due to Markowsky, whose proof is given in section 5.5: a partial order
is a depo if and only if any non-empty well-ordered subset of D has a lub.

Proposition 5.3.3 A continuous depo D with continuous function space D — D is
bicomplete.

Proor. The proof is by contradiction. By proposition 5.5.1, we may assume that
there exists a non-empty op-well-ordered subset B of D which has no glb. Let A be
the (possibly empty) set of lower bounds of B. Notice that by the assumption on B
we have AN B = (. We define the following function r on D by

(2) = x ifeecA
A MbeB|b>a} ifag A (where the glb is meant in B) .

e ris well defined: We first prove that the set C' of lower bounds in Bof {b € B |b > z}
is not empty. Since © € A, we have @ £ b’ for some b’ € B. A fortiori, if b > x, then
b £ b'. But B is a total order, hence &’ < b, which proves ' € C. Thus, since we
assumed that B is op-well-ordered, the maximum of C' exists and is A{b€ B | b > z}.
In particular we have 2 ¢ A = r(z) € B.

e ror=r:r(D)€ AUB, and r is the identity on AU B.

e r is continuous: If VA € A, then A C A, hence r(VA) = VA = Vr((A). If
VA& A, then § £ for some b’ € B, § € A (i.e., § ¢ A). Hence A’N A = (), where
A= AN 19, and r(A’) C B. Clearly VA" =V A and \/r(A") = VVr(A). Hence it is
enough to prove \/ r(A’) > r(\/ A’). We proceed by contradiction. Let b’ = r(\/ A’). If
V r(A) 2V, then a fortiori (8) 2 b’ for any 6 € A’. But we have

r(0)FV b £{beB|b>8} e Ibse B Y >bs > 6.

(For the last equivalence, notice that \/ A ¢ A implies b’ € B, and recall that B is a
chain.) Since B is op-well-ordered, the non-empty set {bs | § € A} has a maximum bsn»
for some ¢” € A. But then we have:

b’ > bsn > \/ A by construction
o =r(VA) <{be B|b>\ A} implies b < bsn .

Contradiction. Hence r is continuous. We know from exercise 4.6.9 that D' — D' is a
retract of D — D, where D' = r(D) = AU B. It is continuous, by proposition 5.1.10.
The rest of the proof consists in obtaining a contradiction to the continuity of D’ — D',
It goes via successive claims:
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Claim 1. If A # 0, then there exist 2’ < z € A and 3y’ < y € A such that 2’ and ¥’
have no upper bound in A.

We first show that A" =|} A is not directed. By continuity of D, the lub of A" would
be larger than any element of A, and still belong to A; but since A is not empty, we
know that it has no maximum by the assumption on B: contradiction. Hence there
exists " < v € A and 3" < y € A such that 2" and y” have no upper bound in A’.
Let 2’ and 3’ be obtained by interpolation: z” < 2’ < z and v < 3y’ < y. Suppose
that 2’ and y’ have an upper bound z in A: then, by directedness of || z, z” and y”
would have an upper bound in A’. This completes the proof of claim 1.

Claim 2. 3fe D' — D f<idand f(B)C B.

Claim 2 is obvious if A is empty, since then B = D'. If A # (), let 2/, ¥/ be as in claim
1. Since ¢’ < @ = \V{f(z) | f < id}, we have 2’ < g(z) for some g < id. Similarly
y' < h(y). Let f be an upper bound of g,h in | id. Then 2’ < f(z) and y' < f(y).
Let b be an element of B. Then b is an upper bound of z and y, since x,y € A. Hence
f(b) > f(z) > 2’ Similarly f(b) > y'. Thus, by claim 1, f(b) € D'\ A = B. This
completes the proof of claim 2.

Since B is op-well-ordered, we can define a predecessor function: pred(b) is the
maximum b’ such that & < b (there is at least one such ', otherwise b would be a
minimum of B, contradicting our assumption on B). Define, for each b € B, a function
g : D' — D' by

g(a T otherwise .

):{ pred(f(z)) ifz € Band @ <b

where f is given by claim 2.

Claim 3. 1. g; is continuous, for all b € B.
2. {gy | b € B} is directed and has id as lub.
3. There is no g; such that f < g.
Claim 3 contradicts f < id. Thus we are left with the proof of claim 3.
(3) If f < gp, then f(b) < gy(b) = pred(f(b)), a contradiction to the definition of pred.

(2) We prove that {g, | b € B} is actually a chain by proving ' < b = ¢, < gu.
The only interesting case is when @ € B and ' < @ < b. Then gy(2) = pred(f(z)) <
f(z) < 2z = gy(x). The equality id = \/{gy | b € B} follows from the remark that
Ipred(v)(b) = b for all b € B.

(1) It is easily checked that g; is monotonic. Let A be directed in D’. The interesting
case is VA € B. Then § € B for some § € A, as otherwise we would have A C A (and
hence \/ A € A). We can choose ¢ to be the maximum of BNA, since B is well-ordered.
Then \V A =§ € A, and the continuity of ¢, follows by monotonicity. a

Remark 5.3.4 This proof generalises the situation presented in exercise 1.4.15.

The hypotheses of the previous proposition are actually redundant.
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Exercise 5.3.5 (—-cont = cont) Show that a depo with continuous function space
is continuous. Hint: use the claim proved in proposition 5.3.7.

Proposition 5.3.6 (L/M) Let D and F be algebraic cpo’s satisfying property m. If
D — FE is continuous, then E is an L-domain or K(D) = M.

ProoF. By contradiction. Suppose that F is not an L-domain and that (D) £ M.
Then (cf. exercise 5.2.14) there exists ¢ in F, two compacts a1, az < ¢, and two distinct
mub’s by, by of {ay, az} below c. Since D |= m, also K(D) |= m by lemma 5.1.6. Since
K(D) = M, by lemma 5.2.8 there exist z; and 29 in K(D) such that MUB(zy,22) is
infinite. Assume moreover that D — F is continuous. Then we define g : D — F by

1 ifd%? z and d ¥ x4

PN if d>ax; and d 2 2,
g(d) = ay ifd# z; and d > x4
by ifd>xz;yandd>ay.

We leave the reader check that ¢ is continuous and is a mub of the step functions
21 — a1 and 29 — ao. In particular g is compact. We shall contradict the compactness
of g. We define f by replacing by by ¢ in the last line of the definition of g. Clearly
g < f. Weshall exhibit a directed set of functions which has f aslub, but none of which
dominates g. For each finite subset A of MUB(x1,z2), define a function f4 : D — F
b
’ L ifd?az and d ¥ xy
ay ifd>axand d %z,
fald)=¢ ay ifd#x and d> 2y
bg lfde MUB($17$2)\A
¢ otherwise .

We have to check that the f4’s are continuous, and form a directed set with lub f. We
leave this to the reader, with the following hint: to prove the continuity, observe that

x1, 29 compact, \/A € MUB(z1,22) = A has a maximum.

Suppose g < f4 for some A, and pick d € MUB(x1,22)\A. We should have b; = ¢(d)
fa(d) = by. Since we assumed by # bg, this contradicts the minimality of bs.

O IA

Proposition 5.3.7 Let D be a depo with algebraic function space and such that K(D) =
M. Then D is bifinite.

PrOOF. Suppose that U is infinite, for some finite A C K(D). We set B =
A, B"tL = Ut (A)\U"(A). By our assumption, for each n, B"*1 # (). We construct a
tree in the following way. The nodes are finites sequences b, . ..by where b; € B for all
i, and where, for each 7 < n, b; belongs to a subset of U’(A) of which b, is a mub. The
root is the empty sequence, the predecessor of b, ...bg is b,_1...by. By construction,
and by property M, this is a finitely branching tree. We show that for any b € U (A)
there exists a node b,, ...bg such that b = b,,, which entails that the tree is infinite. Let
n be minimum such that b € U"(A); we have a fortiori b € B™. By definition of U"(A)
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we can find a subset B of U""!(A) of which b is a mub. If B were also a subset of
U”_Q(A), then we would not have b € B™. Hence we can build b,_1...by as desired.
Since the tree is infinite and finitely branching, by Koénig’s lemma it has an infinite
branch ...b, ...bg, which in particular forms an infinite strictly increasing sequence in

U*(A). Now we use the algebraicity of D — D. We have
id = \/{f | fis compact and f < id}.

In particular @ = \/{f(a) | f is compact and f < id}, for a compact, implies a = f(a)
for some f. By directedness we can find a compact f < id for whichVa € A (a = f(a)).
We claim:

Vae U*(A) (a= f(a)).

Suppose that we know Va € U"(A) (a = f(a)). Let a be a mub of A” C U"(A). Then
a> f(a) > f(A") = A" implies f(a) = a.

By the claim we have f(b,) = b, for all n, and f(c¢) = ¢ follows by continuity for
¢ =V b,. We shall get a contradiction by proving the following claim:

Claim. If D is a dcpo which has a continuous function space, and if f < id, then
f(d) < d for all d.

If the claim is true, then ¢ = f(¢) < ¢, hence ¢ is compact. But a lub of a strictly
increasing sequence is not compact: contradiction.

We prove the claim by appealing again to a “retract” trick. Let A be such that
d <VA. Set z=\A. Since | z=D"is a retract of D (cf. lemma 5.1.9), D" — D’
is continuous, as a retract of D — D. We show that f < id also holds in D/ — D’
(notice that since f < id, f maps D" into D'). For this, it is enough by lemma 5.1.3 to
consider a directed A" C D' — D’ such that id =\/ A" in D' — D’. Each g in A’ can
be extended to D by setting

g(z) = @ whenever 2 £ 2.

Hence A’ can be viewed as a directed subset in D — D, and has clearly id as lub
there too. It follows that f < ¢ for some g € A’; and the inequality holds a fortiori
in D' — D’. We have proved f < id in D' — D'. Consider the family of constant
functions = +— § for each 6 € A. It forms a directed set with lub the constant z — z.
We have (z +— z) > id (in D' — D'). Hence f < (2 — ) for some § € A. In particular
f(d) < 4. This ends the proof of the claim and of the proposition. a

Theorem 5.3.8 The categories Bif and L are the two mazimal cartesian closed full
subcategories of Acpo.

ProoFr. We have already proved that Bif and L are cartesian closed. By proposition
5.2.17,if C is a cartesian closed full subcategory of Acpo, we know that the exponents
of C are the exponents of Cpo. Let D € C. Since both D and D — D are algebraic, D
is bicomplete by proposition 5.3.3, hence, by proposition 5.3.2, D = m. Thus we can
apply proposition 5.3.6 to any D, F € C. Combining with proposition 5.3.7 applied to
D, we get, for any D, F € C:

K (D) is bifinite or E is an algebraic L-domain.
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Suppose now that C is neither a subcategory of L nor a subcategory of Bif. Then
there is an object D of C which is not bifinite and an object I of C which is not an
L-domain: contradiction. a

The analysis is simplified in the case of w-algebraic cpo’s, thanks to the following
proposition.

Proposition 5.3.9 If D is an (algebraic) cpo and D — D is w-algebraic, then K(D) =
M.

Proor. We already know from proposition 5.3.3 that D is bicomplete, hence that
K(D) = m. Assume that MUB(ay, aq) is infinite for some compacts a1, az. We build
uncountably many mub’s of a; — a; and ay — ay. Since they are all compact, this
contradicts the w-algebraicity of D. We pick two distinct mub’s by, by of a1,a3. For
any S C MUB(ay,az), we define fs: D — D by

L ifd%aand d % ay
ay ifd>ay and d# ay
fs(d) =X ay ifd}a and d> ay
by ifdseS d>s
by ifds e MUB(al,az)\S d>s.

To see that fg is well-defined, we use the fact that D is an [.-domain by proposition
5.3.6: if d € MUB(aq, az), there is exactly one mub of aq, ag below d. We omit the rest
of the proof. O

Exercise 5.3.10 (Smyth) Show that the category wBif of w-bifinite cpo’s and con-
tinuous functions is the largest cartesian closed full subcategory of wAcpo.

5.4 Full Sub-CCC’s of Adcpo *

In this section, we present a brief account of Jung’s results in the case of algebraic
dcpo’s, that is, we relax the assumption that the domains have a 1. There are four
maximal cartesian closed full subcategories of Adepo. The duplication with respect
to to the previous section comes from the following discriminating proposition, which
is 7orthogonal” to the discriminating proposition 5.3.6.

Proposition 5.4.1 (F/U) Let D and F be continuous depo’s satisfying property m.
If D — FE is continuous, then D has finitely many minimal elements or F is a disjoint
union of cpo’s.

ProoF. By contradiction. We thus assume that D has infinitely many minimal ele-
ments and that F is not a disjoint union of cpo’s. First notice that the collection of
minimal elements of F can be alternatively described as MUB((0). Hence by property
m, IJ can be described as /= |J{1 €| e is a minimal element of E'}. Our assumption
implies that there exists an upper bounded pair {ey, e5} of distinct minimal elements
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of /. By property m one can find a mub e of ey, e;. The constant function z — e is
minimal, hence compact in D — F (minimal implies compact in a continuous dcpo).
For any finite set A of minimal elements of D, we define a function f4 by

e ifzet A

ey otherwise .

fa(z) :{

This defines a directed family of continuous functions which has z + e as lub (the
monotonicity of f4 follows from e; < e). Hence one must have (z — €;) < f4 for some
A, which entails e; < e3. But e is minimal and ey # e3: contradiction. a

The property of finiteness of the set of minimal elements is not strong enough to
be closed under function spaces. But a strengthening will do.

Definition 5.4.2 (root) Given a depo D |, the set U (D) is called the root of D.

Proposition 5.4.3 Let D be a (continuous) dcpo such that D — D satisfies property
m and has finitely many minimal elements. Then D has a finite root.

Proor. With each element d of the root we associate the canonical retraction ry onto
| d defined in lemma 5.1.9. We show that if d # d’, then r4 and ry have no common
lower bound. We can assume say d £ d'. Then if f < rg,rg, we have:

f<rqg = fld)<d
f<ra = fld)<rg(d)=4d.

In fact, because d is in the root of D, f(d) < d implies f(d) = d. This is obvious if d
is a minimal element of D, and the property propagates to all elements of the root (cf.
the proof of proposition 5.3.7). Hence d = f(d) < d’, contradicting the assumption.
Since D — D = m, there exists a minimal function mg4 below each ry. The my’s are
all distinct, since mg = my would entail that {ry,ry} has a lower bound. Hence if the
root of D is infinite, then D — D has infinitely many minimal elements: contradiction.
O

Quite orthogonally, the results of the previous section can be exploited.

Lemma 5.4.4 (VL/VM) Let D and F be algebraic depo’s satisfying property m. If1 e
is not an L-domain and if K(1 d) = M, for some compacts e,d of E, D, respectively,
then D — F is not continuous.

Proor. Obvious consequence of proposition 5.3.6 and exercise 4.6.9. a

Corollary 5.4.5 (VL/VB) If D and E are algebraic dcpo’s satisfying property m and
if D — FE is an algebraic dcpo, then either all basic Scott opens T d (d € K(D)) are
bifinite or all 1 e’s (e € K(E)) are L-domains.

Proor. Lemma 5.4.4 is applicable by proposition 5.3.3. Suppose that a Scott-open
1 e is not an L-domain: then, by the lemma, Vd K (D) = M. We conclude by noticing
that proposition 5.3.7 is applicable to 1 d thanks to the following claim.



5.5. COMPLETENESS OF WELL-ORDERED LUB’S * 141

Claim. If D — D’ is algebraic and d,d" are compact, then 1 d —1 d’ is algebraic.

The claim follows from the observation that 1 d —1 d' is order-isomorphic to

+(d — d). O

Theorem 5.4.6 There are exactly four maximal cartesian closed full subcategories of
Adcpo, with the following respective classes of objects:

(UL) the disjoint unions of algebraic L-domains,
(UB) the disjoint unions of bifinite cpo’s,
(FL) the dcpo’s with a finite root
whose basic Scott opens 1 d are algebraic L-domains,
(FB) the profinite depo’s.

ProoOF. We omit the verifications that these four categories are cartesian closed. We
also leave it to the reader to verify that the profinite dcpo’s are the depo’s with a
finite root such that all 1 d’s are bifinite. The proof proceeds like the proof of theorem
5.3.8, exploiting not only the discrimination L/M (in its variant VL/VB), but also the
discrimination F/U. We use B, L, F, U as abbreviations for bifinite, L-domain, finite
root, disjoint union of cpo’s, respectively. Let C be a cartesian closed full subcategory
of Adcpo. By corollary 5.4.5 on one hand, and by combining proposition 5.4.1 (applied
to D — D and F) and 5.4.3 on the other hand, we get, as in the proof of theorem
5.3.8:
(CCBorCCL)and (CCForCCU).

Assume now that C is not included in any of UL, UB and FL. Let Dy, Dy, D3 € C

witness these non-inclusions, and let D be an arbitrary object of C. Then we proceed
by cases:

e Dy ¢ U: Then D, D3 € F since C C For C C U. By non-inclusion, we have
D3 ¢ L, which implies D € B since CC B or C C L.

e Dy ¢ L: Similarly we deduce that D € B and D € F, using witness Ds. a

Exercise 5.4.7 Show that the category wProf of w-profinite depo’s and continuous
functions is the largest cartesian closed full subcategory of wAdcpo.

5.5 Completeness of Well-Ordered Lub’s *

We prove the theorem of [Mar76] which we used in the proof of proposition 5.3.3. The
proof assumes some familiarity with ordinals and cardinals. We simply recall that every
set can be well-ordered, that ordinals are canonical representatives of isomorphisms
classes of well-orderings, and that cardinals are the least ordinals of a given cardinality.

We write §A for the cardinal of A

Proposition 5.5.1 (Markowsky) 1. A partial order D is a depo iff any non-empty
chain of D has a lub.

2. Let D be a partial order. D is a decpo iff any non-empty well-ordered subset of D
has a lub.
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PROOF. (2) clearly implies (1), but (1) serves as a stepping stone to (2).
(1) We first prove the following claim.

Claim 1. Let A be an infinite directed set. There is an ordinal and a family {A, }, <
of directed subsets of A indexed over the cardinal v of A, such that:

(A) a<f=A,CAg
(B) A, is finite if « is finite, A, = fo if o is infinite, and
(C) A= Uoz<w Aa'

In order to prove the claim, we first fix a choice ug of an upper bound of F for any
F Cg, A. Let {z,}acy be a bijective indexing of A. We construct A, and we prove
properties (A), (B), and (C) together by transfinite induction:

e a=0: Ag={zp}.
o o= [+ 1: We set:

Ayo = ApgU{zs} where ¢ is the least index such that z; € A\Ag
Agivi = Ay iU{up | F Chy Ay}
A, = [JAai-
1EW

(It will be part of the proof to show that indeed A\Ag is non-empty.)
e «is a limit ordinal: We set A, = Ug., Ap.

By construction, the A,’s are directed and property (A) holds. Property (C) can be
rephrased as A = A, and thus follows from property (B) by minimality of 4. Property
(B) clearly holds for @ = 0. For finite ordinals o = 3 + 1, the definition of A, boils
down to A, = A, 0U {uAa’O}, which is therefore finite. For infinite ordinals, the limit
ordinal case is obvious. If o = 4 1, then §A, ; = §Ag for any 7. Hence

1A, < H(Ap X w) = A = 48 = fa.

This completes the proof of (B). We next prove that property (B) at  ensures the
well-definedness of Agiq. This is clear for finite 3. Suppose thus that 3 is infinite, that
B+ 1=a <+, and that A = Ag. Then v = §A = §Az = 44, which contradicts the
minimality of v since 8 < 7.

We prove (1) by contradiction. Let v be the least ordinal for which there exists a
directed A of cardinal v such that \/ A does not exist, and let {A,} be as in the claim.
Then V A, exists for each o < 7, by the minimality of 7. The collection {V A, | &« < v}
forms a chain by (A), and its lub is the lub of A by (C). Contradiction.

(2) It is enough, by (1), to show that for any chain X C D there exists a subset ¥ of X
which is well-ordered by the restriction of the order of D and is such that /Y =V X.
Let {24 }a<s be a bijective indexing of X by an ordinal §. We assign to each o < ¢ an
element y, € X and a subset X, of X, or “stop” as follows:
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e a=0:yo=2¢and Xg=X\{z € X |z <y}
e a=[+1: If X3=0, then “stop”; otherwise, set:

Yo = x5, where &g is the least element of {§ | z5 € X3}
Xa:Xﬁ\{weXﬁ|x§ya}'

e «is a limit ordinal: If (5, X = (0, then “stop”; otherwise, set:

Yo = Ts5,, Where g is the least element of {¢ | x5 € N, X5}
XOé = ﬂﬁ<o¢ Xﬁ\{‘r € ﬂﬁ<a Xﬁ | z S ya} .

Claim 2. The following properties hold for every « at which y,, X,, are defined:

(D) ze X\Xoeodf<a x<ys,
(E) v<a=yy <ya,
(F) 24 < Ya-

The three properties are proved by induction on «.

(D) If @ =0, we have 2 € Xo < 2 < z¢. If @ = 3+ 1, then (A) follows by induction
from (z ¢ X, & (z € Xgor z <y,)). If ais alimit ordinal, then (A) similarly follows
from

r ¢ Xoe (3f8<aaxdg Xg)ora<y,.

(E) If @ = 8+ 1, then by induction it is enough to check ys < y,. Suppose y, < ygs.
Then y, € Xg by (D), contradicting the definition of . If e is a limit ordinal, if v < «,

and if yo < y,, we get a similar contradiction from y, € (), <, Xg-

(F) If o = 0, then a fortiori yg = 2zg. If @ = 8+ 1, then for any v < 3 we have by
induction z, < y,, hence z, ¢ X, by (D), which, by definition of §y entails §y > a. If
dp = a then a fortiori z, < y,. If g > «, then 2, € Xz by minimality of dy, and

to <y, forsomey < g, by (D)
Yy < Ya by (E).
We use a similar reasoning if « is a limit ordinal. This completes the proof of claim 2.
The set Y = {y, | yo is defined} is well-ordered by (E). Since ¥ C X, we are left

to show X < \/Y. This follows from (F) if y, is defined for any index. Otherwise, the
construction of the yg’s has reached a “stop” at some «. There are two cases:

e a=p+1and X, =0: Then X < VYV follows from (D).

e ais a limit ordinal and ., X = 0. Let z € X, then 2 ¢ X for some 8 < a,
and the conclusion again follows from (D). 0
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Chapter 6

The Language PCF

We have provided semantics for both typed and untyped A-calculus. In this
chapter we extend the approach to typed A-calculus with fixpoints (AY -calculus),
we suggest formal ways of reasoning with fixpoints, and we introduce a core
functional language called PCF, originally due to Scott [Sco93], and thoroughly
studied by Plotkin [Plo77]. PCF has served as a basis for much of the theoretical
work in semantics. We prove the adequacy of the interpretation with respect to
the operational semantics and we discuss the full-abstraction problem, which has
triggered a lot of research, both in syntax and semantics.

In section 6.1 we introduce the notion of epo-enriched CCC, which serves to
interpret the AY-calculus. In section 6.2, we introduce fixpoint induction and
show an application of this reasoning principle. In section 6.3, we introduce the
language PCF, we define its standard denotational semantics and its operational
semantics, and we show a computational adequacy property: the meaning of
a closed term of base type is defined if and only if its evaluation terminates.
In section 6.4 we address a tighter correspondence between denotational and
operational semantics, known as full abstraction property. We show how a fully
abstract model of PCF can be obtained, by means of a suitable quotient of an
(infinite) term model of PcF. In section 6.5, we introduce Vuillemin’s sequential
functions, which capture first-order PCF definability.

6.1 The )\Y-Calculus

The AY-calculus is the typed A-calculus extended with a family of constants Y7
of type (o — o) — o for each type o (Y for short), with the following reduction
rule:

(Y) YM — M(YM).

It is also convenient to consider a special constant 7 at each type (to be inter-
preted by L).

145
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Definition 6.1.1 (cpo-enriched-CCC) A cartesian closed category C is called
a cpo-enriched cartesian closed category if all homsets Cla,b] are cpo’s, if compo-
sition is continuous, if pairing and currying are monotonic, and if the following
strictness conditions hold (for all f of the appropriate type):

lof=1 evo(l,f)=L1.

Remark 6.1.2 Notice that our definition of a cpo-enriched CCC involves the
cartesian closed structure of the category: thus in our terminology a cpo-enriched
CCC is not just a cpo-enriched category which happens to be cartesian closed.

Lemma 6.1.3 In a cpo-enriched CCC pairing and currying are continuous.

PROOF. We consider the case of currying only (the argument is the same for
pairing). In order to prove A(VA) = V{A(f) | f € A}, it is enough to check
that VV{A([f) | f € A} satisfies the characterizing equation:

evo (\VHA(S) | f € A} xid) = \/ A,

The monotonicity of A guarantees that {A(f) | f € A} is directed. Hence by
continuity of composition (and pairing) we have

evo(\/{/\(f) |f€A}><id):\/{evo(A(f) ><id)|f€A}:\/A.

The following definition was first given by Berry [Ber79].

Definition 6.1.4 (least fixpoint model) A least fizpoint model is a cpo-enriched
cartesian closed category where Q0 and Y are interpreted as follows:

[0 = L
YT = VIM.ral

where M™Q = M(---(MQ)---), n times.

The fact that the sequence of the [Af.f"§2]’s is increasing follows from the as-
sumptions of monotonicity in the definition of cpo-enriched CCC.

Proposition 6.1.5 In a least fixpoint model, the (Y) rule is valid.

ProoF. Exploiting the continuity of the composition and pairing, we have

[[YM]] = €evo <Vn<w [[)\ffnﬂ]], [[M]]> = \/n<w|IMnQ]]
[MYM)] =evo([M]Voeo [M"Q]) =V, [M"Q].
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Proposition 6.1.6 Cpo is a cpo-enriched CCC. In particular, for any cpo D,
Fiz: (D — D) — D, defined by Fix(f) =V, e, f*(L) is continuous.

Exercise 6.1.7 Consider the extension of the simply typed A-caleulus with a collection
of constants Y, (n > 0) and rules:

(V) Yopt M — M(Y, M).

Prove that the system obtained by adding these rules to the B-rule is strongly normal-
izing. Hint: adapt the proof of theorem 2.2.9.

Exercise 6.1.8 Let C be a cpo-enriched cartesian-closed category such that currying
is strict, i.e. A(L) = L. Adapt the definition of Béhm tree given in chapter 2 to the
AY -calculus by setting w(AZ.Y My ... M,) =Q (p > 1). Show that the following holds:

[M] = \/{lw(N)] | M =" N}

Hints: (1) Extend the meaning function by setting: [Y,] = [Af.f"Q]. (2) Show that
IM] =V ,c.[M,], where M, is obtained from M by replacing all its occurrences of Y
by Y,. (3) Consider the normal form Ny of M,. Show that it is the result of replacing
all the occurrences of Y by Yy in a reduct N of M, and use the strictness assumptions

to show [No] = [w(N)].

Exercise 6.1.9 A class of continuous functionals Fp : (D — D) — D, ranging over
all cpo’s D, is called a fizpoint operator if Fp(f) is a fizpoint of f, for any D and
f:D — D. Itis called moreover uniform if the following holds:

Vf:D—-D,g:E—FEh:D—FE (hof=goh= h(Fp(f))=Fplg))

where h is supposed strict. Show that Fix is the unique uniform fizpoint operator.

6.2 Fixpoint Induction

A key motivation for denotational semantics lies in its applications to the proof
of properties of programs. An important tool is fixpoint induction. If we want
to show that a property P holds of a term Y M, then, knowing that the meaning
of Y'M is the lub of the sequence L, F'(L), F(F(L)),..., where I is the meaning

of M, it is enough to check the following properties.

e The meaning of property P, say [P], is a sub-dcpo of the domain D associated
to the type of Y M: in full, [P] is closed under limits of non-decreasing chains;
such predicates are called inclusive.

e Both properties L € [P] and Va(x € [P] = F(x) € [P]) hold.
This is summarised by the following inference rule, known as fixpoint induc-

tion principle

P inclusive L € P Ya(x € P= F(z) € P)
Fie(F) € P
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where P C D, for a given cpo D, and F': D — D is continuous. Such an inference
rule is a step towards mechanizing proofs of programs. What is needed next is a
formal theory for proving that some predicates are inclusive (see exercise 6.2.2).

Remark 6.2.1 The sufficiency of the above conditions, hence the validity of
fixpoint induction, follows immediately from the Peano induction principle on
natural numbers. Thus, mathematically speaking, it is not strictly necessary to
Jormulate the above principle explicitly. One can prove L € [P], F(L) € [P],
F(F(L)) € [P],--. and use Peano induction to conclude (if [P] is inclusive).
The interest of stating an explicit induction principle is to enable one: (1) to
write lighter proofs, as F(x) is easier to write than F(F(...(L)...)); and (2) to
insert it in a mechanical proof-checker like LCF [Pau87].

Exercise 6.2.2 (1) Let D be a cpo. Show that O and D are inclusive predicates in D.
Show that + = x and x < y are inclusive in D x D. (2) Let D and E be cpo’s and
f: D — E be continuous. Let R be inclusive in E. Show that f~Y(R) is inclusive.
(3) Let D be a cpo and P, Q be inclusive in D. Then show that PN Q and P U Q are
inclusive. (4) Let D and E be cpo’s and R be inclusive on D X E in its first argument.
Show that the predicate ¥y (2Ry) is inclusive on D. (5) Let D and E be dcpo’s and
P, Q be inclusive in D, E respectively. Show that P x Q is inclusive in D X E, and that
P — Q is inclusive in D — F, where P — Q={f:D— F|¥YdeP f(d) € Q}.

As an illustration, we carry in some detail the proof of the following propo-
sition, due to Bekié¢, which shows that n-ary fixpoints can be computed using
unary fixpoints.

Proposition 6.2.3 Let D, FE be cpo’sand f: Dx E — D, g: Dx FE — F
be continuous. Let (xo,y0) be the least fixpoint of (f,g). Let x; be the least
fizpoint of f o (id,h), where h = Fixz o A(g) : D — F (hence h(xy) is such that
g(x1,h(x1)) = h(x1)). Then xo = x1 and yo = h(zy).

PROOF. (20,y0) < (21, h(z1)) : Define the predicate Q(u,v)as (u,v) < (a1, h(z1)).
This is an inclusive predicate (see exercise 6.2.2). Thus we may start the fixpoint
induction engine. The base case is obvious. Suppose that (u,v) < (2, h(z1)).
We want to show that f(u,v) < 7 and g(u,v) < h(z1). By monotonicity we
have f(u,v) < f(xy,h(z1)) and g(u,v) < g(x1, h(z1)). But f(zg, h(zr)) = a4
since x; is a fixpoint of f o (id, h). This settles the inequality f(u,v) < x;. By
definition of h, we have h(x1) = g(x1,h(21)), which settles the other inequality.

(z1,h(21)) < (20,y0) : We define a second predicate R(u) as (u, h(u)) < (20, Yo)-
We leave the base case aside for the moment, and suppose that R(u) holds. We
have to prove R(f(u,h(u))). We have f(u,h(u))) < f(zo,y0) = xo by mono-

tonicity, and by definition of (x¢,yo). We need a little more work to obtain
h(f(u,h(w))) < yo. It is enough to check h(zg) < yo. By definition of h,y, we
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n ) (n €w)
i, ff Do

suce, pred L1

zero? L= 0

if then else 10—t — 01—
if then else :0—0—0—o0

Q Lo for all o
Y (0—0)—0c forallo

Figure 6.1: The constants of PCF

have h(zo) = g(xo, h(z0)), and yo = g(zo,y0). We define a third inclusive pred-
icate S(u) as u < yo, remembering that h(xzg) is the least fixpoint of A(g)(xo).
The base case is obvious. Suppose that u < yo. Then g(zo,u) < g(x0,y0) = Yo
Hence fixpoint induction with respect to S allows us to conclude h(zo) < yo.
We are left with the base case with respect to R: (L, h(L)) < (20,y0) follows a
fortiori from h(xg) < yo. |

Let us shortly analyse this proof: we have focused in turn on each of the
least fixpoint operators involved in the statement, exploiting just the fact that
the other least fixpoints are fixpoints.

6.3 The Programming Language PCF

Scott [Sco93], and then Plotkin [P1o77], introduced a particular simply typed AY'-
calculus, PCF, which has become a quite popular language in studies of semantics.
It has two basic types: the type ¢ of natural numbers, and the type o of booleans.
Its set of constants is given in figure 6.1.The language PCF is interpreted in
Cpo as specified in figure 6.2 (for the interpretation of Q and Y, cf. definition
6.1.4). We use the same notation for the constants and for their interpretation,
to simplify notation. This interpretation is called the continuous model of PCF.
More generally, we define the following notion of standard model.

Definition 6.3.1 (standard) Let C be a least fixpoint model. If we interpret ¢
and o by objects D* and D° such that C[1, D'] and C[1, D°] are (order-isomorphic)
to w, and B, if the basic constants are interpreted as in figure 6.2, and if the
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D°=B, where B, = {L,tt, ff}
D'=w, flat domain on natural numbers
D7 = D7 =0 DT exponent in Cpo

suce(x) = L ife=1 red(z) = L ifz=lorz=0
S e+l ifa# L P "] z—1 otherwise

1 ifa=1 1L ifa=1
zero?(z) =<« tt ifax =0 if ® thenyelse z=< y ifa=1tt
ff otherwise z fa=ff

Figure 6.2: Interpretation of Pcr in Cpo

first-order constants behave functionally as specified in figure 6.2 (replacing, say,
suce(x) by ev o (suce,x)), then we say that we have a standard model of PCF.

Recall that if C has enough points, then the model is called extensional (cf.
definition 4.5.4).

Definition 6.3.2 (order-extensional) Let C, D', and D° be as in definition
6.3.1. Suppose moreover that C has enough points and that the order between
the morphisms is the pointwise ordering, like in Cpo. Then the model is called
order-extensional.

Operational semantics of PCF. We equip PCF with an operational semantics
which is adequately modelled by any standard model. It is described in figure
6.3 by means of a deterministic evaluation relation —,,.

Exercise 6.3.3 Let add; =Y (A fxy.if zero?(x) then y else succ(f(pred(z))y)). Com-
pute add;43 using the rules in figure 6.2.

Exercise 6.3.4 [Imitate the techniques of chapter 2 to establish that the rewriting sys-
tem — specified by the eight axioms of figure 6.2 (applied in any context) is confluent,
and that if M —* N and N is a normal form, then M —7, N. Hint: prove suitable
versions of the standardisation and Church-Rosser theorems presented in chapter 2.

Next we investigate the relationships between the denotational and the oper-
ational semantics of PCF.



