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Figure 	
�� Operational semantics for Pcf
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De�nition ����� �Pcf program� We call programs the terms of Pcf which
are closed and of basic type�

For example� ��x�x�� and add l � � �cf
 exercise 	
�
�� are programs


Theorem ����� �adequacy� Any standard model C of Pcf is adequate� i�e��
for all programs of type � �and similarly for type o��

��n P ��
op n�� ��P �� � n�

Proof
 ��� Follows by soundness of the continuous model


��� The key idea is to decompose the problem into two subproblems� one which
will be proved by induction on types� the other by induction on terms
 We use
the notation of section �
�� and write D� � C���D� �
 The induction on types
comes into play by a de�nition of a family of relations R� � D��PCF o

� � for each
type �� where PCF o

� is the set of closed terms of type �
 Here is the de�nition
of these �logical�like� relations �Ro is analogous to R� ��

R� � f�x�M� j x � � or �x � n and M ��
op n�g

R��� � f�f�M� j � e�N �eR� N � ev 	 hf� ei R� MN�g �

The statement is a part of the following claim
 For each provable judgement
x� � ��� � � � � xn � �n 
 M � �� for each n�tuple �d�� N��� � � � � �dn� Nn� such that
di R�i Ni for i � �� � � � � n� we have

���x � �� 
M �� 	 hd�� � � � � dni R
� M �N��x�� � � � � Nn�xn��

We set M � � M �N��x�� � � � � Nn�xn�� etc� � � We proceed with the simplest cases
�rst


M � xi� Then ��M �� 	 hd�� � � � � dni � di� and M �N��x�� � � � � Nn�xn� � Ni� hence
the sought result is di R�i Ni� which is among the assumptions


M � NQ� By induction ��N �� 	 hd�� � � � � dniR��� N � and ��Q��	 hd�� � � � � dni R� Q�

By de�nition of R��� � ev 	 h��N �� 	 hd�� � � � � dni� ��Q�� 	 hd�� � � � � dnii R� N �Q�� i
e

��M �� 	 hd�� � � � � dni R� M �


M � �x�Q� We have to show� for each dR� N �

ev 	 h��M �� 	 hd�� � � � � dni� di R
� M �N i�e� ��Q�� 	 hd�� � � � � dn� di R

� ��x�Q��N�

By induction we have

��Q�� 	 hd�� � � � � dn� di R
� Q�N��x�� � � � � Nn�xn� N�x��
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Since ��x�Q��N �op Q�N��x�� � � � � Nn�xn� N�x�� we can conclude provided the
following property holds� for all ��

�Q�� f R� M and M � �op M � f R� M ��

M � n� In this case� nR� M holds trivially
 Similarly for tt and � 


M � succ� Let dR� P 
 We have to show ev 	 hsucc� diR� succ�P �
 There are two
cases�

d � � � Then ev 	 hsucc� di � ev 	 hsucc��i � �
d � n � Then ev 	 hsucc� di � n� � �

In both cases ev 	 hsucc� di R� succ�P �
 The reasoning is similar for pred� zero��
and if then else 


M � Y � We have to show ��Y ��R������� Y � that is� ev 	 h��Y ��� gi R� YM � for all
g R��� M 
 We assume the following properties �cf
 inclusive predicates�� for all
��

�Q�� �R� M
�Q�� ffngn�� non decreasing implies ��n fn R� M�� �

W
n�� fn�R

� M�

By �Q��� the conclusion follows if we show�

ev 	 h���f�fn���� gi R� YM �for all n��

We set dn � ev 	 h���f�fn���� gi
 Since dn � ��fn���	 g� we have dn�� � ev 	 hg� dni
for all n
 Therefore� we only have to show�

�
 d� R� YM � Since d� � ����� 	 g� this follows from �Q�� and from the left
strictness of composition



 �d R� YM� � �ev 	 hg� di R� YM�� Since g R��� M by assumption� we
have ev 	 hg� di R� M�Y M�� and the conclusion then follows by �Q��


Properties �Q�� and �Q�� are obvious at basic types
 For a type � � � �
�Q�� follows by induction from the inference� �M � �op M� � �M �N �op MN�
and �Q�� follows from the strictness equation ev 	 h�� di � �
 �Q�� follows at
basic types from the fact that non�increasing sequences are stationary in a �at
domain� and at functional types from the preservation of limits by continuity

This completes the proof of the claim
 �

��� The Full Abstraction Problem for Pcf

In general� given a programming language� the speci�cation of the operational
semantics is given in two steps�
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�
 Evaluation� a collection of programs is de�ned� usually a collection of closed
terms� on which a partial relation of evaluation is de�ned
 The evaluation
is intended to describe the dynamic evolution of a program while running
on an abstract machine



 Observation� a collection of admissible observations is given
 These obser�
vations represent the only mean to record the behavior of the evaluation of
a program


In this fashion� an observational equivalence can be de�ned on arbitrary terms
M and N as follows� M is observationally equivalent to N if and only if whenever
M and N can be plugged into a piece of code P � so to form correct programs
P �M � and P �N �� then M and N are not separable �or distinguishable� by any
legal observation
 On the other hand any interpretation of a programming lan�
guage provides a theory of program equivalence
 How does this theory compare
to observational equivalence� We will say that an interpretation �or a model� is
adequate whenever it provides us with a theory of equivalence which is contained
in the observational equivalence
 Moreover we call an adequate model �equation�
ally� fully abstract if the equivalence induced by the model coincides with the
observational equivalence

In this section we discuss the situation for Pcf
 We have de�ned the programs

as the closed terms of base type
 We have de�ned an evaluation relation �op

What can be observed of a program is its convergence to a natural number or
to a boolean value
 The principal reason for focusing on programs is that they
lead to observable results
 This stands in contrast with expressions like �x�x�
which are just code� and are not evaluated by �op unless they are applied to an
argument� or more generally unless they are plugged into a program context
 A
program context for a Pcf term is a context C �cf
 de�nition 
�
	� such that
C�M � is a program


De�nition ����� �observational preorder� We de�ne a preorder �obs� called
observational preorder� between Pcf terms M�N of the same type� as follows�

M �obs N � �C �C�M ���
op c � C�N ���

op c�

where C ranges over all the contexts which are program contexts for both M and
N � and where c ��� n jj tt jj � �

Remark ����	 By exercise ����	 and by theorem ������ equivalent de�nitions for
�obs are�

M �obs N � �C program context �C�M ��� c � C�N ��� c�
M �obs N � �C program context ���C�M ���� ��C�N ���� �
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De�nition ����� �fully abstract� A cpo
enriched CCC is said to yield an in

equationally fully abstract �fully abstract for short� model of Pcf if the following
equivalence holds for any Pcf terms of the same type�

M �obs N � ��M �� � ��N ���

It is a consequence of the adequacy theorem that the direction ��� holds for
the continuous model �and in fact for any standard model�
 But the converse
direction does not hold for the continuous model
 There are several proofs of this
negative result� all based on a particular continuous function por � B��B� � B�

de�ned by�

por�x� y� �

���
��

tt if x � tt or y � tt
� if x � � and y � �
� otherwise �

�� Plotkin �rst proved that the continuous model is not fully abstract
 He gave
the following terms�

M� � �g�if P� then if P� then if P� then � else tt else � else �
M� � �g�if P� then if P� then if P� then � else � else � else �

where P� � g tt �� P� � g � tt � and P� � g � � 
 These terms are designed in
such a way that

tt � ��M����por� �� ��M����por� � � �

On the other hand M� �obs M�
 This is proved thanks to two key syntactic
results�

�a� Milner�s context lemma �Mil���
 This lemma� proposed as exercise 	
�
��
states that in the de�nition of �obs it is enough to let C range over so�
called applicative contexts� of the form � �N� � � �Np
 Applying this lemma
to M��M�� we only have to consider contexts � �N 
 By the de�nition of
�op� we have for i � �� �

�Mi�N ��
op c�

���
��

N tt ���
op tt

N � tt ��
op tt

N � � ��
op � �

�b� The second syntactic result that we use is that there is no N such that

N tt ���
op tt N � tt ��

op tt N � � ��
op � �

This result is a consequence of the following more general result
 Pcf is a
sequential language� in the following sense� If C is a closed program context
with several holes� if

��
 C��� � � � ����� � � and �M�� � � � �Mn ��
 C�M�� � � � �Mn��� �� �
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then there exists an i called sequentiality index� such that

�N�� � � � � Ni��� Ni��� � � � � Nn ��
 C�N�� � � � � Ni����� Ni��� � � � � Nn��� � � �

This result is an easy consequence of �the Pcf version of� Berry�s syntactic
sequentiality theorem 
�
� �see exercise 	
�
�� and of the adequacy theo�
rem 	
�
	
 Here� it is applied to C � N � �� �� observing that we can use
N � � ��

op � to deduce that there is no c such that M����
op c


Another way to prove the non�existence ofN is by means of logical relations

We have treated essentially the same example in section �
�


� Milner has shown that in an extensional standard fully abstract model of Pcf�
the interpretations of all types are algebraic� and their compact elements must
be de�nable� i
e
 the meaning of some closed term
 This is called the de�nability
theorem �for a proof� we refer to �Cur�	��
 One can use this result to cut down
the path followed in ��� and go directly to step �b�
 In reality� there is no cut
down at all� since the proof of the de�nability theorem uses the context lemma�
and exploits terms in the style of M��M�


Exercise ����� �context lemma� � Let M and M � be two closed Pcf terms of the
same type such that� for all closed terms N�� � � � � Nn such that MN� � � �Nn is of basic
type� the following holds�

MN� � � �Nn �
�
op c � M �N� � � �Nn �

�
op c�

Show thatM �obs M �� Hint� proceed by induction on �length of the reduction C�M ���
op

c� size of C�M ���

Exercise ����� �syntactic sequentiality for Pcf� Prove the Pcf version of theo�
rem ����	� and show the corresponding corollary along the lines of exercise ������

The converse of the de�nability theorem also holds� and is easy to prove


Proposition ����� If C is an order
extensional standard model of Pcf in which
all cpo�s interpreting all types are algebraic and are such that all their compact
elements are de�nable� then C is fully abstract�

Proof
 Suppose that M �obs M
�
 It is enough to check ��M ����d� � ��M �����d� for

all compact �d � d�    dn
 Then the conclusion follows using contexts of the form
� �N�   Nn
 �

Exercise ����� �uniqueness� Show� as a consequence of proposition 
���
 and of the
de�nability theorem� that all order�extensional standard models of Pcf are isomorphic
�in a suitable sense��
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In fact� this �unique� fully abstract model exists� and was �rst constructed by
Milner as a quotient of the term model of Pcf
 Since then� a lot of e�orts have
been made to provide more �semantic� constructions of this model �this is known
as the full abstraction problem for Pcf�
 In particular� the non�de�nability of
por prompted the study of sequentiality� which is the subject of section 	
� and
of chapter ��
 A weaker notion� stability� appeared on the way� and is the subject
of chapter �


Remark ����
 Gunter has proposed a simple semantic proof of M� �obs M�� In
the stable model of Pcf� to be de�ned in chapter �� we have ��M��� � ��M���� In
the stable model� one retains only functions which satisfy the following property
�speci�ed here for a type like o � o� o��

�x f�x� �� � � � y minimum �y � x and f�y� �� ���

In particular� por is rejected �take x � �tt � tt�� then ��� tt� and �tt ��� are both
minimal� but there is no minimum�� and this is why we have ��M��� � ��M���� Now�
because the direction � holds for the stable model� which is standard� we have
M� �obs M��

Pcf B�ohm trees� In the rest of this section� we sketch a construction of the
fully abstract model of Pcf� based on a notion of B�ohm tree for Pcf� and due
independently to Hyland and Ong� and to Abramsky� Jagadeesan and Malacaria
�HO��� AJM���
 Often� our de�nitions are given for types built over � only
 The
extension of the constructions to the full Pcf type hierarchy is straightforward


De�nition ����� �Pcf B�ohm tree� We de�ne the set T raw of raw Pcf B�ohm
trees� and the auxiliary set Braw as follows �T ranges over T raw � and B ranges
over Braw��

T ��� ��x � ���B

B ��� � jj n jj case x�T �F � �n � ��
F � � 	 Braw �dom�F � �nite� �

We endow T raw with a subtree ordering� which is the least congruence satisfying�

� � T �for any T �
F �n� � � F �n� � F ��n� for any n � �

F � F �

The set T raw can be viewed as a subset of the set of �raw� terms in ��C�� with

C � f�� n� caseX j n � ��X ��n �g

taking casedom�F � to encode ��y�case xT�   Tn �F �� The constants are typed as
follows�


 � � � 
 n � � 
 caseX � ��X���
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There are no constants 
 � � � at non
basic types� A correctly typed raw Pcf

B�ohm tree is called a �nite B�ohm tree� The sets of correctly typed terms of T raw

and Braw are denoted T and B� We denote with T � the ideal completion of
�T ��� �cf� proposition ������� We use P�Q to range over T�� while S� T�B
always denote �nite trees� The completion is done at every type� and we write
� 
 P � � whenever � 
 S � � for any �nite approximation of P �

Next we de�ne a category whose morphisms are trees of T �


De�nition ����� The category BTPcf has the following objects and mor

phisms�

� The objects of BTPcf are the sequences �� of Pcf types�

� BTPcf���� �� �� with �� � ��� � � � � �n� consists of a vector of trees �x � �� 
 Pi � �i
in T �� for i � �� � � � � n�

Given �� and � in the list ��� we de�ne a projection morphism �x � �� 
 
���� � � by
induction on � � �� �    � �p � �� as follows�


���� � ��y� case x�
������    �
����p� �id�

where id is the identity function mapping n � � to 
 n � �� If �� � ��� � � � � �n�
then the identity morphism id � �� � �� is de�ned by� id � 
������ � � � � 
����n �

Remark ������ The projection and identity morphisms are in�nite trees� due
to the presence of the identity function �n�n in their de�nition� which introduces
in�nite horizontal branching�

In order to de�ne composition� we proceed in two stages
 First� we de�ne
the composition of �nite morphisms� i
e
 �nite trees
 Given �T � BTPcf����

����

and S � BTPcf�
���� ����� we form ���x�S��T � and reduce it to its normal form R�

applying �� as well as the following rules�

��� case n �F ��

�
F �n� if F �n� �
� otherwise

��� case � �F �� �
�� case �case M �F �� �G�� case M �H� �

where H has the same domain as F and H�n� � case F �n� �G�
 We set

S 	 ��T � � R�

Finally� composition is extended to in�nite trees by continuity�

P 	 ��Q� �
�
fS 	 ��T � j S � P� �T � �Qg�
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We now have to justify all this carefully
 We have to show that�

�� R always exists�
� R � T �

�� The lub in the de�nition of P 	 ��Q� exists�
�� composition satis�es the monoid laws


As for ���� we rely on the following theorem due to Breazu�Tannen and Gallier
�BTG���


Theorem �����	 Let ��C� be a simply
typed � �
calculus with constants whose
type has rank at most �� Let R be a set of strongly normalising rewriting rules
for �rst
order terms written with the �uncurried� signature C� Then the rewriting
system � �R �with the curried version of R� over ��C� is strongly normalizing�

We instantiate R as ��� � ��� � ��


Proposition ������ The system ��� � ��� � ��� considered as a �rst
order
rewriting system� is strongly normalizing�

Proof
 We use a technique inspired from exercise 

�
 We call � the set
of �rst�order terms built over the uncurried signature C � f�� n� caseX j n �
��X ��n �g
 We de�ne a subset of  de�ned as the least set closed under the
following rules� where F �  stands for �n �F �n� �� F �n� �  ��

�� s �  if s � �� n� or x�
� case s �F � �  if s � �� n� or x and if F �  �
�� case �case s �F �� �G� �  if G �  and if case s �H� �  �

where H is as in rule ���

We claim that for all s and F � if s � � and G �  � then case s �G� �  
 We
prove this by induction on the size of s only�

� If s � �� n� or x� then case s �G� �  by ��


� If s � case t �F �� then we have to prove case t �H� �  � which holds by
induction� provided we prove �rst H �  
 But this holds by induction too�
since H�n� � case F �n� �G�


The claim a fortiori implies that  is closed under case � �� hence  � �
 The
interest of the presentation of � as  is that we can prove strong normalisation
of s by induction on the proof of s �  � as follows�

��� Then s is in normal form


�This theorem is actually proved in �BTG��� for the polymorphic ��calculus�
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�� Then we know by induction that F �n� is strongly normalizing whenever
F �n� is de�ned� and we conclude by noticing that a reduct of s is either
case s �F �� �where F pointwise reduces to F ��� or �� or t� where t is a reduct
of F �n� for some n


��� We know by induction that G is pointwise strongly normalizing� and that
case s �H� is strongly normalizing
 In particular� s is strongly normalizing�
and� by the de�nition of H� F is pointwise strongly normalizing
 Therefore
an in�nite reduction from case �case s �F �� �G� can only be of the form

case �case s �F �� �G��� case �case s� �F ��� �G��� case s� �H ��

where H � is de�ned from F � and G� as H is de�ned from F and G
 It
follows that case s� �H �� is a reduct of case s �H�� and is therefore strongly
normalizing
 �

Exercise ������ � Prove directly that ���� is strongly normalizing� by adapting the
proof of theorem 	����� Hint� prove by contradiction that the set of ���� strongly
normalisable terms is closed under case ��� exploiting the strong normalisation of �
alone� and proposition 
����	� the two kinds of reduction �do not mix��

To establish that R � T � we de�ne a subset ! of ��C� �with C as above��
within which all the reductions which interest us take place
 The syntax of raw
terms of ! is de�ned as follows�

T ��� ��x�B jj ���x�T ��S �length��S� � length��x��
B ��� � jj n jj case A �F � �n � ��

A ��� xT�   Tn jj B jj ���x�B��S �length��S� � length��x��
F � � 	 B �dom�F � �nite� �

We de�ne the following multiple version �� of ��reduction�

���� ���x�T ��S� T ��S��x��

The following properties are easily checked�

� The set ! is stable under the reductions ��� � and �


� The ���� normal form of a term of ! is a ����normal form� and belongs to
T 


Hence R � T 
 The fact that P 	 ��Q� is well�de�ned is a consequence of the
following property� which is easy to check� if S � S� and if S � T � then T � T ��
where� is ���� reduction
 It follows from the claim that fS 	 ��T � j S � P� �T �
�Qg is directed
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We now show that the monoid laws hold
 We examine associativity �rst
 By
de�nition� �S 	 �T�   Tn�� 	 ��T �� is the normal form of

���x�����x�S�T�   Tn��T �

while S 	 �T� 	 ��T ��   Tn 	 ��T ��� is the normal form of

���x�S������x��T���T ��    ����x��Tn��T ���

and these two terms are �� equal to ���x�S��T���T ���x��   Tn��T ���x���� Hence asso�
ciativity holds for �nite trees� which implies the associativity for in�nite trees by
continuity

As for the identity laws� consider� say� S 	 id 
 We construct by induction

on S a �nite subtree idS � id such that S 	 idS � S
 We only examine the
essential case S � case xi �T �F �
 We choose idS �least� such that idT � idS for

each T � �T and such that the i�th component of idS has the form case �G� with
dom�F � � dom�G� �and of course G�n� � n whenever G�n� ��
 One reasons
similarly for the other identity law

The product structure is trivial by construction� since the morphisms of the

category are vectors� products of objects and pairing of arrows are their concate�
nations� while projection morphisms are de�ned with the help of the morphisms

����
 Finally� the exponent structure is also obvious
 We set

�� � ���    �n� � ��� � ��    ��� �n�

and use multiple abstraction to de�ne currying


Theorem ������ The category BTPcf is a standard model of Pcf� in which
all compact elements of the interpretations of all types are de�nable �by terms
without Y ��

Proof hint
 We have already sketched the proof that BTPcf is a CCC
 The
homsets are obviously cpo�s� and it is easy to check thatBTPcf is a cpo�enriched
CCC
 The only closed trees of basic type are the trees n and �
 ThePcf constants
are given their obvious interpretation� e
g
 ��succ�� � �x�case x �succ�� where the
second occurrence of succ is the usual successor function on �
 The fact that
all compact elements are de�nable is tedious� but easy� to verify� with arguments
similar to the ones we have used to justify the identity laws
 For example� the
tree case x �F � where F ��� � � and F ��� � � is de�ned by

if pred x then � else �if pred�pred�pred x�� then � else ���

�
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We have thus obtained a standard model whose compact elements are all de�
�nable
 What we lack is extensionality
 By extensional collapse �cf
 exercise
�
�
	�� we can obtain a category �BTPcf� with enough points
 It remains to
see whether this category is cpo�enriched
 It turns out that it has enough limits
to make it possible to interpret Y and the �Y ��rule� and thus to obtain a fully
abstract model of Pcf because the category �BTPcf� inherits fromBTPcf the
property that all its �compact� elements are de�nable �see exercises 	
�
�	 and
	
�
���
 However �BTPcf� is �a priori� not the unique order�extensional model
of Pcf �cf
 exercise 	
�
��
 To obtain the latter� we go through a slightly more
involved construction
 We build a logical�like collapse relation over compact Pcf
B�ohm trees� and we then perform an ideal completion of the quotient
 This guar�
antees by construction that the resulting category �BTPcf�

� is cpo�enriched

However there is still a subtle point in showing that extensionality is preserved
by the completion
 For this� we have to resort to �nite projections �cf
 section
�
�
 We give more details in exercises 	
�
�� and 	
�
��


Exercise ������ Let C be a cpo�enriched CCC� and let �C� be its extensional collapse
�cf� exercise ����
�� whose homsets are ordered pointwise� ��� Show that �C� is rational
�in the terminology of �AJM����� i�e� satis�es the following properties� ��� all homsets
have a �� ��� for any A�B and any f � A � B � A� the sequence ffngn�� de�ned
by f� � � and fk�� � f � hid � fki has a lub� �	� those lub�s are preserved by left
and right composition� ��� Show that if C is a standard model of Pcf� then �C� is an
order�extensional model of Pcf�

Exercise ������ Show that �BTPcf� is a fully abstract model of Pcf� Hints� use
exercise 
����
� and adapt the proof of proposition 
���
 to the rational case�

Exercise ������ Let C be a cpo�enriched CCC whose homsets are all algebraic� and
which satis�es�

�� Compact morphisms are closed under composition� currying� and uncurrying�

�� For any compact f there exists a compact morphism idf � f such that f � idf �
idf � f � f �

	� For any type �� interpreted by D�� there exists a sequence of compact morphisms
�D�

n � C�D�� D�� such that
W
n�� �

D�

n � id and �for all �� �� �D���

n � ���fx�g�f�h�x������
h�D�

n � �D�

n i�
�� Moreover� at base types� f�D�

n � h j h � �� D	g is �nite� for all n�

De�ne a logical�like relation R on compact morphisms �hence such that R� �
K�D��� where D� is the interpretation of � and where A � C��� A��� by setting

R	 � f�d� d� j d � K�D	�g

and by extending R to all types as in de�nition ������ De�ne a category �C�� whose
objects are the types and whose homsets are the ideal completions of the sets of R���

equivalence classes �in the terminology of de�nition ������� ordered pointwise� Show
that �C�� is an order�extensional cpo�enriched CCC� and that there is a functor from
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C to �C�� which preserves the cartesian closed structure� Show that the functor maps
compact morphisms surjectively onto compact morphisms� Hint� Show that ��n� has a
�nite image �cf� proof of proposition ������� and exploit the fact that for any compact
f there exists n such that �n � f � f � by ��� and �	��

Exercise �����	 Show that BTPcf satis�es the conditions stated in exercise 
������
and that �BTPcf�

� is the unique fully abstract model of exercise 
�����

Remark ����	 What we have done to construct the fully abstract model can
be summarised as� �complete� then quotient �the base�� and �nally complete��
Originally� Milner had not gone through the �rst of these steps� An advantage
of the presentation chosen here is that� ��� it is reasonable �and simpler than
Milner�s original construction� to stop at the second stage �exercise ��	����� ��
it singles out some general conditions to obtain an extensional least �xpoint model
out of least �xpoint model�

The category BTPcf is a full subcategory of two categories of games� con�
structed recently by Hyland and Ong� and by Abramsky� Jagadeesan� and Malaca�
ria �HO��� AJM���
 The striking point about these categories of games is that
their construction does not refer to the syntax

It is presently unknown whether the fully abstract model of Pcf can be

e�ectively presented� i
e
 whether its elements can be recursively enumerated
 A
related open problem is whether the observational equivalence is decidable for
Finitary Pcf
 A positive answer for this problem would follow from a positive
answer to the de�nability problem for Finitary Pcf �cf
 section �
��


Exercise ����
� Using Statman�s ��section theorem ������ show that for any simply
typed ��terms M�N � considered as Pcf terms� M �obs N i� M �
� N � Hint� proceed
as in the proof of Friedman�s theorem via the ��section theorem�

��� Towards Sequentiality

We have already pointed out that ��calculus is sequential �theorem 
�
��
 In
section �
�� we have exhibited an example of an inherently parallel function which
is not de�nable in a ��nitary version of� Pcf
 In this section� we give further
evidence of the sequential nature of Pcf
 We de�ne sequential functions in a
restricted setting� which will be later extended in chapter ��
 We show that
the compact de�nable �rst�order functions of the continuous model of Pcf are
exactly the �compact� �rst�order sequential functions


De�nition ����� �sequential function �Vuillemin�� LetD� D�� � � � �Dn be �at
cpo�s� and let f � D� �    � Dn � D be monotonic �hence continuous�� Let
x � �x�� � � � � xn� � D� �    �Dn� and suppose that f�x� � �� We say that f is
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sequential at x if either f�z� � � for all z � x� or there exists i such that xi � �
and

� y � �y�� � � � � yn� �y � x and f�y� �� ��� yi �� ��

We say then that i is a sequentiality index for f at x�

The above de�nition goes back to �Vui���
 The following easy proposition
o�ers an alternative de�nition of sequential functions over �at cpo�s


Proposition ����	 Let D � X� be a �at cpo� The sets of sequential functions
from products of �at domains to D are alternatively de�ned as follows� by induc

tion on their arity n�

Arity � � Any monotonic function f � D � D is sequential�

Arity n �  � Given n� i � n� X � �� and a set

ffx � D� �   Di�� �Di��    �Dn � D j x � Xg

then the following function f is sequential�

f�x�� � � � � xi����� xi��� � � � � xn� � �
f�x�� � � � � xi��� x� xi��� � � � � xn� � fx�x�� � � � � xi��� xi��� � � � � xn� �

Moreover� the compact sequential functions are exactly the functions obtained as
above� with X �nite at each induction step�

Proof
 In both directions� the proof goes by induction on the arity
 The two
parts of the statement are proved together
 If f is sequential� then we pick a
sequentiality index i at �� and we de�ne the fx�s by the second equation in
the statement
 They are clearly sequential� hence induction applies to them

If f is compact� X cannot be in�nite� as otherwise f would be the lub of an
in�nite sequence of functions obtained by cutting down X to its �nite subsets

Conversely� let f constructed as in the statement and x such that f�x� � � and
f�z� �� � for some z � x
 There are two cases�

xi � � � Then i is a sequentiality index at x


xi � j �� � � Then j � X and by induction fj has a sequentiality index at
�x�� � � � � xi��� xi��� � � � � xn�� which is a sequentiality index of f at x

If theX�s are all �nite� then the description of f is �nite� from which compactness
follows easily
 �

Exercise ����� Show that the C�logical relations� where C is the set of all the constants
of Pcf�including Y �� are exactly the Sieber sequential relations of de�nition �����
�
Hint� show that at each type �� the set of invariant elements of a Sieber sequential
relation forms an inclusive predicate�
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Hence �compact� sequential functions on �at domains can be described by
sequential �programs�� which can actually be written as Pcf terms� as the fol�
lowing proposition shows


Theorem ����� For a compact �rst
order function f of the continuous model of
Pcf�and more generally for a function from a product of �at domains to a �at
domain�� the following properties are equivalent�

�� f is sequential�

� f is de�nable in the following restriction ��C �� of Pcf �with � of base type��

C � � f�� n� tt �� � pred� zero�� if then else g�

�� f is de�nable in Pcf�

	� f is invariant under all k � �
ary relations Sk�� �k � �� de�ned at ground
type by

�x�� � � � � xk��� � Sk�� � �� j � k xj � �� or �x� � � � � � xk�� �� ����

These relations are special cases of Sieber sequential relations� cf� de�nition
	������ More precisely� Sk�� � Sk��

f������kg�f������k��g�

Proof
 ��� � �� It is easy to check by induction on terms that the functions
de�ned by the restricted syntax are monotonic
 It is also easy to see that the re�
stricted syntax allows to encode all compact sequential functions� as characterised
in proposition 	
�
 �cf
 proof of theorem 	
�
���
 Hence the interpretation func�
tion is a surjection from the restricted syntax to the set of compact �rst�order
sequential functions


��� ��� Obvious by inclusion


���� ��� This follows from lemma �
�
� and from exercise 	
�
�


��� � ��� Suppose that f is not sequential
 Then there exists x � �x�� � � � � xn�
such that�

f�x� � �
J � fj � n j xj � �g �� �
� j � J � yj � �y�j� � � � � ynj� ��� i �� J yij � xi� and yjj � � and f�yj� �� �� �

Without loss of generality� we can assume that J � f�� � � � � kg for some k � �
�and � n�
 We claim that �yi�� � � � � yik� xi� � Sk�� for all i � n
 This follows from
the following easy case analysis


i �� J � then yi� � � � � � yik � xi�
i � J � then yii � ��
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Hence� by invariance� �f�y��� � � � � f�yk�� f�x�� � Sk��� which contradicts the def�
inition of Sk��� since we have assumed f�yj� �� � for all j � k and f�x� � �
 �

We don�t know how to extend this correspondence to higher orders
 Both the
model of sequential algorithms and the strongly stable model� which is built in
chapter �� and section ��
�� respectively� contain non Pcf�de�nable functionals
such as the functionals presented in exercises �
�
�� and �
�
��


Exercise ����� Show that every Pcf de�nable �rst�order function in a standard model
of Pcf is sequential� Hint� given a closed term M � call Mn the term obtained by
replacing Y by �f�fn�� and let Pn be the normal form of Mn� Show that the Pn�s form
a directed set� and exploit this to show that they all contribute to a single sequential
function de�ned as in proposition 
�����



Chapter �

Domain Equations

This chapter presents general techniques for the solution of domain equations
and the representation of domains and functors over a universal domain
 Given
a category of domains C we build the related category Cip �cf
 chapter �� that
has the same objects as C and injection
projection pairs as morphisms �section
�
��
 It turns out that this is a suitable framework for the solution of domain
equations
 The technique is applied in section �
 in order to solve a predicate
equation
 The solution of the predicate equation is used in proving an adequacy
theorem for a simple declarative language with dynamic binding
 The category
of injection�projection pairs is also a suitable framework for the construction of
a universal homogeneous object �section �
��
 The latter is a domain in which
every other domain �not exceeding a certain size� can be embedded
 Once a
universal object U is built� it is possible to represent the collection of domains
as the domain FP�U� of �nitary projections over U � and functors as continuous
functions over FP�U�
 In this way� one obtains a poset�theoretical framework
for the solution of domain equations that is more manageable than the general
categorical one �section �
��


A third approach to the solution of domain equations consists in working with
concrete representations of domains like information systems� event structures�
or concrete data structures �introduced in de�nitions ��

��� �
�
� and ��
�
��
respectively�
 At this level� domain approximation can be modeled by means of
inclusions relating the representing structures� and domain equations can be then
solved as ordinary �xpoint equations
 As in the �nitary projections approach the
solutions obtained are exact solutions �F �D� � D� and not merely F �D� �� D�

This was �rst remarked by Berry in the framework of concrete data structures

We do not detail this approach here �a good reference is �Win����Chapter���

See however exercises ��

�� and ��
�
��


�	�
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��� Domain Equations

One of the earliest problems in denotational semantics was that of building a
model of the untyped ����calculus
 This boils down to the problem of �nding
a non�trivial domain D isomorphic to its functional space D � D �cf
 chapter
��
 Following work by Wand� Smyth and Plotkin �Wan��� SP��� we present
a generalization of the technique proposed by Scott �Sco�� for the solution of
domain equations

An ��chain is a sequence fBn� fngn�� such that fn � Bn � Bn�� for all n
 We

write fn�m � fm��	  	fn for m � n
 The general categorical de�nition of colimit
�cf
 section B
� specializes to ��chains as follows
 A cocone fB� gngn�� of the
��chain fBn� fngn�� is given by an object B� and a sequence fgn � Bn � Bgn��
satisfying gn�� 	 fn � gn for all n
 A cocone fB� gngn�� is a colimit if it is an
initial object in the category of cocones� that is if for any other cocone fC� hngn��
there exists a unique morphism k � B � C such that k 	 gn � hn for all n

Let T � K � K be an endo�functor
 We outline some rather general results

that guarantee the existence of an initial solution for the equation TX �� X
 It
will be shown next that these results can be usefully applied to the solution of
domain equations


De�nition ����� �T �algebra� Let T �K� K be an endo
functor� A T 
algebra
is a morphism � � TA � A� T 
algebras form a category� If � � TA � A
and � � TB � B are T 
algebras then a morphism from � to � is a morphism
f � A� B such that f 	 � � � 	 Tf � �

Lemma ����	 Every initial T 
algebra is an isomorphism�

Proof
 Let � � TA� A be initial
 Then T� � TTA� TA is also a T �algebra
and by initiality there is i � A� TA such that�

i 	 � � T� 	 T i � T �� 	 i� � ��
��

We observe that � is a morphism �of T �algebras� from T� to �
 By composition
and initiality we get � 	 i � id
 By the equation �
� above we derive�

T �� 	 i� � T �id� � id � i 	 � �

So i is the inverse of �
 �

The following proposition will appear natural if one thinks of categories as cpo�s
and of functors as continuous functions


�A stronger notion of T �algebra is given in de�nition B���� in the case T is the functor
component of a monad�
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Proposition ����� Let C be a category with initial object and �
colimits and
T � C � C be a functor that preserves �
colimits� Then there is an initial
T 
algebra�

Proof
 Let � be the initial object
 Consider the uniquely determined mor�
phism z � � � T�
 By iterating T on this diagram we get an ��diagram
D � fT i�� T izgi��
 By assumption there is an ��colimit of D� say C � fA� figi���
satisfying fi � fi�� 	 T iz� for all i

Now consider TC � fTA� Tfigi��
 By assumption TC is an ��colimit of

TD � fTT i�� TT izgi��
 Since we can restrict C to a cocone of TD we have
determined a unique morphism h � TC � C

Moreover� we want to prove that the T �algebra h � TA � A is initial
 This

goes in three steps�

��� Observe that any T �algebra� � � TB � B� gives rise to a cocone fB� gBi gi��
where�

gBi � � 	 T� 	 TT� 	    	 T i��� 	 T izB i � �� zB � �� B �

It is enough to check that gBi�� 	 T
iz � gBi � which follows from � 	 TzB 	 z � zB


�� Any morphism of T �algebras u � �� �� where � � TA� � A� and � � TB �
B� induces a morphism between the related cocones over D� as de�ned in ���

Suppose � 	 Tu � u 	 �
 Then�

u 	 gA
�

i � u 	 � 	 T� 	    	 T i��� 	 T izA�

� � 	 Tu 	 T� 	    	 T i��� 	 T izA�

�   
� � 	 T� 	    	 T i��� 	 T izB
� gBi �

Hence there is at most one T �algebra morphism u � h� �


��� To prove existence we relate morphisms in CoconefT i�� T izgi�� to mor�
phisms of T �algebras
 Given h � TA � A� � � TB � B there is a uniquely
determined morphism l � A � B on the induced cocones over D
 We observe
that T l is a morphism from fTA� Tfigi�� to fTB� TgBi gi�� of cocones over TD

Moreover� � is a morphism from fTB� TgBi gi�� to fB� g

B
i gi�� of cocones over TD

as gBi�� � � 	 TgBi 
 By initiality of TC on TD it follows that l 	 h � � 	 T l
 �

When solving domain equations� we may wish to start the construction of the
��diagram with some morphism z � X � TX� where X is not necessarily an
initial object �cf
 de�nition �
�
	�
 In the poset case this corresponds to looking
for the least �xed point of a function f � D � D� above a given point d such
that d � f�d�
 If D is an ��dcpo� and f is ��continuous then we can compute
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the solution as
W
n�� f

n�d�
 This is the least element of the set fe � D j f�e� �
e and d � eg

We provide a categorical generalization of this fact
 Suppose that the cate�

gory C and the functor F satisfy the conditions in proposition �
�
�
 Given a
morphism z � X � TX we can build an ��diagram D � fT iX�T izgi��
 Using
the hypotheses we can build its colimit fA� figi�� and a morphism h � TA� A

The problem is now to determine in which framework h is initial
 In �rst

approximation it is natural to consider T �algebras � � TB � B together with a
morphism zB � X � B �as B has to be �bigger� than X�
 If we mimic step ���
in the proof of proposition �
�
�� that builds a cocone out of a T �algebra� we see
that we need the following property�

zB � � 	 TzB 	 z ��
�

Generalizing step �� presents a new di"culty
 It appears that a T �algebra mor�
phism l � � � � where � � TB � B� and  � TC � C� should also satisfy�

l 	 zB � zC ��
��

The following categorical formalization shows that this is just an instance of the
problem we have already solved� but with respect to a related category C � X�
and a related functor Tz


De�nition ����� Given a category C and an object X � C� we de�ne the slice
category C � X as follows �there is a related slice category C � X which is
introduced in example B�����

C � X � ff � X � B j B � Cg �C � X��f� g� � fh j h 	 f � gg �

Also given a functor T � C� C� and a morphism z � X � TX we de�ne a new
functor Tz � C � X � C � X as follows�

Tz�f� � Tf 	 z Tz�h� � Th �

Proposition ����� Let C be a category with initial object and �
colimits and
T � C � C be a functor that preserves �
colimits� The category C � X has
initial object and �
colimits� moreover given a morphism z � X � TX� the
functor Tz preserves �
colimits�

Proof hint
 The commutation conditions displayed in equations �
 and �
�
arise as a consequence of the abstract de�nitions
 We show that there is a mor�
phism h � TA� A which is the initial Tz�algebra
 �

Consider the functor �� Cop � C � C� de�ned in every CCC� that given
objects A� B returns the exponent A � B �with the standard extension to
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morphisms�
 We would like to �nd solutions to equations such as X � X � D�
or X � X � X
 We recall from chapter � that there is no way we can look
at �X�X � D� or �X�X � X as �covariant� functors
 We will introduce new
structures that allow us to see the problem as an instance of the one solved by
proposition �
�
�
 In the �rst place we present the notion of injection�projection
pair in an O
category �Wan���


De�nition ����� �O�category� A category C is called an O
category if ��� ev

ery hom
set is an �
directed complete partial order� and �� composition of mor

phisms is a continuous operation with respect to the orders of the hom
sets�

Next we formulate some familiar notions �cf
 chapter �� in the framework of
O�categories


De�nition ����� �retraction� injection� projection� Let C be an O
category�
and let A�B � C�

��� A retraction from A to B is a pair �i� j� such that i � A � B� j � B � A�
j 	 i � idA �we write then A � B��

�� An injection
projection from A to B is a pair �i� j� which is a retraction as
above and such that i 	 j � idB �we write then A�B��

��� A projection on A is a morphism p � A� A such that p 	 p � p and p � idA�

Example ����
 Cpo is an O
category� ordering the morphisms pointwise� We
note that in an injection
projection pair� injection and projection are strict �cf�
de�nition ��	���� functions�

De�nition ����� Let C be an O
category� The category Cip has the same objects
as C and injection
projection pairs as morphisms�

Cip�A�B� � f�i� j� j i � A� B� j � B � A� j 	 i � idA� i 	 j � idBg �

Composition is given by �i� j� 	 �i�� j�� � �i 	 i�� j� 	 j�� identities by �id� id��

Proposition ����� Let C be an O
category� Then�

��� Cip is a category in which all morphisms are monos�

�� If C has a terminal object� if each hom
set C�A�B� has a least element �A�B�
and if composition is left
strict �i�e� f � A � A� implies �A��A�� 	 f � �A�A����
then Cip has an initial object�

Proof
 ��� Suppose� �i� j� 	 �i�� j�� � �i� j� 	 �i��� j���
 That is �i 	 i�� j� 	 j� �
�i 	 i��� j�� 	 j�
 Since i is a mono� i 	 i� � i 	 i�� implies i� � i��
 Therefore� by
proposition �
�
�� j� � j��

�� Let � be the terminal object in C
 We show that � is initial in Cip
 Given

A � C� we �rst show ����A��A��� � Cip��� A�
 On one hand� �A�� 	 ���A � id�
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since � is terminal� on the other hand ���A	�A�� � �A�A � idA since composition
is left strict
 There are no other morphisms in Cip��� A� since �A�� is the unique
element of C�A� ��
 �

We are now in a position to suggest what the category of injection�projection
pairs is good for
 Given a functor F � Cop � C � C� we build a functor F ip �
Cip �Cip � Cip which coincides with F on objects
 In particular the exponent
functor is transformed into a functor which is covariant in both arguments
 We
then observe that F ip�D�D� �� D in Cip implies F �D�D� �� D in C

In other words� we build a related structure� Cip� and we consider a related

problem� F ip�D�D� �� D� whose solutions can be used for the initial problem

The advantage of the related problem is that we only have to deal with covariant
functors and therefore we are in a favorable position to apply proposition �
�
�

Towards this goal� it is natural to look for conditions on C that guarantee that
Cip has ��colimits �we already know that under certain conditions it has an initial
object� as well as for conditions on F that guarantee that F ip is ��cocontinuous�
i
e
 it preserves ��cochains �cf
 section B
�


De�nition ������ �locally continuous� LetC be an O
category and F � Cop�
C� C be a functor �the generalization to several arguments is immediate�� We
say that F is locally monotonic �continuous� if it is monotonic �continuous� w�r�t
the orders on the hom
sets�

Exercise �����
 Verify that the product and exponent functors on Cpo are locally
continuous�

There is a standard technique to transform a covariant�contravariant mono�
tonic functor on C into a covariant functor on Cip


De�nition ������ Given F � Cop � C � C de�ne F ip � Cip � Cip � Cip as
follows�

F ip�c� c�� � F �c� c��
F ip��i� j�� �i�� j��� � �F �j� i��� F �i� j ��� �

Exercise ������ Verify that F ip as de�ned above is a functor�

The following result points out that the ��colimit of fDn� �in� jn�gn�� in Cip

can be derived from the �op�limit of fDn� jngn�� in C
 One often refers to this
situation as limit�colimit coincidence


Theorem ������ �limit�colimit coincidence� Let C be an O
category� If C
has �op
limits then Cip has �
colimits�
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Proof
 Consider an ��chain fDn� fngn�� in Cip where we denote with f�n �
Dn � Dn�� the injection and with f�n � Dn�� � Dn the embedding

Let fC� g�n gn�� � limCfDn� f

�
n gn��
 We show that Dm can be made into a

cone for fDn� f
�
n gn��� for all m
 There is a natural way to go from Dm to Dn via

the morphism hm�n � Dm � Dn which is de�ned as follows�

hm�n �

���
��

id if m � n
f�n 	    	 f

�
m�� if m � n

f�n�� 	    	 f
�
m if m � n �

It is enough to check that f�n 	 hm�n�� � hm�n
 Hence a unique cone morphism
g�m � Dm � C is determined such that g�n 	 g

�
m � hm�n� for all n
 We note that

g�m 	 g
�
m � id� since hm�m � id
 And we observe�

g�m 	 g
�
m � g�m�� 	 f

�
m 	 f

�
m 	 g

�
m�� � g�m�� 	 g

�
m�� �

Hence fg�m 	 g
�
mgm�� is a chain and we write k �

W
m�� g

�
m 	 g

�
m
 We claim that

��� k � id� and �� if fC� gngn�� is a cocone of fD� fngn�� in Cip such thatW
m�� g

�
m 	 g

�
m � id then the cocone is a colimit


��� It is enough to remark that k is a cone endomorphism over fC� g�mgm�� as�

g�m 	 k � g�m 	 �
W
i�� g

�
i 	 g

�
i � � g�m 	 �

W
i�m g�i 	 g

�
i �

�
W
i�m g�m 	 g

�
i 	 g

�
i �

W
i�m hi�m 	 g

�
i � g�m �

�� Let fB� lmgm�� be another cocone
 We de�ne�

p� �
�
m��

l�m 	 g
�
m � C � B p� �

�
m��

g�m 	 l
�
m � B � C �

It is easy to check that p � C � B in Cip
 Moreover p is a morphism of cocones
between fC� gmgm�� and fB� lmgm��
 Finally suppose q is another morphism
with this property
 Then�

�q�� q�� � �q� 	 �
W
m�� g

�
m 	 g

�
m�� �

W
m�� g

�
m 	 g

�
m� 	 q

��
� �

W
m�� q

� 	 g�m 	 g
�
m�
W
m�� g

�
m 	 g

�
m 	 q

��
� �

W
m�� l

�
m 	 g

�
m�
W
m�� g

�
m 	 l

�
m�

� �p�� p�� �

�

We can extract from the previous proof the following useful information


Proposition ������ Let C be an O
category� and let fDn� fngn�� be an �
chain
in Cip� with a cocone fC� gngn��� Then fC� gngn�� is a colimit i�

W
n�� g

�
n 	 g

�
n �

id�
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We now show how to build �op�limits in the category Cpo


Proposition ������ The category Cpo has �op
limits�

Proof
 Consider an �op�chain in Cpo fDn� fngn�� where fn � Dn�� � Dn
 We
de�ne�

D � f� � � �
�
n��

Dn j ��n� � Dn and fn���n � ��� � ��n�g

with the pointwise ordering � �D � i� �n � � ���n� �Dn ��n��
 It is easy to
verify that this makes D into a cpo
 Now fD� gngn�� is a cone with gn��� �
��n�
 Suppose fE� hngn�� is another cone
 Then a continuous function k �
fE� hngn�� � fD� gngn�� is completely determined by the equation k�e��n� �
�gn 	 k��e� � hn�e�
 �

Therefore� as an instance of theorem �
�
��� we obtain�

colimCpoipfDn� fngn�� � limCpofDn� f
�
n gn�� �

This result is applied to bi�nite domains in the following


Proposition �����
 The category Bif ip has �
colimits�

Proof
 Given an ��chain in Bif ip fDn� fngn�� let fD� gngn�� be its ��colimit
in Cpoip which exists by proposition �
�
�� and theorem �
�
��
 It remains to
verify that D is bi�nite
 Since Dn is bi�nite for any n � �� we have

W
i�In pn�i � id

where fpn�igi�In is a directed set of �nite projections over Dn
 We compute�

id �
W
n���g

�
n 	 g

�
n � �

W
n���g

�
n 	 �

W
i�In pn�i� 	 g

�
n �

�
W
n��

W
i�In�g

�
n 	 pn�i 	 g

�
n �

�
W
n���i�In�g

�
n 	 pn�i 	 g

�
n � �

We note that g�n 	 pn�i 	 g
�
n is a �nite projection and that the set fg�n 	 pn�i 	

g�n gn���i�In is directed by proposition �

�
 �

We now turn to functors
 The following result relates local continuity and
preservation of ��colimits


Proposition ������ Let C be an O
category with �op
limits� If F � Cip�C� C
is a locally continuous functor then F ip � Cip �Cip � Cip preserves �
colimits�

Proof
 We have already observed that if F is locally monotonic then F ip is a
functor
 Let f�Dn� En�� �fn� gn�gn�� be an ��diagram in Cip �Cip with colimit
f�D�E�� �hn� kn�gn�� built as in the previous theorem �
�
��
 To show that the
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cocone fF ip�D�E�� F ip�hn� kn�gn�� is a colimit for fF ip�Dn� En�� F ip�fn� gn�gn��
it is enough to verify that �cf
 proposition �
�
�	���

n��

F �h�n � k
�
n � 	 F �h

�
n � k

�
n � � idF �D�E� �

This is proven as follows�W
n�� F �h

�
n � k

�
n � 	 F �h

�
n � k

�
n � �

W
n�� F �h

�
n 	 h

�
n � k

�
n 	 k

�
n �

� F �
W
n�� h

�
n 	 h

�
n �
W
n�� k

�
n 	 k

�
n �

� F �idD� idE� � idF �D�E� �

�

To summarize the method� we suppose given�

� An O�category C such that the hom�sets have a least element� composition is
left strict� and C has �certain� �op�limits


� A locally continuous functor F � Cop �C� C


We can apply the previous constructions and build�

� The category Cip which has an initial object and ��colimits


� The functor F � Cip �Cip � Cip which preserves ��colimits


Therefore we �nd an initial solution for F ip�X�X� �� X in Cip
 The initial
solution also gives a solution for the equation F �X�X� �� X in C


Exercise ����
� Show the existence of a non�trivial domain D such that D 	� D�D 	�
D � D� Hint� consider the system D 	� D� E and E 	� E � E�

Exercise ����
� Let � �� be the lifting functor �see de�nitions �����
 and ������� Show
that the equations D 	� D � �D�� and D 	� �D�� � �D�� have a non�trivial initial
solution in Cpoip�

Exercise ����

 Explain how to build two non�isomorphic� non�trivial solutions of the
equation D 	� D � D� Hint� one can start the construction with a cpo which is not a
lattice�

Combining theorem �
�
�� and proposition �
�
�� we get the following so�
called minimal invariant property� which gives a powerful tool for reasoning in
recursively de�ned domains �Pit���


Proposition ����	� �minimal invariant� Let C be an O
category with a ter

minal object and �op
limits� and such that each hom
set has a least element�
and composition is left
strict� Let F � Cop � C be locally continuous� Let
i � F �C� � C be an order
isomorphism constructed as indicated in the proof of
proposition ������ We de�ne � � C�C�C�� C�C�C� as follows�

��f� � i 	 F �f� 	 i��

Then i is a minimal invariant� by which is meant that the function � is continuous
and has id as least �xed point�
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Proof
 The statement follows from proposition �
�
�	 and from the following
claim�

�n � � �n��� � g�n 	 g
�
n

where fC� gngn�� is constructed as in the proof of theorem �
�
��
 The base case
follows from left�strictness of composition
 The induction case follows from the
fact that �i� i��� is an iso from fF �C�� hngn�� to fC� gn��gn��� with h�n � F �g�n �
and h�n � F �g�n �
 �

In the cpo case� we have seen that least �xed points are actually least pre�
�xpoints �proposition �
�
��
 The following exercise gives a version of this for a
contravariant functor �Pit���


Exercise ����
� ��� Under the assumptions of proposition �����	� suppose that f �
A � F �B� and g � F �A� � B are given �think of the functor H � Cop � C �
Cop �C de�ned by H�A�B� � �F �B�� F �A���� Show that there exists a unique pair of
morphisms h � A� C and k � C � B such that�

F �k� � f � i�� � h and g �G�h� � k � i

��� Show that id is in fact the unique �xpoint of �� �	� Prove a version of ��� and
��� and of proposition �����	 for a functor F � Cop �C� C� Hints� For uniqueness�
proceed as in the proof of theorem ������� take f � i��� g � i� Consider again� as a
heuristics� an associated functor H � � Cop �C� Cop �C�

We have seen �almost� a minimal invariant at work in proposition �

�
 We
shall use another one to prove an adequacy result in section �


We conclude this section with a version of Cantor�s theorem on spaces of

monotonic functions
 Cantor�s theorem states that there is no surjection from
D to P�D� in the category of sets
 It follows that the problem �D � D� � D
has no non�trivial solution in this category �otherwise P�D� � �D � � � �D�
D� � D�
 This result can be generalized to the category of partially ordered sets
and monotonic morphisms �cf
 �GD	�� �a posteriori� this provides a justi�cation
for jumping directly from set�theoretic to continuous functions�
 In the following
O � f���g is the two points poset with � � �� and �D� E� denotes the poset
of monotonic morphisms� with D�E posets


Proposition ����	� Let P be a poset� There is no monotonic surjection e �
P � ��P � O�� O��

Proof
 First we build a monotonic surjection e� � ��P � O�� O�� �P op � O�

To this end we de�ne�

f � P op � �P � O� fxy �
�
f� j x � yg �
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We observe that f is monotonic and injective as�

fx � fz i� �y �x � y � z � y� i� z � x �

Next we de�ne e��F � � F 	 f 
 We verify the surjectivity
 Suppose d � P op � O�
let�

Hd � �P � O�� O Hd�h� �
�
fdx j fx � hg �

Hd is clearly monotonic
 Surjectivity follows from the computation�

e��Hd��z� � Hd�fz� �
�
fdx j fx � fzg �

�
fdx j z � xg � dz �

Suppose by contradiction that there is a monotonic surjection e � P � ��P �
O�� O�
 By composition with e� we derive the existence of a surjection s � P �
�P op � O�
 We apply a diagonalization trick de�ning�

c� c� � P op � O c�x� � s�x��x� c��x� �
�
fc�y� j x � yg

where � � � and � � �
 Note that c� is monotonic
 Let w be such that
c� � s�w�
 We claim that there is a y � w such that c�y� � �
 If c�w� � � take
w
 Otherwise� if c�w� � � then s�w��w� � �� that is c��w� � �
 Hence c�y� � �
for some y � w

Suppose then c�y� � �
 We derive a contradiction as follows�

� s�y��y� � � by de�nition of c


� s�y��y� � � because�

c�y� � � � c��y� � � by de�nition of c�

� s�w��y� � � since c� � s�w�
� s�y��y� � � by left monotonicity of s and y � w �

�

Corollary ����	� If �P � P � � P in the category of posets and monotonic
morphisms then �P � ��

Proof
 Since the empty poset is not a solution suppose �P � 
 If all elements in
P are incomparable then Cantor�s theorem applies
 Otherwise� let x� � x� � P 

Then the pair �i�O� P� j � P � O� de�ned by�

i�y� �

�
x� y � �
x� y � �

j�x� �

�
� x� � x
� otherwise

shows O � P 
 We observe that D � D� and E � E � implies �D� E� � �D� � E��

By �P � O� � �P � P � � P we derive ��P � O� � O� � P � contradicting the
previous proposition �
�
�
 �
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n��� � n

x��� � ��x����
�let x bedyn M in N���� � N ���M	x��

Figure �
�� Operational semantics of Dyn

��� Predicate Equations �

In proving properties of programs	 one is often faced with predicates
 We have seen
their use in chapter �	 in particular for the proof of the adequacy theorem �
�
�
 If the
semantics of a language involves recursively dened domains	 then proving properties of
programs may involve recursively dened predicates	 and the existence of the solutions
to these predicate equations may be troublesome	 just as we had troubles with con�
travariance in solving domain equations
 We treat an example of Mulmuley �Mul���	
borrowing our techniques from Pitts �Pit���	 to which we refer for a general treatment

Our example consists in proving an adequacy theorem for a simple declarative language
Dyn	 based on dynamic binding	 whose syntax is given by�

Ide ��� x jj y jj � � �
M ��� n jj Ide jj let Ide bedyn M in M �

where n ranges over natural numbers and where x� y � � � range over a set Ide of identi�
ers
 The intended value of�

let x bedyn � in let y bedyn x in let x bedyn � in y

is �	 because in computing the value of y it is the last value of x	 namely �	 which is used

In contrast	 the ��term ��x���y���x�y���x�� evaluates to �
 We say that ��calculus is
static
 In the static discipline	 the declaration of x which is used when evaluating y is
the one which is immediately above y in the program text


The operational semantics of Dyn is described via rewriting rules on pairs �M���	
written M ���	 until eventually a constant n is reached
 In the pairs M ���	 M ranges
over the set Exp of terms and � ranges over the set of syntactic environments which
are functions from Ide to Exp
 The rules are given in gure �
�
 These rules should be
contrasted with the rules for the environment machines described in section �
�
 In both
cases a natural implementation relies on a stack to pile up unevaluated expressions

However	 in dynamic binding we just save the code	 whereas in static binding we
memorise the code with its environment �a closure�


A denotational semantics of this language can be given with the help of a semantic
domain D satisfying the equation D � Ide � �D 
 ��
 The meaning ��M �� of a term
M is as a partial function fromD �ranged over by �� to �	 dened in gure �
� �without
an explicit mention of the isomorphism i � D � Ide � �D 
 ���
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��n����� � n

��x����� � ��x���� ���x���� 
�
��let x bedyn M in N ����� � ��N ��������M ��	x��

Figure �
� Denotational semantics of Dyn

These semantic equations look �the same� as the rules dening the operational
semantics
 It requires however a non�trivial proof to show the following adequacy
property of the denotational semantics with respect to the operational semantics�

If M is a closed term of Dyn	 then M ���� n i� ��M ����� � n	

where �� is the identity syntactic environment and � is the constant � function

We rst need to formulate adequacy for any term
 We dene a semantic mapping

from syntactic environments to semantic environments in the following way�

������x� � ����x��� �

The general adequacy result that we want to prove is�

For any M and �	 M ����� n i� ��M ��������� � n 


��� We proceed by induction on the length of the derivation of M ��� to n�

� n� We have ��n��������� � n by the rst semantic equation


� x�
��x��������� � ������x��������

� ����x����������
� n by induction 


� let x bedyn M in N �

��let x bedyn M in N ��������� � ��N �����������M ��	x�� � ��N �������M	x���� � n �

��� The proof involves a predicate � � �D 
 �� � Exp satisfying the following
mutually recursive specication�

� � f�f�M� j  ��� �� � � �f��� � or M ����� f����g
� � f��� �� � D � �Ide � Exp� j  x � Ide ���x�� ��x�� � �g �

The whole point of this section is to prove that � exists
 Meanwhile	 assuming its
existence	 we end the proof of adequacy
 We prove by induction on the size of M that
���M ���M� � �
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� n� This case holds vacuously since we always have ��n����� � n and n��� � n	
regardless of what � and � are


� x� Let ��� �� � �
 In particular	 ���x�� ��x�� � �
 By the specication of �	 we
have thus�

��x���� � or ��x������ ��x����

which by the denition of the two semantics can be rephrased as�

��x����� � or x����� ��x����� �

� let x bedyn M in N � Let ��� �� � �
 First	 exploiting induction on M 	 we get
���M ����M�� � �
 The conclusion follows by applying induction to N 


We are now left with the proof of the existence of �
 We set�

H�E� � Ide � �E 
 �� G�E� � �E 
 ��� Exp �

We have H � Cpoop � Cpo
 The ordering on H�E� is obtained as follows� E 
 �
is isomorphic to E � �� �cf
 denitions �
�
�� and �
�
���	 and given a domain D�	
Ide � D� is the product of copies of D� indexed over Ide	 ordered pointwise
 Remark
that f�g 
 � �and hence H�f�g�� has innitely many elements	 which makes the
initial solution of H�D� � D non�trivial


We �extend� H to predicates as follows
 For R � G�E�	 we dene H�R� �
G�H�E�� as the set of pairs �f�M� such that�

 � � H�E�� � � Ide � Exp � x ���x�� ��x�� � R�� �f��� � or M ����� f���� �

The predicate � is a xpoint for the following function K � P�G�D��� P�G�D���

K�R� � f�f�M� j �f � i�M� � H�R�g

where i � H�D�� D is the minimal invariant �cf
 proposition �
�
���

The trouble is that	 because H is contravariant in E	 the function K is anti�

monotonic
 The sequence fKn���gn�� is a zigzag � � K��� � K���� � � � instead of
being an increasing sequence	 and therefore we cannot build a xpoint for K right
away
 However	 K gives rise to a continuous function�

L � ��P�G�D������ �P�G�D������� ��P�G�D������ �P�G�D������

dened by L�S�� S�� � �K�S��� K�S���	 which has a xed point �R�� R�� �cf
 exercise
�
�
���
 For reasons linked with the particular K we have at hand	 we in fact have
R� � R�	 as we shall prove now
 It is enough to establish R� � R�	 by the symmetric
specication of R� and R�


We introduce more ingredients
 Since H acts on relations as well as on objects and
morphisms	 we are led to examine the relationships between morphisms and relations
more closely
 Given f � E � E�	 R � G�E� and R� � G�E��	 we write�

f � R� R� �  �g�M� � R� �g � f�M� � R �



���� PREDICATE EQUATIONS � ���

The following are easily established facts�

�R�� If f � R� R� and f � � R� � R��	 then f � � f � R� R��


�R�� id � R� R� if and only if R� � R


�R�� If f � R� R�	 then H�f� � H�R��� H�R�


Moreover	 we restrict our attention to predicates R satisfying the following properties


�I�� Closure under directed lub�s� � � � � ���M� � R�� �
W
��M� � R


�I�� M ���M� � R


�I�� n � � �����n�M� � R�M ���� n�


We denote with I�E� �I for �inclusive�	 cf
 section �
�� the collection of predicates
over G�E� satisfying properties �I�� through �I��
 Clearly	 I�E� has a bottom element	
which is�

f����n�M� jM ���� ng � f���M� jM � Expg �

Moreover	 H is compatible with �I�� through �I��


�R�� H maps I�E� to I�H�E��


We only check that H�R� satises �I��
 If ����n�M� � H�R�	 then since ��� x� � R
for all x	 we haveM ���� n
 The converse direction follows from the fact thatM ���� n
implies M ����� n for any �


From now on	 we shall assume that all predicates satisfy �I�� through �I��
 The
following further facts will be needed


�R�� For any directed � � �E � E��	 � � � � � � R� R���
W
� � R� R�


�R�� � � R� R�	 for any R�R�


Fact �R�� is a consequence of �I��	 by the continuity of the composition operation

Properties �I�� and �I�� serve to establish �R��	 as we show now
 Let �d�M� � R�

There are two cases
 If d is strict	 then d � � � �	 and �d � ��M� � R follows by �I��

If d � ���n	 the conclusion follows by �I��
 We now have all the needed material


By property �R��	 the function K restricts to a function from I�D� to I�D�
 Hence
we can take the solution �R�� R�� in �I�D����� �I�D����
 By �R��	 by the minimal
invariant property of i	 and by �R��	 our goal can be reformulated as�

n � � �n��� � R� � R� �

The base case of our goal holds by �R��
 By xpoint induction �cf
 section �
��	 we are
left to show�

f � R� � R� � ��f� � R� � R�

which by �R�� is proved as follows�

i�� � R� � H�R�� �K�R�� � R��
H�f� � H�R��� H�R�� �by �R���
i � H�R��� R� �K�R�� � R�� �

Remark ��
�� Our proof uses only the fact that �R�� R�� is a �xpoint �in I�D��� not
that this is the least one� So� in the end� we get not only that � exists� but also that it
is the �unique� solution of K�R� � R �cf� exercise ��������
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��� Universal Domains

We discuss a technique for the construction of a universal domain and we apply it
to the category of bi�nite domains and continuous morphisms
 In this section by
bi�nite domain we intend the ��bi�nite �or SFP domains� described in chapter
�
 In the �rst place� we introduce the notion of algebroidal category �cf
 �BH�	��
which generalizes to categories the notion of algebraicity already considered for
domains


De�nition ����� �category of monos� A category K is called a category of
monos if every morphism of K is mono�

Example ����	 Sets with injections form a category of monos�

De�nition ����� �compact object� Let K be a category of monos� An object
A � K is compact if� for each �
chain fBn� fngn�� with colimit fB� gngn�� and
any h � A� B� there exists n and kn � A� Bn such that h � gn 	kn� We denote
with K�K� the collection of compact objects�

Remark ����� We note that for any n there is at most one kn� asK is a category
of monos and therefore gn 	 kn � gn 	 k�n � h implies kn � k�n� Moreover� if
gn 	 kn � h then we can set kn�� � fn 	 kn as gn�� 	 fn 	 kn � gn 	 kn � h�

De�nition ����� �algebroidal category� A category of monosK is algebroidal
if�

��� K has an initial object�

�� Every �
chain of compact objects has a colimit�

��� Every object is the colimit of an �
chain of compact objects�
An algebroidal category is �
algebroidal if the collection of compact objects� K�K��
is countable up to isomorphism and so is the hom
set between any two compact
objects�

Remark ����� The categories of �
algebraic dcpo�s considered in this book are
�
algebroidal� The category of ordinals is a notable example of non �
algebroidal
category �non
limit ordinals cannot be enumerated up to isomorphism��

Exercise ����� Let S be the category of Scott domains �see de�nition ������� Show
that Sip is not an algebroidal category� How would you modify the de�nition in order to
include Sip among the algebroidal categories� Hint� A directed diagram in a category
C is a functor D � I � C� where I is a directed set� Show that� ��� Sip has colimits
of directed diagrams� ��� Each object is the colimit of a directed diagram of compact
objects�
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Next we de�ne the notion of universal object
 In particular we will be interested
in universal� homogeneous objects� as they are determined up to isomorphism
 In
this section we follow quite closely �DR��� �see also �GJ����
 More generally� the
terminology and the techniques used in this section are clearly indebted to model
theory


De�nition ����
 Let U be an object in a category K of monos� and let K� be a
full subcategory of K� Then we say that�

��� U is K��universal if �A � K� �f � A� U �

�� U is K��homogeneous if�

�A � K� �f � A� U �g � A� U �h � U � U �h 	 g � f� �

��� U is K��saturated if�

�A�B � K� �f � A� U �g � A� B �k � B � U �k 	 g � f� �

��� K� has the amalgamation property if�

�A�B�B� � K� �f � A� B �f � � A� B�

�C � K� �g � B � C �g� � B� � C �g 	 f � g� 	 f �� �

Remark ����� De�nition ����� requires the existence of certain morphisms but
not their uniqueness�

Proposition ����� LetBif ip be the category of �
bi�nite domains and injection

projection pairs� Bif ip is an �
algebroidal category and the collection of compact
objects has the amalgamation property�

Proof
 To check thatBif ip is a category of monos with initial object it is enough
to verify that Bif has a terminal object� the hom�sets have a least element and
composition is left strict �cf
 proposition �
�
���

Let D � Bif 
 By proposition �

�� D is compact in Bif ip i� the cardinality

of D is �nite
 Moreover� by de�nition of bi�nite domain� each object in Bif ip

is an ��colimit of compact objects
 By proposition �
�
��� each ��diagram of
�compact� objects in Bif ip has a colimit


Next we verify that Bif ip has the amalgamation property
 Let us consider
three �nite posets �E���� �D������ �D����� with morphisms hi � E � Di�
i � �� � in Bif ip
 Without loss of generality we assume E � D� �D�� then�

�e� e� � E �e � e� i� e �� e
� i� e �� e

�� �

Now we de�ne the amalgam as the set F � E � �D�nE�� �D�nE� where f �F f �

i�
�i � f�� g �f� f � � Di� f �i f

�� or
�e � E �f �i e �j f

�� for i �� j� i� j � f�� g �
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It is easy to verify that �F is a partial order
 We are left with the de�nition
of the morphisms ki � Di � F � i � �� 
 We take the inclusions for k�i � and we
de�ne�

k�� �f� �

�
f f � D�

h�� �f� otherwise �

k�� is de�ned symmetrically
 It can be easily checked that ki is a morphism in
Bif ip� and that k� 	 h� � k� 	 h�
 �

Theorem ������ Let K be an �
algebroidal category of monos� The following
properties are equivalent�

��� There is a K
universal� K�K�
homogeneous object �universal homogeneous
for short��

�� There is a K�K�
saturated object�

��� K�K� has the amalgamation property�
Moreover a K
universal� K�K�
homogeneous object is uniquely determined up to
isomorphism�

Proof
 The proof of this theorem is an immediate consequence of the following
lemmas
 The main di"culty lies in the proof of ���� �� �see lemma �
�
���
 �

Lemma �����	 LetK be an algebroidal category of monos and let U� V be K�K�

saturated� Then�

�A � K�K��f � A� U �g � A� V �i � U � V iso �i 	 f � g� �

Proof
 Let f�Ui� fi�gi�� and f�Vj � gj�gj�� be ��diagrams of compact objects
whose colimits are fU� ligi�� and fV� l�igi�� respectively
 Given f � A � U and
g � A� V � by compactness of A we have

�f�n� � A� Un� �ln� 	 f
�
n�
� f� �by compactness of A�

�pn� � Un� � V �pn� 	 f
�
n�
� g� �by saturation�

�h�� � Un� � Vn� �l
�
n�
	 h�� � pn�� �by compactness� �

We show how to iterate this construction once more
 By saturation �pn� � Vn� �
U �pn� 	 h

�
� � ln��
 By compactness �h

�
� � Vn� � Un� �ln� 	 h

�
� � pn��
 We proceed

inductively building Vn� � Un� � � � � We may suppose n� � n� � � � � We observe
ln� 	 h

�
� 	 h

�
� � pn� 	 h

�
� � ln�
 It is then possible� using the h

�
i � to see V as

�the object of� a cocone for f�Ui� fi�gi�� and U as �the object of� a cocone for
f�Vj � gj�gj��� by which the existence of the isomorphisms h and k which commute
with f and g follows
 �

Lemma ������ Let K be an algebroidal category of monos� The following prop

erties hold�
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��� For any object U the following are equivalent� �a� U is K
universal and
K�K�
homogeneous� �b� U is K�K�
universal and K�K�
homogeneous� �c� U is
K�K�
saturated�

�� A K
universal� K�K�
homogeneous object is determined up to isomorphism�

��� If there is a K
universal and K�K�
homogeneous object then K�K� has the
amalgamation property�

Proof
 ��� We prove the equivalence as follows�

�a�� �b� Immediate� by de�nition


�b� � �c� Let A�B � K�K�� f � A � U � g � A � B
 By K�K��universality
�g� � B � U 
 By K�K��homogeneity �h � U � U�h 	 g� 	 g � f�
 So h 	 g� gives
saturation


�c� � �a� Since there is an initial object �� U is K�K��universal by saturation
applied to the �unique� morphisms f � � � U and g � � � A
 U is also K�K��
homogeneous by lemma �
�
�
 It remains to show that U is K�universal
 Let
A � K and let f�Ai� fi�gi�� be an ��chain in K�K� whose colimit is A
 Take
advantage of K�K��saturation to build a cocone with object U for such ��chain

Then there is a morphism from A to U 


�� Apply lemma �
�
� with A � �


��� Let A�B�B� � K�K�� f � A � B� f � � A � B�
 By K�K��universality
�h � B � U 
 By K�K��saturation �h� � B� � U�h 	 f � h� 	 f ��
 Now consider
an ��chain in K�K� whose colimit is U and use the compactness of B and B� to
factorize h and h� along some element of the ��chain
 �

In the next lemma we use �for the �rst time� the countability conditions that
distinguish an ��algebroidal category from an algebroidal one


Lemma ������ Let K be an �
algebroidal category of monos� If K�K� has the
amalgamation property then it is possible to build a K�K�
saturated onbject�

Proof
 We use the hypothesis that K is ��algebroidal to build an enumeration
up to isomorphism of the compact objects Ho � fAigi�� and an enumeration of
all quintuples Mo � f�Bi� Ci� gi� hi� ji�gi��� where Bi� Ci � Ho� gi� hi � Bi � Ci�
and ji � �� such that each quintuple occurs in�nitely often
 We build an ��chain
f�Ui� fi�gi�� such that Ui � Ho and the following properties hold� where we set
fj�i � Uj � Ui� and fj�i � fi�� 	    	 fj �

��� �i � � �ki � Ai � Ui


�� Given i consider the corresponding quintuple in the enumeration
 If j � ji � i
and Uj � Ci then

�k � Ui � Ui���k 	 fj�i 	 hi � fi 	 fj�i 	 gi� �
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A consequence of ��� is that� for all C � Ho and j su"ciently large� we can �nd
g � C � Uj
 We also note that if g� h � B � C with B�C � Ho� and C � Uj�
then �B�C� g� h� j� will appear in�nitely often in the enumeration� so we can �nd
an i such that �B�C� g� h� j� � �Bi� Ci� gi� hi� ji� and �j ��ji � i


Then we de�ne U as the colimit of the ��chain f�Un� fn�gn��
 While condition
��� is natural� condition �� may seem rather obscure
 First observe that if we
just want to build a K�K��universal object� that is satisfy condition ���� then it is
enough to set U� � A� and proceed inductively using the amalgamation property
on the �uniquely determined� morphisms f � �� Un and g � �� An��
 So� given
lemma �
�
��� condition �� has to do with the fact that we want U to be K�K��
saturated
 Let us see how this is used
 Let B�C � Ho and g � B � C� h � B � U 

By ��� and B � K�K� we have�

�j �g� � C � Uj � h
� � B � Uj� h � fj�� 	 h�� �

where fj�� � Uj � U 
 Let g� � g 	 g�
 Choose i large enough so that�

j � i and �B�Uj� g
�� h�� j� � �Bi� Ci� gi� hi� ji� �

By ��� �k � Ui � Ui�� �k 	 fj�i 	 h� � fi 	 fj�i 	 g��
 From this� saturation follows

Finally we show how to build the ��chain f�Ui� fi�gi��
 Set U� � A�� the �rst

element in the enumerationHo
 Next suppose to have built Ui and consider Ai��

As observed above there are f � �� Ui and g � � � Ai��
 By amalgamation we
get� for some U �

i � two morphisms f
� � Ui � U �

i and g
� � Ai�� � U �

i 


� If j � ji � i and Uj � Ci then apply amalgamation to f � 	 fj�i 	 hi and
f � 	 fj�i 	 gi obtaining k � U �

i � U �
i�� and k

� � U �
i � U �

i��
 It just remains to select
Ui�� isomorphic to U

�
i�� and in Ho


� Otherwise it is enough to choose an object Ui�� in Ho isomorphic to U �
i 
 The

morphism from Ai�� to Ui�� is then immediately obtained by composition
 �

Corollary ������ The category Bif ip has a universal homogeneous object�

Proof
 We have shown in proposition �
�
�� that Bif ip is an ��algebroidal
category with the amalgamation property
 Hence theorem �
�
�� can be applied

�

Figure �
� draws a rough correspondence between domain theoretical and
category theoretical notions


��� Representation

We are interested in the problem of representing subdomains of a domain D
as certain functions over D
 In particular we concentrate on retractions and
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in a cpo D in Cpoip in Cpo

� initial object terminal object
directed lub ��colimits �op�limits
monotonic functor F ip functor F �not always�
continuous ��cocontinuous locally continuous
algebraic algebroidal

Figure �
�� Domain�theoretical versus category�theoretical notions

projections� the idea being that subdomains are represented by the image of
such morphisms
 When working with continuous cpo�s� not every retraction �or
projection� corresponds to a domain �i
e
 an ��algebraic cpo�
 For this reason�
one focuses on the collection of �nitary retractions� which are by de�nition those
retractions whose image forms a domain

The theory is simpler when dealing with ��nitary� projections
 Then it is not

di"cult to show that the collection of �nitary projections FP�D� over a bi�nite
domain D is again a bi�nite
 In other words the collection of subdomains of a
bi�nite domain can be given again a bi�nite domain structure
 Having found
a representation of domains� we address the problem of representing domain
constructors� e
g
 product� exponent� sum� lifting
 It turns out that the basic
domain constructors we have considered so far can be represented in a suitable
technical sense

The collection Ret�D� of retractions on a cpo D� is the collection of �xpoints

of the functional �f�f 	 f � and the image r�D� of a retraction r on D� coincides
with the collection of its �xpoints
 Hence general results on �xpoints can be
immediately applied
 We will see that under suitable hypotheses Ret�D� and
r�D� enjoy certain algebraic properties


De�nition ����� Let D be an algebraic cpo and r � Ret�D�� We say that r is
�nitary if r�D� with the induced order is an algebraic cpo� We say that r is a
closure if id � r�

Proposition ����	 Let D be a cpo� Then�

��� If f � D � D is a continuous morphism then Fix�f� � fd � D j f�d� � dg
is a cpo�

�� Ret�D� � Fix��f � D � D�f 	 f� is a cpo�

��� If r � Ret�D� then r�D� � Fix�r� is a cpo�



��� CHAPTER �� DOMAIN EQUATIONS

Proposition ����� Let D be an algebraic cpo and r � Ret�D�� Then K�r�D���
the collection of compacts in r�D�� can be characterized as follows�

K�r�D�� � frd j d � K�D� and d � rdg �

In particular� if p is a projection then K�p�D�� � p�D� � K�D�� and if c is a
closure then K�c�D�� � c�K�D���

Proof
 Suppose ry � K�r�D��
 Since D is algebraic ry �
W
fx � K�D� j x �

ryg
 So�

ry � r�ry� � r�
�
fx � K�D� j x � ryg� �

�
frx j x � K�D� and x � ryg �

Since ry � K�r�D��� we have �z �ry � rz and z � K�D� and z � ry�
 This z
gives the desired representation of ry
 Vice versa suppose d � K�D� and d � rd

Let # � r�D� directed
 Then�

d � rd �
�
# � �y � #�rd � ry � y� �

The statements concerning projections and closures are an immediate corollary
of this characterization of the compact elements
 �

Proposition ����� If D is a bounded complete cpo and r � Ret�D� then r�D�
is bounded complete�

Proof
 Let X � r�D� and suppose y � r�D� is an upper bound for X
 Then X
is bounded in D and therefore

W
DX exists
 We show

W
r�D�X � r�

W
DX�


� �x � X �x �
W
DX� implies �x � X �x � rx � r�

W
DX��
 So r�

W
DX� is an

upper bound


� If y is an upper bound for X in r�D� then it is also an upper bound for X
in D� so

W
DX � y
 This implies r�

W
DX� � ry � y
 So r�

W
DX� is the lub in

r�D�
 �

Let D be an ����algebraic cpo and r � Ret�D�
 Can we conclude that r�D�
is again an ����algebraic cpo� The answer is no
 In general it can only be shown
that r�D� is a continuous cpo �see chapter ��


Example ����� Let Q and R be the rational and real numbers� respectively� Let
D � D� � D� where D� � f��� q� j q � Qg� and D� � f��� r�j r � R � f�gg�
ordered by inclusion� Consider the projection p de�ned by�

p���� q�� � ��� q� p���� r�� � ��� r� �

The domain D is an �
algebraic complete total order with D� as compact ele

ments� On the other hand im�p� fails to be algebraic�
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For the collection Ret�D� things get even worse
 For example it has been shown
by Ershov �see exercise ��
�
�� in �Bar���� that the collection of retractions over
P��� is not a continuous lattice� hence a fortiori not the image of a retraction

This also shows that the collection of �xpoints of a continuous function does not
need to be a continuous cpo� as Ret�D� � Fix��f�f 	 f�

We will consider retractions again in the context of stable domain theory

�section �
��
 For the time being we will concentrate on the simpler case of
�nitary projections
 Let D be a bi�nite domain
 The notion of �nitary projection
over D provides an adequate representation of the idea of subdomain� moreover
the collection of �nitary projections over D� FP�D�� is again a bi�nite domain

This is a powerful result that has applications for instance to the interpretation of
higher�order calculi �see section ��
��
 The following notion of normal subposet
is useful in studying projections


De�nition ����� �normal subposet� Let �P��� be a poset� A subset N � P
is called a normal subposet if �x � P �� x��N is directed� We denote with N�P �
the collection of normal subposets of P ordered by inclusion�

Theorem ����� Let D � Bif � Then�

��� There is an isomorphism between the collection of normal subposets of the
compact elements and the �nitary projections over D� N�K�D�� �� FP�D��

�� FP�D� is an �
algebraic complete lattice�

Proof
 We remark that if p is a projection and x � D then

�� x� � p�D� � �� p�x�� � p�D� �

Moreover� if p is a �nitary projection then K�p�D�� � N�K�D��
 We use the
hypothesis that p�D� is algebraic to show �x � D �� x� � K�p�D�� � �� p�x�� �
K�p�D�� that is directed

We now proceed with the proof of statement ��� while leaving �� as an

exercise
 If p is a �nitary projection then de�ne Np � K�p�D��
 This is a normal
subposet of K�D� by the remark above
 Vice versa� if N � N�K�D�� we de�ne�

pN �d� �
�
��� d� �N� �

This is well de�ned because �� d� �N is directed
 These two functions de�ne an
isomorphism between FP�D� and N�K�D��
 �

Exercise ����� Show that if D is a Scott domain then FP�D�  �D� D�� Hint� given
f � D � D consider Xf � fx � K�D� j x � fxg and de�ne Nf � U��Xf�� The set Nf

corresponds to a �nitary projection pNf
� Set � � �D � D�� �D� D� as ��f� � pNf

�
Note that this property fails for bi�nite domains �cf� exercise ���������
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Let U be a universal domain for some relevant category of domains� say Bif

Then every domain is isomorphic to the image of a �nitary projection over U 

Furthermore� it can be shown that certain basic operators over domains can be
adequately represented as continuous functions over FP�U�
 As a fall�out� one
gets a technique to solve domain equations via the standard Kleene least��xed
point theorem

Observe that there is an injective function Im from the poset FP�U� to the

category Bif ip �this is immediately extended to a functor��

Im � �p � FP�U��p�U� �

Let F � Bif ip �Bif ip � Bif ip be a binary functor
 The representation problem
for F consists in �nding a continuous function RF � FP�U� � FP�U� � FP�U�
such that the following holds� modulo order�isomorphism�

F �p�U�� q�U�� � RF �p� q��U� �

Proposition ����� Product and Exponent are representable�

Proof
 In showing that Bif is a CCC �proposition �

��� one uses the fact
that if p � FP�D� and q � FP�D� then ��d� e���p�d�� q�e�� � FP�D � E� and
�f��q 	 f 	 p� � FP�D � E�
 If U is a universal �homogeneous� domain for Bif ip

then we may assume the existence of the injection�projection pairs�

���u� u���hu� u�i� �u��
��u�� 
��u��� � �U � U�� U �i� j� � �U � U�� U �

It just remains to combine the two ideas to de�ne the operators representing
product and exponential�

��p� q���u�hp�
��u��� q�
��u��i ��p� q���u�i�q 	 j�u� 	 p� �

For instance� in the case of the exponential� we compose ��p� q���u��q 	 u 	 p� �
FPU � FPU � FPU�U with �r�i 	 r 	 j
 �

Remark ����� It is good to keep in mind that Im is not an equivalence of
categories between FP�U� and Bif ip� as FP�U� is just a poset category� This
point is important when one interprets second order types �see section ������

Exercise ������ ��� Verify in detail that we can apply the �xed point proposition �����
to the domain FP�U� in order to get initial solutions of domain equations in Bif ip� ���
Consider the representation problem for the operators of coalesced sum and lifting� �	�
Consider the representation problem in the case we replace ��nitary� projections with
��nitary� retractions�

Finally� we point out that our results about the limit�colimit coincidence
�theorem �
�
��� and the existence of a universal homogeneous object �theorem
�
�
��� can be also applied to categories of cpo�s and stable functions �cf
 exercise
�
�
��




Chapter �

Values and Computations

When considering the ��calculus as the kernel of a programming language it is
natural to concentrate on weak reduction strategies� that is strategies where eval�
uation stops at ��abstractions
 In presenting the semantic counterpart of these
calculi it is useful to emphasize the distinction between value and computation

A �rst example coming from recursion theory relies on the notions of total and
partial morphism
 In our jargon a total morphism when given a value always
returns a value whereas a partial morphism when given a value returns a possi�
bly in�nite computation
 This example suggests that the denotation of a partial
recursive algorithm is a morphism from values to computations� and that values
are particular kinds of computations

In domain theory the divergent computation is represented by a bottom el�

ement� say �� that we add to the collection of values
 This can be seen as
the motivation for the shift from sets to �at domains
 More precisely� we have
considered three categories �cf
 de�nition �
�
���


� The category Dcpo in which morphisms send values to values� say D � E

This category is adapted to a framework where every computation terminates


� The category pDcpo which is equivalent to the one of cpo�s and strict func�
tions� and in which morphisms send values to computations� say D � �E��
 This
category naturally models call
by
value evaluation where functions� arguments are
evaluated before application


� The category Cpo in which morphisms send computations to computations�
or �D�� � �E��
 In the models of the untyped ��calculus that we have presented
the distinction value�computation can actually be hidden by regarding � as an
element with the same status of a value


Another framework where the distinction between values and computations
is useful is that of �xpoint extensions of typed ��calculi
 Consider for example a
simply typed ��calculus and its Curry
Howard correspondence with the minimal
propositional logic of implication �cf
 chapter ��
 Suppose that we want to
enrich the calculus with a �xed point combinator on terms� say Y � allowing for

���
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fully recursive de�nitions
 Which type should we assign to Y � One possibility
considered in chapter 	 is to introduce a family of combinators Y � of type ���
�� � �
 Then the correspondence with the logic is blurred as Y ���x � ��x� has
type � for any type$proposition �� i
e
 every type is inhabited$provable
 Another
possibility is to regard Y ���x � ��x� as a computation of a proof� that is to assign
to Y � the type �c��� � c���� � c���� where c��� is the type representing the
computations over �
 Then� at the cost of a complication of the formal system�
we may keep a correspondence between propositions and a subset of types


In these examples� we have roughly considered computations as values en�
riched with an element denoting the divergent computations
 There are however
other possible notions of computations that arise in the study of programming
languages
 For instance� if we wish to model non�determinism then a computa�
tion may consist of a collection of values representing the possible outcomes of a
program


Which are then the common properties of these notions of computation� The
notion of monad that we describe in section �
� seems to provide a good gen�
eral framework
 We present a general technique to produce a monad out of a
category of partial morphisms
 In particular the familiar category of dcpo�s is
revisited in this perspective
 In section �
 we introduce a call�by�value version
of the language Pcf studied in chapter 	 which re�ects the properties of the
function space in a category of partial morphisms
 By a variant of the technique
presented in theorem 	
�
	� we prove the adequacy of the semantic interpretation
with respect to the operational semantics
 In section �
� we describe a class of
abstract machines� known as environment machines� for the mechanical evalua�
tion of weak ��calculi
 In section �
� we consider the full abstraction problem
for the call�by�value ��calculus
 We show that a canonical �lter model is fully
abstract for the calculus enriched with a parallel join operator
 In section �
� we
revisit the continuation based semantics introduced in section �
	 from a monadic
viewpoint
 We introduce a typed call�by�value ��calculus enriched with control
operators for the manipulation of the execution �ow and study its Continuation
Passing Style �Cps for short� translation into a standard ��calculus
 The typ�
ing of control operators allows to push from intuitionistic to classical logic the
Curry�Howard correspondence between typed ��calculi and propositional calculi

In this respect Cps translations can be regarded as a way to extract an e�ective
content form a classical proof
 We also discuss simple variants of environment
machines which can handle control operators


	�� Representing Computations as Monads

In this section� following �Mog���� we present the notion of computation�as�
monad
 The monads of partial computations� continuations� and non
deterministic
computations will be our leading and motivating examples
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Monads �or triples� are an important category�theoretical notion� we refer
to section B
� for some basic constructions and to �BW��� ML��� for a deeper
analysis
 What is important here� is to state which are the basic computational
properties we wish to formalize
 Suppose that C is our category of data types

An endofunctor T � C� C de�nes how to go from a certain collection of values
to the computations over such values
 A natural transformation � � idC � T
determines how a value can be seen as a computation
 Another natural transfor�
mation � � T � � T explains how to �atten a computation of a computation to
a computation
 These requirements plus certain natural commutation properties
are expressed by the following equations �cf
 de�nition B
�
���

�A 	 �TA � �A 	 T�A � idTA �A 	 �TA � �A 	 T�A �

We say that a monad satis�es the mono requirement if �A is a mono� for any
object A


Example 
���� We give three basic examples of monads with a computational
�avour in the category of sets� We leave to the reader the needed veri�cations
�these monads satisfy the mono requirement��

� Partial computations� De�ne � �� � Set� Set as�

�X�� � X � f�Xg� where �X �� X

�f���z� �

�
f�z� if z � X
�Y otherwise

where f � X � Y

�X�x� � x

�X�z� �

�
z if z � X
�X otherwise �

� Non
deterministic computations� De�ne P � Set� Set as�

P �X� � Pfin�X� P �f��a� � f�a�� where f � X � Y
�X�x� � fxg �X�z� �

S
z �

� Continuations� We suppose given a set of results� R� containing at least two
elements� In order to understand the basic trick behind the notion of computa

tion� one should think of the double negation interpretation of classical logic into
intuitionistic logic �TvD���� Let �X � �X � R�� and de�ne C � Set� Set as�

C�X� � ��X
C�f� � �g � ��X��h � �Y�g�h 	 f�� where f � X � Y
�X�x� � �h � �X�h�x�
�X�H� � �h � �X�H��g � ��X�g�h�� �
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First� let us concentrate on the monads of continuations and non�deterministic
computations
 We introduce two variants of the imperative language studied in
chapter �� and analyse their interpretations in suitable monads �for the sake of
simplicity we leave out recursion and expressions�


LC s ��� a jj skip jj s% s jj stop
LN s ��� a jj skip jj s% s jj s � s �

In LC we have introduced a statement stop whose intuitive e�ect is that of ter�
minating immediately the execution of a program and return the current state

As already discussed in section �
	 the �direct� semantics used in section �
� is
not adequate to interpret commands which alter in some global way the control
�ow
 For instance we should have ��stop% s�� � ��stop��� for any s� which is hopeless
if we insist in stating ��stop% s�� � ��s�� 	 ��stop��
 The notion of continuation was
introduced in section �
	 precisely to model operators that explicitly manipulate
the control �ow

Let & be the collection of states
 It is natural to take & as the collection of

results
 Then the monad of continuations is given by�

C�&� � &� �&� &� �

The semantics of a program is a morphism from & to C�&�
 The interpretation
for LC is de�ned as follows� �

��skip�� � �� ��a�� � �� 	 a� for a � &� &
��s�% s��� � �� 	 C���s���� 	 ��s��� ��stop�� � ����f�� �

Exercise ����
 Verify that ��a� b�� � ����f�f�b�a���� and ��stop� s�� � ��stop���

In LN we have introduced an operator � for the non�deterministic composition
of two statements
 The intuition is that the statement s��s� can choose to behave
as either s� or s�
 It is then natural to consider the interpretation of a statement
as a morphism from & to Pfin�&�� where & is the collection of states
 Hence�
using the monad of non�deterministic computations we de�ne�

��skip�� � �� ��a�� � �� 	 a� for a � &� &
��s�% s��� � �� 	 P ���s���� 	 ��s��� ��s�� s��� � �����s���� � ��s���� �

An obvious remark is that the interpretations for LC and LN are formally
identical but for the fourth clause
 As a matter of fact we have been using a
general pattern in these interpretations which goes under the name of Kleisli
category
 Given a monad �T� �� �� over a category C the Kleisli category KT is
formed as follows�

KT � C KT �d� d�� � C�d� Td��
idd � �d � d� Td f 	 g � �d�� 	 Tf 	 g for g � d� d�� f � d� � d�� in KT �

�This de�nition is slightly more abstract	 but equivalent to the one presented in section ��
�
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The reader will �nd in �Mog��� more information on this construction� and on its
use in the interpretation of a meta�language where the notion of computation is
treated abstractly� as a monad with certain desirable properties
 Going back to
the monads of power�sets� we hint to an application to the modelling of parallel
computation
 We illustrate the idea on yet another variant of the imperative
language considered above�

LP s ��� a jj skip jj s% s jj s k s �

The intuitive semantics of s� k s� is that of a parallel execution of the state
transformations performed by s� and by s�
 Since s� and s� share the same state
di�erent orders of execution might generate di�erent �nal results� as is clear� for
instance� in the program x �� �%x �� � k x �� �� which upon termination can
associate to x either � or �

In de�ning the semantics one has to establish what modi�cations of the state

are atomic� i
e
 are executed as non�interruptible operations
 For instance if we
assume that assignment is an atomic operation then the program x �� � k x �� �
will terminate with x having value � or �� and nothing else
 The semantics of
a program is a collection of sequences of state transformations
 For instance we
can take�

��s�� � Pfin��&� &���

where �& � &�� are non�empty �nite sequences of functions
 In this case it
is clear that we can distinguish the interpretations of x �� �%x �� x � � and
x �� �
 The interpretation of a parallel composition is an operator that shu�es
the sequences in all possible combinations


Exercise ����� De�ne an interpretation of the language LP in Pfin���� �����

In the presence of divergent programs things are a bit more complicated

What is needed is an analogous of the power�set construction in a category of
domains
 Various solutions to this problem will be presented in chapter �
 Let
us provisionally call PD the powerdomain operator
 The interpretation of the
imperative language with recursion is given in a domain of resumptions �see� e
g
�
�Plo���� which is the least solution of the following equation�

R � &� PD�& � �&�R�� �

A resumption is a function that takes a state and returns a collection of elements
that can be either a state or a pair �state� resumption�
 Intuitively� a program is
interpreted as a possibly in�nite sequence of state transformations �cf
 exercise
�
�
�� each state transformation in the sequence models an operation that the
program can perform atomically on the memory




��	 CHAPTER 	� VALUES AND COMPUTATIONS

Partial morphisms� In example �
�
� we have de�ned the monad of partial
computations over Set
 We show next that the monad of partial computations
can be derived in a systematic way from a general notion of partial morphism

We then apply this connection between partial morphisms and monads of partial
computations to the categories of domains introduced in the previous chapters

It is standard to consider an equivalence class of monos on an object as a

generalized notion of subset
 A partial morphism from a to b can then be repre�
sented as a total morphism from a subset of a to b
 In most interesting examples
the domain of convergence of a partial morphism is not arbitrary
 For instance
it is open �as in Dcpo�� recursively enumerable� etcetera
 It is then reasonable
to look for a corresponding categorical notion of admissible mono as speci�ed by
the following de�nition


De�nition 
���� �admissible family of monos� An admissible family of monos
M for a category C is a collection fM�a� j a � Cg such that�
��� If m � M�a� then m is a mono m � d� a�
�� The identity on a is in M�a�� ida � M�a��
��� M is closed under composition i�e�

m� � a� b � M�b��m� � b� c � M�c� � m� 	m� � a� c � M�c� �

�	� M is closed under pullbacks i�e�

m � d� b � M�b�� f � a� b � f���m� � M�a� �

An admissible family of monos M on C enjoys properties which are su"�
cient for the construction of a related category of partial morphisms pC
 � A
representative for a partial morphism from a to b is a pair of morphisms in C�
�m� f�� where m � d� a � M�a� determines the domain and f � d � b the func�
tional behavior
 The category pC has the same objects as C and as morphisms
equivalence classes of representatives of partial morphisms� namely�

pC�a� b� � f�m� f � j m � d� a � M�a�� f � d� bg

where �m � d� a� f � d� b� is equivalent to �m� � d� � a� f � � d� � b� i� there is
an iso i � d� d� in C such that m� 	 i � m and f � 	 i � f 

To specify domain and codomain of a partial morphism� we write �m� f � � a 	

b� and we write �m� f� � a 	 b for a representative
 Given �C�M� there is a
canonical embedding functor� Emb � C� pC� de�ned as�

Emb�a� � a� Emb�f� � �id� f � �

�We refer to �CO��	 Mog��	 RR��� for extended information on the origins and the devel�
opment of the theory� The de�nition of pCCC can already be found in �LM����
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De�nition 
���� �lifting� Given a category enriched with a collection of ad

missible monos� say �C�M� and an object a in C the lifting of a is de�ned as a
partial morphism� open � �a�� 	 a� such that �cf� de�nition ��	�����

�b � C�f � b 	 a�'f � � b� �a���f � open 	 f �� � ��
��

The following theorem characterizes the lifting as the right adjoint of the embed�
ding functor and shows that it induces a monad �cf
 section �
��


Theorem 
���� ��� The partial category �C�M� has liftings i� the embedding
functor has a right adjoint� �� The lifting functor induces a monad over C�

Proof hint
 If f � b 	 a then we de�ne f � � b � �a�� according to condition
�
�
 ��� ��� We de�ne a lifting functor� Lift � pC� C� as�

Lift�a� � �a��� Lift�f� � �f 	 opena�
�� where f � a 	 b �

Next we de�ne a natural iso�

� � pC� � �� C� �Lift �� �a�b�f� � f � �

��� Given the natural iso � � we de�ne�

�a�� � Lift�a�� opena � ����id�a��� �

�� This is a mechanical construction of a monad out of an adjunction �cf
 section
B
��
 We de�ne �a � �ida��� and �a � ���a�����a�opena 	 open�a��

�
 �

Exercise ����� Find a notion of admissible mono in Set that generates the monad of
partial computations de�ned in the example ���������

The notion of partial cartesian closed category �pCCC� arises naturally when
requiring closure under the partial function space


De�nition 
���
 �pCCC� Let M be an admissible collection of monos on the
category C� The pair �C�M� is a pCCC �partial cartesian closed category� if C
is cartesian and for any pair of objects in C� say a� b� there is a pair

�pexp�a� b�� peva�b � pexp�a� b�� a 	 b�

�pev for short� with the universal property that for any f � �c � a� 	 b there
exists a unique h � c � pexp�a� b� �denoted p�a�b�c�f�� or p��f� for short� such
that pev 	 �h� ida� � f �
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In other words� for any object b there is a functor partial exponent on b� say
b 	 � pC� C� that is right adjoint to the product functor � b � C� pC�

pC� � b� � �� C� � b 	 � �

By instantiating this natural isomorphism� we obtain the following version of
currying� a� b 	 c �� a� �b 	 c�
 By virtue of this isomorphism we can safely
confuse b 	 c with pC�b� c�
 We remark that in any pCCC the lifting can be
de�ned as �a�� � �	 a� with the morphism open � pev 	 hid� 'i

Every pCCC has an object &� called dominance� that classi�es the admissible

subobjects �in the same sense as the object of truth�values � classi�es arbitrary
subobjects in a topos�


Proposition 
���� �dominance� In every pCCC the object & � ���� � �	 ��
called dominance� classi�es the admissible monos in the following sense� where
� � p��'� � �� &�

�a�m � M�a��'� � a� & such that �m� '� is a pullback for ����� ��
�

Exercise ������ Given a partial category de�ne an admissible subobject functorM� � �
Cop � Set� Show that the classi�er condition ��� can be reformulated by saying that
there is a natural isomorphism between the functorM� �� and the hom�functor C� ����

Exercise ������ Show that in a pCCC the following isomorphism holds� a � � 	�
a 
 ��

In order to practice these de�nitions� let us consider the familiar category of
directed complete partial orders and continuous morphisms �Dcpo�
 In Dcpo
we can choose as admissible monos �i
e
 subobjects� the ones whose image is a
Scott open
 Then the dominance is represented by Sierpinski space O� the two
points cpo
 The dominance O classi�es the admissible monos because any Scott
open U over the dcpo D determines a unique continuous morphism� f � D � O
such that f����� � U �this point was already discussed in section �
 and it will
be fully developed in section ��
��


De�nition 
����	 Let Dcpo be the category of dcpo�s and continuous mor

phisms� We consider the following class of monos in Dcpo�

m � D � E � MS i� im�m� � �S�E� �

We leave to the reader the simple proof of the following proposition


Proposition 
����� ��� The class MS is an admissible family of monos for the
category Dcpo� �� The related category of partial morphisms is a pCCC�
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We conclude by relating various categories of dcpo�s
 Let D�E be dcpo�s

A partial continuous morphism f � D 	 E is a partial morphism such that its
domain of de�nition is a Scott open �Dom�f� � �S�D�� and its total restric�
tion� fjDom�f� � Dom�f� � E� is Scott continuous
 We denote with pDcpo the
category of dcpo�s and partial continuous morphisms

Let D�E be cpo�s
 Recall from de�nition �
�
�� that a strict continuous

morphism f � D � E is a �Scott� continuous morphism such that f��D� � �E

We denote with sCpo the category of cpo�s and strict continuous morphisms


Exercise ������ ��� Calculate the dominance of �MS�Dcpo�� ��� De�ne the equiva�
lences among the category of partial morphisms generated by �MS �Dcpo�� the category
sCpo� and the category pDcpo�

	�� Call
by
value and Partial Morphisms

We apply the idea of distinguishing between total and divergent computations
which is implicit in the monad of partial computations to the design of a variant
of the language Pcf �see chapter 	�
 This gives us the opportunity to revisit the
general problem of relating the interpretation of a programming language with
the way the programming language is executed

We may start from the following question �reversing the historical evolution

of the topic�� for which kind of simply typed ��calculus does a pCCC provide
an adequate interpretation� A crucial point is that we follow a call�by�value
evaluation discipline� hence in an application the evaluator has to diverge if the
argument diverges
 To be more precise� we have to �x the rules of evaluation and
observation
 We stipulate the following�

��� The evaluator has to stop at ��abstractions


�� It is possible to observe the termination of a computation of a closed term
at all types� equivalently one may say that programs have arbitrary� possibly
functional� types


Contrast these design choices with the de�nition of the evaluator �op in chapter
	
 There evaluation followed a call�by�name order and observation of termination
was allowed only at ground types
 As in chapter 	� we wish to relate operational
and denotational semantics
 The technical development of the adequacy proof
goes through three main steps


��� A language based on a �xed point extension of the simply typed ��calculus
is introduced and a call�by�value evaluation of closed terms is de�ned


�� A standard interpretation of the language in the pCCC pDcpo is speci�ed


��� A notion of adequacy relation is introduced which allows to relate closed
terms and denotations


It is �rst proved that the evaluation of a closed term converges to a canonical
term i� its denotation is a total morphism
 As a corollary� a result of adequacy
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���
� 
 � � �

�Asmp�
x � � � �
� 
 x � �

�	I�
�� x � � 
 M � �

� 
 �x � ��M � � 	 �
�	E�

� 
 M � � 	 � � 
 N � �
� 
 MN � �

�Y �
� 
 M � �� 	 ��	 �

� 
 Y �M � �

Figure �
�� Typing rules for the call�by�value typed ��calculus

of the interpretation with respect to a natural observational preorder is obtained

The related proof technique introduces a family of adequacy relations indexed
over types that relate denotations and closed terms
 These adequacy relations
are a variant of the relations already de�ned in the adequacy proof for PCF
�chapter 	�
 They combine ideas from the computability technique �a technique
used for proofs of strong normalization� see theorems �
�
� and ��
�
��� with
the inclusive predicates technique discussed in chapter 	


Call�by�value �Y �calculus� We consider a variant of the �Y �calculus de�ned
in chapter 	 suited to the call�by�value viewpoint
 Types and raw terms are
de�ned by the following grammars
 We distinguish a special type � which is
inhabited by the constant �
 This type corresponds to the terminal object and
it is used to de�ne a lifting operator� according to what can be done in every
pCCC


Type Variables tv ��� t jj s jj � � �
Types � ��� � jj tv jj �� 	 ��
Term Variables v ��� x jj y jj � � �
Terms M ��� � jj v jj ��v � ��M� jj �MM� jj �Y �M� �

Contexts � are de�ned as in chapter �
 Provable typing judgments are inductively
de�ned in �gure �
� �in the following we often omit the type label from the Y
combinator�

The types of the Y clause may seem a bit puzzling at a �rst glance
 One can

give a semantic justi�cation by recalling that in a pCCC we de�ne the lifting as
�a�� � ��	 a�� on the other hand the partial function space� say	� relates to the
total function space� say�� as a 	 b � a� �b��
 So ��	 ��	 � is the �same�
as ����� � ����� and the implicit type we give to Y is ����� � ����� � �����
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���
� �� �

�	I� �x � ��M �� �x � ��M

�	E�
M �� �x � ��M � N �� C � M ��C ��x� �� C

MN �� C

�Y �
M��x � ��Y M� �� C

YM �� C
�x fresh�

Figure �
� Evaluation rules for the call�by�value typed ��calculus

that is the usual type of a �xed�point combinator over ����
 One good reason to
restrict recursion to lifted objects is that these objects do have a least element' A
continuous function over a directed complete partial order without a least element
does not need to have a �x�point


Evaluation� In chapter 	 we have de�ned the reduction relation as the re�ex�
ive� transitive closure of a one�step reduction relation �op
 In the following we
follow a di�erent style of presentation in which evaluation is presented as a re�
lation between programs� i
e
 closed terms� and canonical forms
 In the case
considered here� the canonical forms are the closed� well�typed terms C�C �� � � �
that are generated by the following grammar �other examples of de�nition of the
evaluation relation can be found in section �
���

C ��� � jj ��v � ��M� �

The evaluation relation �� relates closed terms and canonical forms of the same
type
 Its de�nition is displayed in �gure �



We write M � if �C �M �� C�
 Note that the de�nition of the relation ��
gives directly a deterministic procedure to reduce� if possible� a closed term to a
canonical form
 In particular� canonical forms evaluate to themselves


Interpretation� In order to de�ne an interpretation of our call�by�value ��
calculus we concentrate on the category of directed complete partial orders and
partial continuous morphisms
 Then� as usual� there is a least �xed point operator
over lifted objects that is calculated as the lub of an inductively de�ned chain


Let Dcpo be the collection of dcpo�s
 We give a type interpretation that
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��� ��� 
 � � ��� �'��	


�Asmp� ���x� � ���� � � � � �xn � �n� 
 xi � �i�� � 
n�i
�	I� ��� 
 �x � ��M � � 	 � �� � p������ x � � 
M � � ���
�	E� ��� 
 MN � � �� � pev 	 h��� 
M � � 	 � ��� ��� 
 N � ���i
�Y � ��� 
 YM � ��� �

W
n�� f�n�

Figure �
�� Interpretation of the call�by�value ��calculus in pDcpo

depends on an assignment � � tv� Dcpo as follows�

����� � � �the terminal object�
��t�� � ��t�
��� 	 � �� � �����	 ��� �� �the partial exponent� �

The interpretation of a judgment �x� � ���� � � � � �xn � �n� 
 M � � is a partial
morphism of type� ������ ������ �    � ���n�� 	 ����� �� associates to the left� as
de�ned in �gure �
�


� If 
 M � �� that is the term is closed� then the interpretation f � ��� 	 ��� is
either a divergent morphism or a point in �����
 We write f � in the �rst case and
f � in the second case
 We also write M � if ��M �� �� and we denote with � the
diverging morphism


� In ���� '��	

 is the unique total morphism into �


� In �	E�� the operation h � i is a partial pairing� that is it is de�ned only if its
arguments are both de�ned


� In �Y �� let g be ��� 
M � ��	 ��	 ���� f��� be the divergent morphism� and
f�n � �� � pev 	 hg� id 	 f�n�i
 The morphism id � a 	 pexp��� a� is uniquely
determined by the identity over a� and the morphism opena � pexp��� a�	 a


As in chapter � we can proceed by induction on the size of the typing proof
to establish the following properties of substitution


Lemma 
�	�� �substitution� If �� x � � 
 M � � � and � 
 C � � then ���
� 
 M �N�x� � � � �� ��� 
M �N�x� � � �� � ���� x � � 
M � � �� 	 hid� ��� 
 C � ���i�

Adequacy� We want to prove that given a well typed closed term M � M � i�
M �
 It is easy to show that if M � then M � as the interpretation is invariant
under evaluation and the interpretation of a canonical form is a total morphism

In the other direction the naive attempt of proving �M � � M �� by induction
on the typing of M does not work
 Therefore� we associate to every type � an
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adequacy relation R� relating denotations and closed terms of type � �cf
 chapter
	�
 Adequacy relations enjoy the property

�f R�M and f �� � M �

moreover they enjoy additional properties so that a proof by induction on the
typing can go through


De�nition 
�	�	 �adequacy relation� A relation S � ��� 	 ��� � �o� is an
adequacy relation of type � if it satis�es the following conditions�

�C��� �fSM and f ���M �
�C�� �fSM and M �� C and M � �� C�� fSM �

�C��� �SM� for any M � �o�
�C��� �ffngn�� directed in ���	 ��� and �n fn SM�� �

W
n�� fn�SM �

We denote with AR� the collection of adequacy relations of type �� For any type
�� the relation f���M� jM � �o�g� is an adequacy relation of type ��

It is interesting to observe certain geometric properties of adequacy relations

To this end we make explicit a cpo structure on the collection of closed terms

De�ne an equivalence relation� say �� on terms by stating that

M � N i� �M � and N �� or �C �M �� C and N �� C� �

Given a type � consider the quotient �o�� �� with a �at order obtained by as�
suming that the equivalence class of diverging terms is the least element� and all
other equivalence classes are incomparable

We can now consider E � ��� 	 ��� � ��o�� �� as the product cpo
 By

de�nition� a set P � E is an admissible predicate �cf
 inclusive predicates in
section 	
�� if it is closed under directed sets
 Note that any admissible predicate
P determines a relation SP over ���	 ���� �o� as follows�

�f�M� � SP i� �f� �M ��� � P �

Adequacy relations can be seen as a particular case of admissible predicates


Exercise ��
�� Let U � f�f� �M ��� j f � implies M 
g and L � f��� �M ��� j
M closedg� Verify that U and L are admissible predicates� Next show that the ad�
missible predicates included between L and U are in bijective correspondence with the
adequacy relations�

De�nition 
�	�� Given an assignment � � tv�
S
t�tvARt� such that ��t� � ARt

for any t� we associate to every type � a relation R� � ���	 �����o� as follows�

R� � f�f�M� j f � or �f � and M ��g
Rt � ��t�
R��� � f�f�M� j �f � � M �� and �d�N �dR� N � �pev 	 hf� di�R� MN�g �
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Proposition 
�	�� The relation R� is an adequacy relation of type �� for any
type ��

Proof
 We proceed by induction on the structure of �


� By de�nition of R


t By de�nition of �


� 	 � We verify the four conditions

�C
�� By de�nition of R�� 

�C
� Suppose �fR��M and M �� C and M � �� C�
 First observe�

�M �� C and M � �� C and MN �� C �� impliesM �N �� C � ��
��

The interesting case arises if pev 	 hf� di �
 Then we have to show�

pev 	 hf� diR� MN implies pev 	 hf� diR� M
�N

that follows by induction hypothesis on � and property �
�

�C
�� �R�� M because pev 	 h�� di �� �� and dR� N implies� by induction
hypothesis on � � �R� MN 

�C
�� pev 	 h

W
n�� fn� di �

W
n�� pev 	 hfn� di� but �n �fnR�� M� and dR� N

implies �n �pev 	 hfn� diR� MN�
 The thesis follows by �C
�� over R� 
 �

Theorem 
�	�� If � 
 M � �� � � �x� � ���� � � � � �xn � �n�� and diR� Ci�
i � �� � � � � n then ���� 
M � ��� 	 hd�� � � � � dni�R�M �C��x�� � � � � Cn�xn��

Proof
 By induction on the length of the typing judgment
 We adopt the
following abbreviations� hd�� � � � � dni � �d and �C��x�� � � � � Cn�xn� � ��C��x�


��� ���� 
 � � ��� 	 �d�R� �� by de�nition of R�


�Asmp� diR�i Ci � by assumption


�	I� We show �p������ x � � 
 M � � ��� 	 �d�R�� ��x � ��M ��C��x��
 The �rst

condition that de�nes R�� follows by the fact that �x � ��M ��C��x� �
 For the
second suppose dR� N � N �� C� and the application is de�ned� then by inductive
hypothesis we have�

����� x � � 
M � � �� 	 h�d� di�R� M ��C��x��C�x� �

We observe�

��� pev 	 hp������ x � � 
M � � ��� 	 �d� di � ����� x � � 
 M � � ��� 	 h�d� di


�� M ��C��x��C�x� �� C � implies ��x � ��M ��C��x��N �� C �

��� Hence by condition �C
� follows�

�pev 	 hp������ x � � 
M � � ��� 	 �d� di�R� ��x � ��M ��C��x��N �
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�	E� We show �pev 	 h��� 
 M � � 	 � ��� ��� 
 N � ���i 	 �d�R� �MN���C��x�


By induction hypothesis ���� 
 M � � 	 � �� 	 �d�R�� M ��C��x� and ���� 
 N �

��� 	 �d�R� N ��C��x�
 The result follows by the de�nition of R�� 


�Y� We show �
W
n�� f�n�	 �d�R� YM ��C��x�
 We prove by induction that� for each

n� �f�n� 	 �d�R� Y M ��C��x�
 The case n � � follows by �C
��
 For the induction
step we observe�

�pev 	 hg� id 	 f�n�i�R� M��x � ��Y M ��C��x�� �

by induction hypothesis on � 
 M � �� 	 ��	 �
 Now we use �C
� to conclude

pev 	 hg� id 	 f�n�iR� YM ��C��x�
 Hence by �C
�� we have the thesis
 �

Corollary 
�	�� ��� If 
M � � then M � implies M ��
�� If � 
 M � �� � 
 N � �� and ��� 
 M � ��� � ��� 
 N � ��� then in any context
C such that 
 C�M � � � and 
 C�N � � � we have C�M � � implies C�N � ��

Proof
 ��� We apply the theorem �

	 in the case the context is empty


�� We prove by induction on the structure of a context C that for any M�N
such that 
 C�M � � � and 
 C�N � � � �

��� 
M � ��� � ��� 
 N � ��� � ��
 C�M � � � �� � ��
 C�N � � � �� �

Next apply the adequacy theorem to show C�M � � � C�M � � � C�N � � �
C�N � �
 �

	�� Environment Machines

The e"cient reduction of ��terms is an important research topic �see� e
g
� �PJ����

A central problem is the implementation of the substitution operation
 In ��
calculus theory substitution is considered as a meta�operation whose de�nition
involves renaming of bound variables and a complete visit of the term in which
the substitution is carried on
 In implementations� it is tempting to distribute the
price of substitution along the computation
 The idea is to record the substitution
in a suitable data structure� the environment� which is kept on the side during
the evaluation
 The environment is accessed whenever the actual �value� of a
variable is needed


The weak ��calculus� Based on this idea we present a class of machines known
as environment machines which are related to the Categorical Abstract Machine
mentioned in section �
� �see �Cur��� for the exact connection�
 We concentrate
on the implementation of the weak ��calculus� a ��calculus in which reduction
cannot occur under ��s
 Terms are de�ned as usual� we omit types since they are
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���
��x�M�N �M �N�x�

���
M �M �

MN �M �N
���

N � N �

MN �MN �

Figure �
�� Reduction rules for the weak ��calculus

��x�M�V �v M �V�x�
M �v M

�

MN �v M
�N

N �v N
�

V N �v V N
�

Figure �
�� Call�by�value reduction strategy

not relevant to our discussion
 The rules for weak reduction are shown in �gure
�
�

Note that the reduction relation�� generated by these rules is not con�uent


For instance consider ��y��x�y��II�� where I is �z�z
 This term can be reduced
to two distinct normal forms� �x�II and �x�I
 Call�by�name and call�by�value
are two popular reduction strategies for the weak reduction


� In the call�by�name strategy rule ��� is omitted
 We denote the resulting
reduction relation with �n


� By de�nition� a value V is a term which begins with a ��abstraction
 The
call�by�value reduction strategy is presented in �gure �
�


Exercise ����� Formalize a call�by�name version of the typed ��calculus de�ned in
section ���� De�ne a translation of call�by�name in call�by�value according to the type
translation � � � � �� 
 �� 
 � � where � is the exponentiation operator for the
call�by�name calculus�

In the study of abstract machines implementing a given strategy� one is often
interested in the evaluation relation that we conventionally denote with ��� in
order to distinguish it from the reduction relation �an example of evaluation
relation was given in �gure �
�
 The evaluation relation relates terms to values
�or canonical forms�
 The evaluation relations ��n and ��v for call�by�name and
call�by�value� respectively� are shown in �gure �
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V ��n V

M ��n �x�M
� M ��N�x� ��n V

MN ��n V

V ��v V

M ��v �x�M
� N ��v V

� M ��V ��x� ��v V

MN ��v V

Figure �
	� Evaluation relation for call�by�name and call�by�value

x�e�� e�x�
M �e��    � ��x�P ��e��
MN �e�� P �e��N �e��x��

e�x�� c

M �e��M �e�c�x��

Figure �
�� Weak reduction for the calculus of closures

Exercise ����
 Let s stand for n or v� Show that� �i� ��s��
�
s � and �ii� the relations

��s and �s are incomparable with respect to the inclusion relation�

A weak calculus of closures� Next we formalize the idea of environment
 To
this end we de�ne a calculus of closures which are pairs of ��terms and environ�
ments
 Environments and closures are mutually de�ned as follows�

� An environment is a partial morphism e � Var 	 Closures where Dom�e�
is �nite �in particular the always unde�ned morphism is an environment�� and
Closures is the set of closures


� A closure c is a term M �e� where M is a term and e is an environment


In general we evaluate closures M �e� such that FV �M� � Dom�e�
 The evalua�
tion rules for weak reduction are displayed in �gure �
�
 In the second rule�M �e�
can be already of the form ��x�P ��e��
 Observe that the schematic formulation of
this rule is needed in order to keep environments at top level


Environments can be regarded as a technical device to �x the non�con�uence
of the weak ��calculus
 Indeed it is shown in �Cur��� that the relation �� is
con�uent on closures
 Next we formalize the evaluation relations for the call�by�
name and call�by�value strategies
 By de�nition� a value v is a closure ��x�M��e�

The rules are shown in �gure �
�
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e�x� ��n v

x�e� ��n v

M �e� ��n �x�M
��e�� M ��e��N�x�� ��n v

MN �e� ��n v

e�x� ��v v

x�e� ��v v

M �e� ��v �x�M
��e�� N �e� ��v v

� M ��e��v��x�� ��n v

MN �e� ��n v

Figure �
�� Evaluation rules for call�by�name and call�by�value

�x�e�� s� � �e�x�� s�
�MN �e�� s� � �M �e�� N �e� � s�
��x�M �e�� c � s� � �M �e�c�x��� s�

Figure �
�� Environment machine for call�by�name

Abstract machines� The evaluation rules described in �gure �
� are pretty
close to the de�nition of an interpreter
 What is still needed is a data structure
which keeps track of the terms to be evaluated or waiting for their arguments
to be evaluated
 Not surprisingly� a stack su"ces to this end
 In the call�by�
name strategy� we visit the term in a leftmost outermost order looking for a
redex
 During this visit the terms that appear as arguments in an application
are piled up with their environment in the stack
 Therefore the stack s can be
regarded as a possibly empty list of closures that we denote with c� � � � � � cn

The related environment machine is described in �gure �
� as a rewriting system
on pairs �M �e�� s� of closures and stacks �this formulation is due to Krivine�
 At
the beginning of the evaluation the stack is empty


In the call�by�value strategy� we need to know if what is on the top of the
stack is a function or an argument
 For this reason� we insert in the stack markers
l for left and r for right that specify if the next closure on the stack is the left
or right argument of the evaluation function
 Therefore a stack is de�ned as a
possibly empty list of markers m � fl� rg and closures� m� � c� � � � �mn � cn
 The
related environment machine is described in �gure �
��
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�x�e�� s� � �e�x�� s�
�MN �e��s� � �M �e�� r � N �e� � s�
�v� r � c � s� � �c� l � v � s�
�v� l � �x�M �e� � s� � �M �e�v�x��� s�

Figure �
��� Environment machine for call�by�value

	�� A FA Model for a Parallel �
calculus

We build a �lter model for an untyped� call�by�value ��calculus adapting the
techniques already introduced in chapter �
 Following �Bou��� we show that this
model is fully abstract when the calculus is enriched with a join operator �t�
allowing for the parallel evaluation of ��terms
 Evaluation converges as soon as
one of the terms converges
 The join operator fails to be sequential in the sense
described in section 
� and so one can show that it cannot be de�ned in the pure
��calculus
 Indeed it can be shown that in the calculus extended with the join
operator every compact element of a canonical model based on Scott continuity
is de�nable �i
e
 it is the interpretation of a closed term of the �t�calculus� a
similar result was stated in chapter 	 for Pcf enriched with a parallel or�
 This
result entails the full abstraction of the model


The �t�calculus� We introduce a call�by�value� untyped ��calculus enriched
with a join operator t and construct a model for it as the collection of �lters over
a speci�cally tailored eats �cf
 de�nition �
�
��
 The language of terms is de�ned
as follows�

v ��� x jj y jj � � �
M ��� v jj �v�M jjMM jjM tM �

Canonical forms are the closed terms generated by the following grammar�

C ��� �v�M jj C tM jjM t C �

Finally� the evaluation relation is de�ned inductively on closed terms as shown
in �gure �
��
 As usual we write M � if �C �M �� C�


Exercise ����� Observe that a term may reduce to more than one canonical form�
Consider the reduction relation naturally associated to the evaluation relation de�ned
in �gure ����� Observe that this relation is not con�uent� e�g� ��x��y�x��II t II� ��
�y��I t I� and ��x��y�x��II t II� �� �y��II t I�� This is a typical problem of weak
��calculi �cf� section ��	�� De�ne a suitable calculus of closures �where environments
are evaluated� and show its con�uence �a solution is described in �Bou�����
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M �� �x�M � N �� C � M ��C ��x� �� C

MN �� C

M ��M� tM� M�N tM�N �� C

MN �� C

C �� C

M �� C

M tN �� C tN

N �� C

M t N ��M t C

M �� C N �� C �

M tN �� C t C �

Figure �
��� Evaluation relation for the �t�calculus

We have already proved in section �
 the adequacy of a model for a call�by�
value ��calculus in which the function space is composed of the partial continuous
functions
 In the following� we build a �lter model over an eats for call�by�value�
which is a solution of the equation D � D 	 D
 � More precisely we work with
total morphisms and build the initial solution of the equation D � D � �D��
in the category of algebraic complete lattices and injection�projection pairs �this
solution exists by the techniques presented in chapter � and generalized in chapter
��
 � In a lattice the t operator can be simply interpreted as the lub
 In the
de�nition of eats for call�by�value we have to axiomatize the strict behaviour of
the 	 operator


De�nition 
���	 �v�eats� An eats for call
by
value �v
eats� is a preorder having
all �nite glb�s and enriched with a binary operation	 which satis�es the following
properties �as usual � denotes a top element��

���
�� � � � � � �

� 	 � � �� 	 � �
�� � 	 ��  � �� � �� 	 � �  �� 	 � ��

��� � 	 � � � 	 � ��� ��  �� 	 ���	 � � � 	 � �

Rule ��� and Inequality �� are inherited from the eats axiomatization
 Inequality
��� says that � 	 � is the largest de�ned element
 The inequality � � � 	 �

�In op� cit� similar results are obtained for call�by�name	 in this case one works with the
equation D � D � D���

�Following Boudol	 an equivalent presentation of the domain D is as the initial solution of
the system of domain equations D � V ��	 and V � V � D�
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states that � is a value� this is used in the 	�elimination rule in �gure �
�

Inequality ��� states that functions are strict� in other terms the behaviour on
unde�ned elements is irrelevant� for instance we can derive � 	 � � �� 	 ��	
� 
 Given a v�eats S� consider the collection of �lters F�S� ordered by inclusion

We write x � if � 	 � � x and x � otherwise
 We de�ne a strict application
operation as follows


De�nition 
���� �strict application� Given a v
eats S and x� y � F�S� de�ne

x�vy �

�
f� j � 	 � � x� � � yg if x � and y �
� � otherwise �

De�nition 
���� �representable function� Let S be a v
eats� A strict func

tion f over F�S� is representable if �x�y �f�y� � x�vy��

Proposition 
���� Let S be a v
eats� Then� ��� F�S� is an algebraic complete
lattice� �� The strict application operation is well
de�ned and continuous in both
arguments� In particular every representable function is strict continuous�

Proof hint
 ��� Follow the corresponding proof in proposition �
�
��
 ��
Simple veri�cation
 �

Proposition 
���� Let T be the smallest theory including an element � and
satisfying the conditions in de�nition ��	� �cf� de�nition ����	�� Then every
strict continuous function over F�T � is representable�

Proof hint
 First show that in the initial v�eats  i�I�i 	 �i � � 	 � implies
 �	�i�i � � � where �� �i � � 	 �
 Then the proof follows the schema presented
in proposition �
�
��
 �

Exercise ����� Show that if T is de�ned as in proposition ����
 then F�T � is isomor�
phic to the initial solution of the equation D � D� �D�� in the category of algebraic
complete lattices and embedding projections pairs�

De�nition 
���
 �interpretation� Let S be a v
eats� We de�ne an interpre

tation function �� �� � �t
term � �Env � F�S��� where Env � V ar � F�S�
with generic element �� When interpreting a closed term we omit writing the
environment as it is irrelevant� As usual if x � S then x denotes the least �lter
containing x�

��x��� � ��x� ��MN ��� � ��M ����v��N ���

���x�M ��� � f� 	 � j � � ��M ����� ��x�g ��M tN ��� � ��M ���� ��N ��� �
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x � � � �
� 
 x � � � 
 M � �

�� x � � 
 M � �
� 
 �x�M � � 	 �

� 
 M � � 	 � � 
 N � � � � � 	 �

� 
MN � �
� 
M � � � 
 N � �
� 
M tN � �  �
� 
M � � � 
 M � �

� 
M � �  �

� 
M � � � � �

� 
M � �

Figure �
�� Typing rules for the �t�calculus

Next we de�ne a typing system that allows to compute the interpretation� in
the sense that the interpretation of a term is the collection of types that we can
assign to it
 Types �� �� � � � are elements of a v�eats
 Contexts � are de�ned as
usual
 The typing system is displayed in �gure �
�

An environment � is compatible with a context � if x � � � � implies � � ��x�


In this case we write � � �


Proposition 
���� For any term of the �t
calculus the following holds�

��M ��� � f� j � 
M � ��� � �g �

Proof
 !� By induction on the length of the derivation we prove that�

���� � � �� 
 M � � � � � ��M ���� �

�� First we observe a weakening property of the typing system �cf
 lemma �
�
���

if �� x � � 
M � � then �� x � �  �� 
M � � ��
��

Second� we note that for any environment �� the following set is a �lter�

f� j �� �� � � and � 
M � ��g ��
��

By induction on the structure of M we show that for all �� n � ��

� � ��M ����� ���x�� � � � � � �n�xn� � �� �� � � and �� x� � ��� � � � � xn � �n 
M � � � �

Let us consider the case �x�M 
 Fix an environment �
 By �
� it is enough to
show that � � ��M ����� ��x� implies � 
 �x�M � � 	 � � for some �
 By induction
hypothesis� �� x � � 
M � � � and we conclude by 	�introduction
 �
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Full abstraction� We outline the proofs of adequacy and full abstraction of
the �t�calculus with respect to the �lter model built on the initial v�eats
 The
adequacy proof follows a familiar technique already discussed in section �

 We
start by specifying when a closed term realizes a type


De�nition 
���� We de�ne a family of relations R� over closed terms as fol

lows�

R� � �ot �all closed terms�
R�
� � R� �R�

R�� � fM jM � and �N � R� �N � � MN � R� �g �

We write j�M � � if M � R� and x� � ��� � � � � xn � �n j�M � � if for all Ni such
that Ni � and j� Ni � �i �i � �� � � � � n� we have j�M �N��x�� � � � � Nn�xn� � �


Proposition 
����� If � 
M � � then � j�M � ��

Proof hint
 We prove by induction on � that� ��� ��x�M�N �Q � R� i�

M �N�x��Q � R� whenever N� �Q �� and �� �M tN��P � R� i� �M �P tN �P � � R�

Moreover� we verify that � � � implies R� � R� by induction on the derivation
of � � � 
 Finally� we prove the statement by induction on the length of the
typing proof
 �

Corollary 
����	 For any closed �t
term M � M � i� ��M �� � i� 
 M � � 	 ��

Proof
 We prove that M �� C implies ��M �� � ��C�� by induction on the length
of the proof of the evaluation judgment
 We observe that for any canonical form
C� 
 C � � 	 �� and that R�� is the collection of convergent �closed� terms
 �

This concludes the kernel of the adequacy proof
 The full abstraction proof
relies on the de�nability of the compact elements of the model
 To this end�
we inductively de�ne closed terms M� of type �� and auxiliary terms T� � for
� � � 	 �� in �gure �
��


Exercise ������ The de�nitions in �gure ���	 are modulo equality� where � � � if
� � � and � � �� Check that we associate a term to every type� and that equal types
are mapped to the same term�

Theorem 
����� For all types �� � such that � � � 	 � the following holds�

��M��� �� � ��T����vx �

�
��I�� if � � x
� � otherwise �
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M� � �
M�
� �M� tM�

M�� � �x��T�x�M� �� � � 	 ��
T�� � �f�I
T�
� � �f��T�f��T�f� ��� � � � 	 ��
T�� � �f�T��fM�� �� � � 	 ��

Figure �
��� De�ning compact elements

Proof
 By induction on �
 We just consider two cases
 Case M�� 
 We check�

� � � ���T��� � �
�� � � � � 	 � � �� 	 � � �

Case M�
� 
 We use � �� � � �� ��  � �
 �

We have derived the adequacy of the interpretation from the soundness of
the typing system with respect to the realizability interpretation �proposition
�
�
���
 Symmetrically� the full abstraction result will be obtained from a com�
pleteness property of the typing system �which follows from the de�nability the�
orem �
�
���


De�nition 
����� Let M�N be closed terms� A logical preorder M �L N is
de�ned as� �� �j�M � � � j� N � ���

Corollary 
����� Let M�N be closed terms� If M �L N then ��M �� � ��N ���

Proof
 It is enough to show j� M � �� implies 
 M � �� by induction on ��

Let us consider the case for �� � � 	 � 
 From 
 M� � � we derive j� M� � ��
by proposition �
�
��
 Without loss of generality we assume � � � 	 �
 Then
M� �
 It follows j�MM� � � 
 By induction hypothesis 
MM� � � 
 We conclude
by the following chain of implications�


 MM� � � � � � ��M �� � � � �� 	 � � ��M ��� � � ��

� 
M � �� 	 �� � � �� � 
 M � � 	 � �

�

This result virtually concludes the full abstraction proof
 It just remains to
formally de�ne an operational preorder and to verify that it coincides with the
preorder induced by the model
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De�nition 
����� An applicative simulation S is a binary relation on closed
terms such that whenever MSN � ��� M � implies N �� and �� for all P � P �
implies �MP �S �NP �� Let �sim be the largest applicative simulation�

Proposition 
����
 Let M�N be closed terms� If ��M �� � ��N �� then M �sim N �

Proof
 It follows from the observation that f�M�N� j ��M �� � ��N ��g is a simula�
tion
 �

Proposition 
����� If M �sim N then M �L N �

Proof
 We suppose M �sim N 
 We prove by induction on � that j� M � �
implies j� N � �
 �

Corollary 
���	 Let M�N be closed terms� Then ��M �� � ��N �� i� M �sim N i�
M �L N �

Proof
 By corollary �
�
�	 and propositions �
�
��� �
�
��
 �

Exercise ����
� ��� Let M�N be closed �t�terms� De�ne�

M �apl N i� P�� � � � � Pn�MP� � � �Pn 
 � NP� � � �Pn 
� �

Show that M �apl N i� M �sim N � ��� Let M�N be arbitrary terms� De�ne�

M �op N i� C such that C�M �� C�N � are closed �C�M � 
 � C�N � 
� �

Show that for M�N closed� M �op N i� M �apl N �this is called context lemma in
the context of the full abstraction problem for Pcf� cf� chapter 
��

	�� Control Operators and Cps Translation

Most programming languages whose basic kernel is based on typed ��calculus�
also include control operators such as exceptions or call
with
current
continuation
�see for instance Scheme or ML�
 In the following we show how to type certain
control operators and how to give them an adequate functional interpretation
 As
already hinted in example �
�
�� the monad of continuations is a useful technical
device to approach these problems
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A ��calculus with control operators� As in section �
� we consider a simply
typed call�by�value ��calculus
 This language is enriched with a ground type
num� numerals �� �� � � �� and two unary combinators� C for control and A for
abort
 Formally we have�

Types� � ��� num jj �� 	 ��
Terms� v ��� x jj y jj � � �

M ��� n jj x jj �v � ��M jjMM jj CM jj AM �

We brie�y refer to the related calculus as the �C�calculus
 In order to formalize
the behaviour of the control operators C and A it is useful to introduce the notion
of �call�by�value� evaluation context E �cf
 �FFKD�����

E ��� � � jj EM jj ��x � ��M�E �

Note that an evaluation context is a context with exactly one hole which is not
in the scope of a lambda abstraction
 Using evaluation contexts one can provide
yet another presentation of the reduction relation
 First� we de�ne a collection
V of values as follows�

V ��� n jj �v � ��M �

If we forget about type labels the one step reduction relation on terms is de�ned
as follows�

��v� E���x�M�V � � E�M �V�x��
�C� E�CM � �M��x�AE�x�� x �� FV �E�
�A� E�AM � �M �

We can now provide a syntactic intuition for what a continuation for a given
term is� and for what is special about a control operator
 A redex # is de�ned
as follows�

# ��� ��v�M�V jj CM jj AM �

Given a term M � E�#�� the current continuation is the abstraction of the
evaluation context� that is �x�E�x�
 We will see later that there is at most one
decomposition of a term into an evaluation context E and a redex #
 A control
operator is a combinator which can manipulate directly the current continuation

In particular the operator A disregards the current continuation and starts the
execution of its argument� while the operator C applies the argument to �x�AE�x��
when �x�E�x� is the current continuation

We illustrate by an example the role of control operators in functional pro�

gramming
 We want to write a function F � Tree�num�	 num where Tree�num�
is a given type of binary trees whose nodes are labelled by natural numbers
 The
function F has to return the product of the labels of the tree nodes� but if it �nds
that a node has label �� in this case it has to return zero in a constant number of
steps of reduction
 Intuitively the termination time has to be independent from
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�C�
� 
M � ���
� 
 CM � �

�A�
� 
M � num
� 
 AM � num

where �� � � 	 num �

��v� E���x � ��M�V � � E�M �V�x��
�C� E�CM � �M��x � ��AE�x�� where CM � �
�A� E�AM � �M

Figure �
��� Typing control operators and reduction rules

the size of the current stack of recursive calls
 There is a simple realization of this
speci�cation that just relies on the abort operator A �more involved examples
can be found in �HF�����

let F �t� � F ���x�Ax�t
where F � � �k�Y ��f��t�� if empty�t�� then �

else if val �t�� � � then k�
else val �t�� � f�left �t��� � f�right �t���� �

At the beginning of the computation we have F �t� � F ���x�Ax�k�
 If at some
point the exceptional branch �if val �t�� � � � � �� is selected then the following
computation is derived� in some evaluation context E�

E���x�Ax���� E�A��� � �

By applying a Cps translation �to be de�ned next� it is possible to obtain a purely
functional program with a similar behaviour
 This is an interesting result which
�nds applications in compilers� design �App��
 On the other hand� one should
not conclude that we can forget about control operators
 Cps translations tend
to be unreadable� and programming directly in Cps style is a tricky business

In practice� control operators are directly available as primitives in functional
languages such as ML and Scheme
 We refer to �FFKD��� for a syntactic analysis
of a ��calculus with control operators


Typing control operators� It is possible to type the operators C and A coher�
ently with the reduction rules as shown in �gure �
�� �this typing naturally arises
in proving subject reduction� cf
 proposition �
�
�
 A program is a closed term
of type num
 The reduction rules ��v�� �C�� �A� de�ne a deterministic procedure
to reduce programs
 In the following a subscript C indicates that we refer to the
full �C�calculus
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Proposition 
���� �unique decomposition� Suppose 
C M � � � Then either
M is a value or there is a unique evaluation context E and redex # such that
M � E�#��

Proof
 By induction on the structure of M 
 The only interesting case is when
M �M �M ��
 Then M is not a value� 
C M � � � 	 �� and 
C M �� � � � for some �
�note that we cannot type A� and C alone�


� M � is a value
 Then M � � �x � ��M�
 If M �� is a value take E � � �
and # � ��x � ��M��M ��
 Otherwise� if M �� is not a value then� by inductive
hypothesis� there are E�� #� such that M �� � E��#��
 Then take E �M �E� and
# � #�


� M � is not a value
 Then� by inductive hypothesis� there are E�� #� such that
M � � E��#��
 Then take E � E�M

�� and # � #�
 �

Proposition 
���	 �subject reduction� If 
C M � num and M �C N then

C N � num�

Proof
 Suppose there are E�# such that M � E�#�
 There are three cases to
consider according to the shape of the redex


� # � ��x � ��M�V 
 This requires a simple form of the substitution lemma
 We
observe that x � � 
C M � � and 
C V � � implies 
C M �V�x� � � 


� # � CM 
 Suppose 
C CM � �
 Then 
C M � ��� and x � � 
C E�x� � num

Hence x � � 
C AE�x� � num� which implies 
C �x � ��AE�x� � ��� and �nally

C M��x � ��AE�x�� � num


� # � AM 
 
C AM � num forces 
C M � num
 Also by de�nition of program

C E�AM � � num
 �

The previous propositions show that the rules ��V �� �C�� �A� when applied to
a program de�ne a deterministic evaluation strategy which preserves the well�
typing


Remark 
���� One may consider other control operators� A popular one is the
call
with
current continuation operator �callcc�� The typing and reduction rule
for the callcc operators can be formalized as follows�

�� k � �� 
 M � �
� 
 callcc��k�M� � �

E�callcc��k�M��� ��k�kM���x�AE�x�� �

Exercise ����� ��� Find a simulation of the callcc operator using the C operator� ���
Evaluate the expression C��k���x�n��km�� following a call�by�value and a call�by�name
order�
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x � �k�kx MN � �k�M ��m�N��n�mnk��
n � �k�kn CM � �k�M ��m�m��z��d�kz��x�x�
�x�M � �k�k��x�M� AM � �k�M ��x�x�

Figure �
��� Cps translation

Cps translation� Next we describe an interpretation of the �C�calculus into
the �C�calculus without control operators
 We begin with a translation of types


num � num � 	 � � � 	 ��� �

The interpretation of the arrow follows the monadic view where we take num as
the type of results
 From another point of view observe that replacing num with
� one obtains a fragment of the double�negation translation from intuitionistic
to classical logic
 The rule for typing the C operator can then be seen as stating
the involutive behaviour of classical negation

Note that the translation involves both types$formulas and terms$proofs
 In�

deed a variant of the translation considered here was used by Friedman to extract
algorithmic content from a certain class of proofs in �classical� Peano arithmetic
�see �Fri��� Gri��� Mur��� for elaborations over this point�
 We associate to a
term M a termM without control operators so that�

x� � ��� � � � � xn � �n 
C M � � implies x� � ��� � � � � xn � �n 
M � ��� �

The de�nition is presented in �gure �
�� �we omit types�
 This is known as
Continuation Passing Style translation

Before giving the explicit typing of the translation we recall three basic com�

binators of the continuation monad


M � � ��M� � �k � �� �kM � ���
M � � 	 � ��M � �k � ��� ��h � �� �k��x � num �h�Mx��
M � ����� ��M� � �k � �� �M��h � ��� �hk� � ��� �

The explicitly typed Cps translation is given in �gure �
�	

It is now a matter of veri�cation to prove the following� where conventionally

�� x � � � �� x � � 


Proposition 
���� �typing Cps translation� With reference to the transla

tion in �gure ����� if � 
C M � � then � 
C M � ��� �
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x � �k � �� �kx � ��� if x � �
n � �k � �num �kn � ��num
�x � ��M � �k � �� 	 � �k��x � � �M� � ��� 	 �
MN � �k � �� �M��m � � 	 � �N��n � � �mnk�� � ���
CM � �k � �� �M��m � ��� �m��z � � ��d � �num �kz��x � num �x� � ���
AM � �k � �num �M��x � num �x� � ��num

Figure �
�	� Typing the Cps translation

Exercise ����� There are many possible Cps translations which from a logical view
point correspond to di�erent ways to map a proof in classical logic into a proof in
constructive logic� In particular verify that� consistently with the proposed typing� one
can give the following translation of application�

MN � �k � �� �N��n � ��M��m � � 
 ��mnk�� �

The main problem is to show that the Cps translation adequately represents
the intended behavior of the control operators
 Suppose 
C M � num� the desired
result reads as follows�

M ��
C n i� M id �� n�

The di"culty in proving this result consists in relating reductions ofM andM id 


Example 
���� It is not the case that for a provable judgment 
 M � num�
M �C N implies M id �� N id� Consider for instance ��x�x��An��C n� Note
��x�x��An��� �k�n� whereas n � �k�kn�

An optimized translation� Given a termM � a new translation hMi � �k�M �k
is de�ned with the following relevant properties�

��� M �� hMi

�� if M � num and M � N then M �id �� N �id 


This optimized translation is instrumental to the proof of the adequacy of the
Cps translation �cf
 following theorem �
�
���
 We limit our attention to the
fragment of the calculus without control operators
 An extension of the results
to the full calculus is possible but it would require a rather long detour �see
�DF���
 The translation considered here� also known as colon translation �cf

�Plo���� performs a more careful analysis of the term� the result is that a certain
number of redexes can be statically reduced
 By this� we can keep term and
Cps�translation in lockstep� hence avoiding the problem presented in example
�
�
�
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De�nition 
���
 We de�ne a ��translation on values� Expected typing� if V � �
then ��V � � ��

��n� � n ���x � ��M� � �x � ��M �

Lemma 
���� For any V � M ���V ��x� �M �V�x��

We associate to every evaluation context E a well�typed closed term ��E� as
follows�

��� �� � �x�x
��E�� �N �� � �m�N��n�mn��E��
��E�V � ��� � �n���V �n��E� �

Let K be the image of the function � with generic element K


De�nition 
���� We de�ne a semi�colon translation on pairs M �K� where M
is closed and K � K� Expected typing� if M � � and K � �� then M �K � num
�note the double use of �����

V �K � K��V �
V�V��K � ��V����V��K
V�N �K � N ��n���V��nK
MN �K �M ��m�N��n�mnK� �

We observe that if � 
 M � � then � 
 hMi � ���
 Next we prove three
technical lemmas that relate the standard and optimized Cps translations


Lemma 
����� If 
 M � �� K � K� and 
 K � �� then MK �� M �K�

Proof
 By induction on M and case analysis of the semi�colon translation
 For
instance let us consider�

MNK � ��k�M ��m�N��n�mnk���K �

By induction hypothesis on M � MNK �� M ��m�N��n�mnK� �MN �K
 �

Lemma 
����	 If 
 M � � and M is not a value then

E�M ����E�� �M ���E��E�� �

Proof
 By induction on E
 For instance let us consider E � E��� �N �
 By
induction hypothesis on E��

E���M �N ����E�� � �M �N ���E��E�� ���
�M ��m�N��n�mn��E��E�� ����
�M ���E��E��� �N ��� �

�
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Lemma 
����� If 
 V � � and 
 ��E� � �� then V ���E��� E�V ��id�

Proof
 By induction on the structure of E


� If E�V � is a value then E � � �


� Otherwise we distinguish three cases� ��� E � E��� �N �� N not a value� ��
E � E��� �V��� and ��� E � E��V�� ��
 For instance let us consider case ����

V ���E��� �N �� � V ��m�N��n�mn��E�� ���
� ��m�N��n�mn��E�� ������V �
� N��n���V �n��E�� ���
�� N ��n���V �n��E�� ��� �by lemma �
�
���
� V N ���E�� ��
� E��V N ��id �by lemma �
�
��
� E�V ��id �

�

Theorem 
����� �adequacy Cps�translation� Suppose 
C M � num� where
M does not contain control operators� Then M �� n i� M id �� n �

Proof


��� Suppose M �� n
 By lemma �
�
��� M id �� M �id 
 We show M � M �

impliesM �id �� M ��id 


E���x�M�V ��id � ��x�M�V ���E� �by lemma �
�
��
� ��x�M���V ���E�
�M �V�x���E� �by lemma �
�
��

�� M �V�x����E� �by lemma �
�
����
�� E��V�x�M ��id if �V�x�M is a value �by lemma �
�
���
� E��V�x�M ��id otherwise �by lemma �
�
�� �

��� By strong normalization of ��reduction� M �� m for some numeral m�
hence by ��� M id �� m
 On the other hand� by hypothesis M id �� n� and by
con�uence n � m
 �

Exercise ������ Given a program M show that when following a call�by�name evalu�
ation of M �id all redexes are actually call�by�value redexes� that is the rhs of the redex
is always a value� This fact is used in �Plo��� to simulate call�by�value reduction in a
call�by�name ��calculus�
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�x�e�� s� � �e�x�� s�
�MN �e�� s� � �M �e�� N �e� � s�
��x�M �e�� c � s� � �M �e�c�x��� s�
�CM �e�� s� � �M �e�� ret�s��
�AM �e�� s� � �M �e�� �
�ret�s�� c � s�� � �c� s�

Figure �
��� Call�by�name environment machine handling control operators

Environment machines and control operators� Environment machines
provide a simple implementation of control operators
 The stack of environment
machines corresponds to the current evaluation context
 The implementation of
control operators then amounts to the introduction of operations that allow to
manipulate the stack as a whole
 To this end we introduce an operator ret that
retracts a stack into a closure
 Roughly� if the stack s corresponds to the evalu�
ation context E then the closure ret�s� corresponds to the term �x�AE�x�
 We
consider �rst the situation for call�by�name
 The syntactic entities are de�ned
as follows �note that the collection of closures is enlarged to include terms of the
shape ret�s��


Terms M ��� v jj �v�M jjMM jj CM jj AM
Environments e � V ar 	 Closures
Closures c ���M �e� jj ret�s�
Stack s � c� � � � � � cn �

The corresponding machine is described in �gure �
��
 The formalization for
call�by�value is slightly more complicated
 Value closures and stack are rede�ned
as follows �as usual m stands for a marker��

Value Closures vc ��� ��v�M��e� jj ret�s�
Stack s � m� � c� � � �mn � cn �

The corresponding machine is described in �gure �
��
 The last rule deserves
some explanation� if ret�s� corresponds to �x�AE�x�� vc corresponds to V � and
s� corresponds to E� then the rule implements the reduction�

E����x�AE�x��V �� E��AE�V ��� E�V � �

It is possible to relate environmentmachines and Cps interpretations �LRS���

We give a hint of the connection
 Consider the following system of domain
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�x�e�� s� � �e�x�� s�
�MN �e�� s� � �M �e�� r � N �e� � s�
�vc� r � c � s� � �c� l � vc � s�
�vc� l � �x�M �e� � s� � �M �e�vc�x��� s�
�CM �e�� s� � �M �e�� r � ret�s��
�AM �e�� s� � �M �e�� �
�vc� l � ret�s� � s�� � �vc� s�

Figure �
��� Call�by�value environment machine handling control operators

equations where D is the domain of interpretation of closures� that is terms with
an environment e � Env � C is the domain of continuations with generic element
k� and R represents a domain of results����

��
D � C � R
C � D � C k � C
Env � Var � D e � Env �

We interpret the terms as follows� where stop is an arbitrary but �xed element
in C� and ret�k� � ��c� k���ck


��x��e k � e�x�k
��MN ��e k � ��M ��e h��N ��e� ki
���x�M ��e hd� ki � ��M ��e�d�x� k
��CM ��e k � ��M ��e hret�k�� stopi
��AM ��e k � ��M ��e stop �

Note that in the interpretation we work up to isomorphism
 If we regard the
continuation k as representing the stack s and hret�k�� stopi as representing ret�s�
then this interpretation follows exactly the pattern of the call�by�name machine
described in �gure �
��


Exercise ������ � De�ne a Cps interpretation for call�by�value which corresponds to
the machine described in �gure �����



Chapter �

Powerdomains

In example �
�
� we have presented a monad of non�deterministic computations
which is based on the �nite powerset
 We seek an analogous of this construc�
tion in the framework of domain theory
 To this end� we develop in section
�
� the convex� lower� and upper powerdomains in categories of algebraic cpo�s
�Plo�	� Smy���
 In order to relate these constructions to the semantics of non

deterministic and concurrent computation we introduce in section �
 Milner�s
Ccs �Mil���� a simple calculus of processes interacting by rendez
vous synchro�
nization on communication channels
 We present an operational semantics for
Ccs based on the notion of bisimulation
 Finally� in section �
� we give a fully
abstract interpretation of Ccs in a domain obtained from the solution of an
equation involving the convex powerdomain �Abr��a�


��� Monads of Powerdomains

We look for a construction in domain theory which can play the role of the �nite
�or �nitary� subsets in the category of sets
 The need for this development clearly
arises when combining recursion with non�determinism
 One complication is that�
in the context of domain theory� there are several possible constructions which
address this problem
 Their relevance might depend on the speci�c application
one is considering
 In the following we concentrate on three powerdomains which
rely on the notion of semi
lattice


De�nition ����� A semi�lattice is a set with a binary operation� say �� that is
associative� commutative� and absorptive� that is�

�x � y� � z � x � �y � z�� x � y � y � x� x � x � x �

From our perspective we regard the binary operation of a semi�lattice as a
loose generalization of the union operation on powersets
 We seek a method
for generating freely this algebraic structure from a domain
 We illustrate the

�
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construction for preorders and then extend it to algebraic cpo�s
 Let us consider
semi�lattices whose carrier is a preorder


De�nition ����	 A preordered semi
lattice is a structure �P��� �� where �P���
is a preorder� �P� �� is a semi
lattice� and the semi
lattice operation is monotonic�
that is x � x� and y � y� implies x�y � x��y�� Moreover� we say that a preordered
semi
lattice �P��� �� is a join preordered semi�lattice if it satis�es x � x � y� and
a meet preordered semi�lattice if it satis�es x � y � x�

Incidentally� we note in the following exercise that every semi�lattice gives rise to
a poset with speci�c properties


Exercise 	���� Given a semi�lattice �P� �� de�ne x �� y i� x � y � y� Show that
�P���� is a poset with lub�s of pairs� Exhibit a bijective correspondence between semi�
lattices and posets with lub�s of pairs�

However� we are looking in the other direction� we want to build a semi�lattice
out of a poset
 We de�ne the category in which we can perform this construction


De�nition ����� We denote with SP the category of preordered semi
lattices
where a morphism f � �P��� �� � �P ����� ��� is a monotonic function f � �P��
�� �P ����� such that f�x � y� � f�x� �� f�y�� Let JSP �MSP� be the full
subcategory of SP composed of join �meet� preordered semi
lattices�

The category SP has a subcategory of semi�lattices whose carriers are alge�
braic cpo�s with a continuous operation �� and whose morphisms are continuous


De�nition ����� We denote with SAcpo the category of preordered semi
lattices
�P��� �� such that �P��� is an algebraic cpo� the operation � is continuous� and
a morphism f � �P��� �� � �P ����� ��� is a continuous function f � �P��� �
�P ����� such that f�x � y� � f�x� �� f�y�� Let JSAcpo �MSAcpo� be the full
subcategory of SAcpo composed of join �meet� preordered semi
lattices�

We show that given an algebraic cpo there is a freely generated semi�lattice in the
category SAcpo
 In view of the technique of ideal completion �cf
 proposition
�
�
�� this problem can be actually decomposed in the problem of freely gener�
ating a semi�lattice in the category SP� and then completing it to a semi�lattice
in the category SAcpo
 So� let us consider the situation for preorders �rst
 We
�x some notation
 Let P�

fin�X� denote the non
empty �nite subsets of X


� P is the category of preorders and monotonic maps


� Forget � SP� P is the functor that forgets the semi�lattice structure
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Theorem ����� The functor Forget � SP� P has a left adjoint Free � P� SP
that is de�ned as�

Free�P � � �P�
fin�P ���c���� Free�f��X� � f�X�

where the semi
lattice operation is the set
theoretical union� and the so
called
convex preorder is de�ned as�

X �c Y i� �x � X �y � Y �x � y� and �y � Y �x � X�x � y� �

Proof
 The natural transformation �P�S � P�P�Forget�S�� � SP�Free�P �� S� is
de�ned as�

�P�S�f��X� � f�x�� �    � f�xn�

whereX � fx�� � � � � xng � P
�
fin�P � and � is the binary operation in S
 The inverse

is de�ned as ���P�S�h��p� � h�fpg�
 We have to verify that these morphisms live in
the respective categories


� �P�S�f� is monotonic
 Suppose fx�� � � � � xng � X �c Y � fy�� � � � � ymg
 By the
de�nition of the convex preorder we can �nd two multisets X � � fjw�� � � � � wljg
and Y � � fjz�� � � � � zljg in which the same elements occur� respectively� as in X
and Y and such that wi � zi� i � �� � � � � l
 By monotonicity of f � and of the
binary operation in S� we have�

f�w�� �    � f�wl� �S f�z�� �    � f�zl�

and by absorption�

�P�S�f��X� � f�w�� � � � � � f�wl�� �P�S�f��Y � � f�z�� � � � � � f�zl� �

� �P�S�f� is a morphism in SP
 Immediate by associativity and absorption
 We

leave to the reader the veri�cation that ���P�S is well de�ned as well as the check
of the naturality of � 
 �

Remark ����� The adjunction described in theorem ����� canonically induces
�cf� theorem B����� a convex monad �Pc� f g�

S
�� where�

Pc�D� � �P
�
fin�D���c�

f g � D � Pc�D�� f g�d� � fdgS
� Pc�Pc�D��� Pc�D��

S
fx�� � � � � xmg � x� �    � xm �

Theorem �
�
	 can be adapted to join and meet preordered semi�lattices by
following the same proof schema
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Theorem ����
 The forgetful functors Forget � JSP� P and Forget �MSP�
P have left adjoints FreeJSP � P� JSP and FreeMSP � P�MSP� respectively�
de�ned as�

FreeJSP�P � � �P�
fin�P ���l���

FreeMSP�P � � �P�
fin�P ���u���

FreeJSP�f��X� � FreeMSP�f��X� � f�X�

where the semi
lattice operation is the set
theoretical union� and the so
called
lower and upper preorders are de�ned as� �

X �l Y i� �x � X �y � Y �x � y�
X �u Y i� �y � Y �x � X�x � y� �

Example ����� We consider the poset O � f���g where as usual � � ��
We suppose that the semantics of a non
deterministic program is an element of
P�
fin�O� � ff�g� f�g� f���gg� � expressing divergence and � convergence� The

convex� lower� and upper preorders induce three distinct preorders on P�
fin�O�� In

the convex preorder f�g �c f���g �c f�g� in the lower preorder f���g � f�g�
and in the upper preorder f�g � f���g� In this context� the lower preorder can
be associated to partial correctness assertions� as it compares the outcomes of
a program neglecting divergence� whereas the upper preorder can be associated to
total correctness assertions� as it collapses programs that may diverge� The convex
preorder is the most discriminating� as it compares computations with respect to
both partial and total correctness assertions�

Let us see how theorem �
�
	 can be extended to the category Acpo of alge�
braic cpo�s and continuous functions via the ideal completion


� There is a functor Forget � SAcpo� Acpo


� Let Ide � P � Acpo be the ideal completion from preorders to algebraic
cpo�s which is left adjoint to the relative forgetful functor
 Similarly� one can
de�ne a functor SIde � SP � SAcpo� which makes the ideal completion of the
semi�lattice and extends the monotonic binary operation to a continuous one


De�nition ����� Let D be an algebraic cpo and let x stand for c� l� or u� Then
we de�ne a function Px� � � Acpo� Acpo as follows� �

Px�D� � Ide�P�
fin�K�D����x� �

Proposition ������ ��� If D is �nite then Pc�D� can be characterized as the
collection of convex subsets with the convex partial order� Namely� we have
�fCon�u� j u � P�

fin�D�g��c�� where Con�u� � fd j �d�� d�� � u �d� � d � d��g�

�Observe the combination of the terminologies for semi�lattices and preorders� the lower
preorder occurs with join preordered semi�lattices	 and the upper preorder occurs with meet
preordered semi�lattices� Note that X �c Y i� X �l Y and X �u Y �

�Note the di�erence between	 say	 Pc � as de�ned in remark �����	 and Pc� � as de�ned here�
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�� For the �at domain ���� the order Pc������ is isomorphic to the following
set with the convex preorder� fu j u � P�

fin���g � fu � f�g j u � �g�

Proof hint
 ��� This follows from the observation that K�D� � D and the fact
that the ideal completion of a �nite set does not add any limit point
 �� Left as
an exercise
 Note that every computation with a countable collection of results
may also diverge
 �

Exercise 	����
 Characterize Px�D� when x equals u or l and D is �nite or �����

The function Pc� � can be extended to a functor which is left adjoint to the
forgetful functor


Proposition ������ There is a left adjoint Free to the forgetful functor Forget �
SAcpo� Acpo�

Proof hint
 We de�ne Free�D� � Pc�D�
 Given f � D � E� we de�ne Free�f�
on the principal ideals by�

Free�f��� fd�� � � � � dmg� � fu � P�
fin�K�E�� j u �c ffd�� � � � � fdmgg �

Note that this is an ideal� and that Free�f� can be extended canonically to Pc�D�

�

Exercise 	����� Prove the analogous of proposition �����	 for the categories JSAcpo
and MSAcpo�

Exercise 	����� Show that the category of Scott domains is closed under the lower
and upper powerdomains constructions� Hint� it is enough to prove that every pair
of compact elements which is bounded has a lub� On the other hand� show that the
category of Scott domains is not closed under the convex powerdomain construction�
Hint� consider the domain T� where T � f�� tt�� g�

Exercise 	����� Let D be a bi�nite domain and let fpigi�I be the associated directed
set of image �nite projections such that

W
i�I pi � idD� Show that

W
i�I Pc�pi� � Pc�id��

Conclude that bi�nite domains are closed under the convex powerdomain� Extend this
result to the lower and upper powerdomains�

��� Ccs

The semantics of the programming languages considered so far associates to every
input a set of output values
 For instance� a �nite set if the computation is non�
deterministic but �nitely branching �cf
 example �
�
����
 On the other hand�
system applications often require the design of programs which have to interact
repeatedly with their environment �e
g
 other programs� physical devices�� � ��

In this case the speci�cation of a program as an input�output relation is not
adequate
 In order to specify the ability of a program to perform a certain action
it is useful to introduce the simple notion of labelled transition system
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De�nition ��	�� A labelled transition system �lts� is triple of sets �Pr�Act���
where �� Pr �Act� Pr�

We have adapted our notation to a process calculus to be introduced next� Pr
stands for the collection of processes and Act for the collection of actions
 We
write p

�
� q for �p� �� q� ��� to be read as p makes an action � and becomes q


De�nition ��	�	 A lts is said to be image �nite if� for all p � Pr� � � Act� the
set fp� j p

�
� p�g is �nite� An image �nite lts can be represented as a function

�� Pr �Act� Pfin�Pr��

Next we present �a fragment of� Milner�s Calculus of Communicating Systems
�Ccs� �Mil���
 Ccs is a model of computation in which a set of agents interact by
rendez
vous synchronization on communication channels �syntactically one can
think of an agent as a sequential unit of computation� that is as a process that
cannot be decomposed in the parallel composition of two or more processes�

In general several agents can compete for the reception or the transmission on

a certain channel� however each accomplished communication involves just one
sending and one receiving agent
 Moreover any agent may attempt at the same
time a communication on several channels �a non�deterministic sum is used for
this purpose�

In Ccs communication is pure synchronization� no data are exchanged be�

tween the sender and the receiver
 Therefore� it is not actually necessary to
distinguish between input and output
 All we need to know is when two interac�
tions are one dual of the other
 This idea can be formalized as follows
 Let L be a
�nite collection of labels �we make this hypothesis to simplify the interpretation
described in section �
��
 Each label l � L has a complement l which belongs to
L � fl j l � Lg
 The overline symbol can be understood as a special marker that
one adds to an element of L
 The marker is chosen so that L and L are disjoint

We denote with a� b� � � � generic elements in L�L
 The complement operation

is extended to L by making it involutive� that is a � a
 Finally we de�ne the
collection of actions Act � L�L�f�g� where � �� L�L
 We denote with �� �� � � �
generic elements in Act

The actions a� amay be understood as complementary input$output synchro�

nization operations on a channel
 The action � is an internal action in the sense
that a process may perform it without the cooperation of the environment

In �gure �
�� we de�ne a calculus of processes which includes basic combina�

tors for termination� sequentialization� non�deterministic sum� parallel composi�
tion� and restriction

A process is well�formed if it is� �i� closed� that is all process variables are

in the scope of a �x operator� and �ii� guarded� that is all �bound� process
variables are preceded by a pre�x� for instance �xX�a�X is guarded whereas
�xY���xX�a�X��Y is not
 In the following we always assume that processes are
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Process variables
 V ��� X�Y�Z� � � �
Processes
 P ��� � jj V jj ��P jj P � P jj P j P jj Pna jj �xV�P

Figure �
�� Syntax Ccs

well�formed� these are the objects for which an operational semantics is de�ned

The intuitive operational behaviour of the process operators is as follows
 � is
the terminated process which can perform no action
 a�P is the pre�xing of
a to P � that is a�P performs the action a and becomes P 
 P � P � is the non�
deterministic choice �sum� between the execution of P and that of P �
 The choice
operator presented here is very convenient in the development of an algebra of
processes
 On the other hand its implementation on a distributed architecture
requires sophisticated and expensive protocols
 For this reason most parallel
languages adopt a restricted form of non�deterministic choice
 P j P � is the
parallel composition of P and P �
 Pna is the process P where the channel a has
become private to P 
 This operation is called restriction
 Finally� �x is the least
�x�point operator with the usual unfolding computation rule
 We de�ne next
a lts on processes
 The intuitive interpretation of the judgment P

�
� P � is the

following�

� If � � � then P may reduce to P � by means of an internal autonomous
communication


� If � � a then P may reduce to P � provided the environment supplies a dual
action a


The de�nition of the lts proceeds non�deterministically by analysis of the process
expression structure
 The rules are displayed in �gure �

 The rules �sum�
and �comp� have a symmetric version which is omitted
 Given a process P one
may repeatedly apply the derivation rules above and build a possibly in�nite tree
whose edges are labelled by actions


Exercise 	�
�� ��� Show that any process without a �x operator generates a �nite
tree� ��� Verify that any Ccs process generates an image �nite lts� �	� Consider the
non�guarded process P � �xX���X��� a��� j b���� Verify P

a
� � j b�� j � � � j b��� for an

arbitrary number of b���s� Conclude that Ccs with unguarded recursive de�nitions is
not image �nite�

The tree representation is still too concrete to provide a reasonable semantics
even for �nite Ccs processes built out of pre�xing and sum
 In the �rst place
the sum should be commutative and associative� and in the second place two
identical subtrees with the same root should collapse into one
 In other words
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�pre�x �
��P

�� P
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P�
�
� P �

�
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�

P� j P�
�
� P �
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a
� P �
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�
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�
� P �
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�
�

�res�
P
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Pna
�
� P �na

��x �
P ��xX�P�X�

�
� P �

�xX�P
�
� P �

Figure �
� Labelled transition system for Ccs

the sum operator of Ccs should form a semi�lattice with � as identity
 For
processes generating a �nite tree� it is possible to build a canonical set�theoretic
representation
 We de�ne inductively�

ST� � � STn�� � Pfin�Act� STn� ST� �
S
fSTn j n � �g �

If P generates a �nite tree then let ��P �� � f��� ��P ���� j P
�
� P �g
 For instance one

can compute�

��a�� j a���� � f�a� f�a� ��g�� ��� ��� �a� f�a� ��g�g �

Exercise 	�
�� Verify that the previous interpretation is well�de�ned for processes
generating a �nite tree and that it satis�es the semi�lattice equations�

There are serious di"culties in extending this naive set�theoretic interpreta�
tion to in�nite processes
 For instance one should have�

���xX�a�X�� � f�a� f�a� f�a� � � �

This seems to ask for the construction of a set A such that A � f�a�A�g
 As�
suming the standard representation of an ordered pair �x� y� as fx� fx� ygg we
note that this set is not well
founded with respect to the belongs to relation as
A � fa�Ag � A
 This contradicts the foundation axiom which is often added to�
say� Zermelo�Fraenkel set�theory �see e
g
 �Jec����

On the other hand it is possible to remove the foundation axiom and de�

velop a non�standard set�theory with an anti
foundation axiom which assumes
the existence of sets like A �see in particular �Acz��� for the development of the
connections with process calculi�
 In section �
�� we will take a di�erent approach
which pursues the construction of a set�theoretical structure in domain theory re�
lying on the convex powerdomain
 The initial idea� is to associate to ���xX�a�X��
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the lub of elements of the shape f�a� f�a� � � � � f�a���g � � ��g�g� modulo a suitable
interpretation of the set�theoretical notation

In the following we develop the operational semantics of Ccs
 To this end we

introduce the notion of bisimulation �Par��� which is a popular notion of equiva�
lence on lts�s
 Let �Pr�Act��� be a lts
 We de�ne an equivalence relation over
Pr that can be characterized as the greatest element of a collection of relations
known as bisimulations or� equivalently� as the greatest �x�point of a certain
monotonic operator de�ned on the powerset of binary relations on Pr


De�nition ��	�� �operator F� Let �Pr�Act��� be a given lts� We de�ne
F � P�Pr � Pr�� P�Pr � Pr� as�

F�X� � f�p� q� j �p�� � �p
�
� p� � �q� �q

�
� q� and �p�� q�� � X�� and

�q�� � �q
�
� q� � �p� �p

�
� p� and �p�� q�� � X��g �

De�nition ��	�� The operator F is iterated as follows�

F� � Pr � Pr F	�� � F�F	�
F� �

T
	�� F

	 for � limit ordinal �

Proposition ��	�� The operator F is a monotonic operator over P�Pr � Pr��

Proof hint
 In the de�nition �

�� the relation X occurs in positive position

�

It follows from exercise �
�
� that the operator F has a greatest �x�point �gfp��
where gfp�F� �

T
	�� F

	� for some ordinal �


Proposition ��	�
 If the lts is image �nite then the operator F preserves codi

rected sets� in particular gfp�F� �

T
k�� F

k�

Proof
 Suppose fSigi�I is a codirected set of relations over Pr
 The interesting
point is to show� �

i�I

F�Si� � F�
�
i�I

Si� �

Suppose �i � I �pSi q� and p
�
� p�
 By hypothesis� �i � I �q� �q

�
� q� and p� Si q��


Moreover� the set Q � fq� j q
�
� q� and �i � I �p� Si q��g is �nite� and the

set fSigi�I is codirected
 It follows that there has to be a q� � Q such that
�i � I �p� Si q��
 To see this� suppose q�� q�� � Q� p� Si q�� and p� Sj q��� for i� j � I

Then �k � I �Si� Sj ! Sk�
 Moreover� �q��� � Q �pSk q����� from which pSi q

���

and pSj q
��� follows
 By applying a symmetric argument on Q we can conclude

pF�
T
i�I Si� q
 �

De�nition ��	�� �bisimulation� Let �Pr�Act��� be a given lts� A binary re

lation S � Pr � Pr is a bisimulation if S � F�S��
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Exercise 	�
��� Show that� �i� the empty and identity relations are bisimulations�
�ii� bisimulations are closed under inverse� composition� and arbitrary unions� and
�iii� there is a greatest bisimulation� Verify that bisimulations are not closed under
��nite� intersection�

De�nition ��	��� Let Pr be the collection of Ccs processes� Let F be the oper

ator related to Ccs bisimulation� We denote with � the largest Ccs bisimulation
and we set �	� F	�

Exercise 	�
��
 Show for Ccs that 	�	�� Hint� apply exercise ����	 and proposition
������

Exercise 	�
��� Prove that 	 is a congruence for pre�xing� sum� parallel composition�
and restriction� Hint� to prove that P 	 Q it is enough to �nd a bisimulation S such
that P S Q� Let �Pr� be the collection of equivalence classes generated by the greatest
bisimulation 	 on the set of Ccs processes� Extend the operations � and j to �P � and
prove that ��Pr���� ���� is a semi�lattice� and that ��Pr�� j� ���� is a commutative monoid�

The previous exercise suggests that bisimulation equivalence captures many
reasonable process equivalences
 However� as stated it is still unsatisfactory as
the internal action � and an input�output action on a channel are treated in the
same way
 This implies that for instance� the process ����a�� is not bisimilar to
the process ��a��
 One needs to abstract to some extent from the internal actions

A standard approach to this problem� is to consider a weak labelled transition
system in which any action �in the sense of the lts de�ned in �gure �
� can be
preceded and followed by an arbitrary number of internal � �actions


De�nition ��	��� Labelled weak reduction� say
�
�� is a relation over Ccs pro


cesses which is de�ned as follows�

P
a
� P � i� P �

�
���

a
� �

�
���P �

P
�
� P � i� P �

�
���P � �

Weak bisimulation is the greatest bisimulation relation built on top of the weak
lts �which is uniquely determined according to de�nition ������

The properties of weak bisimulation with respect to Ccs operators are de�
scribed in �Mil���
 We will meet again this equivalence in chapter �	� for the time
being we just observe some basic properties


Exercise 	�
��� Verify that the following equations hold for weak�bisimulation�

����P � ��P P � ��P � ��P ���P � ��Q� � ��Q � ���P � ��Q� �
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��� Interpretation of Ccs

We de�ne an interpretation of Ccs in the bi�nite domain D which is the initial
solution of the domain equation�

D � Pc��Act�D���" ���� ��
��

where " is the coalesced sum �cf
 de�nition �
�
�� � �� is the lifting �cf
 de��
nition �
�
�	�� and � is the one point cpo
 The role of the adjoined element ����
is to represent the terminated process � �cf
 �Abr��b��
 We denote with F the
functor associated to Pc��Act� ���" ����

We will show that the related interpretation captures bisimulation �a full

abstraction result�
 To this end� we will introduce a notion of syntactic approxi

mation �de�nition �
�
��
 A syntactic approximation plays a role similar to that
of �nite B�ohm trees in the ��calculus �cf
 de�nition 
�
��� it provides an ap�
proximate description of the operational behaviour of a process
 It turns out
that syntactic approximations� are interpreted in the domain D by compact el�
ements
 The key lemma �
�
� relates syntactic and semantic approximations

Full abstraction� is then obtained by going to the limit

The existence of an initial solution to equation �
� can be proven by the tech�

nique already presented in section �
� and generalized in section �
�
 However�
in order to relate denotational and operational semantics of Ccs it is useful to
take a closer look at the structure of D
 The domain D is the ��colimit in Bif ip

of the ��chain fF n���� F n�f��gn�� where the morphism f� � �� F ��� is uniquely
determined in Bif ip �cf
 theorem �
�
���
 We note that� for each n � �� the
domain F n��� is �nite
 Therefore the ideal completion has no e�ect� and we have
that F n����� �� �P�

fin��Act � F n������ " ������c�
 Every compact element in
D can be regarded as an element in F n���� for some n � �� and� vice versa�
every element in F n��� can be regarded as a compact element in D
 It is actually
convenient to build inductively the collection of compact elements


De�nition ����� �compacts� The sets Kn� for n � �� are the least sets such
that�

f�g � K� � � Kn��

�i � Act� di � Kn�m � �
f���� d��� � � � � ��m� dm�g � Kn��

�i � Act� di � Kn�m � �
f�g � f���� d��� � � � � ��m� dm�g � Kn��

�

Proposition ����	 For any n � �� ��� Kn � Kn��� and �� if d� d� � Kn then
d � d� � Kn�

Proof hint
 By induction on n
 �
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It is easy to verify that elements in Kn are in bijective correspondence with ele�
ments in F n���
 The bijection becomes an order isomorphism when the elements
in K �

S
n��Kn are ordered as follows


De�nition ����� �order� Let � be the least relation on K such that �I� J can
be empty��

�i � I �j � J ��i � ��j and di � d�j�
�j � J �i � I ��i � ��j and di � d�j�
f��i� di� j i � Ig � f���j � d

�
j� j j � Jg

�i � I �j � J ��i � ��j and di � d�j�

f�g � f��i� di� j i � Ig � f���j� d
�
j� j j � Jg

�i � I �j � J ��i � ��j and di � d�j�

f�g � f��i� di� j i � Ig � f�g � f���j� d
�
j� j j � Jg

�

This provides an explicit description of the compact elements
 We can assume
D � Ide�K��� with the inclusion order� and K�D� � f� d j d � Kg
 We denote
with I� J elements in D
 We can explicitly de�ne a chain fpngn�� of image �nite
projections on D by�

pn�I� � I �Kn ��
�

In �gure �
� we de�ne inductively on K monotonic functions corresponding to
the Ccs operators
 Of course� these functions can be canonically extended to
continuous functions on D
 In general� given f � Kn � K we de�ne (f � Dn � D
as�

(f�I�� � � � � In� �
�
f� f�d�� � � � � dn� j dj � Ij� j � �� � � � � ng ��
��

Next we de�ne a notion of syntactic approximation of a process
 Syntactic ap�
proximations can be analysed by �nite means both at the syntactic level� as it is
enough to look at a �nite approximation of the bisimulation relation �proposition
�
�
��� and at the semantic level� as they are interpreted as compact elements �def�
inition �
�
��
 To this end we suppose that the language of processes is extended
with a constant �
 The notion of labelled transition system and bisimulation for
this extended calculus are left unchanged �so � behaves as �� operationally�


De�nition ����� We de�ne inductively a collection of normal forms Nk�

� � N�

�i � I �Ni � Nk� �I � �

&i�I�i�Ni � Nk��
�

If I � f�� � � � � ng then &i�I�i�Ni is a shorthand for ���N� �    � �n�Nn� Con

ventionally � stands for the empty sum� We consider terms up to associativity
and commutativity of the sum� hence the order of the summands is immaterial�
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Nil � K Nil � �
Pre� � K � K Pre��d� � f��� d�g
Sum � K� � K Sum�d� d�� � d � d�

Resa � K � K
Resa�f�g� � f�g
Resa��� � �
Resa�f��i� di� j i � Ig� � f��i� Resa�di�� j i � I� �i �� fa� agg �I �� ��
Resa�f�g � f��i� di� j i � Ig� � f�g � f��i� Resa�di�� j i � I� �i �� fa� agg

Par � K� � K
Par�f�g� d� � Par�d� f�g� � f�g
Par��� d� � Par�d� �� � d

Par�f��� d�g� f���� d��g� �
f���Par�d� f���� d��g��g�
f���� Par�f��� d�g� d���g�
f��� Par�d� d��� j � � �� � L � Lg

Par�fdi j i � Ig� fdj j j � Jg� �
S
i�I�j�J Par�di� dj� ��I � �J � �� �I� �J � ��

Figure �
�� Interpretation of Ccs operators on compact elements
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De�nition ����� �syntactic approximation� For any process P � we de�ne a
k
th approximation �P �k � Nk as follows�

�P �� � � ���P �k�� � ���P �k
�P � P ��k�� � �P �k�� � �P ��k�� ��xX�P �k�� � ���xX�P�X�P �k��

�P �k�� � &i�I�i�Pi
�Pna�k�� � &f�i��Pina�k j i � I� �i �� fa� agg

�P �k�� � &i�I�i�Ni �P ��k�� � &j�J�j�N
�
j

�P j P ��k�� �

���
��
&i�I�i��Ni j &j�J�j�N

�
j�k�

&j�J�j��&i�I�i�Ni j N �
j�k�

&f���Ni j N �
j�k j i � I� j � J� �i � �jg �

To show that the de�nition is well�founded we de�ne a measure n�x on processes
that counts the number of recursive de�nitions at top level�

n�x ��� � n�x �X� � n�x ���P � � �
n�x �Pna� � n�x �P �
n�x �P j P �� � n�x �P � P �� � maxfn�x �P ��n�x �P ��g
n�x ��xX�P � � � � n�x �P � �

By the hypothesis that recursive de�nitions are guarded we have n�x ��xX�P � �
� � n�x �P ��xX�P�X��


Exercise 	���� Prove that the de�nition of k�th approximation is well�founded� by
induction on �n� n�x�P �� P ��

Proposition ����� Let P�Q be processes� Then�

P � Q i� �k � � ��P �k �
k �Q�k� �

Proof
 First� we observe that for any process P �

�P �� � � � N�

�P �k�� � &f���P ��k j P
�
� P �g � Nk�� �

It follows that for any process P � and for any k � �� �P �k �k P 
 Combining with
proposition �

� and using the transitivity of the relation �k we can conclude
that�

P � Q i� �k � � �P �k Q� i� �k � � ��P �k �
k �Q�k� �

�
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De�nition ����
 We de�ne an interpretation in K of the normal forms �with
reference to the operators in �gure �����

�����K � f�g �����K � �
����N ��K � Pre����N ��K� ��N �N ���K � Sum���N ��K� ��N ���K� �

Proposition ����� Let N�N � � Nn be normal forms� for n � �� Then ���
��N ��K � Kn� and �� N �n N � i� ��N ��K � ��N ���K�

Proof hint
 By induction on n
 �

The interpretation of normal forms is canonically lifted to all processes� by
taking the continuous extensions �cf
 equation �
�� of the functions de�ned in
�gure �
�� and interpreting �x as the least �x�point
 This is spelled out in the
following de�nition


De�nition ����� �interpretation� Let V be the collection of process vari

ables� and let � � V � D be an environment� We interpret a process P in
the environment � as follows�

������ �� ���
����P ��� �

S
f� �f��� d�g� j d � ��P ���g

��P � P ���� �
S
f� �d � d�� j d � ��P ���� d� � ��P ����g

��Pna��� �
S
f� �Resa�d�� j d � ��P ���g

��P j P ���� �
S
f� �Par�d� d��� j d � ��P ���� d� � ��P ����g

���xX�P ��� �
S
n�� In with I� �� �f�g�� In�� � ��P ����In�X�

��X��� � ��X� �

Exercise 	����� Prove that the function �d���P ����d	X � is continuous�

Lemma �����	 �approximation� For any process P � n � ��

pn���P ��� � ��P ���Kn � ���P �n�� �

Proof hint
 By induction on �n�n�x �P �� P �
 We consider a few signi�cative
cases


��P We compute�

����P ���Kn�� �
S
f� �f��� d�g� j d � ��P ���Kng

�
S
f� �f��� d�g� j d � ���P �n��Kg

�� �f��� ���P �n��K�g� �� ������P �n����K� �

�xX�P A direct application of the induction hypothesis�

���xX�P �� �Kn�� � ��P ��xX�P�X��� �Kn��

�� ����P ��xX�P�X��n����K�
�� �����xX�P �n����K� �
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P j P � We have�

��P j P ��� �Kn�� �
S
f� �Par�d� d��� j d � ��P ��� d� � ��P ���g �Kn��

�
S
f� �Par�d� d��� j d � ��P ���Kn��� d

� � ��P ��� �Kn��g �Kn��

�
S
f� �Par�d� d��� j d � ���P �n����K� d� � ���P ��n����Kg �Kn��

�� �Par����P �n����K� ���P ��n����K�� �Kn�� �� ����P j P ��n����K� �

�

Theorem ������ �full abstraction� Let P�Q be Ccs processes� Then�

P � Q i� ��P �� � ��Q�� �

Proof
 By proposition �
�
�� P � Q i� �k � � ��P �k �k �Q�k�
 By propo�
sition �
�
�� �k � � ��P �k �k �Q�k� i� �k � � ���P �k�� � ���Q�k��
 By lemma
�
�
�� ���P �k�� � pk���P ���� and since

W
k�� pk � id � we have ��P �� � ��Q�� i�

�k � � �pk���P ��� � pk���Q����
 �

Remark ������ ��� Not all compact elements in D are de�nable by a Ccs pro

cess� Indeed� if this was the case then full abstraction would fail� For instance
we would have P � � � P � whereas in general ��P � ��� �� ��P ��� It is possible
to re�ne the bisimulation relation by taking diverging elements into account �cf�
�Abr��b��� �� At the time of writing� the denotational framework described here
has not been adapted in a satisfying way to capture weak bisimulation�
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Stone Duality

We introduce a fundamental duality that arises in topology from the consideration
of points versus opens
 A lot of work in topology can be done by working at the
level of opens only
 This subject is called pointless topology� and can be studied
in �Joh��
 It leads generally to formulations and proofs of a more constructive
nature than the ones �with points�
 For the purpose of computer science� this du�
ality is extremely suggestive� points are programs� opens are program properties

The investigation of Stone duality for domains has been pioneered by Martin�L�of
�ML��� and by Smyth �Smy��b�
 The work on intersection types� particularly in
relation with the D� models� as exposed in chapter �� appears as an even earlier
precursor
 We also recommend �Vic���� which o�ers a computer science oriented
introduction to Stone duality


In sections ��
� and ��
� we introduce locales and Stone duality in its most
abstract form
 In sections ��
 and ��
� we specialise the construction to Scott
domains� and to bi�nite domains
 On the way� in section ��
�� we prove Stone�s
theorem� every Boolean algebra is order�isomorphic to an algebra of subsets of
some set X� closed under set�theoretic intersection� union� and complementation

The proof of Stone�s theorem involves a form of the axiom of choice �Zorn�s
lemma�� used in the proof of an important technical lemma� known as Scott
open �lter theorem
 In contrast� the dualities for domains can be proved more
directly� as specialisations of a simple duality� which we call the basic domain
duality
 �We have not seen this observation in print before
� Once the dualities
are laid down� we can present the domain constructions �logically�� by means
of formulas representing the compact opens
 This programme� which has been
carried out quite thoroughly by Abramsky �Abr��b�� is the subject of sections
��
� and ��
	


��
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���� Topological Spaces and Locales

If we abstract away from the order�theoretic properties of the opens of a topology�
we arrive at the following de�nition


De�nition ����� �locale� A locale� or a frame� is an ordered set �A��� satis

fying the following properties�

�� every �nite subset of A has a greatest lower bound�

� every subset of A has a least upper bound�

�� the following distributivity property holds� for any x � A and Y � A�

x  �
�
Y � �

�
fx  y j y � Y g�

In particular� there is a minimum�the empty lub� and a maximum�the empty
glb�
 For any topological space �X��X�� the collection �X� ordered by inclusion�
is a locale
 The elements of a locale will be often called opens� even if the locale
does not arise as a topology
 We make some remarks about this de�nition�

� Condition ��� is implied by condition ��� which in fact implies that all glb�s
exist
 But the maps we consider being those which preserve �nite glb�s and
arbitrary lub�s� it is natural to put condition ��� explicitly in the de�nition
of a locale


� Locales are equivalently de�ned as complete Heyting algebras� where a com�
plete Heyting algebra is a complete lattice which viewed as a partial order
is cartesian closed �cf
 de�nition �

� and example B
�
��


De�nition ����	 �frames�locales� The category Frm of frames is the cate

gory whose objects are locales� and whose morphisms are the functions preserving
�nite glb�s and all lub�s� The category Loc of locales is de�ned as Frmop� Locales
and frames are named such according to which category is meant�

Since we develop the theory of locales as an abstraction of the situation with
topological spaces� it is natural to focus on Loc� for any continuous function
f � �X��X� � �Y��Y �� the function f�� is a locale morphism from �X to �Y 


De�nition ����� The functor � � Top � Loc� called localisation functor� is
de�ned by

��X��X� � �X ��f� � f���

The two�points �at domain O � f���g �cf
 example �
�
	� lives both in
Top �endowed with its Scott topology f�� f�g� f���gg� and in Loc� and plays
a remarkable role in each of these categories�
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Top� For any topological space �X��X�� the opens in �X are in one�to�one
correspondence with the continuous functions from �X��X� to O


Loc� O considered as a locale is terminal in Loc� let �A��� be a locale� and
f � A � f���g be a locale morphism
 Then f��� � � and f��� � ��
since the minimum and maximum elements must be preserved


The fact that O is terminal in Loc suggests a way to recover a topological
space out of a locale
 The standard categorical way of de�ning a point in an
object A is to take a morphism from the terminal object
 We shall thus de�ne
points of a locale A to be locale morphisms g � f���g � A
 One may approach
the reconstruction of points from opens in a perhaps more informative way by
analyzing the situation of the locale �X of some topological space X
 If we try
to recover a point x out of the locale �X� the simplest idea is to collect all the
opens that contain it
 The fact that the mapping x �� fU j x � Ug is injective
is exactly the property of the topology to be T�
 Any set F � fU j x � Ug �x
�xed� has the following properties�

�� It is closed under �nite intersections�
� It is upward closed�
�� If P � �X and

S
P � F� then U � F for some U in P�

The �rst two conditions are those de�ning �lters �cf
 chapter ��
 We abstract
the three properties together in the following de�nition� which generalises and
extends de�nition �
�
�


De�nition ����� ��completely coprime� �lter� Let A be a partial order� A
�lter over A is an ideal over Aop� that is� a non
empty subset F such that�

�� If x � F and x � y� then y � F �

� �x� y � F �z � F z � x� y�

A �lter F in �a complete lattice� A is called completely coprime if�

�� �Y � A �
W
Y � F � � y � Y y � F �

We consider two restrictions of condition ��� �in a lattice� in a dcpo� respectively��

��� �Y ��n A �
W
Y � F � � y � Y y � F �

���� �Y �dir A
W
Y � F � � y � Y y � F �

A �lter satisfying ���� is called coprime� and a �lter satisfying ����� is called a
Scott�open �lter �indeed� ����� is the familiar condition de�ning Scott opens� cf�
de�nition ������ We write�

F�A� for the set of �lters of A�
Spec�A� for the set of coprime �lters of A�
Pt�A� for the set of completely coprime �lters of A�

All these sets are ordered by inclusion�



�� CHAPTER ��� STONE DUALITY

Remark that if � �
W
� � F � then F is not coprime
 In particular� coprime

�lters are proper subsets


Here is a third presentation of the same notion
 The complement G of a
completely coprime �lter F is clearly closed downwards� and is closed under
arbitrary lub�s
 In particular G �� �

W
G�� and we have� by conditions ��� and

��� �
P �

�
G �P �nite� � �p � P p �

�
G�

De�nition ����� ��co�prime� Let �X��� be a partial order� An element x of
X is called prime if

�P ��n X �
�
P exists and

�
P � x�� � p � P p � x�

Dually� a coprime element is an element y such that for any �nite Q � X� if
W
P

exists and x �
W
Q� then x � q for some q � Q�

Notice that a prime element cannot be � ��
V
��
 Dually� the minimum� if it

exists� is not coprime


Exercise ������ Show that if �X��� is a distributive lattice� then z � X is coprime
i� it is irreducible� i�e�� z � x � y always implies x � z or y � z�

Thus the complements of completely coprime �lters are exactly the sets of
the form � q� where q is prime� and there is a one�to�one correspondence be�
tween prime opens and completely coprime �lters
 The following proposition
summarises the discussion


Proposition ����� �points� The following are three equivalent de�nitions of
the set Pt�A� of points a locale A�

locale morphisms from O to A�
completely coprime �lters of A�
prime elements of A�

We write x j� p to mean x�p� � �� p � x� or p �� x� depending on how points
are de�ned� The most standard view is p � x �completely coprime �lters��

We have further to endow the set of points of a locale A with a topology


Proposition ����
 For any locale A� the following collection fUpgp�A indexed
over A is a topology over Pt�A�� Up � fx j x j� pg� This topology� being the
image of p �� fx j x j� pg� is called the image topology�

Proof
 We have Up � Uq � Up
q� and
S
fUp j p � Bg � UWB for any B � A


�such thattionThe Basic Duality The following result states that we did the right
construction to get a topological space out of a locale
 We call spatialisation� or
Pt� the operation which takes a locale to its set of points with the image topology
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Proposition ����� �� a Pt� The spatialisation A �� Pt�A� provides a right
adjoint to the localisation functor � �cf� de�nition �������� The counity at A is
the map p �� fx j x j� pg �in Loc�� and the unity is the map x �� fU j x � Ug
�in Top��

Proof hint
 Take as inverses�

f �� �p �� f���fy j y j� pg�� �f � X � Pt�B� �in Top�� p � B�
g �� �x �� fp j x � g�p�g� �g � �X � B �in Loc�� x � X� �

�

Theorem ����� �basic duality� The adjunction � a Pt cuts down to an
equivalence� called the basic duality� between the categories of spatial locales and
of sober spaces� which are the locales at which the counity is iso and the topological
spaces at which the unity is iso� respectively�

Proof
 Cf
 exercise B
	
�
 �

We shall restrict the basic duality to some full subcategories of topological
spaces and locales


The following is an intrinsic description of sober spaces
 We recall that the
closure A of a subset A is the smallest closed subset containing it


Proposition ������ �sober�irreducible� Let �X��X� be a T�
space� The
following are equivalent�

� � �X��X� is sober�

 � each irreducible �cf� exercise ������� closed set is of the form fxg for some x�

� � each prime open is of the form Xnfxg for some x�

Proof
 Looking at the unity of the adjunction� sober means� �all the completely
coprime �lters are of the form fU j x � Ug�
 Unravelling the equivalence of
de�nitions of points� this gets reformulated as� �all the prime opens are of the
form

S
fU j x �� Ug�� which is the complement of fxg
 �

Remark �����	 Any set of the form fxg is irreducible� so that in sober spaces�
the irreducible closed sets are exactly those of the form fxg for some x�

By de�nition of spatiality� a locale A is spatial if and only if� for all a� b � A�

��x � Pt�A� x j� a� x j� b� � a � b

or equivalently� a �� b� �x � Pt�A� x j� a and x �j� b
 Actually� it is enough to
�nd a Scott�open �lter F such that a � F and b �� F 
 But a form of the axiom
of choice is needed to prove this
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Theorem ������ �Scott�open �lter� Let A be a locale� The following prop

erties hold�

�� For every Scott
open �lter F � we have
T
fx � Pt�A� j F � xg � F �

� A is spatial i� for all a� b � A such that a �� b there exists a Scott
open �lter
F such that a � F and b �� F �

Proof
 ��� ! is obvious
 We prove � by contraposition
 Suppose a �� F 
 We
want to �nd an x such that F � x and a �� x
 We claim that there exists a prime
open p such that p �� F and a � p
 Then we can take x � fc j c �� pg
 Consider
the set P of opens b such that b �� F and a � b
 It contains a� and every chain
of P has an upper bound in P �actually the lub of any directed subset of P is in
P � because F is Scott open�
 By Zorn�s lemma P contains a maximal element q

We show that q is prime
 Suppose that S is a �nite set of opens� and that b �� q
for each b in S
 Then b#q is larger than q� and thus belongs to F � by maximality
of q
 Since F is a �lter� it also contains

V
fb # q j b � Sg � �

V
S� # q� which is

therefore larger than q� by maximality of q
 A fortiori
V
S �� q
 Hence q is prime

and the claim follows


�� One direction follows obviously from the fact that a point is a fortiori a Scott
open �lter
 Conversely� if a � F and b �� F � by ��� there exists a point x such
that F � x and b �� x
 Then x �ts since a � F and F � x imply a � x
 �

We shall not use theorem ��
�
�� for the Stone dualities of domains
 But
it is important for Stone�s theorem �section ��
��
 Another characterisation of
sobriety and spatiality is obtained by exploiting the fact that in the adjunction
� a Pt the counity is mono �by de�nition of the topology on Pt�A�� the map
p �� fx j x j� pg is surjective� hence� as a locale morphism� is a mono�


Proposition ������ Spatial locales and sober spaces are those topological spaces
which are isomorphic to �X for some topological space X� and to Pt�A� for some
locale A� respectively�

Proof
 By application of lemma B
	
	 to the adjunction � a Pt 
 �

We now exhibit examples of sober spaces
 If a topological space is already T��
one is left to check that the mapping x �� fU j x � Ug reaches all the completely
coprime �lters


Proposition ������ T�
spaces are sober�

Proof
 Let W be a prime open% in particular its complement is non�empty

Suppose that two distinct elements x� y are in the complement� and take disjoint
U� V containing x� y respectively
 Then U �V � being empty� is a fortiori contained
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inW � but neither U nor V are� contradicting primeness ofW 
 Thus a prime open
W is necessarily the complement of a singleton fxg
 We conclude by proposition
��
�
�� �in a T��space� fxg � fxg�
 �

In exercise �

	 we have anticipated that algebraic dcpo�s are sober
 This
provides an example of a non�T� �even non�T�� cf
 chapter �� sober space
 Ac�
tually� more generally� continuous dcpo�s �cf
 de�nition �
�
�� are sober
 Before
proving this� we exhibit a friendlier presentation of fxg in suitable topologies on
partial orders


Proposition ������ Given a poset X� and a topology � over X� the following
are equivalent�

� � �x � X fxg �� x�
 � weak � � � Alexandrov �
� � �� ���

where the weak topology is given by the basis fXn � x j x � Xg� and where �� is
the specialisation ordering de�ned by ���

Proof
 �� � ��� If x � A �A closed�� then � x � A� since � � Alexandrov 

Moreover � x is closed� since weak � �
 Hence fxg �� x


��� � �� If fxg �� x� then a fortiori � x is closed� hence weak � �
 If A is
closed and x � A� then fxg � A� hence � � Alexandrov 


��� ��� We have� ����� �x � U� x � y� y � U�� � � Alexandrov 


� �weak � �� � ��� � ��� Suppose x �� y
 Then Xn�� y� is an open
containing x but not y� hence x �� y�


� ����� and � � Alexandrov �� �weak � ��� We have to prove that any
Xn�� x� is in �
 Pick y � Xn�� x�� i
e
� y �� x
 Then �� �� implies that
there exists an open U such that y � U and x �� U 
 Since � � Alexandrov
implies z �� U for any z � x� we have U � Xn�� x�
 �

Proposition ��
�
�	 applies in particular to the Scott topology �S � since weak �
�S �cf
 exercise �

� and since �S � Alexandrov by de�nition


Proposition ������ The Scott topology for a continuous dcpo is sober�

Proof
 Let A be closed irreducible� and consider B �
S
a�A � a� �cf
 de�nition

�
�
��
 We �rst prove that B is directed
 Suppose not� let d� d� � B such that
there exists no a � A and d�� $ a such that d� d� � d��
 We claim�

� d � � d� �A � ��

�We refer to section ��� for the de�nition of Alexandrov topology and specialisation ordering�
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Indeed� suppose d� d� $ a for some a � A
 Then by directedness of � a there
would exist d�� $ a such that d� d� � d��� contradicting our assumption about
d� d�
 This proves the claim� which we rephrase as

A � �Dn � d� � �Dn � d���

But this contradicts the irreducibility of A� since � d and � d� are open �see
exercise �
�
��� and since d� d� � B can be rephrased as

A � � d �� � and A� � d� �� ��

Hence B is directed
 Since closed sets are closed downwards� we have B � A

Hence

W
B � A since A is closed
 We show that

W
B is an upper bound of A�

this follows immediately from the de�nition of continuous dcpo� if a � A� then
a �

W
� a �

W
B
 Therefore A �� �

W
B� �

W
B
 �

Scott topologies are not always sober


Proposition �����
 �Johnstone� Consider � � f�g� ordered by� n � n� i�
n � n� in � or n� � �� Consider the following partial order on the set D �
� � �� � f�g��

�m�n� � �m�� n�� i� �m � m� and n � n�� or �n� �� and n � m���

This forms a dcpo� Its Scott topology is not sober�

Proof
 We �rst check that we have a dcpo
 We claim that any element �m���
is maximal
 Let �m��� � �m�� n��� if m � m� and � � n�� then � � n�� while
the other alternative �n� �� and � � m�� cannot arise because m� ranges over
�
 In particular� there is no maximum element� since the elements �m��� are
comparable only when they are equal

Let # be directed
 If it contains some �m���� then it has a maximum


Otherwise let �m�� n��� �m��� n��� be two elements of #� a common upper bound in
# can only be of the form �m���� n����� with m��� � m� � m��
 Hence # � fmg�#��
for some m and some #� �dir �
 It is then obvious that # has a lub

Next we observe that a non�empty Scott open contains all elements �p����

for p su"ciently large
 Indeed� if �m�n� � U � then p � n � �m�n� � �p���

In particular� any �nite intersection of non�empty open sets is non empty
 In
other words � is a prime open� or� equivalently� the whole space �� �� �f�g� is
irreducible
 By lemma ��
�
�	� we should have D �� x for some x� but we have
seen that D has no maximum
 �

Nevertheless� sober spaces have something to do with Scott topology


Proposition ������ The specialisation order of any sober space �X��� forms
a dcpo� whose Scott topology contains ��
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Proof
 Let S be ���directed
 We show that its closure S is irreducible
 Let
S � F� � F�� and suppose S �% F� and S �% F�
 Let x � SnF� and y � SnF�� and
let z �� x� y in S
 Since S � F� � F�� we have� say� z � F�
 Then x � F� by
de�nition of ��� contradiction
 Therefore S � fyg for some y


� y is an upper bound� Pick s � S and suppose y �� U 
 Then S � fyg � XnU �
and a fortiori s �� U 
 Hence s �� y
 We claim�

If S � U � �� then y �� U�

Indeed� S � U � � implies S � U � �� and a fortiori y �� U 
 The rest of the
statement follows from the claim�

� y is the least upper bound� Let z be an upper bound of S� and suppose z �� U 

Then S � U � � by de�nition of ��� and y �� U follows by the claim


� Any open is Scott open� By the claim� since we now know that y �
W
S
 �

Exercise �����
� Show that the statement of proposition ������ can actually be strength�
ened by replacing �Its Scott topology is not sober� by� �There is no sober topology whose
specialisation order is the order of D�� Hint� use proposition �������

���� The Duality for Algebraic Dcpos

We recall that in algebraic dcpo�s the basic Scott�open sets have the form � a �a
compact�� and have the remarkable property that if � a �

S
i Ui� then � a � Ui

for some i
 This motivates the following de�nition


De�nition ��	�� �coprime algebraic� Let �A��� be a partial order� A com�
pact coprime is an element a such that� for all B � A� if

W
B exists and a �

W
B�

then a � b for some b � B� A poset �D��� is called coprime algebraic if each
element of D is the lub of the compact coprimes it dominates� We write C�D�
for the set of compact coprime elements of D�

Remark ��	�	 In de�nition ������ we do not specify under which lub�s we
assume A to be closed� In this chapter we are concerned with complete lattices�
and in chapter ��� we shall have to do with bounded complete coprime algebraic
cpo�s�

Lemma ��	�� �lower�set completion� A complete lattice is coprime alge

braic i� it is isomorphic to the lower set completion of some partial order �X����
de�ned as Dcl �X� � fY � X j Y is a lower subsetg� In particular� a coprime
algebraic partial order is a �spatial� locale� since Dcl �X� is Alexandrov�s topology
over �X ���

Proof
 Like the proof of proposition �
�
�
 �
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Exercise ���
�� Show that �compact coprime� de�ned as above is the same as �com�
pact and coprime�� Show that a partial order A is coprime algebraic i� it is an algebraic
dcpo such that all �nite lub�s of compact coprime elements exist� and such that every
compact is a �nite lub of compact coprimes�

Lemma ��	�� Let A be a coprime algebraic locale� The points of A are in one

to
one correspondence with the �lters over the set C�A� of compact coprimes of
A�

Proof
 The inverses are G ��� G and F �� fx � F j x compact coprimeg
 �

Proposition ��	�� �duality � algebraic dcpo�s� The basic duality cuts down
to an equivalence between the category Adcpo of algebraic dcpo�s and continuous
functions� and the category of locales arising as lower set completions of some
partial order�

Proof
 By lemma ��

�� any coprime algebraic locale is spatial
 By proposition
�
�
�� any algebraic dcpo is isomorphic to Ide�X� for some partial order �X���

By lemma ��

� we have

Ide�X� � F�Xop� � Pt�Dcl �Xop���

�We omit the proof that the topology induced by Pt on Ide�X� is Scott topology
�
Therefore� up to isomorphism� the class of algebraic dcpo�s is the image under Pt
of the class of coprime algebraic locales
 The statement then follows �cf
 exercise
B
	
��
 �

We call the duality algebraic dcpo�s $ coprime algebraic locales the basic
domain duality
 The key to this duality is that both terms of the duality have a
common reference� namely the set C�A� of compact coprimes on the localic side�
the set K�D� of compacts on the spatial side� with opposite orders�

�K�D���� �� �C�A�����

We shall obtain other dualities for various kinds of domains as restriction of the
basic domain duality� through the following metalemma


Lemma ��	�� If �S� is a property of algebraic dcpo�s and �L� is a property
of locales such that any algebraic dcpo satis�es �S� i� its Scott topology satis�es
�L�� then the basic domain duality cuts down to a duality between the category
of algebraic dcpo�s satisfying �S� and the category of coprime algebraic locales
satisfying �L��

Proof
 Cf
 exercise B
	
�
 �

Here are two examples of the use of lemma ��

�
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Proposition ��	�
 �duality � algebraic cpo�s� The basic domain duality res

tricts to an equivalence between the category Acpo of algebraic cpo�s and con

tinuous functions on one side� and the category of locales arising as lower set
completions of a partial order having a largest element�

Proof
 By lemma ��

�� with �has a minimum element� for �S�� and �has a
maximum compact coprime� for �L�
 If D satis�es �S�� then � � �ts
 If � x
is the maximum compact coprime of �D� then � y �� x for any other compact
coprime� i
e
� x is minimum
 �

Proposition ��	�� �duality � Scott domains� The basic domain duality cuts
down to an equivalence between the category of Scott domains �cf� de�nition
��	��� and continuous functions on one side� and the category of locales arising
as lower set completions of a conditional lower semi
lattice �i�e�� a poset for which
every �nite lower bounded subset has a glb��

Proof
 Take �has a minimum element� and binary compatible lub�s� as �S��
and �compact coprimes form a conditional lower semi�lattice� as �L�� and notice
that x # y exists i� � x� � y have a glb
 �

We can use exercise ��

� to get an alternative description of the posets
arising as lower set completions of conditional lower semi�lattices�

Proposition ��	�� The following conditions are equivalent for a coprime al

gebraic partial order A�

�� A is isomorphic to the lower set completion of a conditional lower semi

lattice�

� Finite glb�s of compacts are compact and any �nite glb of compact coprimes
is coprime or ��

Proof
 By proposition ��

�� ��� can be replaced by�

��� The compact coprimes of A form a conditional lower semi
lattice�

Also� since all lub�s exist in A� glb�s also exist and are de�ned by�
fx j � p � P x � pg �

�
fq j q compact coprime and � p � P q � pg�

Now� consider a �nite set P of compact coprimes
 There are two cases�

P has no compact coprime lower bound� then
V
P �

W
� � ��

P has a compact coprime lower bound� then
V
P �� ��

���� � �� We already know that A is a locale% a fortiori it is distributive
 Let
d � a�#  #am and e � b�#  #bn be two compacts
 Then d e �

W
i�j�ai bj�
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It is enough to check that each ai  bj is compact
 If fai� bjg has no compact
coprime lower bound� then a�  bj � �� which is compact
 Otherwise� ai  bj is
compact by assumption


�� � ���� We have to prove that� in case �b��
V
P is compact and coprime


It is compact by the �rst part of the assumption
 By the second part of the
assumption�

V
P is either coprime or �
 Since �b� implies

V
P �� ��

V
P is

coprime
 �

Information Systems An alternative description of Scott domains is obtained
by starting� not from a conditional upper semi�lattice� but from a partial order
equipped with a weaker structure� which we �rst motivate
 Let A be a conditional
upper semi�lattice
 Let I�� I�� I � Ide�A� be such that I�� I� � I
 Then the lub
of I�� I� is given by the following formula�

I� # I� � fa j a �
�
X for some X ��n I� � I�g�

This suggests us to consider the collection of the �nite bounded subsets X of A�
and the pairs �X� a� with the property a �

W
X
 It turns out that we actually do

not need to be so speci�c about this structure
 It is enough to have a distinguished
collection Con of �nite subsets over whichX ranges� and an �entailment� relation

 consisting of pairs �X� a�
 This view leads us to Scott�s notion of information
system �Sco��� whose axioms we shall discover progressively

Given a partial order A of tokens� a subset Con of �nite subsets of A� and

a relation 
� Con � A� we construct a �completion� whose elements are the
non�empty subsets x � A which satisfy�

�� X ��n x� X � Con�
� �X ��n x and X 
 a�� a � x�

If A is a conditional upper semi�lattice� if Con is the boundedness predicate and
X 
 a is de�ned by a �

W
X� then it is easily checked that conditions ��� and ��

together characterise the ideals of A �notice that ��� is weaker than directedness�
and �� is stronger than downward closedness�
 A directed union # of elements
is an element� if X ��n

S
#� then by directedness X ��n x for some x � #� and

��� and �� for
S
# follow from ��� and �� applied to x


Candidates for the compact elements are the elements of the form X � fa j
X 
 ag
 The sets X are not necessarily �nite� but can be considered �nitely
generated from X
 We expect thatX � X and that X is an element �which by
construction is the smallest containing X�
 This is easily proved thanks to the
following axioms�

�A� �X � Con and a � X�� X 
 a�
�B� X � Y � Con � X � Con�
�C� X 
 a� X � fag � Con�
�D� �fa�� � � � � ang 
 a and X 
 a�� � � � �X 
 an�� X 
 a�



����� THE DUALITY FOR ALGEBRAIC DCPOS ��

Axiom �D� is exactly condition �� for X
 As for ���� we check� say� that if
a�� a� � X � then fa�� a�g � Con
 First� an easy consequence of �A� and �D� is�

�X � Y � Con and X 
 a�� Y 
 a�

Applying this toX�X�fa�g �which is inCon by �C�� and a�� we obtainX�fa�g 

a�� and deduce fa�� a�g � Con by �A� and �B�

The elements X form a basis� Consider an element x and fX j X � xg �

fX j X � xg
 This set is directed� since if X��X� � x� then X� � X� � x and
X��X� � X� �X�
 Its union is x thanks to the following axiom�

�E� � a � A fag � Con�

We are left to show that X is compact
 This follows easily from� X � x i�
X � x
 Finally� we address bounded completeness
 If x�� x� � x� then

x� # x� � fa j �X � x� � x� X 
 ag�

De�nition ��	��� We call information system a structure �A�Con�
� satis

fying the above axioms �A�
�E�� and we write D�A�Con�
� for the set of its
elements ordered by inclusion�

Theorem ��	��	 The class of all bounded complete algebraic dcpo�s is the class
of partial orders which are isomorphic to D�A�Con�
�� for some information
system�

Proof
 We have done most of the work to establish that D�A�Con�
� is al�
gebraic and bounded complete
 Conversely� given D� we take the �intended�
interpretation discussed above� A � K�D�� X � Con i� X has an upper bound�
and X 
 d i� d �

W
X
 �

Theorem ��

� is an example of a representation theorem� relating abstract
order�theoretic structures �Scott domains� with more concrete ones �information
systems�
 Event structures� concrete data structures� considered in sections �
��
��
� respectively� will provide other examples of representation theorems


Exercise ���
��� In our treatment� we have not included the axiomatisation of the
minimum element� Show that this can be done by means a special token �which Scott
has called ���

Information systems allow for an attractive characterisation of injection�projec�
tion pairs� in the line of proposition �
�
� and remark �
�
�


Exercise ���
��� Show that� for any two bounded complete algebraic dcpo�s D�D��
there exists an injection�projection pair betweenD and D� i� there exist two information
systems �A�Con��� and �A��Con����� representing D and D� �i�e�� such that D� D� are
isomorphic to D�A�Con���� D�A��Con������ respectively�� and such that

A � A� Con � Con� �A ���� ��Con � A��
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���� Stone Spaces �

In this section we focus on algebraicity on the localic side	 and prove Stone�s theorem

The �algebraic cpo line� �section ��
�� and the �algebraic locale line� will be related
when addressing Stone duality for binite domains �section ��
��


Proposition ������ Algebraic locales� i�e�� locales which viewed as cpo�s are algebraic�
are spatial�

Proof
 Let a �� b
 By theorem ��
�
��	 it is enough to nd a Scott�open lter F such
that a � F and b �� F 
 By algebraicity	 we can nd a compact d such that d � a and
d �� b
 Then the lter F �� d is Scott�open and ts
 �

Proposition �����
 �� The ideal completions of sup�semi�lattices are the algebraic
complete lattices �i�e�� the algebraic cpo�s with all lub�s��

�� The ideal completions of lattices are the algebraic complete lattices whose compact
elements are closed under �nite glb�s�

	� The ideal completions of distributive lattices are the algebraic locales whose compact
elements are closed under �nite glb�s�

Proof
 ��� Let A be an algebraic complete lattice
 Then K�A� is a sup� semi�lattice	
since the lub of a nite set of compacts is always compact
 Conversely	 it is enough to
dene binary lub�s	 since the existence of directed and binary lub�s implies the existence
of all lub�s
 Dene a � b �

W
fd � e j d� e � K�A�� d� a and e � bg


��� Obvious


��� Let X be a distributive lattice
 We show that A � Ide�X� is distributive
 We
have	 for ideals�

I � J � fz j � a � I� b � J z � a � bg�
i�I

Ii � fz j � i�� � � � � in� a� � I�� � � � � an � In z � a� � � � � � ang �

Hence	 if z � J � �
W
i�I Ii�	 then z � a � �a� � � � � � an� for some a � J and a� �

Ii� � � � � � an � Iin 	 hence z � �a � a�� � � � � � �a � an� by distributivity of X 	 and
z �

W
i�I�J � Ii�
 �

Denition ������ �coherent locale� Locales arising as ideal completions of distribu�
tive lattices are called coherent �or spectral�� A topological space is called coherent if
its topology is coherent�

In particular	 coherent topological spaces are compact �the total space is the empty
glb�


Proposition ������ �duality � coherent� The basic duality cuts down to an equiv�
alence between the category of coherent topological spaces and the category of coherent
locales�
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Proof
 Coherent locales are a fortiori algebraic locales	 hence they are spatial by
proposition ��
�
�
 The statement follows �cf
 exercise B
�
��
 �

It is then possible to combine the correspondences�

coherent spaces  coherent locales  distributive lattices�

However	 these correspondences do not extend to dualities of the respective �natural�
categories of continous functions	 locale morphisms	 and DLatop morphisms	 where
DLat is the category of distributive lattices and lattice morphisms
 The reason is that
a locale morphism does not map compact elements to compact elements in general

However	 this will be true of Stone spaces


As for coprime algebraic locales	 the points of a coherent locale enjoy a simple
characterisation


Lemma ������ Let A be a coherent locale� Then the points of A are in one�to�one
correspondence with the coprime �lters over K�A��

Spec�K�A�� � Pt�A��

Proof
 The inverse mappings are� G ��� G and F �� fx � F j x compactg
 We check
only that � G is coprime
 Let x� y �� G
 Let g � G be such that g � x� y
 Since G is
completely coprime	 we may assume that g is compact
 Since A is an algebraic lattice	
we can write

x � y � �
�
fd j d � xg� � �

�
fe j e � xg� �

�
fd� e j d � x� e � xg�

By compactness	 g � d� e	 for some d� e � K�A�
 Hence d� e � G	 and we have d � G
or e � G	 since G is prime	 implying x �� G or y �� G
 �

Remark ������ The following table should help to compare lemmas ����� and ��	���

F�C�A��	� Pt�A� �lter lower set completion
Spec�K�A��	� Pt�A� prime �lter ideal completion �

We move on to Stone spaces
 There are several equivalent denitions of Stone
spaces �Joh���
 We choose the one which serves to prove the duality


Denition ������ �Stone space� A Stone space is a T��space whose topology is co�
herent�

Proposition ������ �duality � Stone� The Stone spaces are the topological spaces
whose topology is isomorphic to the ideal completion of a Boolean algebra� The three
following categories are equivalent�

�� Stone spaces and continuous functions�

�� The category of locales arising as ideal completions of Boolean algebras�
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	� Boolop � where Bool is the category of Boolean algebras and lattice morphisms�
that is� the functions preserving �nite glb�s and lub�s�

Proof
 Let �X��X� be a Stone space
 We show that K��X� is Boolean
 In compact
T��spaces	 compact subsets are closed	 and hence the compact subsets are the closed
subsets
 Hence the compact open subsets are the closed open subsets	 which are closed
under set�theoretic complementation


Conversely	 let B be a Boolean algebra	 and consider two distinct coprime lters
G�� G� of B
 Combining proposition ��
�
� and lemma ��
�
�	 the opens of Pt�Ide�B��
are the sets Ub � fG j b �� Gg
 We look for b�� b� in B such that G� � Ub� 	 G� � Ub�
and Ub� � Ub� � �


� G� � Ub� 	 G� � Ub� � Since G� �� G�	 we can pick	 say	 b� � G�nG�
 We have	 setting
b� � �b��

b� � b� � � � b� � b� � G� �G� lter�
� b� � G� or b� � G� �coprimeness�
� b� � G� �b� �� G�� �

A fortiori	 b� � G�� b� � G� imply G� � Ub� 	 G� � Ub� 


� Ub� � Ub� � �� Suppose not	 and let G be such that b� �� G and b� �� G
 We have�

b� � b� � � � � �� G �� G is a lter�
� � � G �denition of � G�
� G � B �G lter� �

But G � B contradicts the primeness of G

The categories ��� and ��� are equivalent by restriction of the basic duality
 The

equivalence between categories ��� and ��� follows from the following claim� the mor�
phisms of category ��� map compact elements to compact elements
 The claim is proved
easily by taking advantage of spatiality and of the duality ��� ���
 We have seen that
the compact opens are the closed opens
 The claim then follows from the observation
that for any continuous function f in Top	 f�� maps closed subsets to closed subsets

�

���� Stone Duality for Bi�nite Domains �

In order to relate propositions ��
�
� and ��
�
�	 we have to understand under which
conditions the Scott topology of an algebraic dcpo is coherent


Proposition ������ An algebraic dcpo D is coherent as a topological space i� it has
a minimum element and its basis satis�es property M �cf� de�nition ����
��

Proof
 Recall from the proof of proposition ��
�
� that the compact coprimes of the
Scott topology � of D are the � d�s �d � K�D��
 Therefore	 the compacts of � are the
nite unions � d� � � � �� � dm


� M � coherent� We have to check that the compacts of � are closed under nite
intersections
 For the empty intersection	 take � �
 For the binary intersection	 observe
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that �� d� � � � �� � dm� � �� e� � � � �� � en� is a union of sets � di� � ej 	 which can be
written as

� di� � ej � UB�di� ej�
� � x� � � � �� � xp �where MUB�di� ej� � fx�� � � � � xpg� �

� coherent �M � Let Y � fy�� � � � � yqg be a nite subset of K�D�
 Then

UB�Y � � � y� � � � �� � yq
� � x� � � � �� � xp �for some x�� � � � � xp� by coherence� �

�

Denition �����
 �coherent algebraising� A coherent locale is called coherent al�
gebraising � if it coprime algebraic�

Thus �coherent algebraising� means �coherent � coprime algebraic�
 The following
proposition provides an alternative denition of coherent algebraising locale


Proposition ������ A bounded complete algebraic cpo D is coprime algebraic i� it
satis�es the following decomposition property�

every compact d �� � is a �nite lub of compact coprimes�

Proof
 ��� Let d be compact	 and let X � fe � d j e compact coprimeg
 We have�

d �
W
X �by coprime algebraicity�

d � e� � � � � � en for some e�� � � � � en � X �by bounded completeness and algebraicity� �

Hence d � e� � � � � � en


��� Putting together the algebraicity and the decomposition property	 we have for
any x � D�

x �
W
fd � x j d compactg

�
W
fe� � � � � � en j e�� � � � � en compact coprime and e� � � � � � en � xg

�
W
fe � x j e compact coprimeg �

�

Proposition ������ �duality � algebraic � M� The basic domain duality cuts down
to an equivalence between the category of algebraic cpo�s whose basis satis�es M and
the category of coherent algebraising locales�

Proof
 The statement follows from proposition ��
�
�� we apply lemma ��
�
� with
�has a minimum element and the basis satises M� for �S�	 and �coherent� for �L�
�

The following lemma indicates the way to axiomatise binite domains logically


�A more standard terminology for this is �coherent algebraic�� We prefer to use �algebrais�
ing�	 to stress that one refers to the algebraicity of the Stone dual cpo	 rather than to the
algebraicity of the locale which is also relevant and is part of the de�nition of �coherent���
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Lemma ������ Let D be an algebraic cpo� The following properties hold�

�� K�D� satis�es M i� �X ��n K�D� � Y ��n K�D�
T
x�X�� x� �

S
y�Y �� y���

�� D is bi�nite i�

X ��n K�D� � Y ��n K�D�
X � Y and �Z� � Y �Z� � Y

T
x�Z�

�� x� �
S
y�Z�

�� y�� �

Proof
 ��� follows from the following claim	 for X ��n K�D��

� Y ��n K�D�
�
x�X

�� x� �
�
y�Y

�� y�� MUB�X� � Y and MUB�X� is complete�

��� It is easy to check that MUB�X� is the set of minimal elements of Y 


��� Take Y � MUB�X�


��� By the claim	 the equivalence can be rephrased as� D is binite i�

X ��n K�D� � Y ��n K�D�
X � Y and �Z � Y MUB�Z� � Y and MUB�Z� is complete� �

and by denition	 D binite means� X ��n K�D� U��X� is nite


��� Take Y � U��X�


��� By induction on n	 we obtain Un�X� � Y for all n	 and since Y is nite the
sequence fUn�X�gn�� becomes stationary
 �

Proposition ������ �duality � binite� The basic domain duality cuts down to an
equivalence between the category of bi�nite cpo�s and the category of coherent algebrais�
ing locales A satisfying the following property�

�� � !clos�

�
X ��n C�A� � Y ��n C�A�
X � Y and �Z � Y �Z� � Y

V
Z �

W
Z�� �

Proof
 The statement follows from lemma ��
�
�� we apply lemma ��
�
� with �bi�
nite� for �S�	 and the property of the statement as �L�
 �

In gure ��
�	 we summarise the dualities for domains that we have proved in this
chapter


���� Scott Domains in Logical Form �

We present domains via their compact open sets	 constructed as �equivalence classes
of� formulas
 Abramsky has called this �domains in logical form�
 As a rst step in
this direction	 we show how to present the compact opens of D � E in terms of the
compact opens of D and E
 When we write �D	 we mean the Scott topology on D
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sober spaces  spatial locales
� �

algebraic dcpo�s  coprime algebraic locales coherent spaces  coherent locales
� �

algebraic cpo�s whose basis satises M  coherent algebraising locales
�

binite cpo�s  coherent algebraising locales satisfying �� � !clos�
�

Scott domains  

�
coprime algebraic locales where
compact coprimes form a conditional lower semi�lattice

with�

coprime algebraic � lower set completion of a partial order

coherent � ideal completion of a distributive lattice

�

�
algebraic �
closure of compacts under nite glb�s

coherent algebraising �

�
ideal completion of a distributive lattice �
every compact is a nite lub of compact coprimes

�

�
coprime algebraic �
closure of compacts under nite glb�s

coprime algebraic � compact coprimes
form a conditional lower semi�lattice

	
�

�
coherent algebraising � glb�s of
compact coprimes are coprime or �

Figure ��
�� Summary of dualities
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Proposition ������ If D and E are algebraic cpo�s such that D� E is algebraic and
its basis satis�es M � then�

�� For any U � K��D� and V � K��E�� the following set is compact�

U � V � ff � D � E j f�U� � V g�

�� Any compact open of D � E is a �nite union of �nite intersections of such sets
U � V � where U� V are moreover coprime�

Proof
 ��� Let U �� d� � � � �� � dm and V �� e�� � � �� en
 The denition of U � V

can be reformulated as

U � V � ff � D � E j  i � j f�di� � ejg

�
�
i

�
�
j

�� �di � ej��� �

Each � �di � ej� is compact	 therefore each
S
j�� �di � ej�� is compact� the conclusion

follows by propositions ��
�
� and ��
�
�


��� The compact opens of D � E are the subsets of the form � f� � � � �� � fp where
each f i is compact	 hence is of the form �d� � e�� � � � � � �dq � eq�	 that is�

� f i �� �d� � e��� � � � � �dq � eq��

Then the conclusion follows from the observation that � d �� e �� �d � e�	 for any
compact d� e
 �

A second step consists in constructing a logical theory based on these sets U � V 	
now considered as �atomic� formulas
 We seek a complete theory in the sense that if
two di�erent formulas u� v present two opens ��u��� ��v�� such that ��u�� � ��v��	 then u � v

is provable


Proposition �����
 Let D�E be Scott domains� Then the set of compact opens of
D � E is order�isomorphic to the partial order associated to a preorder ! de�ned as
follows� The elements of ! are formulas de�ned by�

U � K��D� V � K��E�

U � V � !

 i � I ui � ! �I �nite�V
i�I ui � !

 i � I ui � ! �I �nite�W
i�I ui � !

and the preorder is the least preorder closed under the following rules �where � stands
for the equivalence associated with the preorder��
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u � u
u � v v � w

u � w
u � �v � w� � �u � v� � �u � w�

 i � I ui � v �I �nite�W
i�I ui � v

ui �
W
i�I ui

 i � I u � vi �I �nite�

u �
V
i�I vi

V
i�I vi � vi

U � � U V � V �

U � � V � U � V
U � �

T
i�I Vi� �

V
i�I�U � Vi�

�
S
i�I Ui�� V �

V
i�I�Ui � V �

U coprime

U � �
S
i�I Vi� �

W
i�I�U � Vi�

Proof
 Proposition ��
�
� gives us a surjection �� �� from ! to �D � E �interpreting
��� as ����
 The soundness of the rules dening the preorder is easy to check	 and im�
plies that the surjection is monotonic
 All what we have to do is to prove completeness�
if ��u�� � ��v��	 then u � v is provable
 By proposition ��
�
�	 each formula u is provably
equal to a nite disjunction of formulas of the form

V
i�I�Ui � Vi�	 with the Ui�s and the

Vi�s coprime
 We know from proposition ��
�
�� that ��
V
i�I�Ui � Vi��� �

T
i�I�Ui � Vi�

is either coprime or �
 The proof goes through two claims


Claim �� If the Ui�s and Vi�s are coprime and
T
i�I�Ui � Vi� � �	 then

V
i�I�Ui �

Vi� � � ��
W
�� is provable


Since Ui� Vi are coprime	 we can write Ui �� di	 Vi �� ei	 and Ui � Vi �� �di � ei�

Therefore	

V
i�I�Ui � Vi� �� � i� fdi � ei j i � Ig has an upper bound i� fdi � ei j i �

Ig has a lub i�

 J � I fdj j j � Jg has an upper bound � fej j j � Jg has an upper bound�

Hence
T
i�I�Ui � Vi� � � i� there exists J � I such that

T
j�J Uj �hence is coprime	

by proposition ��
�
��� and
T
j�J Vj � �
 Now the subclaim is proved as follows�

�
i�I

�Ui � Vi� �
�
j�J

�Uj � Vj� �
�
j�J

��
�
j�J

Uj�� Vj� � �
�
j�J

Uj�� �
�
j�J

Vj��

The last formula can be written �
T
j�J Uj� � �

S
��	 and since

T
j�J Uj is coprime	 we

have
�
�
j�J

Uj�� �
�
j�J

Vj� �
�
��

By the subclaim	 we can eliminate the conjunctions
V
i�I�Ui � Vi� such that

T
i�I�Ui �

Vi� � �
 Call u
�� v� the resulting u� � u��� � � ��u

�
m � u and v� � v��� � � �� v

�
n � v
 Then

we can write
��u���� �� f�� � � � � ��u

�
m�� �� fm

��v���� �� g�� � � � � ��v
�
n�� �� gn
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and

��u�� � ��v�� � ��u��� � ��v��� �  p � fp � ��v���
�  p fp � ��v��� �  p � q fp � gq �  p � q ��u�p�� � ��v�q��

which brings us to the following second claim


Claim 	 �coprime completeness�� If u� v both have the form
V
i�I�Ui � Vi�	

with the Ui�s and Vi�s coprime	 if ��u�� � ��v��	 and if ��u���� ��v��� are coprime	 then u � v is
provable


By the denition of
V
	 we can assume that v is reduced to one conjunct� v � U �

V �� �d� e�
 Then	 setting Ui �� di and Vi �� ei for all i	 the assumption ��u�� � ��v��
reads as d� e �

W
i�I�di � ei�	 or	 equivalently�

e � �
�
i�I

�di � ei���d� �
�
fej j dj � dg�

Setting J � fj j dj � dg	 we have� U �
T
j�J Uj and

T
j�J Vj � V 
 Then�

i�I

�Ui � Vi� � �
�
j�J

Uj�� �
�
j�J

Vj� � U � V�

We now complete the proof of the completeness claim�

��u�� � ��v�� �  p � q ��u�p�� � ��v�q�� �  p � q u�p � v�q
� u� �

W
k������m u�k �

W
l������n u

�
l � v� � u � u� � v� � v �

�

The last step consists in further �syntaxizing� domains	 by dening a language of
formulas	 not only for K���D� E��	 but also for K��D�	 K��E�	 and more generally
for all types
 Since the axioms used to describe K���D� E�� involve coprimeness at
the lower types	 the coprimeness predicate has to be axiomatised as well


Denition ������ Let f��� � � � � �ng be a �xed collection of basic types� and letD��� � ��Dn

be �xed Scott domains associated with ��� � � � � �n� Consider�

� The following collection of types�

� ��� �i �i � �� � � � � n� jj � � ��

� The formal system for deriving typed formulas given in �gure ���� We writeV
� � � and

W
� � ��

� The formal system for deriving two kinds of judgements

u � v �with u � v standing for � �u � v and v � u��
C�u� ��u is coprime��

given in �gure ��	�
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U � K��Di�

U � !��i�

u � !��� v � !���

u� v � !�� � ��

 i � I ui � !��� �I �nite�V
i�I ui � !���

 i � I ui � !��� �I �nite�W
i�I ui � !���

Figure ��
� Domain logic� formulas

u � u
u � v v � w

u � w
u � �v � w� � �u� v�� �u � w�

 i � I ui � v �I �nite�W
i�I ui � v

ui �
W
i�I ui

 i � I u � vi �I �nite�

u �
V
i�I vi

V
i�I vi � vi

U� V � K��Di� U � V

U � V

u� � u v � v�

u� � v� � u� v

u� �
V
i�I vi� �

V
i�I�u� vi� �

W
i�I ui�� v �

V
i�I�ui � v�

C���
C�u�

u� �
W
i�I vi� �

W
i�I�u� vi�

U � K��Di� U coprime

C�U�

C�u� u � v

C�v�

�C � Scott�
 i � I C�ui� and C�vi�  J � I �

V
j�J vj � ��

V
j�J uj � ��

C�
V
i�I�ui � vi��

Figure ��
�� Domain Logic� entailment and coprimeness judgments
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x � u � "

" � x � u

" �M � u � � " u � v

� �M � v

" �M � u� v " � N � u

" �MN � v

" � fx � ug �M � v

" � �x�M � u� v

 i � I " � fx � uig �M � v �I �nite�

" � fx �
W
i�I uig �M � v

 i � I " �M � ui �I �nite�

" �M �
V
i�I ui

Figure ��
�� Domain logic� typing judgments

��U �� � U ��u� v�� � ��u��� ��v��
��
V
i�I ui�� �

T
i�I ��ui�� ��

W
i�I ui�� �

S
i�I ��ui��

Figure ��
�� Semantics of formulas

� The �type� system whose judgements have the form " �M � u� where M is a ��
term and " is a set consisting of distinct pairs x � v� given in �gure ���� All the
free variables of M are declared in "� and � � " means� � � fx� � u�� � � � � xn �
ung� " � fx� � v�� � � � � xn � vng� and ui � vi for all i�

The denotational semantics of types and of simply typed ��terms are de�ned as in
chapter �� ��� � � �� � ����� � ��� ��� etc��� The meaning of the formulas of !���� for all
�� is given in �gure ���� Validity of the three kinds of judgements is de�ned in �gure
��
�

Theorem ������ The following properties hold�

j� u � v i� ��u�� � ��v��

j� C�u� i� ��u�� is coprime

x� � u�� � � � � xn � un j� M � u i�  � �� i ��xi� � ��ui���� ��M ��� � ��u���

Figure ��
	� Semantics of judgments
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� � u � v is provable i� j� u � v�
� � C�u� is provable i� j� C�u��
	 � " �M � u i� " j� M � u

Proof hint
 ��� and ��� have been already proved in substance in proposition ��
�
�

��� is proved via a coprime completeness claim �cf
 proposition ��
�
��
 For an u
such that ��u�� is coprime	 i
e
	 ��u�� �� d for some compact d	 ��M ��� � ��u�� reads d �
��M ���
 Then the coprime completeness claim follows from the following almost obvious
equivalences�

d � ��MN ��� i� � e �d� e� � ��M ��� and e � ��N ��� by continuity
�d� e� � ���x�M ��� i� e � ��M ����d	x� by denition of d� e �

�

���� Bi�nite Domains in Logical Form �

We sketch how the logical treatment just given for Scott domains can be adapted to
binite cpo�s


Denition ������ �Gunter joinable� A �nite subset � � K�D� � K�E� is called
Gunter joinable if

 d� � K�D� f�d� e� � � j d � d�g has a maximum in ��

Any Gunter joinable set � induces a function G��� de�ned by

G����x� � maxfe j � d �d� e� � � and d � xg�

Lemma �����
 If �� �� are Gunter joinable� then�

� � G��� �
W
fd� e j �d� e� � �g�

� � d� � e� � G���� � d� e �d � d�� e� � e and �d� e� � ���
	 � G��� � G�����  �d�� e�� � �� � d� e d � d�� e� � e and �d� e� � ��

Proof
 ��� follows from the following remark� by denition of G���	 if G��� �� �	
then G����x� � �d� e��x� for some �d� e� � �


��� First recall that d�� e� � G��� can be reformulated as e� � G����d��


��� Then d� � e� � d� e	 and a fortiori d� � e� � G���


��� By denition of G���	 G����d�� � e for some �d� e� � � with d � d�


��� is an obvious consequence of ���
 �

Proposition ������ IfD�E are bi�nite� then K�D� E� � fG��� j � is Gunter joinableg�
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Proof
 Clearly	 each G���	 as a nite lub of step functions	 is compact
 Conversely	
we know from proposition �
�
� that the compact elements of D � E have the form
r�f�	 where f � D � E is a continuous function	 and r is a nite projection dened
from two nite projections p � D � D and q � E � E by r�f��x� � q�f�p�x���
 We
have to nd a � such that r�f� � G���
 We claim that the following does the job�

� � f�p�y�� q�f�p�y���� j y � Dg�

� � is nite� by the niteness of the ranges of p� q


� � is Gunter joinable� Let x � D
 We claim�

p�x� � maxfp�y� j y � D and p�y� � xg�

Then obviously �p�x�� q�f�p�x���� is the maximum of f�d� e� � � j d � xg


� r�f� � G���� We have�

r�f�x�� � q�f�p�x��� by denition of r
G����x� � q�f�p�x��� by denition of G��� �

�

The following equivalent formulation of Gunter joinable subsets is due to Abramsky	
and is more easy to capture in logical form


Proposition ������ Let f�di� ei� j i � Ig � K�D�� K�E� be �nite� Then f�di� ei� j
i � Ig is Gunter joinable i�

 J � I �K � I MUB�fdj j j � Jg� � fdk j k � Kg and  j � J� k � K ej � ek�

Proof
 ��� Let m � MUB�fdj j j � Jg�	 and let �dk� ek� � maxf�di� ei� j di � mg

We claim� m � dk
 Since dk � m by denition	 it is enough to show that dk � UB�fdj j
j � Jg�	 which follows from the obvious inclusion fdj j j � Jg � f�di� ei� j di � mg

This inclusion also implies  j � J ej � ek


��� Let d � K�D�	 J � fj j dj � dg	 and let K be as in the statement
 By property
M there exists k � K such that d � dk
 But then k � J by denition of J 	 and since
dk is both an upper bound and an element of fdj j j � Jg	 it is a maximum of this set

Moreover	 since ej � ek	 for all j � J 	 we have that �dk� ek� is the desired maximum
�

Exercise ������ ��� Show that the statement of theorem ����� remains true after the
following two changes in de�nition ����	� ��� D�� � � � � Dn are now �xed bi�nite cpo�s�
��� Axiom �C � Scott� of de�nition ����	 is replaced by the following axiom�

�C � bi�nite�

 i � I C�ui� and C�vi�
 J � I �K � I

V
j�J uj �

W
k�K uk and  j � J� k � K vj � vk

C�
V
i�I�ui � vi��

Hints� The principal di�culty is to make sure that any u can be written as a disjunction
of formulas of the form

V
i�I�ui � vi� where the ui�s and the vi�s satisfy the conditions

of rule �C � bi�nite�� Remove faulty disjunctions and replace them by disjunctions of
conjunctions� Design a terminating strategy for this�



Chapter ��

Dependent and Second Order

Types

The main goal of this chapter is to introduce ��calculi with dependent and second
order types� to discuss their interpretation in the framework of traditional domain
theory �chapter �� will mention another approach based on realizability�� and to
present some of their relevant syntactic properties

Calculi with dependent and second order types are rather complex syntactic

objects
 In order to master some of their complexity let us start with a discussion
from a semantic viewpoint
 Let T be a category whose objects are regarded as
types
 The category T contains atomic types like the singleton type �� the type
nat representing natural numbers� and the type bool representing boolean values

The collection T is also closed with respect to certain data type constructions

For example� if A and B are types then we can form new types such as a product
type A�B� a sum type A�B� and an exponent type A� B

In �rst approximation� a dependent type is a family of types indexed over

another type A
 We represent such family as a transformation F from A into the
collection of types T� say F � A� T
 As an example of dependent type we can
think of a family Prod �bool � nat � T that given a number n returns the type
bool �    � bool �n times�

If the family F is indexed over the collection of all types T� say F � T� T�

then we are in the realm of second order types
 As an example of a second order
type we can think of a family Fun � T� T that given a type A returns the type
A� A of functions over A

If types� and the collection of types T� can be seen as categories then we can

think of dependent and second order types as functors
 Let us warn the reader
that in this preliminary discussion we are considering a simpli�ed situation
 In
general we want to combine dependent and second order types
 For example� we
may consider the family Poly�P rod � T�nat � T that takes a type A� a number
n� and returns the type A�    �A �n times�

Probably the most familiar examples of dependent and second�order types

	�
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arise in logic
 If ��x� is a formula depending on the variable x then we can
think of ��x� as a family of propositions indexed over the universe of terms
U � say � � U � Prop
 This is a dependent type
 On the other hand� if we
consider a formula ��X�� parametric in a formula variable X then we can think
of ��X� as a family of propositions indexed over the universe of propositions� say
� � Prop � Prop
 This is a a second order type
 If we allow quanti�cations
over variables we can form the formulas �x��� and �x��
 This is the realm of
�rst�order logic
 If moreover we allow quanti�cations over formula variables we
can form the formulas �X��� and �X��� and we are in the realm of second order
logic


Dependent types also appear in several type systems �or generalized logics�
such as DeBruijn�s Automath �dB���� Martin�L�of�s Type Theory �ML���� and
Edinburgh LF �HHP���
 Second order types appear in a rather pure form in
Girard�s system F �Gir�� �which is equivalent to a system of natural deduction
for minimal� implicative� propositional second order logic�� they also appear� for
instance� in the Calculus of Constructions �CH��� but there they are combined
with dependent types and more


Let us now look at the interpretation
 Given a family A � U � Prop we
can obtain two new propositions �UA� and �UA where we understand �U as a
meet or a product� and �U as a join or a sum
 In general� given a family of
types F � I� T indexed over a category I we are interested in building two new
types that we may denote� respectively� with )IF and &IF � and that correspond�
respectively� to the product and the sum of the family F 


Relying on this informal discussion� we can summarize the contents of this
chapter as follows
 The main problem considered in section ��
� is to provide a
concrete domain�theoretical interpretation of the constructions sketched above

In particular� we build a category of domains that is �closed� under �certain�
indexed products� and �certain� indexed sums
 The �rst simple idea is to interpret
types as domains of a given category C� and the collection of types as the related
category Cip of injection�projection pairs
 What is then a dependent type F
indexed over some domain D� Since every preorder can be seen as a category� it
is natural to ask that F is a functor from D to Cip
 Analogously a second order
type will be seen as an endo�functor over Cip
 However this will not su"ce� for
instance we will need that the family F preserves directed colimits� namely it is
cocontinuous


In section ��
 we provide a syntactic formalization of the semantic ideas
sketched above
 To this end we introduce a calculus of dependent and second
order types and discuss some of its basic properties
 We call this calculus �P�
calculus� following a classi�cation proposed in �Bar��a� �the �P� stands for pos�
itive logic and the �� for second order�
 We also brie�y discuss an interpre�
tation of the �P�calculus which relies on the domain�theoretical constructions
introduced in section ��
�
 The interpretation is presented in a set�theoretical
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notation� a general categorical treatment would require an amount of category�
theoretical background that goes beyond our goals
 In this respect let us mention
�AL��� which contains a rather complete analysis of the categorical structure
needed to interpret second order types from the viewpoint of indexed category
theory and internal category theory
 Several approaches to the categorical se�
mantics of dependent types have been considered� we refer to �JMS��� for an
account based on �brations

In section ��
� we describe another interpretation of type theories based on

the idea that types denote retractions
 In this respect we take two di�erent
but related approaches
 First� we further develop the properties of the domain of
�nitary projections studied in section �
�
 In particular we show how to represent
dependent and second order types in this structure
 It turns out that certain �size
problems� encountered in the domain constructions described in section ��
� can
be avoided in this context
 Second� we present an extension of the ���calculus
called ��p�calculus in which �p� is a constant that denotes the retraction of all
retractions
 We de�ne a simple� adequate translation of the �P�calculus in the
��p�calculus

The �P�calculus can be seen as the combination of two systems of indepen�

dent interest� the system LF of dependent types and the system F of second
order types
 We reserve the sections ��
� and ��
� to a careful presentation of
the syntactic properties of these two systems the main result being that both
systems enjoy the strong normalization property �this property is enjoyed by the
�P�calculus as well and can be proved by combining the techniques for system
F and system LF�
 We also discuss two interesting applications that illustrate
the expressive power of these systems� ��� The system LF has been proposed
as a tool for the encoding of certain recurring aspects of logical systems such
as ��conversion and substitution
 We illustrate this principle by presenting an
adequate and faithful representation of �rst�order classical logic in LF
 �� The
system F can represent a large variety of inductively de�ned structures and func�
tions de�ned on them by iteration


���� Domain
Theoretical Constructions

In set theory we may represent a family of sets as a function F � X � Set
 More
precisely� we consider a graph given as f�x� Fx�gx�X
 In this way we do not have
to speak about the class of sets
 We formulate some basic constructions that will
be suitably abstracted in the sequel
 In the �rst place we can build the �disjoint�
sum of the sets in the family as�

&XF � f�x� y� j x � X and y � Fxg �

Observe that there is a projection morphism p � &XF � X that is de�ned as
p�x� y� � x
 On the other hand we can build a product of the sets in the family
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as�
)XF � ff � X �

�
x�X

Fx j �x � X �fx � Fx�g �

There is another way to write )XF using the notion of section of the projection
morphism p � &XF � X �the weakness of this method is that it requires the
existence of &XF �
 A section is a morphism s � X � &XF such that p 	 s � idX�
in other words for any x � X the section s picks up an element in Fx
 It is then
clear that the collection of sections of p is in bijective correspondence with )XF 


Exercise ������ Verify that the de�nitions of �XF and �XF can be completed so to
obtain sum and product of the objects in the family in the category of sets�

Exercise �����
 Suppose that the family F � X � Set is constant� say F �x� � Y for
each x in X� Then verify that �XF 	� X � Y � and �XF 	� X � Y �

Exercise ������ Show that every small category with arbitrary products is a poset �this
is an observation of Freyd�� Hint� We recall that a category is small if the collection of
its morphisms is a set� Given two distinct morphisms f� g � a� b in the small complete
category C consider �Ib� The cardinality of C�a��Ib� exceeds that of MorC when I is
big enough�

Remark ������ Observe that in the de�nition of &XF and )XF it is important
that X is a set� so that the graph of F is again a set� and so are &XF and )XF �
This observation preludes to the problem we will �nd when dealing with second
order types� In the interpretation suggested above neither the graph of a family
F � Set� Set nor &SetF and )SetF turn out to be sets�

In the following we generalize the ideas sketched above to a categorical setting

Given a family F as a functor F � X � Cat� the category &XF provides the
interpretation of the sum
 On the other hand� the product is represented by the
category of sections� say )XF � of the �bration p � &XF � X that projects &XF
onto X
 A section s of p is a functor s � X� &XF such that p 	 s � idX


Dependent types in Cat� Let F � X� Cat be a functor where X is a small
category� we de�ne the categories &XF�)XF � and the functor p � &XF � X as
follows�

&XF � f�x� y� j x � X� y � Fxg
&XF ��x� y�� �x

�� y��� � f�f� �� j f � x� x�� � � F �f��y�� y�g
id�x�y� � �idx� idy�
�g� �� 	 �f� �� � �g 	 f� � 	 �Fg�����

The category &XF is often called the Grothendieck category
 The functor p �
&XF � X is de�ned as�

p�x� y� � x p�f� �� � f �
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The category )XF is de�ned as�

)XF � fs � X � &XF j p 	 s � idXg
)XF �s� s

�� � f� � s� s� j � is a cartesian natural transformationg

where a cartesian natural transformation � � s � s� is a natural transformation
determined by a family f�idx� x�gx�X with s�x� � �x� y�� s��x� � �x� z�� and
x � y � z �so the �rst component of the transformation is constrained to be the
identity�
 Observe that for a section s we have s�x� � �x� y�� for all x � X� and
s�f� � �f� ��� for all f �MorX


The next issue concerns the specialization of these de�nitions to the categories
of cpo�s and Scott domains
 The problem is to determine suitable continuity
conditions so that the constructions of sum and product return a �domain�� say
an algebraic cpo�s
 It turns out that everything works smoothly for dependent
types
 On the other hand second order types give some problems


��� The sum of a second order type is not in general a domain


�� The product of a second order type is only equivalent� as a category� to a
domain


��� Bi�nite domains are not closed under the product construction �this moti�
vates our shift towards Scott domains�


Dependent types in Cpo� We re�ne the construction above to the case where
F � D � Cpoip is a functor� D is a cpo� and Cpoip is the category of cpo�s and
injection�projection pairs
 In other terms X becomes a poset category D and the
codomain of the functor is Cpoip
 By convention� if d � d� in D then we also
denote with d � d� the unique morphism from d to d� in the poset category D

If f � D � E is a morphism in Cpoip then we denote with f� the injection and
with f� the projection


Proposition ������ �dependent sum in Cpoip� LetD be a cpo and F � D �
Cpoip be a functor� then the following is a cpo�

&DF � f�d� e� j d � D� e � Fdg� ordered by
�d� e� �� �d�� e�� i� d �D d� and F �d � d����e� �F �d�� e

� �

Proof
 By proposition �
�
�� the category Cpoip is the same as the category
where a morphism is the injection component of an injection�projection pair
 The
latter is a subcategory of Cat
 It is immediate to verify that �&DF���� is a poset
with least element ��D��F ��D��

Next let X � f�di� ei�gi�I be directed in &DF 
 Set for d �

W
i�I di��

X � �d�
�
i�I

F �di � d���ei�� �
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We claim that this is well de�ned and the lub of X in &DF 


� fF �di � d���ei�gi�I is directed
 Since X is directed�

�i� j��k�di � dk� dj � dk� F �di � dk�
��ei� � ek� F �dj � dk�

��ej� � ek� �

Hence F �di � d���ei� � F �dk � d�� 	 F �di � dk���ei� � F �dk � d���ek�� and
similarly for j


�
W
X is an upper bound for X� immediate� by de�nition


�
W
X is the lub
 If �d�� e�� is an upper bound for X then it is clear that d � d�


Next we observe�

F �d � d����
W
i�I F �di � d���ei�� �

W
i�I F �d � d����F �di � d���ei��

�
W
i�I�F �di � d����ei�� � e� �

�

Exercise ������ Verify that the de�nition of �DF is an instance of the de�nition in
Cat�

Proposition ������ �dependent product in Cpoip� Let D be a cpo and F �
D � Cpoip be a functor� then the following is a cpo with the pointwise order
induced by the space D � &DF �

�)DF � � fs � D � &DF j s continuous� p 	 s � idDg �

Proof
 First we observe that p � &DF � D is continuous as for any f�di� ei�gi�I
directed set in &DF we have� taking d �

W
i�I di�

p�
W
i�I�di� ei�� � p�

W
i�I di�

W
i�I F �di � d���ei��

�
W
i�I di �

W
i�I p�di� ei� �

We can also de�ne a least section as s�d� � �d��F �d��
 Next we remark that for
any directed set fsigi�I in �)DF � we have� for any d � D�

p 	 �
�
i�I

si��d� � p�
�
i�I

si�d�� �
�
i�I

p�si�d�� � d �

Hence the lub of a directed set of sections exists and it is the same as the lub in
D � &DF 
 �

We given an equivalent de�nition of continuous section


De�nition �����
 Let D be a cpo and F � D � Cpoip be a functor� Consider
f � D �

S
d�D Fd such that fd � Fd� for each d � D� We say that f is

cocontinuous if F �d � d����fd� � fd�� and for any fdigi�I directed in D� such
that

W
i�I di � d�

f�d� �
�
i�I

F �di � d���f�di�� �
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Clearly �)DF � is isomorphic to�

ff � D �
S
d�D Fd j �d �fd � Fd� and f is cocontinuousg� ordered by

f � g i� �d � D �fd �Fd gd� �

Exercise �����	 Verify that the de�nition of ��DF � in Cpoip corresponds to select a
full subcategory of cocontinuous sections out of the general construction described for
Cat�

Dependent types in Scott domains� We denote with S �S for Scott� the cat�
egory of algebraic� bounded complete� cpo�s �Scott domains for short� cf
 chapter
��
 The following hypotheses su"ce to guarantee that the constructions de�ned
above return Scott domains�

� The domain of the family is a Scott domain


� The codomain of the family is the category Sip of Scott domains and injection�
projection pairs


� Less obviously� the functor F is cocontinuous in a sense which we de�ne next


De�nition ������ �directed colimits� A directed diagram is a diagram in

dexed over a directed set� We say that a category has directed colimits if it has
colimits of directed diagrams� We say that a functor is cocontinuous if it preserves
colimits of directed diagrams�

Applying the theory developed in section �
� it is easy to derive the following
properties


Proposition ������� ��� The category Sip has directed colimits�

�� Given a Scott domain D and a functor F � D � Sip� F is cocontinuous i�
for any fdigi�I directed in D such that

W
i�I di � d�

�
i�I

F �di � d�� 	 F �di � d�� � idF �D� �

��� A functor F � Sip � Sip is cocontinuous i� for any Scott domain D and any

directed set fpigi�I of projections over D�

�
i�I

pi � idD �
�
i�I

F �pi� � idF �d� �

Proposition ������	 �dependent sum and product in Scott domains� Let
D be a Scott domain and F � D � Sip be a cocontinuous functor� then the cpo�s
&DF and �)DF � are Scott domains�
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Proof
 � &DF is bounded complete
 Let X � f�di� ei�gi�I be bounded in &DF

by �d�� e��
 Then� �i� fdigi�I is bounded in D by d� and therefore �
W
i�I di � d


�ii� Moreover fF �di � d���ei�gi�I is bounded by F �d � d����e�� as�

F �di � d����ei� � F �d � d���F �di � d���ei� � e� implies
F �di � d���ei� � F �d � d����e�� �

Hence we set e �
W
i�I F �di � d���ei�
 It is immediate to check that �d� e� is the

lub


� &DF is algebraic
 We claim�

��� K�&DF � ! f�d� e� j d � K�D� and e � K�F �d��g � K


�� For any �d� e� � &DF � � �d� e� �K is directed with lub �d� e�


Proof of ���� Let d� � K�D�� e� � K�F �d���� and X � f�di� ei�gi�I be directed
in &DF with d� �

W
i�I di � d� and F �d� � d���e�� �

W
i�I F �di � d���ei�
 By

hypothesis� d� and e� are compact
 F �d� � d���e�� is also compact� hence we
can �nd j such that d� � dj � F �d

� � d���e�� � F �dj � d���ej�� that implies
F �d� � dj���e�� � ej
 That is �d�� e�� � �dj � ej�
 Hence �d�� e�� � K�&DF �


Proof of ��� The set is directed because &DF is bounded complete
 Given �d� e�
we consider� �i� fdigi�I � K�D� directed such that

W
i�I di � d� and �ii� �i � I

fei�jgj�Ji � K�F �di�� directed such that
W
j�Ji ei�j � F �di � d���e�


Then the following equations hold �the last one by cocontinuity of F ��

W
i�I�j�Ji�di� eij� � �d�

W
i�I�j�Ji F �di � d���ei�j��

� �d�
W
i�I F �di � d���

W
j�Ji ei�j��

� �d�
W
i�I F �di � d��F �di � d���e�� � �d� e� �

� �)DF � is bounded complete
 Suppose fsigi�I is a bounded set in �)DF �
 Since
bounded completeness is preserved by exponentiation we can compute

W
i�I si in

D � &DF 
 It remains to show that p 	 �
W
i�I si� � idD
 We observe that for any

d � D�
p��
�
i�I

si��d�� � p�
�
i�I

si�d�� �
�
i�I

p�si�d�� � d �

� �)DF � is algebraic
 We consider the step sections �cf
 lemma �
�
�� �d� e� for
d � K�D�� e � K�F �d��� de�ned as�

�d� e��x� �

�
�x� F �d � x���e�� if d � x
�x��F �x�� otherwise

�

One can verify that �d� e� is compact in �)DF �
 It remains to observe that for any
s � �)DF �� f�d� e� j �d� e� � sg determines s
 �
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Second order types in Scott domains� We look for an interpretation of
second order types as domains
 Suppose that F � Sip � Sip is a cocontinuous
functor
 Then� as an instance of the general categorical construction� we can
form the category &SipF 
 It is easily veri�ed that &SipF does not need to be a
preorder as there can be several injection�projection pairs between two domains

We therefore concentrate our e�orts on products
 To this end we spell out the
notion of cocontinuous section


De�nition ������� Let F � Sip � Sip be a cocontinuous functor� A cocontinu�
ous section s is a family fs�D�gD�Sip such that�

f � D � E in Sip � F �f���s�D�� � s�E� ���
��

and for any D � Sip for any ffi � Di � Dgi�I such that ff�i 	 f
�
i gi�I is directed

we have� �
i�I

�f�i 	 f
�
i � � idD � s�D� �

�
i�I

�Ffi�
��s�Di�� ���
�

Let �)ip

SF � be the collection of cocontinuous sections with the pointwise partial
order�

s � s� i� �D � Sip �s�D� � s��D�� �

The problem with this partial order is that the cocontinuous sections are not sets�
hence a fortiori �)SipF � cannot be a Scott domain
 However there is a way out of
this foundational problem� namely it is possible to build a Scott domain which
is order isomorphic to �)SipF �
 To this end we observe that the compact objects
�cf
 de�nition �
�
�� in Sip are the �nite bounded complete cpo�s� and that there
is an enumeration So � fCigi�� up to order�isomorphism of the compact objects

We de�ne �)Sipo F � as the collection of sections fs�D�gD�Sipo such that�

s � D � E in Sipo � F �f���s�D�� � s�E� ���
��

This is the monotonicity condition ��
� in de�nition ��
�
�� restricted to the
subcategory Sipo �there is no limit condition� as S

ip
o is made up of compact objects�


We observe that �)Sipo F � with the pointwise order is a poset
 The following
theorem is due to �Coq���� after �Gir�	�
 The basic remark is that a cocontinuous
section is determined by its behaviour on Sipo 


Theorem ������� �second order product� Let F � Sip � Sip be a cocontin

uous functor then� ��� �)SipF � is order isomorphic to �)Sipo F �� and �� the poset
�)Sipo F � is a Scott
domain�

Proof hint
 ��� Any cocontinuous section s � �)SipF � determines by restriction
a section res�s� � �)Sipo F �
 Vice versa given a section s � �)Sipo F � we de�ne its
extension ext�s�� as follows�

ext �s��E� �
�
f�Ff���s�D�� j D � Sipo and f � D � E in Sipg ���
��
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The set f�Ff���s�D�� j D � Sipo and f � D � E in Sipg is directed
 Given
f� � D� � E� f� � D� � E we can �nd D� � Sipo and g� � D� � D�� g� � D� � D��
g � D� � E such that g 	 g� � f� and g 	 g� � f�

The section ext�s� satis�es condition ��
� because given g � E � E� we

compute�

�Fg���ext�s��E�� � �Fg���
W
f�Ff���s�D�� j D � Sipo and f � D� Eg�

�
W
fF �g 	 f���s�D�� j D � Sipo and f � D � Eg

�
W
fF �h���s�D�� j D � Sipo and h � D � E �g � �ext�s���E�� �

With reference to condition ��
 we need to check that�

ext �s��D� �
�
i�I

�Ffi�
��ext�s��Di��

�the other inequality follows by condition ��
��
 According to the de�nition of
ext consider D� � Sipo and f � D

� � D
 We can �nd j � I and h � D� � Dj such
that fj 	 h � f 
 Then�

F �f���s�D��� � F �fj 	 h���s�D���
� F �fj����Fh���s�D���� � F �fj���ext �s�Dj��� �

It is easily checked that res and ext are monotonic
 We observe that s�D� �
ext �s��D� if D � Sipo 
 To show � consider the identity on D� and to prove � use
condition ��
�
 It follows res�ext �s�� � s

To prove ext �res�s�� � s we compute applying condition ��
�

ext �res�s���D� �
W
f�Ff����res�s���D��� j D� � Sipo and f � D

� � Dg
�
W
f�Ff���s�D��� j D� � Sipo and f � D

� � Dg � s�D� �

�� The least element is the section f�DgD�Sipo 
 The lub s of a directed set fsigi�I

is de�ned as s�D� �
W
i�I si�D�
 Bounded completeness is left to the reader
 To

show algebraicity� we de�ne for D � Sipo and e � K�FD� the section�

�D� e��D�� �
�
f�Ff���e� j f � D� D� in Sipg ���
��

Compact elements are the existing �nite lub�s of sections with the shape ��
�
 �

Hence� although �)SipF � is not a poset because its elements are classes� it is
nevertheless order�isomorphic to a Scott domain �)Sipo F �
 Figure ��
� summarizes
our results on the closure properties of the & and ) constructions in the categories
Cpoip and Sip


Exercise ������� Consider the identity functor Id � Sip � Sip� Prove that ��SipId� is
the cpo with one element� Hint� let s be a cocontinuous section and D a Scott domain�
Then there are two standard embeddings� inl and inr� of D in D � D� where � is
the coalesced sum� The condition on sections requires that s�D � D� � inl�s�D�� �
inr�s�D��� but this forces s�D� � �D�
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F � D � Cpoip� F functor� D cpo � &DF� �)DF � cpo�s

F � D � Sip� F cocont
� D Scott domain � &DF� �)DF � Scott domains

F � Sip � Sip� F cocont
 � �)SipF � �� �)Sipo F � Scott domain

Figure ��
�� Dependent and second order types in Cpoip and Sip

Remark ������� ��� Exercise ������� hints at the fact that cocontinuous sec

tions satisfy certain uniformity conditions� namely the choice of the elements has
to be invariant with respect to certain embeddings� In practice syntactically de

�nable functors are �very� uniform so we can look for even stronger uniformity
conditions in the model� Here is one that arises in the stable case �see chapter �
and �Gir���� and that leads to a �smaller� interpretation of certain types� Every
section s satis�es the following uniformity condition�

h � D � E in Sip implies s�D� � �F �h����s�E�� ���
	�

This condition implies the standard condition in the continuous case� In the stable
case one considers stable injection projection pairs �cf� section ��	� and the
sections s are such that for all D� s�D� is stable� �� It can be proved that bi�nite
domains are not closed with respect to the �)BifF � construction �see �Jun�����
The basic problem arises from the observation that Sipo does not need to satisfy
property M �cf� de�nition ������

The following two exercises require the knowledge of stability theory and of
coherence spaces �chapters � and ���
 The �rst exercise witnesses the di�erence
between the stable and the continuous interpretation
 The second presents the
uniformity condition as a requirement of stability


Exercise ������� ��� Show that� in the stable setting just described� the interpretation
of t�t � t is �isomorphic to� O� ��� In contrast� show that in the continuous setting
the interpretation of t�t� t is in�nite� Hints� For ���� consider a section s� Show that
if xe � trace�s�E������ then x � feg� make use of two injections from E into E � e��
where e� is coherent with all the events of x� Show that x �� � with a similar method �e�

being now incoherent with e�� Show that if s is not � for all D� then s�feg���� � id �
and hence s�D� is the identity everywhere� For ���� consider the �non�stable� functions
de�ned by s�D��x� � x if x bounds at least n compact elements of D� and s�D��x� � �
otherwise�
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Exercise ������� �Moggi� Let s be a section satisfying the condition in the proof
of theorem ������� and consisting of stable functions� Show that s satis�es the uni�
formity condition ���
 i� s� viewed as a functor in the Grothendieck category� pre�
serves pullbacks� Hints� ��� Show that f � �D� x� � �D�� x�� and f � � �D� x� �
�D�� x��� form the limit cone of a pullback diagram in the Grothendieck category i�
x � F �f���x�� � F �f ����x���� ��� Show that for any stable injection�projection pair
f � D � D�� the pair of f and f forms the limit cone of a pullback diagram�

���� Dependent and Second Order Types

We introduce the typing rules of the �P�calculus� a ��calculus with depen�
dent and second order types
 We restrict our attention to the introduction and
elimination rules for products
 The syntactic categories of the �P�calculus are
presented as follows


Variables v ��� x jj y jj � � �
Contexts � ��� � jj �� v � � jj �� v � K
Kinds K ��� tp jj )v � ��K
Type Families � ��� v jj )v � ��� jj )v � tp�� jj �v � ��� jj �M
Objects M ��� v jj �v � ��M jj �v � tp�M jjMM jjM� �

Contexts� type families� and objects generalize the syntactic categories we have
already de�ned in the simply typed case �cf
 chapter ��
 Kinds form a new
syntactic category� which is used to classify type families� so� intuitively� kinds
are the �types of types�
 The basic kind is tp which represents the collection of all
types
 More complex kinds are built using the ) construction and are employed
to classify functions from types to the collection of types �type families�
 The
formal system is based on the following judgments


Well formed kind � 
 K � kd
Well formed type family � 
 � � K
Well formed object � 
M � � �

The formal rules are displayed in �gure ��

 In the following we will use A�B� � � �
as meta�symbols ranging over objects� type families� kinds� and a special constant
kd which is introduced here just to have a uniform notation

A well�formed context has always the shape x� � A�� � � � � xn � An where Ai

is either a kind or a type �that is a type family of kind tp� but not a function
over types�
 Note that Ai might actually depend on the previous variables
 Syn�
tactically this entails that the rule of exchange of premises is not derivable in
the system% the order of hypotheses is important
 Semantically we remark that
a context cannot be simply interpreted as a product
 We will see next that the
product is replaced by the Grothendieck category �cf
 exercise ��
�
�
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The formation rules for kinds are directly related to those for contexts� indeed
we use � 
 tp � kd to state that the context � is well�formed
 One can consider
a slightly less synthetic presentation in which one adds a fourth judgment� say
� 
 ok � which asserts the well�formation of contexts

We remark that not all premises in the context can be ��abstracted
 In

particular� type families cannot be abstracted with respect to kinds� and objects
can be abstracted only with respect to types and the kind tp
 By convention we
abbreviate )x � A�B with A� B� whenever x �� FV �B�

In the �P�calculus it is not possible to type a closed type family �x � ��� �

)x � ��tp in such a way that � actually depends on x
 In the applications �e
g
� see
section ��
�� we enrich the calculus with constants such as Prod �bool � nat � tp

Finally� we note that the rules )I and )E for type families and objects follow

the same pattern

Kinds and types are assigned to type families and objects� respectively� mod�

ulo ��conversion �rules �tp�Eq� and �Eq��
 Formally� we de�ne the relation � as
the symmetric and transitive closure of a relation of parallel ��reduction which
is speci�ed in �gure ��
�
 This is a suitable variation over the notion of parallel
��reduction that we have de�ned in �gure 
� to prove the con�uence of the un�
typed ���calculus
 Note that the de�nition of the reduction relation does not rely
on the typability of the terms
 Indeed this is not necessary to obtain con�uence
as stated in the following


Proposition ���	�� �con�uence� If A� A� and A� A�� then there is B such
that A� � B and A�� � B�

Proof hint
 Show that if A� A� and B � B� then A�B�x�� A��B��x�
 �

We state three useful properties of the �P�calculus
 We omit the proofs
which go by simple inductions on the length of the proof and the structure of the
terms


Proposition ���	�	 Type uniqueness� If � 
 A � B and � 
 A � B� then

B � B��

Abstraction typing� If � 
 �x � A�A� � )x � B�C then �� x � A 
 A� � C and
A � B�

Subject reduction� If � 
 A � B and A� A� then � 
 A� � B�

Let us brie�y discuss two relevant extensions of the �P�calculus�

� When embedding logics or data structures in the �P�calculus it is often useful
to include ��conversion as well �cf
 sections ��
� and ��
���

��� �x � A��Bx� � B x �� FV �B� �
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�K���
� 
 tp � kd

�K�kd�
� 
 K � kd x �� dom���
�� x � K 
 tp � kd

�K�tp�
� 
 � � tp x �� dom���
�� x � � 
 tp � kd

�K�)�
�� x � � 
 K � kd � 
 � � tp

� 
 )x � ��K � kd

Well formed kind

�tp�Asmp�
x � K � � � 
 tp � kd

� 
 x � K
�tp�Eq�

� 
 � � K � 
 K � � kd K � K �

� 
 � � K �

�tp�)�
�� x � � 
 � � tp � 
 � � tp

� 
 )x � ��� � tp
�tp�)��

�� x � tp 
 � � tp
� 
 )x � tp�� � tp

�tp�)I�
�� x � � 
 � � K � 
 � � tp
� 
 �x � ��� � )x � ��K

�tp�)E�
� 
 � � )x � ��K � 
M � �

� 
 �M � K�M�x�

Well formed type family

�Asmp�
x � � � � � 
 tp � kd

� 
 x � �
�Eq�

� 
 M � � � 
 � � tp � � �

� 
M � �

�)I�
�� x � � 
M � � � 
 � � tp
� 
 �x � ��M � )x � ���

�)E�
� 
 M � )x � ��� � 
 N � �

� 
 MN � � �N�x�

�)�
I�

�� x � tp 
M � �
� 
 �x � tp�M � )x � tp��

�)�
E�

� 
 M � )x � tp�� � 
 � � tp
� 
M� � � ���x�

Well formed object

Figure ��
� Typing rules for the �P�calculus
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A� A� B � B�

��x � C�A�B� A��B��x�
A� A� B � B �

AB � A�B�

A� A� B � B�

�x � A�B � �x � A��B�

A� A� B � B �

)x � A�B� )x � A��B�

A� A

A� C B � C

A � B

Figure ��
�� Parallel ��reduction and equality for the �P�calculus

The system with ���conversion is still con�uent and strongly normalizing but
the proof of this fact is considerably harder than the one for ��conversion
 A
basic problem is that con�uence cannot be proved without appealing to typing

Consider�

N � �x � ����y � ��M�x x �� FV �M�
N �
 �x � ��M �x�y�
N �� �y � ��M �

It is not possible to close the diagram unless � and � are convertible
 This is
proven by appealing to judgments of the shape � 
 � � � � K


� The following rules can be used to formalize the &�construction on dependent
types
 Observe the introduction of the constructor h � i and destructors fst � snd
which generalize the familiar operators associated to the cartesian product


�tp�&�
�� x � � 
 � � tp
� 
 &x � ��� � tp

�&I �
� 
M � � �� x � � 
 N � �
� 
 hM�N �M�x�i � &x � ���

�&E�
�

� 
M � &x � ���
� 
 fstM � �

�&E�
�

� 
 M � &x � ���
� 
 sndM � � �fstM�x�

�

Interpretation in Scott domains� We interpret the �P�calculus in the cat�
egory of Scott domains and injection�projection pairs by appealing to the con�
structions introduced in section ��
�
 The interpretation is given in a naive
set�theoretical style� our goal being to suggest how the sum and product con�
structions can be used in an interpretation

In �rst approximation the interpretation of a context � such that � 
 tp � kd�

is a category� say ������ the interpretation of tp is the category Sip of Scott domains
and injection�projection pairs� the interpretation of a type� � 
 � � tp� is a
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functor F � ��� 
 � � tp�� from ����� to Sip� and the interpretation of a term�
� 
 M � �� is a section of the Grothendieck �bration p � &��	

F � �����
 Note
that the interpretations are inter�dependent� and they are de�ned in �gure ��
�
by induction on the derivation of the judgment
 We use a set�theoretical style�
in a rigorous approach we should make sure that the de�ned objects exist in
the domain�theoretical model
 Another aspect which we ignore is the soundness
of the equality rules
 Indeed� one should verify that ��reduction is adequately
modelled ��CGW��� carries on this veri�cation for second order types�

We start with the trivial category �� and we use the Grothendieck category

to extend the context
 The interpretation of a kind judgment is a functor from
the context interpretation to Cat
 We de�ne the interpretation parametrically
on y � �����
 Given a variable� say x� occurring in the well formed context � we
write yx for the projection of the x�th component of the vector y � �����


Exercise ���
�� Extend the interpretation to handle the rules for dependent sum
stated above�

���� Types as Retractions

We present two approaches which are based on the interpretation of types as
�particular� retractions over a domain
 In the �rst approach� we develop the
properties of �nitary projections �cf
 chapter �� towards the interpretation of
dependent� and second order types
 In the second approach� we present a purely
syntactic interpretation of the �P�calculus into the ��p�calculus� which is a
��calculus enriched with a constant p that plays the role of a retraction of all
retractions

In section �
�� we have discussed how to represent countably based Scott

domains as �nitary projections over a universal domain U 
 In the following we
brie�y describe the construction of the operators & and ) in this framework �see
�ABL�	��
 Suppose that U is a Scott domain such that�

U � U �U via ���u� u���hu� u�i� �u���fst u�� �sndu��� � U � U � U
�U � U� � U via �i� j� � �U � U�� U

We also know that �see exercise �
�
���

FP�U� � �U � U� via �idFP�U�� 
� �

We set 
 � i 	 
 	 j � FP�U�
 We suppose the following correspondences�

� A projection p � FP�U� represents the domain im�p�


� A function f � U � U such that f � 
 	 f 	 p represents a cocontinuous
functor from the domain im�p� to the category Sip� where f�d� � im�fd� and
f�d � d�� � �id � f�d��
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�K��� ����� � �
�K�kd� ��"� x � K�� � ���	

��" � K � kd��
�K�tp� ��"� x � ��� � ���	

��" � � � tp��

Context interpretation

�K��� kd� tp� ��" � tp � kd���y� � Sip

�K��� ��" � �x � ��K � kd���y� � ��Gy�y
��F �y� y���

where� Gy � ��" � � � tp���y�
and F �y� y�� � ��"� x � � � K � kd���y� y��

Kind interpretation

�tp�Asmp� ��" � x � tp���y� � yx
�tp��� ��" � �x � ��� � tp���y� � ��Gy�y

��F �y� y���
where� Gy � ��" � � � tp���y�
and F �y� y�� � ��"� x � � � � � tp���y� y��

�tp���� ��" � �x � tp�� � tp���y� � ��Sip�y
��F �y� y���

where� F �y� y�� � ��"� x � tp � � � tp���y� y��
�tp��I� ��" � �x � ��� � �x � ��K���y� � �y� � Gy����"� x � � � � � K����y� y��

where� Gy � ��" � � � tp���y�
�tp��E� ��" � �M � K�M	x����y� � ���" � � � �x � ��K���y�����" �M � ����y��

Type family interpretation

�Asmp� ��" � x � ����y� � yx
��I� ��" � �x � ��M � �x � ��� ���y� � �y� � Gy����"� x � � �M � � ����y� y��

where� Gy � ��" � � � tp���y�
��E� ��" �MN � � �N	x����y� � ���" �M � �x � ��� ���y�����" � N � ����y��
���

I� ��" � �x � tp�M � �x � tp�� ���y� � �y� � Sip����"� x � tp �M � � ����y� y��
���

E ��" �M� � � ��	x����y� � ���" �M � �x � tp������y�����" � � � tp���y��

Object interpretation

Figure ��
�� Interpretation of the �P�calculus in Sip
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It has already been remarked in �
�
�� that FP�U� and Sip �more precisely�
the subcategory of countably based domains� are not equivalent categories as
FP�U� is just a poset
 As a matter of fact we get a di�erent model of the �P�
calculus where� in particular� one can interpret the second order &�construction
as a domain


De�nition ������ �& and ) constructions in FP�U�� Let p � FP�U�� and
f � U � U be such that f � 
 	 f 	 p� We de�ne�

&pf � �u�hp�fst u�� �f�fst u���sndu�i � U � U
)pf � �u�i��x�j�fx���ju��px�� � U � U �

Exercise �����
 Show that under the hypotheses of de�nition ���	��� �pf��pf �
FP�U��

When f � im�p�� Sip is regarded as a functor� the sum and product construc�
tions de�ned in propositions ��
�
� and ��
�
�� respectively� apply
 In particular
we have�

&im�p�f � f�d� e� j pd � d and �fd�e � eg
�)im�p�f � � f� � U � U j � 	 p � � and �d ��fd���d� � �d�g �

We can then show that &pf and )pf are �nitary projections representing the
�right� domains


Exercise ������ Show that under the hypotheses of de�nition ���	�� the following
isomorphims hold�

im��pf� 	� �im�p�f and im��pf� 	� ��im�p�f � �

Exercise ������ Compute ��Id� Compare the corresponding domain with the one
obtained in exercise ��������

Exercise ������ Consider the formal system for the �P��calculus with the identi�ca�
tion tp � kd� This system has been shown to be logically inconsistent �all types are
inhabited� by Girard� However� not all terms are equated� To prove this fact propose
an interpretation of the calculus in the domain of �nitary projection� Hint� the �nitary
projection � represents the type of all types �see �ABL�
���

We now turn to the syntactic approach
 We present an extension of the
untyped ���calculus with a constant p whose properties are displayed in �gure
��
� �by convention� let P 	Q stand for �x�P �Qx�� with x fresh�
 The intention
is to let p denote the retraction of all retractions
 On this basis� �p�� states that
elements in the image of p are retractions� �p�� entails that p is a retraction as
p	p � pp	pp � pp � p� and �p�� states that all retractions are in the image of p
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�p�� �px� 	 �px� � px
�p�� pp � p

�p��
M 	M �M

pM �M

Figure ��
�� Additional rules for the ��p�calculus

hkdi � p
htpi � p
hxi � x
h)x � A�Bi � �z��t���x�hBi��hAit��z�hAit�� z� t �� FV �A� � FV �B�
h�x � A�Bi � ��x�hBi� 	 hAi
hABi � hAihBi

Suppose� �i � x� � A�� � � � � xi � Ai� i � �� � � � � n�
hAi	 � hAi�P��x�� � � � � Pn�xn��
Pi�� � hAi��i	ixi
P� � hA�ix�

Figure ��
	� Translation of the �P�calculus into the ��p�calculus

We want to show that� �i� every model of the ��p�calculus is also a model of
the �P�calculus� and �ii� there are models of the ��p�calculus
 Point �ii� is a a
corollary of theorem �
�
��
 In particular� we will we will see that every re�exive
object in the category of bi�nite �stable� domains and stable morphisms �there
are plenty of them� can be canonically extended to a model of the ��p�calculus

We remark that the �nitary projection model presented above� although based

on similar ideas� does not provide a model of the ��p�calculus if we interpret �as
it is natural� p as the projection 

 The problem is that the rule �p�� requires
that every retraction is in 
 image �a similar problem would arise in models based
on �nitary retractions�


In order to address point �i�� we exhibit a syntactic translation of the �P�
calculus into the ��p�calculus which preserves equality
 By combining �i� and
�ii� we can conclude that every model of the ���calculus based on bi�nite stable
domains� canonically provides a �non�trivial� interpretation of the �P�calculus


Let us give some intuition for the interpretation
 A type or a kind is rep�
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resented as a retraction� say r
 An object d has type r if d � r�d�
 When
interpreting the ��abstraction �x � A�B the retraction hAi is used to coerce the
argument to the right type
 A similar game is played in the interpretation of
)x � A�B which resembles )pf in de�nition ��
�
�
 Note that if x �� FV �B� then
h)x � A�Bi � �z�hBi 	 z 	 hAi� which is the way to build a functional space in
Karoubi envelope �cf
 de�nition �
	
��
 Another special case is when A � tp�
then we obtain �t��z�hBi�pt�x��z�pt��
 Here the type of the result �hBi�pt�x��
depends on the input type �pt�
 The translation is de�ned in �gure ��
	� it
respects typing and reduction as stated in the following


Proposition ������ ��� If � 
 A � B then hAi	 �
p hBi	hAi	�

�� If � 
 A � B and A� B then hAi	 �
p hBi	�

Proof
 In the �rst place we observe that hA�B�x�i	 �
p hAi	�hBi	�x�
 Next
we prove the two statements simultaneously by induction on the length of the
typing proof
 We consider some signi�cative cases


�K��� We apply axiom �p��


�K�)� Let Q � h)x � ��Ki	
 We prove pQ �
p Q by showing Q 	Q �
p Q
 To
this end we expand the left hand side of the equation and apply the inductive
hypotheses� phKi	�x�� �
p hKi	�x�� and ph�i	 �
p h�i	


�tp�Asmp� There is a shorter proof of � 
 K � kd
 Then by induction hypothesis
we know phKi	 �
p hKi	
 We conclude observing that hxi	 �
p hKi	x


�tp�Eq� There are shorter proofs of � 
 K � kd and � 
 K � � kd
 By con�uence
we know that K and K � have a common reduct
 By applying the second part
of the statement above we can conclude that hKi	 �
p hK �i	
 By inductive
hypothesis we know hKi	h�i	 �
p h�i	
 Combining with the previous equation
we get the desired result


�tp�)I� By expanding de�nitions as in the �K�)� case


�)E� We observe�

hMNi	 �
p �h)x � ��� i
	hMi	��hNi	� �
p h� �N�x�i

	�hMi	hNi	� �

For the second part of the statement we proceed by induction on the typing and
the derivation of a ��reduction
 For instance consider the case ��x � A�B�C �
B�C�x�
 If ��x � A�B�C is typable in a context � then we can extract a proof
that � 
 C � A
 By ��� we know hAi	hCi	 �
p hCi	
 Hence we can compute
h��x � A�B�Ci	 �
p ��x�hBi	��hAi	hCi	�
 Which is convertible to hBi	�hCi	�x�

�
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���� System LF

The system LF corresponds to the fragment of the �P�calculus in which we drop
second order types
 Formally one has to remove the following rules� �tp�)��� �)�

I��
and �)�

E�


It has been shown that the system can faithfully encode a large variety of
logical systems �AHMP���
 We will highlight some features of this approach by
studying the encoding of a Hilbert style presentation of classical �rst�order logic
with equality and arithmetic operators
 Dependent products play a central role
in this encoding
 From this one may conclude that dependent products are more
�expressive� than simple types
 �

On the other hand from the view point of the length of the normalization
procedure dependent types do not add any complexity
 As a matter of fact we
show that the strong normalization of system LF can be deduced from the strong
normalization of the simply typed ��calculus via a simple translation
 �

Remark ������ Kinds� type families� and objects in �
normal form have the
following shapes where recursively the subterms are in �
normal form�

Kind� )x� � �� � � �)xn � �n�tp
Type family� �x� � �� � � � �xn � �n�)y� � �� � � � ym � �m�xM� � � �Mk

Object� �x� � �� � � � �xn � �n�xM� � � �Mk �

In order to de�ne precise encodings of logics in LF it is useful to introduce the
notion of canonical form
 Roughly a term is in canonical form if it is in � normal
form and ��expansion is performed as much as possible
 Canonical forms can be
regarded as a way to avoid the problematic introduction of full ���conversion


De�nition �����	 The arity of a type or kind is the number of )�s in the pre�x
of its �
normal form �which is to say the number of arguments�� Let � 
 A � B
be a derivable judgment� The arity of a variable occurring in A or B is the arity
of its type or kind�

De�nition ������ Let � 
 A � B be a derivable judgment� The term A is in
canonical form if it is in �
normal form and all variable occurrences in A are fully
applied� where we say that a variable occurrence is fully applied if it is applied to
a number of arguments equal to the variable�s arity�

�It is known that the validity of a sentence is a decidable problem for propositional logic
and an undecidable one for �rst�order logic� Dependent types can be connected to predicate
logic in the same way simple types were connected to propositional logic in section ����

�From a logical view point this relates to the well�known fact that the cut�elimination
procedures in propositional and �rst�order logic have the same complexity�
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Individuals t ��� x jj � jj s�t�
Formulas � ��� t � t jj �� jj � & � jj �x��

�eq�� t � t
�eq��

t � t�

t� � t

�eq��
t � t� t� � t��

t � t��
�eq��

t � t�

��t�x� � ��t��x�

�pp�� � & �� & ��
�pp�� �� & �� & ��� & ��� & �� & �� & ���

�pp�� ��� & ��� & �� & ��
�mp�

� & � �

�

�pc��
�

�x��
�pc��

�x��
��t�x�

Figure ��
�� First�order logic with equality

In �gure ��
� we give a presentation of classical �rst�order logic �FOL� with
equality and arithmetic operators
 In �gure ��
� we encode the language in the
system LF
 To this end we build a context �FOL composed of�

� The declaration of two new types �� o corresponding to the collection of indi�
viduals and formulas� respectively


� The declaration of objects (�� (s corresponding to the arithmetic operators and
objects (�� (&� (�� (� corresponding to the logical operators


Next we de�ne a function d e that translates terms into objects of type � and
formulas into objects of type o
 Note in particular that�

� Variables are identi�ed with the variables of system LF


� ��abstraction is used to encode the quanti�er �


These features are essential to inherit the de�nitions of ��renaming and substi�
tution available in the meta�theory� i
e
 in LF
 The correspondence between the
language of FOL and its encoding in LF is quite good


Proposition ������ There is a bijective correspondence between terms �formu

las� having free variables in x�� � � � � xn and terms M in canonical form such that
�synFOL� x� � �� � � � � xn � � 
M � � ��synFOL� x� � �� � � � � xn � � 
M � o��

A second task concerns the encoding of the proof rules
 The complete de��
nition is displayed in �gure ��
�
 The basic judgment in FOL is that a formula
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�synFOL

������
�����
Constant types �� o � tp

Constant terms (� � � (s � �� �
(� � �� �� o (& � o � o� o

(� � o � o (� � ��� o�� o

dxe � x d�e � (�
ds�t�e � (sdte
dt � t�e � (�dtedt�e d�te � (�dte

d� & ��e � (&d�ed��e d�x��e � (���x � ��d�e�

Figure ��
�� Coding FOL language in LF

holds� say 
 �
 Correspondingly we introduce a dependent type T � o� tp
 This
is the point where dependent types do play a role' We also note that the rule
�tp�)E� is used to type the proof encodings
 The basic idea is to introduce a series
of constants which correspond to the proof rules in such a way that objects of
type T �d�e� relate to proofs of the formula �
 The property of the proof encoding
can be stated as follows
 �

Proposition ������ There is a bijective correspondence between proofs of a for

mula � from the assumptions ��� � � � �m and with free variables x�� � � � � xn� and
terms M in canonical form such that�

�synFOL��
rl
FOL� x� � �� � � � � xn � �� y� � T �d��e�� � � � � ym � T �d�me� 
M � T �d�e� �

For instance� to the proof xx
�x��xx� we associate the term pc���x � ��(�xx��eq��


Next we turn to the strong normalization problem for the system LF
 This is
proven via a translation in the simply typed ��calculus which is speci�ed in �gure
��
��
 The function t applies to kinds and type families whereas the function j j
applies to type families and objects
 The function t forgets the type dependency
by replacing every variable by the ground type o and ignoring the argument of a
type family
 The function j j re�ects all possible reductions of the LF term
 In
order to translate terms of the shape )x � A�B we suppose that the simply typed
��calculus is enriched with a family of constants 
 having type o� �t�A�� o��
o
 In the �rst place� we observe some syntactic properties of these translations


Lemma ������ IfM is an object then� ��� t�A�M�x�� � t�A�� and �� jA�M�x�j �
jAj�jM j�x��

�Detailed proofs for propositions ������ and ������ can be found in �HHP����
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Judgment T � o� tp

Rules �rlFOL

��������������������
�������������������

eq� � )x � i�T � (�xx�
eq� � )x� y � i��T � (�xy�� T � (�yx��
eq� � )x� y� z � i��T � (�xy�� T � (�yz�� T � (�xz��
eq� � )f � �� o�)x� y � i��T � (�xy�� T � (��fx��fy���
pp� � )f� g � o�T �f (&g (&h�
pp� � )f� g� h � o�T ��f (&�g (&h�� (&��f (&g� (&�f & h���
pp� � )f� g � o�T ��(�f (&(�g� (&�g (&f��
mp � )f� g � o�T �f (&g�� T �f�� T �g�

pc� � )F � �� o��)x � ��T �Fx��� T �(�F �

pc� � )F � �� o�)x � ��T �(�F �� T �Fx�

Figure ��
�� Coding FOL proof rules in LF

t�tp� � o
t�x� � o
t�)x � A�B� � t�A�� t�B�
t��x � A�B� � t�B�
t�AB� � t�A�

jxj � x
jABj � jAjjBj
j)x � A�Bj � 
jAj��x � t�A��jBj�
j�x � A�Bj � ��y � o��x � t�A��jBj�jAj �y fresh�

Figure ��
��� Translation of LF in the simply typed ��calculus
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Proof hint
 By induction on the structure of A
 �

Lemma ������ If � 
 A � B and A � A�� where A is a kind or a type family�
then t�A� � t�A���

Proof
 By induction on the proof of the reduction
 In the basic case ��x �
A�B�C � B�C�x� we use the fact that� by the typability hypothesis� C is an
object
 �

The translations t and j j preserve typing


Proposition �����
 If � 
 A � B and B �� kd then t��� 
 jAj � t�B�� where
t�x� � A�� � � � � xn � An� � x� � t�A��� � � � � xn � t�An��

Proof hint
 By induction on the length of the proof
 �

Finally we can show that the translation re�ects reductions� which� by the
strong normalization of the simply typed ��calculus� implies immediately the
strong normalization of system LF


Theorem ������ If � 
 A � B� B �� kd� A� A�� and in the reduction A� A�

we �nd at least one �
reduction� then jAj ��

 jA

�j�

Proof
 By induction on the derivation of A � A�
 For instance� suppose we
derive ��x � A�B�C � A��C ��x� from B � B� and C � C �
 Then�

j��x � A�B�Cj � ���y � o��x � t�A��jBj�jAj�jCj
� ��x � t�A��jBj�jCj
�� ��x � t�A��jB�j�jC �j by induction hypothesis
� jB�j�jC �j�x� � jB��C ��x�j by lemma ��
�
	 �

�

Remark ������ By combining the results on con�uence and strong normaliza

tion it is possible to prove that it is decidable if a judgment is derivable in the
system LF�

���� System F

System F is the fragment of the �P�calculus where dependent types and type
families are removed
 Formally we eliminate the rules� �K�)�� �tp�)I�� and
�tp�)E�
 With these restrictions� types cannot depend on objects and the equal�
ity rules �tp�Eq� and �Eq� can be dispensed with� as type equality becomes ��
conversion
 Note that in the type )x � ��� � the type � never depends on x and
therefore we can simply write � � � 
 Finally we remark that the rules for the



� CHAPTER ��� DEPENDENT AND SECOND ORDER TYPES

�Asmp�
x � � � �
� 
 x � �

��I�
�� x � � 
 M � �

� 
 �x � ��M � �� �
��E�

� 
M � �� � � 
 N � �
� 
MN � �

��I�
� 
M � � t �� FVt���
� 
 �t�M � �t��

��E�
� 
M � �t��
� 
M� � ����t�

Figure ��
��� Typing rules for system F

kind �and context� formation are redundant
 Namely we can represent a context
as a list x� � ��� � � � � xn � �n �as in the simply typed ��calculus�� where the types
�i may depend on type variables
 According to these remarks we give a more
compact presentation of system F
 Since we have eliminated the kinds� we need
some notation to distinguish between type variables �i
e
 variables of type tp�
and term variables �i
e
 variables of type �� where � has kind tp�� we denote the
former with t� s� � � � and the latter with x� y� � � � Terms and types are de�ned as
follows�

Types tv ��� t jj s jj � � �
� ��� tv jj �� � jj �tv��

Terms v ��� x jj y jj � � �
M ��� v jj �v � ��M jjMM jj �tv�M jjM� �

Note that the type of all types is never explicitly mentioned
 �t� � � � is an abbre�
viation for )t � tp� � � � and �t� � � � is an abbreviation for �t � tp� � � �
A context � is a list x� � ��� � � � � xn � �n� so the type variables declarations are

left implicit
 We denote with FVt��� the collection of type variables that occur
free in types occurring in �
 Derivable typing judgments are speci�ed in �gure
��
��
 Mutatis mutandis� the system is equivalent to the one presented in section
��



Exercise ������ Show that in system F ���reduction is locally con�uent on well�typed
terms�

The system F was introduced by Girard �Gir�� as a tool for the study of the
cut�elimination procedure in second order arithmetic �PA��� more precisely the
normalization of system F implies the termination of the cut�elimination proce�
dure in PA�
 By relying on this strong connection between system F and PA�

it was proven that all functions that can be shown to be total in PA� are repre

sentable in system F
 This is a huge collection of total recursive functions that
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goes well beyond the primitive recursive functions
 System F was later redis�
covered by Reynolds �Rey��� as a concise calculus of type parametric functions

In this section we illustrate the rich type structure of system F by presenting a
systematic method to code �nite free algebras and iterative functions de�ned on
them

In the following an algebra S is a sort S equipped with a t�uple of constructors�

fnii � S �    � S
 �z �
ni times

� S for i � �� � � � � k� k � �� ni � � �

We inductively de�ne a collection of total computable functions over the ground
terms of the algebra as follows


De�nition �����	 The collection of iterative functions f � Sn � S over an
algebra S is the smallest set such that�

� The basic functions fnii � constant functions� and projection functions are iter

ative functions�

� The set is closed under composition� If f� � Sm � S� � � � � fn � Sm � S� and
g � Sn � S are iterative then ��x�g�f���x�� � � � � fn��x�� is iterative�

� The set is closed under iteration� If hi � Sni�m � S are iterative functions for
i � �� � � � � k then the function f � Sm�� � S de�ned by the following equations is
iterative�

f��x� fi��y�� � hi��x� f��x� y��� � � � � f��x� yni�� i � �� � � � � k �

Iterative de�nitions� generalize to arbitrary algebras primitive recursive de��
nitions �cf
 appendix A�
 The basic idea is to de�ne a function by induction on
the structure of a closed term� hence we have an equation for every function of
the algebra


Exercise ������ Consider the algebra of natural numbers ��� s�� ���� Show that the
iterative functions coincide with the primitive recursive ones� Hint� the de�nitions by
primitive recursion are apparently more general but they can be simulated using pairing
and projections�

De�nition ������ �coding� In �gure ���� we associate to an algebra S a type
� of system F� and to a ground term a of the algebra a closed term a of type ��

Example ������ If we apply the coding method to the algebra of natural numbers
de�ned in exercise ������ we obtain the type �t��t � t� � �t � t�� The term
s�   �s��   � can be represented by the term �t��f � t � t��x � t�f�   �fx�   ��
which is a polymorphic version of Church numerals�
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Given� S� fnii � S �    � S
 �z �
ni times

� S� i � �� � � � � k

Let� � � �t��� �    � �k � t
where� �i � t�    � t
 �z �

ni times

� t

fni �a�� � � � � an� � �t��x� � �� � � � �xk � �k�xi�a�t�x�    �ant�x�

Figure ��
�� Coding algebras in system F

Exercise ������ Explicit the coding of the following algebras� the algebra with no oper�
ation� the algebra with two ��ary operations� the algebra of binary trees �T� nil�� couple���

Proposition ������ There is a bijective correspondence between the ground terms
of the algebra S and the closed terms of type � modulo ��
conversion�

Proof
 Let M be a closed term in ��normal form of type �
 Then M has to
have the shape�

M � �t��x� � �� � � � �xi � �i�M
� i � k �

If i � k and M � is not a ��abstraction then M � has the shape �   �xjM��   Mh�
and so we can ��expand M � without introducing a ��redex
 By iterated ��
expansions we arrive at a term in � normal form of the shape

�t��x� � �� � � � �xk � �k�M
�� �

where M �� has type t� it is in � normal form� and may include free variables
x�� � � � � xk
 We claim that M �� cannot contain a ��abstraction�

� A ��abstraction on the left of an application would contradict the hypothesis
that M is in � normal form


� A ��abstraction on the right of an application is incompatible with the ��rst�
order� types of the variables �i


We have shown that a closed term of type � is determined up to �� conversion by
a termM �� which is a well�typed combination of the variables xi� for i � �� � � � � k

Since each variable corresponds to a constructor of the algebra we can conclude
that there is a unique ground term of the algebra which corresponds to M ��
 �

Having �xed the representation of ground terms let us turn to the represen�
tation of functions
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De�nition �����
 A function f � Sn � S is representable �with respect to the
coding de�ned in �gure ����� if there is a closed term M � �n � �� such that
for any ground term �a� M�a �
� f��a��

Proposition ������ The iterative functions over an algebra S are representable�

Proof
 We proceed by induction on the de�nition of iterative function
 The
only non�trivial case is iteration
 Let hi � Sni�m � S be iterative functions for
i � �� � � � � k� and the function f � Sm�� � S be de�ned by�

f��x� fi��y�� � hi��x� f��x� y��� � � � � f��x� yni�� i � �� � � � � k ���
��

where �x � x�� � � � � xm
 We represent f with the function�

f � �x� � �� � � � �xm � ���x � ��x��h��x�    �hk�x�

where we know inductively that hi represents hi
 Note that iteration is already
built into the representation of the data
 We prove by induction on the structure
of a ground term a that for any vector of ground terms �b� f�ba �
� f��b� a�


� If a � f�i then f�bf
�
i �

� f�i ��h��b�    �hk�b� �
� hi�b � hi��b�� the last step holds

by induction hypothesis on hi


� If a � fni �a�� � � � � an� then f��b� fi�a�� � � � � an�� � hi��b� f��b� a��� � � � � f��b� an��� by
equation ��
�
 Then by induction hypothesis on hi�

f��b� fi�a�� � � � � an�� � hi��b� f��b� a��� � � � � f��b� an�� � hi�bf��b� a�� � � � f��b� an� �

On the other hand we compute�

f�bfni �a�� � � � � an�

� fni �a�� � � � � an���h��b�    �hk�b�

� �hi�b��a���h��b�    �hk�b��    �an��h��b�    �hk�b�� �

and we observe that by induction hypothesis on a�

f��b� ai� � f�bai � ai��h��b�    �hk�b�� �

�

Exercise ������� Consider the case of algebras which are de�ned parametrically with
respect to a collection of data� For instance List�D� is the algebra of lists whose ele�
ments belong to the set D� This algebra is equipped with the constructors nil � List�D�
and cons � D � List�D� � D� De�ne iterative functions over List�D� and show that
these functions can be represented in system F for a suitable embedding of the ground
terms in system F� Hint� The sort List�D� is coded by the type t�t� �t� r � t�� t�
where r is a type variable� and generic elements in List�D� are represented by �free�
variables of type r�
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In system F it is also possible to give weak representations of common type
constructors
 We explain the weakness of the representation in the following
example concerning products


Example ������� For �� � types of system F de�ne�

��� � �t���� � � t�� t �

Pairing and projections terms can be de�ned as follows�

hM�Ni � �t��f � �� � � t�fMN

�M �M���x � ���y � ��x�

�M �M� ��x � ���y � ��y� �

Note that 
ihM��M�i �
� Mi but pairing is not surjective� i�e� h
�M�
�Mi ��
�

M �

Exercise ������
 Study the properties of the following codings of sum and existential�

��� � t��� � t�� �� � t�� t
�t�� � s��t�� � s�� s �

We conclude by proving the core of Girard�s celebrated result� all terms ty�
pable in system F strongly normalize
 The proof is based on the notion of re

ducibility candidate already considered in de�nition �
�
�� and in the adequacy
proof of section �

 In order to make notation lighter we will work with untyped
terms obtained from the erasure of well�typed terms


De�nition ������� The erasure function er takes a typed term and returns an
untyped �
term� It is de�ned by induction on the structure of the term as follows�

er�x� � x er��x � ��M� � �x�er�M� er�MN� � er�M�er�N�
er��t�M� � er�M� er�M� � � er�M� �

In system F we distinguish two �avours of ��reduction� the one involving a
redex ��x � ��M�N which we call simply � and the one involving a redex ��t�M��
which we call �t
 Erasing type information may eliminate some reductions of the
shape ��t�M�� �M ���t�� however this does not a�ect the strong normalization
property as shown in the following


Proposition ������� Let M be a well
typed term in system F� Then�

��� If M �
 N then er�M��
 er�N��

�� If M �
t N then er�M� � er�N��

��� If M diverges then er�M� diverges�
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Proof
 We leave ���� to the reader
 For ���� we observe that sequences of
�t�reductions always terminate
 Hence we can extract an in�nite reduction of
er�M� from an in�nite reduction of M 
 �

De�nition ������� �reducibility candidate� Let SN be the collection of un

typed ��
strongly normalizable terms� A set X � SN is a reducibility candidate
if�

��� Qi � SN � i � �� � � � � n� n � � implies xQ�� � � � � Qn � X�

�� P �Q�x�Q�� � � � � Qn � X and Q � SN implies ��x�P �QQ�� � � � � Qn � X�
We denote with RC the collection of reducibility candidates and we abbreviate
Q�� � � � � Qn with �Q�

Proposition ������� ��� The set SN is a reducibility candidate�

�� If X � RC then X �� ��

��� The collection RC is closed under arbitrary intersections�

��� If X�Y � RC then the following set is a reducibility candidate�

X � Y � fM j �N � X �MN � Y �g �

Proof
 ��� We observe that P �Q�x��Q � SN and Q � SN implies ��x�P �Q�Q �

SN 
 Proceed by induction on ln�P �� ln�Q�� ln�Q���   � ln�Qn�� where ln�P �
is the length of the longest reduction


�� By de�nition x � X


��� Immediate


��� Here we see the use of the vector �Q
 For instance let us consider the second

condition
 To show ��x�P �Q�Q � X � Y observe �Q� � X �P �Q�x��QQ� � Y �

since by hypothesis P �Q�x��Q � X � Y 
 �

De�nition ������� Given a type environment � � Tvar � RC we interpret
types as follows�

��t��� � ��t�
���� � ��� � ������� ��� ���
���t����� �

T
X�RC �������X�t� �

Theorem ������
 �strong normalization of system F� Given an arbitrary
type environment �� and a derivable judgment x� � ��� � � � � xn � �n 
 M � � � if
Pi � ���i���� for i � �� � � � � n then er�M��P��x�� � � � � Pn�xn� � ��� ����

Proof
 We abbreviate �P��x�� � � � � Pn�xn� with ��P��x�
 We proceed by induction
on the length of the typing proof
 The case �Asmp� follows by de�nition
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��I� We have to show �x�er�M���P��x� � ���� � ���
 By inductive hypothesis we

know er�M���P��x��P�x� � ��� ���� for all P � ������
 We conclude using property ��
of reducibility candidates


��E� By the de�nition of �


��I� We have to show er�M���P ��x� �
T
X�RC ��� ����X�t�
 By the side condition

on the typing rule we know ���i��� � ���i����X�t�� for an arbitrary X � RC 
 By

inductive hypothesis er�M���P��x� � ��� ����X�t�� for an arbitrary X � RC 


��E� We have to show er�M���P��x� � ��� �����������t�
 By inductive hypothesis

er�M���P��x� �
T
X�RC ��� ����X�t�
 Pick up X � ������
 �

The formal statement of theorem ��
�
�� can be regarded as a syntactic ver�
sion of the fundamental lemma of �unary� logical relations �cf
 �
�
��
 The
following exercises present two variations over this result


Exercise ������	 We say that a set X of untyped ��terms is saturated �or closed by
head expansion� if P �Q	x�Q�� � � � � Qn � X implies ��x�P �QQ�� � � � � Qn � X� Following
de�nition ������� associate a saturated set to every type and prove the analogous of
theorem ��������

Exercise �����
� We say that a term is neutral if it does not start with a ��abstraction�
The collection RC � �cf� �GLT���� is given by the sets X of strongly normalizing terms
satisfying the following conditions�

��� M � X and M �
 M
� implies M � � X�

��� M neutral and M ��M �
 M
� �M � � X� implies M � X�

Carry on the strong normalization proof using the collection RC ��

Exercise �����
� Extend the strong normalization results for system F to ���reduction�
where the � rule for type abstraction is� �t�Mt� M t 	� FV �M��

Remark �����		 Note that �
expansion in system F does not normalize� as�
�x � �t�t�x � �x � �t�t��t�xt�   

Remark �����	� It is possible to reduce the strong normalization of the �P

calculus to the strong normalization of system F by a translation technique that
generalizes the one employed in section ���	 for the system LF �GN����
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Stability

The theory of stable functions is originally due to Berry �Ber���
 It has been
rediscovered by Girard �Gir�	� as a semantic counterpart of his theory of dilators

Similar ideas were also developed independently and with purely mathematical
motivations by Diers �see �Tay��a� for references�

Berry discovered stability in his study of sequential computation �cf
 theorem


�� and of the full abstraction problem for Pcf �cf
 section 	
��
 His intuitions
are drawn from an operational perspective� where one is concerned� not only with
the input�output behaviour of procedures� but also with questions such as� �which
amount of the input is actually explored by the procedure before it produces an
output�
 In Girard�s work� stable functions arose in a construction of a model
of system F �see chapter ���% soon after� his work on stability paved the way to
linear logic� which is the subject of chapter ��

In section �
� we introduce the conditionally multiplicative functions� which

are the continuous functions preserving binary compatible glb�s
 In section �

we introduce the stable functions and the stable ordering� focusing on minimal
points and traces
 Stability and conditional multiplicativity are di�erent in gen�
eral� but are equivalent under a well�foundedness assumption
 They both lead
to cartesian closed categories
 In section �
� we build another cartesian closed
category of stable functions� based on a characterisation of stable functions by
the preservation of connected glb�s
 This category involves certain L�domains
satisfying a strong distributivity axiom� which are investigated in section �
	

In the rest of the chapter� we impose algebraicity� as in chapter �
 In Section

�
� we introduce event domains and their representations by event structures�
and we show that they form a cartesian closed category
 Berry�s dI�domains are
examples of event domains� and Girard�s coherence spaces �which give rise to a
model of linear logic� are examples of dI�domains
 In section �
� we discuss the
stable version of bi�niteness
 Within this framework a remarkably simple theory
of retractions can be developed
 Figure �
� summarises the cartesian closed
categories described in this chapter

The present chapter is based on �Ber��� �sections �
�� �
� �
��� �Win���

��
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�section �
��� �Tay��a� �sections �
� and �
	�� and �Ama��a� �section �
��


���� Conditionally Multiplicative Functions

In this section we focus on functions preserving the compatible binary glb�s

We therefore work with cpo�s which have such glb�s
 Moreover� this partial glb
operation is required to be continuous
 This condition ensures that function
spaces ordered by the stable ordering are cpo�s


De�nition �	���� �meet cpo� A cpo �D��� is called a meet cpo if

� � �x� y �x � y� x  y exists��
 � �x �# �dir D �x � �

W
#�� x  �

W
#� �

W
fx  � j � � #g��

�

The condition �� of de�nition �
�
�� which expresses the continuity property
of binary glb�s� can be relaxed
 Morevover� it comes for free in an algebraic cpo


Lemma �	���	 �� In a meet cpo� as soon as x  �
W
#� exists� then the dis


tributivity equality x  �
W
#� �

W
fx  � j � � Xg holds�

� An algebraic cpo is a meet cpo i� condition ��� of de�nition ����� holds�

Proof
 ��� We apply condition �� with x  �
W
#� in place of x�

�x  �
�
#��  �

�
#� �

�
f�x  �

�
#��  � j � � Xg �

�
fx  � j � � Xg�

�� To check x  �
W
#� �

W
fx  � j � � Xg� it is enough to check that every

compact e such that e � x �
W
#� is also such that e �

W
fx � j � � Xg� which

is clear since� by the de�nition of compact elements� e �
W
# implies e � � for

some � � #
 �

In particular� in bounded complete cpo�s the glb function is de�ned every�
where and is continuous
 Some �counter��examples are given in �gure �
�


De�nition �	���� �conditionally multiplicative� LetD and D� be meet cpo�s�
A function f � D � D� is called conditionally multiplicative� or cm for short if

�x� y � D x � y� f�x  y� � f�x�  f�y��

We write D �cm D� for the set of cm functions from D to D��

The fonction por considered in section 	
� is an example of a continuous
functions which is not cm�

por��� tt�  por�tt��� � tt �� � � por������


