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(Ae.M)N —rop M[N/2]
YM s,y M(Y M)
suce(n) —p 1
pred(n + 1) —op N
zero?(0) —p Ut
zero?(n + 1) —op ff

if tt then N else P —,, N
iof [f then N else P —,, P

M —,, M’ M —,, M’
MN —,, M'N if M then N else P —,, if M’ then N else P

M —,, M’ M —,, M’ M —,, M’
succ(M) —,, succ(M') pred(M) —,, pred(M’) zero? (M) —,, zero?(M')

Figure 6.3: Operational semantics for PCF
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Definition 6.3.5 (PcF program) We call programs the terms of PCF which
are closed and of basic type.

For example, (Az.2)3 and add; 43 (cf. exercise 6.3.3) are programs.

Theorem 6.3.6 (adequacy) Any standard model C of PCF is adequate, i.c.,
for all programs of type ¢ (and similarly for type o0):

(An P =), n) & [P]=n.

PROOF. (=) Follows by soundness of the continuous model.

(<) The key idea is to decompose the problem into two subproblems, one which
will be proved by induction on types, the other by induction on terms. We use
the notation of section 4.5, and write D? = C[1, D?]. The induction on types
comes into play by a definition of a family of relations R? C D7 x PCF?, for each
type o, where PCF? is the set of closed terms of type o. Here is the definition
of these (logical-like) relations ( R° is analogous to R*):

R = {(z,M) |2 = Lor (x=nand M =% n)}
R = {(f,M)|Ve,N (R N=evo(f,e)yR"MN)} .

The statement is a part of the following claim. For each provable judgement
Tyt 01y 2y 2 0, B M ¢ o, for each n-tuple (dy, Ny),...,(d,, N,) such that
d; R° N; for 1 =1,...,n, we have

[:0F M]o(dy,...,d,)R® M[Ny/x1,..., N,/ as].
We set M" = M[Ny/xy,...,N,/z,], etc... We proceed with the simplest cases

first.
M = x;: Then [M]o (di,...,d,) = d;, and M[Ny/xy,...,N,/x,] = N;, hence

the sought result is d; R?* N;, which is among the assumptions.

M = NQ@Q: By induction [N]o(dy,...,d,) R777 N and [Q]o (d1,...,d,) R” Q'
By definition of R°77 | ev o ([N] o (dy,...,d,),[@] o {(dy,...,d,)) R™ N'Q’, i.e.
[M]o{d,....d,)R™ M.

M = Az.(): We have to show, for each d R7 N:
evo([M]o{dy,...,d,),d) R" M'N i.e. [Q]o{dy,...,dn,d) R (Az.Q")N.
By induction we have

[Qlo(di,....dn,d) RT Q[N1/x1,..., Ny/an, N/x].
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Since (Ax.Q" )N —,, Q[N1/x1,...,Ny/xn, N/x], we can conclude provided the
following property holds, for all o:

(@) fROMand M' —,, M = [R° M

M = n: In this case, n R* M holds trivially. Similarly for ¢t and ff.
M = succ: Let dR* P. We have to show ev o (suce,d) R* suce(P). There are two

cases:

d= 1: Then evo (succ,d) = evo (suce, L) =1

d=n: Then evo (succ,d)=n+1.
In both cases ev o (suce,d) R* suce(P). The reasoning is similar for pred, zero?,
and if then else .

M =Y: We have to show [Y] R Y that is, ev o ([Y],g) R7 Y M, for all
g R777 M. We assume the following properties (cf. inclusive predicates), for all
o:

(Q2) LR™M
(Q3) {fu}ncw non decreasing implies (Vn f, R M) = (Vpeo fu) RT M.

By (Q3), the conclusion follows if we show:
evo ([Af.f"Q],9) R7YM (for all n).

We set d,, = ev o ([Af.f*Q],g). Since d,, = [["Q] 0 g, we have d,,41 = evo(g,d,)

for all n. Therefore, we only have to show:

1. do R YM: Since dy = [] o g, this follows from (Q2) and from the left

strictness of composition.

2. (dR°YM) = (evo(g,d) R” YM): Since g R”77 M by assumption, we
have ev o (g,d) R” M(Y M), and the conclusion then follows by (Q1).

Properties (Q1) and (@) are obvious at basic types. For a type o — 7,
(@) follows by induction from the inference: (M' —,, M) = (M'N —,, MN)
and (Qz) follows from the strictness equation ev o (L,d) = L. (Q3) follows at
basic types from the fact that non-increasing sequences are stationary in a flat
domain, and at functional types from the preservation of limits by continuity.
This completes the proof of the claim. a

6.4 The Full Abstraction Problem for PcCF

In general, given a programming language, the specification of the operational
semantics is given in two steps:
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1. Evaluation: a collection of programsis defined, usually a collection of closed
terms, on which a partial relation of evaluation is defined. The evaluation
is intended to describe the dynamic evolution of a program while running
on an abstract machine.

2. Observation: a collection of admissible observations is given. These obser-
vations represent the only mean to record the behavior of the evaluation of
a program.

In this fashion, an observational equivalence can be defined on arbitrary terms
M and N as follows: M is observationally equivalent to NV if and only if whenever
M and N can be plugged into a piece of code P, so to form correct programs
P[M] and P[N], then M and N are not separable (or distinguishable) by any
legal observation. On the other hand any interpretation of a programming lan-
guage provides a theory of program equivalence. How does this theory compare
to observational equivalence? We will say that an interpretation (or a model) is
adequate whenever it provides us with a theory of equivalence which is contained
in the observational equivalence. Moreover we call an adequate model (equation-
ally) fully abstract if the equivalence induced by the model coincides with the
observational equivalence.

In this section we discuss the situation for PCF. We have defined the programs
as the closed terms of base type. We have defined an evaluation relation —,,,.
What can be observed of a program is its convergence to a natural number or
to a boolean value. The principal reason for focusing on programs is that they
lead to observable results. This stands in contrast with expressions like Az.x,
which are just code, and are not evaluated by —,, unless they are applied to an
argument, or more generally unless they are plugged into a program context. A
program context for a PCF term is a context C (cf. definition 2.1.6) such that
C[M] is a program.

Definition 6.4.1 (observational preorder) We define a preorder <., called
observational preorder, between PCF terms M, N of the same type, as follows:

M <,s N &VC (C[M] =}

op

¢ = C[N] =% ¢

op
where C' ranges over all the contexts which are program contexts for both M and

N, and where ¢ :=n |t | ff.

Remark 6.4.2 By exercise 6.3.4 and by theorem 6.3.6, equivalent definitions for
<, bs are:

M <, N & YC program context (C[M] —*
M <, N & YC program context ([C[M]] <
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Definition 6.4.3 (fully abstract) A cpo-enriched CCC is said to yield an in-
equationally fully abstract (fully abstract for short) model of PCF if the following
equivalence holds for any PCF terms of the same type:

M < N & [M] < [N].

It is a consequence of the adequacy theorem that the direction (<) holds for
the continuous model (and in fact for any standard model). But the converse
direction does not hold for the continuous model. There are several proofs of this
negative result, all based on a particular continuous function por : By xB, — B

defined by:
tt ife=ttory=tt

por(:z;,y){ﬁ ifx=ffand y=ff

1 otherwise .

1. Plotkin first proved that the continuous model is not fully abstract. He gave
the following terms:

My = Xg.if Py then if Py then if Ps then Q) else tt else ) else )
My = Xg.if Py then if Py then if Ps then Q) else [f else Q else Q

where Py = gttQ, P, = gQtt, and P; = gff ff. These terms are designed in
such a way that

it = [Mi](por) # [M:](por) = .

On the other hand M; =,,, M;. This is proved thanks to two key syntactic
results:

(a) Milner’s context lemma [Mil77]. This lemma, proposed as exercise 6.4.4,
states that in the definition of <, it is enough to let ' range over so-
called applicative contexts, of the form [ |Ny...N,. Applying this lemma
to My, My, we only have to consider contexts [ |NV. By the definition of
—op, We have for ¢ = 1, 2:

Nt Q =%t
[MIN =%, c={ NQut —%, tt
NG =51

(b) The second syntactic result that we use is that there is no N such that
* * *
NuQ =51t NQu =51t Nff—5, 0.

This result is a consequence of the following more general result. PCF is a
sequential language, in the following sense: If (' is a closed program context
with several holes, if

[FCI,....Ql =L and 3IM,....M, [FC[M,....,M]]# L
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then there exists an ¢ called sequentiality index, such that
\V/Nl,. . .,Ni_l,NH_l,. . .,Nn [“_ C[Nl,. . .,Ni_l,Q,NH_l,. . ,Nn]]] — J_ .

This result is an easy consequence of (the PCF version of) Berry’s syntactic
sequentiality theorem 2.4.3 (see exercise 6.4.5) and of the adequacy theo-
rem 6.3.6. Here, it is applied to C' = N[ ][ ], observing that we can use
N [f [f =7, [ to deduce that there is no ¢ such that MQQ =7 c.

Another way to prove the non-existence of NV is by means of logical relations.
We have treated essentially the same example in section 4.5.

2. Milner has shown that in an extensional standard fully abstract model of PCF,
the interpretations of all types are algebraic, and their compact elements must
be definable, i.e. the meaning of some closed term. This is called the definability
theorem (for a proof, we refer to [Cur86]). One can use this result to cut down
the path followed in (1) and go directly to step (b). In reality, there is no cut
down at all, since the proof of the definability theorem uses the context lemma,
and exploits terms in the style of My, M,.

Exercise 6.4.4 (context lemma) * Let M and M’ be two closed PcF¥ terms of the
same type such that, for all closed terms Ny, ..., N, such that MNy---N, is of basic
type, the following holds:

MN; Ny =%, ¢ = MNp---N, =% c

Show that M <,ps M'. Hint: proceed by induction on (length of the reduction C[M] —7,
¢, size of C[M]).

Exercise 6.4.5 (syntactic sequentiality for Pcr) Prove the PCF version of theo-
rem 2.4.3, and show the corresponding corollary along the lines of exercise 2.4.).

The converse of the definability theorem also holds, and is easy to prove.

Proposition 6.4.6 If C is an order-extensional standard model of PCF in which
all c¢po’s interpreting all types are algebraic and are such that all their compact
elements are definable, then C is fully abstract.

- -

PROOF. Suppose that M <,,; M'. It is enough to check [M](d) < [M'](d) for

all compact d = dy - --d,. Then the conclusion follows using contexts of the form

[N, -+ N,. 0

Exercise 6.4.7 (uniqueness) Show, as a consequence of proposition 6.4.6 and of the
definability theorem, that all order-extensional standard models of PCF are isomorphic
(in a suitable sense).
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In fact, this (unique) fully abstract model exists, and was first constructed by
Milner as a quotient of the term model of PCF. Since then, a lot of efforts have
been made to provide more “semantic” constructions of this model (this is known
as the full abstraction problem for PcF). In particular, the non-definability of
por prompted the study of sequentiality, which is the subject of section 6.5 and
of chapter 14. A weaker notion, stability, appeared on the way, and is the subject
of chapter 12.

Remark 6.4.8 Gunter has proposed a simple semantic proof of My =, Ms. In
the stable model of PCF, to be defined in chapter 12, we have [M;] = [Mz]. In
the stable model, one retains only functions which satisfy the following property
(specified here for a type like 0 X 0 — 0):

Vo flz)# L = Jy minimum (y <z and f(y) # 1).

In particular, por is rejected (take x = (tt,tt), then (L, tt) and (tt, L) are both
minimal, but there is no minimum), and this is why we have [M;] = [Mz]. Now,
because the direction <= holds for the stable model, which is standard, we have

Ml —obs MQ'

Pcr Bohm trees. In the rest of this section, we sketch a construction of the
fully abstract model of PCF, based on a notion of Bohm tree for PCF, and due
independently to Hyland and Ong, and to Abramsky, Jagadeesan and Malacaria
[HO94, AJM95]. Often, our definitions are given for types built over ¢ only. The
extension of the constructions to the full PCF type hierarchy is straightforward.

Definition 6.4.9 (Pcr Bohm tree) We define the set T™" of raw PCF Béhm
trees, and the auxiliary set B™" as follows (T ranges over T, and B ranges
over B"™"):

T:=X\t:0.B
B:=Q|n|case 2T [F] (n € w)
F:w— B (dom(F) finite) .

We endow T™ with a subtree ordering, which is the least congruence satisfying:

F(n)l = F(n) < F'(n) foranyn € w
<Y

QT (forany T)

The set T™ can be viewed as a subset of the set of (raw) terms in A(C), with
C={Qn,casex | n € w, X Cg, w}

taking case jom(ry to encode Ay.case xTy---T, [F]. The constants are typed as
follows:

FQ:0v Fn:t b casey : S5
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There are no constants & Q : o at non-basic types. A correctly typed raw PCF
Bohm tree is called a finite Bohm tree. The sets of correctly typed terms of T
and B™" are denoted T and B. We denote with T the ideal completion of
(T,<) (c¢f. proposition 1.1.21). We use P,Q to range over T, while S,T,B
always denote finite trees. The completion is done at every type, and we write
I'= P: 7 whenever ' = S 0 7 for any finite approzimation of P.

Next we define a category whose morphisms are trees of 7.

Definition 6.4.10 The category BT pp has the following objects and mor-
phisms:

o The objects of BT pyp are the sequences & of PCF types.

¢ BTp [0, 7], with 7 =1y,...,7,, consisls of a vector of lrees ¥ : 6 = P; : 7;
in T, fori=1,...,n.

Given & and o in the list &, we define a projection morphism & : 6 &= 1z, : 0 by

induction on o =1 — -+ = 7, = L, as follows:

Tao = AYJ.case x(mzr ) - (T7,,) [id]
where id is the identily function mappingn € w tob n . If & = 01,...,0,,
then the identity morphism id : & — & is defined by: id = Tz 4,,..., Tz,

Remark 6.4.11 The projection and identity morphisms are infinite trees, due
to the presence of the identity function An.n in their definition, which introduces
infinite horizontal branching.

In order to define composition, we proceed in two stages. First, we define
the composition of finite morphisms, i.e. finite trees. Given T' € BT pnp[d, o]

and S € BTPCF[;’,U”], we form ()\:Z".S)f, and reduce it to its normal form R,
applying (3, as well as the following rules:

F(n) if F(n)|

Q otherwise

(8) casen [F] — {

(Q) case Q [F] — Q
(v) case (case M [F]) [G] — case M [H] .

where H has the same domain as F' and H(n) = case F'(n) [G]. We set
So (f) = R.
Finally, composition is extended to infinite trees by continuity:

Po(Q)=\{So(T)|S<PT<q}.
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We now have to justify all this carefully. We have to show that:

1. R always exists,
2. ReT,

3. The lub in the definition of P o (@) exists,
4.

composition satisfies the monoid laws.

As for (1), we rely on the following theorem due to Breazu-Tannen and Gallier

[BTGIL].

Theorem 6.4.12 Let A(C) be a simply-typed * A-calculus with constants whose
type has rank at most 1. Let R be a set of strongly normalising rewriting rules
for first-order terms written with the (uncurried) signature C'. Then the rewriting
system 0+ R (with the curried version of R) over A(C) is strongly normalizing.

We instantiate R as (6) 4+ (2) + (7).

Proposition 6.4.13 The system (8) + () + (v), considered as a first-order
rewriting system, is strongly normalizing.

PrOOF. We use a technique inspired from exercise 2.2.23. We call ® the set

of first-order terms built over the uncurried signature C' = {Q,n, casex | n €
w, X Cgp wh. We define a subset of U defined as the least set closed under the
following rules, where F' € U stands for Vn (F(n) | = F(n) € ¥):

1. seVifs=0Qn, orx,
.ocase s [FleWifs=Q,n, or x and if I e W,
3. case (case s [F])[G] € Vif G € ¥ and if case s [H] € U,

where H is as in rule (7).
We claim that for all s and F, if s € ® and G € U, then case s [G] € V. We
prove this by induction on the size of s only:

o If s =0Q,n, or x, then case s [G] € U by (2).

o If s = case t [F], then we have to prove case t [H] € W, which holds by
induction, provided we prove first H € W. But this holds by induction too,
since H(n) = case F'(n) [G].

The claim a fortiori implies that U is closed under case _[ ], hence ¥ = &. The
interest of the presentation of ® as W is that we can prove strong normalisation
of s by induction on the proof of s € WU, as follows:

(1) Then s is in normal form.

!This theorem is actually proved in [BTG91] for the polymorphic A-calculus.
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Then we know by induction that F(n) is strongly normalizing whenever
F(n) is defined, and we conclude by noticing that a reduct of s is either
case s [F'] (where F' pointwise reduces to F'), or 2, or ¢, where ¢ is a reduct
of F(n) for some n.

We know by induction that ¢ is pointwise strongly normalizing, and that
case s [H] is strongly normalizing. In particular, s is strongly normalizing,
and, by the definition of H, F' is pointwise strongly normalizing. Therefore
an infinite reduction from case (case s [F]) [G] can only be of the form

case (case s [F]) [G] = case (case s' [F']) [G'] — case s’ [H']

where H' is defined from F’ and G’ as H is defined from F and G. It
follows that case s’ [H'] is a reduct of case s [H], and is therefore strongly
normalizing. O

Exercise 6.4.14 * Prove directly that 36y is strongly normalizing, by adapting the
proof of theorem 3.5.20. Hint: prove by contradiction that the set of 36y strongly
normalisable terms is closed under case [|, exploiting the strong normalisation of 3
alone, and proposition 6.4.13: the two kinds of reduction “do not miz”.

To establish that R € T, we define a subset = of A(C') (with C' as above),
within which all the reductions which interest us take place. The syntax of raw
terms of = is defined as follows:

T = A\2.B| (M.T)S (length(S) = length(Z))
B :=Q|n| case A [F] (n € w)
Au=aly--T,| Bl (AZ.B)S (length(S) = length())
F:w—B (dom(F') finite) .

We define the following multiple version 5 of B-reduction:

—

(3) (\E.T)S = T[5/7).

The following properties are easily checked:

e The set = is stable under the reductions 5, ~, and d.

o The 55(27 normal form of a term of = is a 36Qy-normal form, and belongs to

T.

Hence R € T'. The fact that Po (Cj) is well-defined is a consequence of the
following property, which is easy to check: if S — 5" and if S < T, then T'— T,
where — is 36Q7 reduction. It follows from the claim that {S o (T)|S<PT <
G} is directed.
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We now show that the monoid laws hold. We examine associativity first. By

definition, (S o (Ty---T,)) o (T7) is the normal form of
(A2 .(AZ.S)Ty - T,)T"
while S o (Ty o (T)-+- T, o (1)) is the normal form of
(AZ.S) (A" TO)T") - - (M. T,)T")

and these two terms are 3 equal to (AZ.S)(Ty[T"/2"] - T,[T"/"]). Hence asso-
ciativity holds for finite trees, which implies the associativity for infinite trees by
continuity.

As for the identity laws, consider, say, S o id. We construct by induction
on S a finite subtree ids < id such that S o ids = S. We only examine the
essential case S = case :L'Zf [F]. We choose idg (least) such that idy < idg for
cach T' € T and such that the i-th component of idg has the form case _ [G] with
dom(F) C dom(G) (and of course G(n) = n whenever G(n) |). One reasons
similarly for the other identity law.

The product structure is trivial by construction, since the morphisms of the
category are vectors: products of objects and pairing of arrows are their concate-
nations, while projection morphisms are defined with the help of the morphisms
Tz.. Finally, the exponent structure is also obvious. We set

G (rm) =0 =70 —=T7,)
and use multiple abstraction to define currying.

Theorem 6.4.15 The category BT pyp is a standard model of PCF, in which
all compact elements of the interpretations of all types are definable (by terms

without Y ).

PROOF HINT. We have already sketched the proof that BT pp is a CCC. The
homsets are obviously cpo’s, and it is easy to check that BT p .y is a cpo-enriched
CCC. The only closed trees of basic type are the trees n and €. The PCF constants
are given their obvious interpretation, e.g. [succ] = Ax.case x [succ]|, where the
second occurrence of succ is the usual successor function on w. The fact that
all compact elements are definable is tedious, but easy, to verify, with arguments
similar to the ones we have used to justify the identity laws. For example, the

tree case x [F] where F/(1) =4 and F(3) = 1 is defined by

if pred x then 4 else (if pred(pred(pred x)) then 1 else Q).



162 CHAPTER 6. THE LANGUAGE PCF

We have thus obtained a standard model whose compact elements are all de-
finable. What we lack is extensionality. By extensional collapse (cf. exercise
4.5.6), we can obtain a category [BTpqp] with enough points. It remains to
see whether this category is cpo-enriched. It turns out that it has enough limits
to make it possible to interpret ¥ and the (Y')-rule, and thus to obtain a fully
abstract model of PCF because the category [BTp | inherits from BT p the
property that all its “compact” elements are definable (see exercises 6.4.16 and
6.4.17). However [BTpp] is (a priori) not the unique order-extensional model
of PCF (cf. exercise 6.4.7). To obtain the latter, we go through a slightly more
involved construction. We build a logical-like collapse relation over compact PCF
Bohm trees, and we then perform an ideal completion of the quotient. This guar-
antees by construction that the resulting category [BTpqp]™ is cpo-enriched.
However there is still a subtle point in showing that extensionality is preserved
by the completion. For this, we have to resort to finite projections (cf. section
5.2). We give more details in exercises 6.4.18 and 6.4.19.

Exercise 6.4.16 Let C be a cpo-enriched CCC, and let [C] be its extensional collapse
(cf. exercise 4.5.6), whose homsets are ordered pointwise. (1) Show that [C] is rational
(in the terminology of [AJMY95]), i.e. satisfies the following properties: (1) all homsets
have a L; (2) for any A, B and any f: A X B — A, the sequence {f"},<, defined
by f© = L and f*' = fo (id, f*) has a lub; (3) those lub’s are preserved by left
and right composition. (2) Show that if C is a standard model of PcF, then [C] is an
order-extensional model of PcF.

Exercise 6.4.17 Show that [BT pg] is a fully abstract model of Pcr. Hints: use
exercise 6.4.16, and adapt the proof of proposition 6.4.6 to the rational case.

Exercise 6.4.18 let C be a cpo-enriched CCC whose homsets are all algebraic, and
which satisfies:

1. Compact morphisms are closed under composition, currying, and uncurrying.

2. For any compact f there exists a compact morphism idy < f such that foid; =
idf ] f = f

3. For any type o, interpreted by D7, there exists a sequence of compact morphisms
YD . C[D?, D] such that \V VP = id and (for all o, T) PP = [ANz.g(f(h(2))]e
()7 o))

4. Moreover, at base types, {vP" o h | h: 1 — D"} is finite, for all n.

Define a logical-like relation R on compact morphisms (hence such that R° C
K(D?), where D’ is the interpretation of o and where A = C[1, A]), by setting

R™ ={(d,d) | d e K(D5)}

and by extending R to all types as in definition 4.5.1. Define a category [C]™ whose
objects are the types and whose homsels are the ideal completions of the sets of R™
equivalence classes (in the terminology of definition 4.5.1), ordered pointwise. Show
that [C]* is an order-extensional cpo-enriched CCC, and that there is a functor from



6.5. TOWARDS SEQUENTIALITY 163

C to [C]>® which preserves the cartesian closed structure. Show that the functor maps
compact morphisms surjectively onto compact morphisms. Hint: Show that [v,] has a
finite image (cf. proof of proposition 5.2.4), and exploit the fact that for any compact
f there exists n such that v, o f = f, by (2) and (3).

Exercise 6.4.19 Show that BT p . satisfies the conditions stated in evercise 6.4.18,
and that [BTpp]™ is the unique fully abstract model of exercise 6.4.7.

Remark 6.4.20 What we have done to construct the fully abstract model can
be summarised as: “complete, then quotient (the base), and finally complete”.
Originally, Milner had not gone through the first of these steps. An advantage
of the presentation chosen here is that: (1) it is reasonable (and simpler than
Milner’s original construction) to stop at the second stage (exercise 6.4.17); (2)
it singles out some general conditions to obtain an extensional least fixpoint model
out of least fixpoint model.

The category BT p is a full subcategory of two categories of games, con-
structed recently by Hyland and Ong, and by Abramsky, Jagadeesan, and Malaca-
ria [HO94, AJM95]. The striking point about these categories of games is that
their construction does not refer to the syntax.

It is presently unknown whether the fully abstract model of PCF can be
effectively presented, i.e. whether its elements can be recursively enumerated. A
related open problem is whether the observational equivalence is decidable for
Finitary PCF. A positive answer for this problem would follow from a positive
answer to the definability problem for Finitary PcF (cf. section 4.5).

Exercise 6.4.21 Using Statman’s 1-section theorem 4.5.9, show that for any simply
typed A-terms M, N, considered as PCF terms, M =,55 N iff M =g, N. Hint: proceed
as in the proof of Friedman’s theorem via the 1-section theorem.

6.5 Towards Sequentiality

We have already pointed out that A-calculus is sequential (theorem 2.4.3). In
section 4.5, we have exhibited an example of an inherently parallel function which
is not definable in a (finitary version of) PCF. In this section, we give further
evidence of the sequential nature of PCF. We define sequential functions in a
restricted setting, which will be later extended in chapter 14. We show that
the compact definable first-order functions of the continuous model of PCF are
exactly the (compact) first-order sequential functions.

Definition 6.5.1 (sequential function (Vuillemin)) Let D, Dy,..., D, be flat
cpo’s, and let f : Dy x -+ x D, — D be monotonic (hence continuous). Let
= (21,...,2,) € Dy x -+ x Dy, and suppose that f(x) = L. We say that f is
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sequential at x if either f(z) = L for all z > x, or there exists 1 such that x; = L
and

Vy=(y1,--sun) (y>2 and fly) # L) =y # L.

We say then that v s a sequentiality index for f at x.

The above definition goes back to [Vui74]. The following easy proposition
offers an alternative definition of sequential functions over flat cpo’s.

Proposition 6.5.2 Let D = X, be a flat cpo. The sets of sequential functions
from products of flat domains to D are alternatively defined as follows, by induc-
tion on their arity n:

Arity 11 Any monotonic function f: D — D is sequential.

Arityn > 2: Givenn, 1 <n, X Cw, and a set
{fx:Dl X "'Di—l XDi+1"' XDn—>D|$€X}
then the following function f is sequential:

flay, oo oyeimr, Ly, o oyxy) = L
Flar, ooy mim, @ gty ooy @) = fol@1y oo Timt, Tigy e e ey T

Moreover, the compact sequential functions are exactly the functions obtained as
above, with X finite at each induction step.

PRrROOF. In both directions, the proof goes by induction on the arity. The two
parts of the statement are proved together. If f is sequential, then we pick a
sequentiality index ¢ at 1, and we define the f.’s by the second equation in
the statement. They are clearly sequential, hence induction applies to them.
If f is compact, X cannot be infinite, as otherwise f would be the lub of an
infinite sequence of functions obtained by cutting down X to its finite subsets.
Conversely, let f constructed as in the statement and x such that f(z) = L and
f(z) # L for some z > x. There are two cases:

x; = L : Then 7 is a sequentiality index at .

r; =7 # L : Then 7 € X and by induction f; has a sequentiality index at

(T1y.ey @ic1, Tip1,. .-, &), which is a sequentiality index of f at x.
If the X’s are all finite, then the description of f is finite, from which compactness
follows easily. a

Exercise 6.5.3 Show that the C-logical relations, where C' is the set of all the constants
of PcF(including Y ), are exactly the Sieber sequential relations of definition 4.5.16.
Hint: show that at each type o, the set of invariant elements of a Sieber sequential
relation forms an inclusive predicate.
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Hence (compact) sequential functions on flat domains can be described by
sequential “programs”, which can actually be written as PCF terms, as the fol-
lowing proposition shows.

Theorem 6.5.4 For a compact first-order function [ of the continuous model of
PcF (and more generally for a function from a product of flat domains to a flat
domain), the following properties are equivalent:

1. f is sequential.

2. f is definable in the following restriction A(C") of PCF (with Q of base type):

C"={Q,n,tt, [f, pred, zero?,if then else }.

3. f is definable in PCF.

4. [ is invariant under all k + 1-ary relations Sgi1 (k > 1) defined at ground
type by

(X1, 1) € Sepn & (Fi<k zj=1L)or(v1=...=ap #L1)).

These relations are special cases of Sieber sequential relations, cf. definition
4.5.16. More precisely: Spy = Sfl-lj.l..,k},{l,...,k-l—l}'

PROOF. (1) = (2) It is easy to check by induction on terms that the functions
defined by the restricted syntax are monotonic. It is also easy to see that the re-
stricted syntax allows to encode all compact sequential functions, as characterised
in proposition 6.5.2 (cf. proof of theorem 6.4.15). Hence the interpretation func-
tion is a surjection from the restricted syntax to the set of compact first-order
sequential functions.

(2) = (3) Obvious by inclusion.
(3) = (4) This follows from lemma 4.5.3 and from exercise 6.5.3.

(4) = (1) Suppose that f is not sequential. Then there exists @ = (xy,...,z,)
such that:

fl)=1
J={j<n|a;=1}#10
Vied Jy;= s osyn) (VigJ yy =) and yj; = L and fy;) # L) .

Without loss of generality, we can assume that J = {1,...,k} for some k > 1
(and < n). We claim that (yi1, ..., Yk, ¥;) € Skq1 for all ¢ < n. This follows from
the following easy case analysis.

1€ J: then yq =... =y = ;.
1€ J: then y; = L.
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Hence, by invariance: (f(y1),..., f(yx), f(2)) € Skt1, which contradicts the def-
inition of Si41, since we have assumed f(y;) # L forall j <k and f(z)= 1. O

We don’t know how to extend this correspondence to higher orders. Both the
model of sequential algorithms and the strongly stable model, which is built in
chapter 14 and section 13.3, respectively, contain non PCF-definable functionals
such as the functionals presented in exercises 4.5.18 and 4.5.19.

Exercise 6.5.5 Show that every PcF definable first-order function in a standard model
of Pcr is sequential. Hint: given a closed term M, call M, the term obtained by
replacing Y by Af.f7Q, and let P, be the normal form of M,,. Show that the P,’s form
a directed set, and exploit this to show that they all contribute to a single sequential
Sfunction defined as in proposition 6.5.2.



Chapter 7

Domain Equations

This chapter presents general techniques for the solution of domain equations
and the representation of domains and functors over a universal domain. Given
a category of domains C we build the related category C* (cf. chapter 3) that
has the same objects as C and injection-projection pairs as morphisms (section
7.1). It turns out that this is a suitable framework for the solution of domain
equations. The technique is applied in section 7.2 in order to solve a predicate
equation. The solution of the predicate equation is used in proving an adequacy
theorem for a simple declarative language with dynamic binding. The category
of injection-projection pairs is also a suitable framework for the construction of
a universal homogeneous object (section 7.3). The latter is a domain in which
every other domain (not exceeding a certain size) can be embedded. Once a
universal object U is built, it is possible to represent the collection of domains
as the domain FP(U) of finitary projections over U, and functors as continuous
functions over FP(U). In this way, one obtains a poset-theoretical framework
for the solution of domain equations that is more manageable than the general
categorical one (section 7.4).

A third approach to the solution of domain equations consists in working with
concrete representations of domains like information systems, event structures,
or concrete data structures (introduced in definitions 10.2.11, 12.3.3 and 14.1.1,
respectively). At this level, domain approximation can be modeled by means of
inclusions relating the representing structures, and domain equations can be then
solved as ordinary fixpoint equations. As in the finitary projections approach the
solutions obtained are exact solutions (F (D) = D, and not merely F(D) = D).
This was first remarked by Berry in the framework of concrete data structures.
We do not detail this approach here (a good reference is [Win93][Chapterl2]).
See however exercises 10.2.14 and 14.1.13.

167
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7.1 Domain Equations

One of the earliest problems in denotational semantics was that of building a
model of the untyped A@n-calculus. This boils down to the problem of finding
a non-trivial domain D isomorphic to its functional space D — D (cf. chapter
3). Following work by Wand, Smyth and Plotkin [Wan79, SP82], we present
a generalization of the technique proposed by Scott [Sco72] for the solution of
domain equations.

An w-chain is a sequence {B,,, [, }ne, such that f, : B, — B,1; for all n. We
write f,, ., = fin—10---0f, for m > n. The general categorical definition of colimit
(cf. section B.2) specializes to w-chains as follows. A cocone {B, g, }ne. of the
w-chain {B,,, [, }hew 1s given by an object B, and a sequence {g, : B, = Bl}.c.
satisfying ¢,41 0 f, = g, for all n. A cocone {B, ¢, }ne. is a colimit if it is an
initial object in the category of cocones, that is if for any other cocone {C, h, },ew
there exists a unique morphism k& : B — (' such that ko g, = h, for all n.

Let T': K — K be an endo-functor. We outline some rather general results
that guarantee the existence of an initial solution for the equation TX = X. It
will be shown next that these results can be usefully applied to the solution of
domain equations.

Definition 7.1.1 (T-algebra) Let T : K — K be an endo-functor. A T-algebra
is @ morphism o : TA — A. T-algebras form a category. If o : TA — A

and 3 : TB — B are T-algebras then a morphism from « to  is a morphism
f:A— B such that foa=030Tf.1

Lemma 7.1.2 Fvery initial T-algebra is an isomorphism.

PRrROOF. Let o : TA — A be initial. Then T'ov : TT A — T A is also a T-algebra
and by initiality there is 7 : A — T'A such that:

ioa=TaoTi=T(ao1). (7.1)

We observe that « is a morphism (of T-algebras) from T'a to o. By composition
and initiality we get oo o1 = 1d. By the equation 7.1 above we derive:

T(aoi)=T(id)=id=100c .
So 1 is the inverse of a. O

The following proposition will appear natural if one thinks of categories as cpo’s
and of functors as continuous functions.

LA stronger notion of T-algebra is given in definition B.8.3 in the case T is the functor
component of a monad.
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Proposition 7.1.3 Let C be a category with initial object and w-colimits and
T : C — C be a functor that preserves w-colimits. Then there is an initial
T-algebra.

PrOOF. Let 0 be the initial object. Consider the uniquely determined mor-
phism z : 0 — T0. By iterating 7" on this diagram we get an w-diagram
D = {T%0,T"2};c.. By assumption there is an w-colimit of D, say C' = {A, f:}ic.,
satisfying f; = fiy1 0 Tz, for all 1.

Now consider TC = {TA, T f;}i<,. By assumption T'C is an w-colimit of
TD = {TT0,TT'z};c,. Since we can restrict C' to a cocone of TD we have
determined a unique morphism h : TC — C.

Moreover, we want to prove that the T-algebra h : TA — A is initial. This
goes in three steps:

(1) Observe that any T-algebra, 3 : TB — B, gives rise to a cocone {B, g%},
where:

G =BoTBoTTBo--- 0T '30T'25 i<w, 25:0—B.

It is enough to check that 95-1 0Tz = gP, which follows from 30 Tz50z = 5.

(2) Any morphism of T-algebras v : o — 3, where a : TA" - A" and §: TB —
B, induces a morphism between the related cocones over D, as defined in (1).
Suppose o Tu =wuoa. Then:

, . :
uog! =wuoaoTao--oT laoTizy

:ﬁoTuoTozo---oTi_loonizA/

=poTBo---0T 'BoTizp
=gP .

Hence there is at most one T-algebra morphism u : h — 3.

(3) To prove existence we relate morphisms in Cocone{T"0,T"z},., to mor-
phisms of T-algebras. Given h : TA — A,  : T'B — B there is a uniquely
determined morphism [ : A — B on the induced cocones over D). We observe
that 7'l is a morphism from {T'A, T f;}ic., to {T'B,TgP};<., of cocones over T'D.
Moreover, /3 is a morphism from {T'B,T¢P} <., to {B, gP}i>1 of cocones over T'D
as 95-1 = B0 TgP. By initiality of TC on TD it follows that loh = 30Tl. O

When solving domain equations, we may wish to start the construction of the
w-diagram with some morphism z : X — TX, where X is not necessarily an
initial object (cf. definition 3.1.6). In the poset case this corresponds to looking
for the least fixed point of a function f : D — D, above a given point d such
that d < f(d). If D is an w-dcpo, and f is w-continuous then we can compute
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the solution as V/, ., f"(d). This is the least element of the set {e € D | f(e) <
e and d < e}.

We provide a categorical generalization of this fact. Suppose that the cate-
gory C and the functor F' satisfy the conditions in proposition 7.1.3. Given a
morphism z : X — T'X we can build an w-diagram D = {T"X,T"z};.,. Using
the hypotheses we can build its colimit {A, f;}i<, and a morphism h : TA — A.

The problem is now to determine in which framework A is initial. In first
approximation it is natural to consider T-algebras 3 : T'B — B together with a
morphism zg : X — B (as B has to be “bigger” than X). If we mimic step (1)
in the proof of proposition 7.1.3, that builds a cocone out of a T-algebra, we see
that we need the following property:

zp=B0Tzgoz (7.2)

Generalizing step (2) presents a new difficulty. It appears that a T-algebra mor-
phism [ : 3 — +, where 3: TB — B, and v : T'C' — (', should also satisfy:

lozg = z¢ (7.3)

The following categorical formalization shows that this is just an instance of the
problem we have already solved, but with respect to a related category C 1 X,
and a related functor 7.

Definition 7.1.4 Given a category C and an object X € C, we define the slice
category C 1 X as follows (there is a related slice category C | X which is
introduced in example B.1.5)

CHX={/:X=B|BeC}  (CtX)f.gl={h|hof=g}.

Also given a functor T : C — C, and a morphism z : X — T'X we define a new
functor T, : C1 X — C7T X as follows:

T.(f)=Tfoz T.(h)=Th.

Proposition 7.1.5 Let C be a category with initial object and w-colimits and
T : C — C be a functor that preserves w-colimits. The category C T X has
inttial object and w-colimits, moreover given a morphism z : X — TX, the
functor T, preserves w-colimits.

PROOF HINT. The commutation conditions displayed in equations 7.2 and 7.3
arise as a consequence of the abstract definitions. We show that there is a mor-
phism A : T A — A which is the initial T.-algebra. O

Consider the functor =: C®? x C — C, defined in every CCC, that given
objects A, B returns the exponent A = B (with the standard extension to
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morphisms). We would like to find solutions to equations such as X = X = D,
or X = X = X. We recall from chapter 3 that there is no way we can look
at AX.X = D, or AX.X = X as (covariant) functors. We will introduce new
structures that allow us to see the problem as an instance of the one solved by
proposition 7.1.3. In the first place we present the notion of injection-projection
pair in an O-category [Wan79].

Definition 7.1.6 (O-category) A category C is called an O-category if (1) ev-
ery hom-set is an w-directed complete partial order, and (2) composition of mor-
phisms is a continuous operation with respect to the orders of the hom-sets.

Next we formulate some familiar notions (cf. chapter 3) in the framework of
O-categories.

Definition 7.1.7 (retraction, injection, projection) Let C be an O-category,
and let A, B € C.

(1) A retraction from A to B is a pair (i,7) such thati: A — B, j: B — A,
joi=r1ids (we write then A <« B).

(2) An injection-projection from A to B is a pair (i,7) which is a retraction as
above and such that i o j <idg (we write then AaB).

(3) A projection on A is a morphismp: A — A such that pop =p and p < idy.

Example 7.1.8 Cpo is an O-category, ordering the morphisms pointwise. We
note that in an injection-projection pair, injection and projection are strict (cf.

definition 1.4.17) functions.

Definition 7.1.9 Let C be an O-category. The category C* has the same objects
as C and injection-projection pairs as morphisms:

CPIA,B]={(i,j)]|i: A= B,j: B— A joi=idys,ioj <idg}.
Composition is given by (i,7)0 (¢',5') = (i 0, 5" 0 ), identities by (id,id).

Proposition 7.1.10 Let C be an O-category. Then:
(1) C% is a category in which all morphisms are monos.

(2) If C has a terminal object, if each hom-set C[A, B] has a least element 1 4 p,
and if composition is left-strict (i.e. f: A — A implies Ly gn o f = Lyan),
then C has an initial object.

PROOF. (1) Suppose: (i,7) 0 (i',7) = (i,7) 0 (¢",5"). That is (iod,j 0 j) =
(1014",7" 0 7). Since ¢ is a mono, i 0¢ = 704" implies i’ = . Therefore, by
proposition 3.1.3, j' = j".

(2) Let 1 be the terminal object in C. We show that 1 is initial in C*. Given
A € C, we first show (L4, 1L4,) € C?[1,A]. On one hand, 14,0 14 = id;
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since 1 is terminal, on the other hand 14 40145 = L4 4 < 1d4 since composition
is left strict. There are no other morphisms in C*[1, A] since L 4; is the unique
element of C[A, 1]. 0

We are now in a position to suggest what the category of injection-projection
pairs is good for. Given a functor F' : C? x C — C, we build a functor F'* :
Ci? x C? — C™ which coincides with ' on objects. In particular the exponent
functor is transformed into a functor which is covariant in both arguments. We
then observe that F'?(D, D) =2 D in C? implies F(D, D) = D in C.

In other words, we build a related structure, C?, and we consider a related
problem, F'?(D, D) = D, whose solutions can be used for the initial problem.
The advantage of the related problem is that we only have to deal with covariant
functors and therefore we are in a favorable position to apply proposition 7.1.3.
Towards this goal, it is natural to look for conditions on C that guarantee that
C* has w-colimits (we already know that under certain conditions it has an initial
object) as well as for conditions on I that guarantee that F'? is w-cocontinuous,
i.e. it preserves w-cochains (cf. section B.2).

Definition 7.1.11 (locally continuous) Let C be an O-category and F : C x
C — C be a functor (the generalization to several arqguments is immediate). We
say that F' is locally monotonic (continuous) if it is monotonic (continuous) w.r.t
the orders on the hom-sets.

Exercise 7.1.12 Verify that the product and exponent functors on Cpo are locally
continuous.

There is a standard technique to transform a covariant-contravariant mono-
tonic functor on C into a covariant functor on C*.

Definition 7.1.13 Given F : C? x C — C define F'? : C? x C? — C? as
follows:

Pie, ) = F(e,¢)

Fo((e,5),(05) = (F(,0), F(1,57) -

Exercise 7.1.14 Verify that F'P as defined above is a functor.

The following result points out that the w-colimit of {D,, (i,,Jn)}new in CP
can be derived from the w-limit of {D,, j, }new in C. One often refers to this
situation as limit-colimit coincidence.

Theorem 7.1.15 (limit-colimit coincidence) Let C be an O-category. If C
has wP-limits then C™ has w-colimits.
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PrROOF. Consider an w-chain {D,, f,}ne, in C where we denote with fF :
D,, — D, 4, the injection and with f~ : D,1; — D, the embedding.

Let {C, g, Yrew = limc{ Dy, f }new. We show that D,, can be made into a
cone for {D,, f },ewn, for all m. There is a natural way to go from D,, to D, via
the morphism h,, ,, : D,, = D,, which is defined as follows:

) ifm=n
b =% fro-of 1 ifm>n
o ft ifm<n.

It is enough to check that f. o A, 41 = Ay . Hence a unique cone morphism
gt : D, — C is determined such that g, o g& = hy, ., for all n. We note that
g, 0 gF =1id, since hy, ,, = id. And we observe:

+ a0 —at + 6 f— 0 + -
I O Gm = gm0 fh o fr 001 < Gmi1©Gmar -

Hence {g} 0 ¢, }rmew 1s a chain and we write k = V¢, ¢ 0 g,.. We claim that
(1) k = id, and (2) if {C,gn}new is a cocone of {D, f,},e, in C”* such that

Vimew 9 0 g, = id then the cocone is a colimit.

(1) It is enough to remark that k is a cone endomorphism over {C, g },,e. as:

gm ok =gn0NViewd 097) =m0 Vismgf 097)
=VismIm 095 097 =Vism himo g =g, -

(2) Let {B,ln}mew be another cocone. We define:

pr=\1llog,:C—-B p =\ ghol,:B—=C.

meEw meEw

It is easy to check that p: ' = B in C”. Moreover p is a morphism of cocones
between {C, ¢ }mew and {B,l,,}me,. Finally suppose ¢ is another morphism
with this property. Then:

(¢t,q7) =(q"o(V megm 0 G )s Vmew 9 0 9m) 0 47)
=(V mewq 09t 00, Nmewdh 09, 0q7)
( me m © gm7\/m€w g7-l7’_L © lT_)’L)

= (p*

po) .
We can extract from the previous proof the following useful information.
Proposition 7.1.16 Let C be an O-category, and let {D,,, [, }rew be an w-chain

in C, with a cocone {C, gntnew- Then {C, g tnew is a colimit iff \V,ew g 097 =
id.
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We now show how to build w®-limits in the category Cpo.
Proposition 7.1.17 The category Cpo has w-limits.

PrOOF. Consider an w®-chain in Cpo {D,, f,}.ew where f, : D,yy — D,. We
define:

D={a:w— |JD.|ean) € D, and f.(a(n+1))=a(n)}
new
with the pointwise ordering o <p #iff Vn € w(a(n) <p, B(n)). It is easy to
verify that this makes D into a cpo. Now {D, g, }new is a cone with g,(a) =
a(n). Suppose {F,h,}ne, is another cone. Then a continuous function £ :

{E,hi}new = D, gn tnew is completely determined by the equation k(e)(n) =
(gn 0 K)(€) = hn(e). O

Therefore, as an instance of theorem 7.1.15, we obtain:

COlimeoip{Dn7 fn}nEw = limeo{Dnv fn_}new :

This result is applied to bifinite domains in the following.
Proposition 7.1.18 The category Bif"? has w-colimits.

PROOF. Given an w-chain in Bif®” {Dy, futnew let {D,g,}ne. be its w-colimit
in Cpo™ which exists by proposition 7.1.17 and theorem 7.1.15. It remains to
verify that D is bifinite. Since D, is bifinite for any n € w, we have \;c; pn,; = td
where {p,.;}ier, is a directed set of finite projections over D,,. We compute:

id=V,eo(9 097) = Vaeulgl © (Vier, Pri) 0 97)
— \/nEw \/iEIn (g: © pn,i © g;)
= \/nEw,iEIn (g: O Pni© g;) :

We note that gt o p,; o g, is a finite projection and that the set {g} o p,; o
9, Ynewicr, is directed by proposition 5.2.3. O

We now turn to functors. The following result relates local continuity and
preservation of w-colimits.

Proposition 7.1.19 Let C be an O-category with w’?-limits. If ' : C? xC — C
is a locally continuous functor then F*7 : C x C? — C” preserves w-colimits.

PROOF. We have already observed that if /' is locally monotonic then F'™ is a
functor. Let {(D,, E,),(fn,gn)}new be an w-diagram in C® x C™ with colimit
{(D, E), (hy, kn) tneo built as in the previous theorem 7.1.15. To show that the



7.1. DOMAIN EQUATIONS 175

cocone {F"?(D, E), F**(h,, k,) }new is a colimit for {F?(D,, E,), F*(fu, ¢n) }new
it is enough to verify that (cf. proposition 7.1.16):

\/ Fh k+ OF(h+ k- ):ZdF(D,E) .

noYn ny''n
new

This is proven as follows:

Vioew F'(h,  kT) o F(hE k)

nY''n ny'o'n

= Voew F(RF o b kT ok)

F(\/nEw h: o hn 9 \/new k: o k )
F(idp,idp) = idp(p.p) -

O
To summarize the method, we suppose given:
o An O-category C such that the hom-sets have a least element, composition is
left strict, and C has (certain) w®-limits.
o A locally continuous functor £ : C?? x C — C.
We can apply the previous constructions and build:
o The category C" which has an initial object and w-colimits.
e The functor F': C? x C — C" which preserves w-colimits.

Therefore we find an initial solution for F?(X,X) = X in C?. The initial
solution also gives a solution for the equation FI(X, X)= X in C.

Exercise 7.1.20 Show the existence of a non-trivial domain D such that D = Dx D =
D = D. Hint: consider the system D=2 D = F and E=2 E x F.

Exercise 7.1.21 Let ()1 be the lifting functor (see definitions 1.4.16 and 8.1.5). Show
that the equations D = D = (D)1 and D = (D) = (D)1 have a non-trivial initial
solution in Cpo™.

Exercise 7.1.22 Faplain how to build two non-isomorphic, non-trivial solutions of the
equation D = D = D. Hint: one can start the construction with a cpo which is not a
lattice.

Combining theorem 7.1.15 and proposition 7.1.3, we get the following so-
called minimal invariant property, which gives a powerful tool for reasoning in
recursively defined domains [Pit95].

Proposition 7.1.23 (minimal invariant) Let C be an O-category with a ter-
minal object and w°P-limits, and such that each hom-set has a least element,
and composition is left-strict. Let F' : C? — C be locally continuous. Let
i F(C) — C be an order-isomorphism constructed as indicated in the proof of
proposition 7.1.53. We define 6 : C[C,C] — C[C,C] as follows:

5(f)=io F(f)oi™

Then i is a minimal invariant, by which is meant that the function § is continuous
and has id as least fixed point.
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PRrOOF. The statement follows from proposition 7.1.16 and from the following
claim:

Vn>0 6"(L)=gfog,

where {C, g, }new is constructed as in the proof of theorem 7.1.15. The base case
follows from left-strictness of composition. The induction case follows from the
fact that (z,i7!) is an iso from {F(C), hy}rew t0 {C) gni1 brew, with AT = F(g7)
and h, = F(gF). O

In the cpo case, we have seen that least fixed points are actually least pre-
fixpoints (proposition 1.1.7). The following exercise gives a version of this for a
contravariant functor [Pit95].

Exercise 7.1.24 (1) Under the assumptions of proposition 7.1.23, suppose that f :
A — F(B) and g : F(A) — B are given (think of the functor H : C” x C —
C°? x C defined by H(A, B) = (F(B), F(A))). Show that there exists a unique pair of
morphisms h: A — C and k : C — B such that:

Flkyof=itoh and goG(h)=koi

(2) Show that id is in fact the unique fizpoint of 6. (3) Prove a version of (1) and
(2) and of proposition 7.1.23 for a functor F': C°? x C — C. Hints: For uniqueness,
proceed as in the proof of theorem 7.1.15: take f = i7',g = 1. Consider again, as a
heuristics, an associated functor H' : C? x C — C°? x C.

We have seen (almost) a minimal invariant at work in proposition 3.2.7. We
shall use another one to prove an adequacy result in section 7.2.

We conclude this section with a version of Cantor’s theorem on spaces of
monotonic functions. Cantor’s theorem states that there is no surjection from
D to P(D) in the category of sets. It follows that the problem (D = D) <« D
has no non-trivial solution in this category (otherwise P(D) = (D = 2) « (D =
D) < D). This result can be generalized to the category of partially ordered sets
and monotonic morphisms (cf. [GD62]) (a posteriori, this provides a justification
for jumping directly from set-theoretic to continuous functions). In the following
O = {1, T} is the two points poset with L < T, and [D — E] denotes the poset
of monotonic morphisms, with D, F posets.

Proposition 7.1.25 Let P be a poset. There is no monotonic surjection e :
P —[[P— O] — O]

PROOF. First we build a monotonic surjection e; : [[P — O] — O] — [P* — O].
To this end we define:

f:P? = [P—=0] fey=\{T|xz<y}.
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We observe that f is monotonic and injective as:
fe<fz it Vy(x <y=2<y) iff z2<x.

Next we define e;(F') = F o f. We verify the surjectivity. Suppose d: P* — O,
let:
Hy:[P—-0]—-0 Hyh)=\/{dz | fx <h}.

H, is clearly monotonic. Surjectivity follows from the computation:

er(Ha)(2) = Hy(f2) = \{da | fa < fz} =\{da | 2 <2} =d= .

Suppose by contradiction that there is a monotonic surjection ¢ : P — [[P —
O] — O]. By composition with e¢; we derive the existence of a surjection s : P —
[P? — O]. We apply a diagonalization trick defining:

e,d : PP =50 c(z)=s(z)(z) d(z)= \/{c(y) |z <y}

where L = T and T = L. Note that ¢ is monotonic. Let w be such that
¢ = s(w). We claim that there is a y > w such that ¢(y) = T. If ¢(w) = T take
w. Otherwise, if ¢(w) = L then s(w)(w) = T, that is ¢(w) = T. Hence¢(y) =T
for some y > w.

Suppose then ¢(y) = T. We derive a contradiction as follows:

e s(y)(y) = L by definition of c.
e s(y)(y) = T because:

cly)=T =dy) =T by definition of ¢
= since ¢ = s(w)
by left monotonicity of s and y > w .

a

Corollary 7.1.26 If [P — P| < P in the category of posets and monotonic
morphisms then §P = 1.

PROOF. Since the empty poset is not a solution suppose §P > 2. If all elements in
P are incomparable then Cantor’s theorem applies. Otherwise, let q < x5 € P.

Then the pair (1,0 — P,j: P — O) defined by:

. ) a y=T ) )T <«x
Z(y)_{ r y=_L1 ](x)_{ L otherwise

shows O 4 P. We observe that D « D' and E < E' implies [D — K] « [D' — F].
By [P — O] « [P — P] 1 P we derive [[P — O] — O] « P, contradicting the
previous proposition 7.1.25. O
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nlo] - n
z[a] — o(z)[o]
(let @ bedyn M in N)[o] — N[o[M/z]]

Figure 7.1: Operational semantics of DYN

7.2 Predicate Equations *

In proving properties of programs, one is often faced with predicates. We have seen
their use in chapter 6, in particular for the proof of the adequacy theorem 6.3.6. If the
semantics of a language involves recursively defined domains, then proving properties of
programs may involve recursively defined predicates, and the existence of the solutions
to these predicate equations may be troublesome, just as we had troubles with con-
travariance in solving domain equations. We treat an example of Mulmuley [Mul89],
borrowing our techniques from Pitts [Pit95], to which we refer for a general treatment.
Our example consists in proving an adequacy theorem for a simple declarative language
DynN, based on dynamic binding, whose syntax is given by:

Ide
M

|y
n | Ide | let Ide bedyn M in M .

where n ranges over natural numbers and where z,y... range over a set Ide of identi-
fiers. The intended value of:

let 2 bedyn 3 in let y bedyn z in let 2 bedyn 5 in y

is 5, because in computing the value of y it is the last value of 2, namely 5, which is used.
In contrast, the A-term (Az.(Ay.(Az.y)5)z)3 evaluates to 3. We say that A-calculus is
static. In the static discipline, the declaration of z which is used when evaluating y is
the one which is immediately above y in the program text.

The operational semantics of DYN is described via rewriting rules on pairs (M, o),
written M[o], until eventually a constant n is reached. In the pairs M[o], M ranges
over the set Fxp of terms and o ranges over the set of syntactic environments which
are functions from Ide to Fxp. The rules are given in figure 7.1. These rules should be
contrasted with the rules for the environment machines described in section 8.3. In both
cases a natural implementation relies on a stack to pile up unevaluated expressions.
However, in dynamic binding we just save the code, whereas in static binding we
memorise the code with its environment (a closure).

A denotational semantics of this language can be given with the help of a semantic
domain D satisfying the equation D = Ide — (D — w). The meaning [M] of a term
M is as a partial function from D (ranged over by p) to w, defined in figure 7.2 (without
an explicit mention of the isomorphism 7 : D = Ide — (D — w)).
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[2](p) = n
[z](p) = p(x)(p) (p(z)(p) )
[let = bedyn M in N](p) [NT([plIM]/=])

Figure 7.2: Denotational semantics of DYN

These semantic equations look “the same” as the rules defining the operational
semantics. It requires however a non-trivial proof to show the following adequacy
property of the denotational semantics with respect to the operational semantics:

If M is a closed term of DyYN, then M[] —* n iff [M](L) = n,

where [] is the identity syntactic environment and L is the constant L function.
We first need to formulate adequacy for any term. We define a semantic mapping
from syntactic environments to semantic environments in the following way:

[o](z) = [o(=)] -
The general adequacy result that we want to prove is:
For any M and o, M[c] =" n iff [M]([c]) =n .
(=) We proceed by induction on the length of the derivation of M[o] to n:
e n: We have [n]([¢]) = n by the first semantic equation.
o u:
[2]([e]) = [o](x)(lo])
= [o(@)]([e])

= n by induction .
e let # bedyn M in N:

[let & bedyn M in N]([o]) = [N]([o][[M]/2]) = [N]([o[M/2]]) = n .

(<) The proof involves a predicate © C (D — w) X Ezp satisfying the following
mutually recursive specification:

O = {(f;M)|¥(p,0) eIl (f(p)1 or M[a] =" f(p))}
I {(p,0) € D x (Ide — Ezp) |Vz € Ide (p(z),0(z)) € O} .

The whole point of this section is to prove that © exists. Meanwhile, assuming its
existence, we end the proof of adequacy. We prove by induction on the size of M that

([M], M) € ©.
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e n: This case holds vacuously since we always have [n](p) = n and n[o] — n,
regardless of what p and o are.

e z: Let (p,o) € Il. In particular, (p(z),0(z)) € ©. By the specification of ©, we
have thus:

p(z)(p) T or o(x)[o] =" p(z)(p)

which by the definition of the two semantics can be rephrased as:
[21(p) T or zlo] =" [2](p) -

e let @ bedyn M in N: Let (p,o) € II. First, exploiting induction on M, we get
([M]p, Mo) € 11. The conclusion follows by applying induction to N.

We are now left with the proof of the existence of ©. We set:
H(E)=Ide —» (I — w) GE)=(F—w)x Ezxp .

We have H : Cpo” — Cpo. The ordering on H (L) is obtained as follows: £ — w
is isomorphic to £ — w, (cf. definitions 1.4.16 and 1.4.17), and given a domain D,
Ide — D’ is the product of copies of D' indexed over Ide, ordered pointwise. Remark
that {L} — w (and hence H({Ll})) has infinitely many elements, which makes the
initial solution of H(D) = D non-trivial.

We “extend” H to predicates as follows. For R C G(F), we define H(R) C
G(H(E)) as the set of pairs (f, M) such that:

Vo€ H(E), o€ e - Bap (Ve (p(e),o(2) € B) = (f(p) T or Mlo] —* f(p))
The predicate O is a fixpoint for the following function K : P(G(D)) — P(G(D)):
K(R)=A{(f,M) | (foi,M) e H(R)}

where ¢ : H(D) — D is the minimal invariant (cf. proposition 7.1.23).

The trouble is that, because H is contravariant in F, the function K is anti-
monotonic. The sequence {K"(0)},<, is a zigzag § C K(0) O K?(0)--- instead of
being an increasing sequence, and therefore we cannot build a fixpoint for K right
away. However, K gives rise to a continuous function:

L ((P(G(D)), 2) x (P(G(D)), C)) = ((P(G(D)), 2) x (P(G(D)), C))

defined by L(Sy,52) = (K (52), K(51)), which has a fixed point (Ry, R2) (cf. exercise
7.1.24). For reasons linked with the particular K we have at hand, we in fact have
Ry = R, as we shall prove now. It is enough to establish Ry C R, by the symmetric
specification of Ry and Rs.

We introduce more ingredients. Since H acts on relations as well as on objects and

morphisms, we are led to examine the relationships between morphisms and relations
more closely. Given f: EF — E', R C G(F) and R’ C G(E’), we write:

fiRoR &Y. M)ER (gof,M)ER.
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The following are easily established facts:
(R1) If f: R— R and f': R" — R" then f'o f: R— R".
(R2) id: R — R'if and only if R' C R.
(R3) If f: R— R/, then H(f): H(R') — H(R).
Moreover, we restrict our attention to predicates R satisfying the following properties.
(I1) Closure under directed lub’s: (Y6 € A (6, M) € R) = (VA, M) € R.
(I12) VM (L,M) € R.
(I3) Vnew ((Apn,M) € R< M[]] =" n).
We denote with I(£) (I for “inclusive”, cf. section 6.2) the collection of predicates
over G/(F) satisfying properties (I1) through (I3). Clearly, I(£) has a bottom element,
which is:
{(Apn, M) | M[] =" n} U{(L,M) | M € Exp} .

Moreover, H is compatible with (I1) through (I3).
(R4) H maps I(F) to I(H(LE)).

We only check that H(R) satisfies (13). If (Ap.n, M) € H(R), then since (L,z) € R

for all #, we have M[] —* n. The converse direction follows from the fact that M[] —=* n
implies M[o] —* n for any o.

From now on, we shall assume that all predicates satisfy (I1) through (I3). The
following further facts will be needed.
(R5) For any directed AC (K — L'), V6oe A Jd:R—-R)=VA:R— R.
(R6) L:R— R/ forany R,R'.
Fact (R5) is a consequence of (I1), by the continuity of the composition operation.
Properties (I12) and (I3) serve to establish (R6), as we show now. Let (d,M) € R'.
There are two cases. If d is strict, then do L = 1, and (do L, M) € R follows by (12).
If d = Ap.n, the conclusion follows by (I3). We now have all the needed material.

By property (R4), the function K restricts to a function from /(D) to I(D). Hence
we can take the solution (Ry, R2) in (/(D), D) x (I(D),<C). By (R2), by the minimal
invariant property of ¢, and by (R5), our goal can be reformulated as:

VYn>0 (Sn(J_):RQGRl.

The base case of our goal holds by (R6). By fixpoint induction (cf. section 6.2), we are
left to show:
f2R2—>R1:>(S(f)3R2—>R1

which by (R1) is proved as follows:

il Ry — H(Rl) (I((Rl) = Rz)
H(f): H(Ry) — H(R;) (by (R3))
i: H(Ry) — R, (K(Ry) = Ry) .

Remark 7.2.1 Our proof uses only the fact that (Ry, R3) is a fizpoint (in 1(D)), not
that this is the least one. So, in the end, we get not only that © exists, but also that it
is the “unique” solution of K(R) = R (cf. exercise 7.1.24).
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7.3 Universal Domains

We discuss a technique for the construction of a universal domain and we apply it
to the category of bifinite domains and continuous morphisms. In this section by
bifinite domain we intend the w-bifinite (or SFP domains) described in chapter
5. In the first place, we introduce the notion of algebroidal category (cf. [BH76])
which generalizes to categories the notion of algebraicity already considered for
domains.

Definition 7.3.1 (category of monos) A category K is called a category of
monos if every morphism of K is mono.

Example 7.3.2 Sets with injections form a category of monos.

Definition 7.3.3 (compact object) Let K be a category of monos. An object
A € K is compact if, for each w-chain {B,, f,}ne. with colimit {B,g,}new and
any h: A — B, there existsn and k, : A — B, such that h = g, 0k,. We denote
with K(K) the collection of compact objects.

Remark 7.3.4 We note that for any n there is at most one k,,, as K is a category
of monos and therefore g, ok, = g, o kl, = h implies k, = k. Moreover, if
gn 0k, = h then we can set k,.1 = fook, as g,y10 fook, =g, 0k, = h.

Definition 7.3.5 (algebroidal category) A category of monos K is algebroidal
(1)

(2) FEvery w-chain of compact objects has a colimit.

(3)

An algebroidal category is w-algebroidal if the collection of compact objects, K(K),

is countable up to isomorphism and so is the hom-set between any two compact
objects.

K has an initial object.

Fuvery object is the colimit of an w-chain of compact objects.

Remark 7.3.6 The categories of w-algebraic depo’s considered in this book are
w-algebroidal. The category of ordinals is a notable example of non w-algebroidal
category (non-limit ordinals cannot be enumerated up to isomorphism).

Exercise 7.3.7 Let S be the category of Scott domains (see definition 1.4.9). Show
that S is not an algebroidal category. How would you modify the definition in order to
include S among the algebroidal categories? Hint: A directed diagram in a category
C is a functor D : [ — C, where I is a directed set. Show that: (1) S" has colimits
of directed diagrams. (2) Fach object is the colimit of a directed diagram of compact
objects.
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Next we define the notion of universal object. In particular we will be interested
in universal, homogeneous objects, as they are determined up to isomorphism. In
this section we follow quite closely [DR93] (see also [GJ90]). More generally, the
terminology and the techniques used in this section are clearly indebted to model
theory.

Definition 7.3.8 Let U be an object in a category K of monos, and let K* be a
full subcategory of K. Then we say that:

(1) U is K*universal if VAe K*3f: A - U.
(2) U is K*-homogeneous if:

VAeK'Vf:A—-UVg: A—-U3Jh:U —-U(hog=f).
(3) U is K*-saturated if:
VAL BEK'Vf:A—-UVg:A—-B3k:B—-U(kog=f).

(4) K* has the amalgamation property if:

VA, B, B e K*Vf: A— BYf :A— B
1CeK3g: B—>C3¢:B - C(gof=4gof).

Remark 7.3.9 Definition 7.3.8 requires the existence of certain morphisms but
not their uniqueness.

Proposition 7.3.10 Let Bif™” be the category of w-bifinite domains and injection-
projection pairs. Bif'? is an w-algebroidal category and the collection of compact
objects has the amalgamation property.

PROOF. To check that Bif” is a category of monos with initial object it is enough
to verify that Bif has a terminal object, the hom-sets have a least element and
composition is left strict (cf. proposition 7.1.10).

Let D € Bif. By proposition 5.2.3, D is compact in Bif” iff the cardinality
of D is finite. Moreover, by definition of bifinite domain, each object in Bif”
is an w-colimit of compact objects. By proposition 7.1.18, each w-diagram of
(compact) objects in Bif"” has a colimit.

Next we verify that Bif" has the amalgamation property. Let us consider
three finite posets (B, <), (D1,<y), (D2, <) with morphisms h; : £ — D,
1= 1,2, in Bif'”. Without loss of generality we assume F = Di N Dy, then:

Ve, e BE(e<e Ml e<ie iff e<y€).
Now we define the amalgam as the set F' = FU(D;\F)U(D2\E) where f <p f’

iff
Elie{le}(fvf/EDiv fSZ f/) or
dec E(f<;e<; f')fori#j,0,5€{1,2}.
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It is easy to verify that <p is a partial order. We are left with the definition
of the morphisms k; : D; — F, 1 = 1,2. We take the inclusions for &

define: f feD
_ S
k()= { hy (f) otherwise .

+, and we

ky is defined symmetrically. It can be easily checked that k; is a morphism in

Bif”, and that ky 0 hy = ks 0 ho. O

Theorem 7.3.11 Let K be an w-algebroidal category of monos. The following
properties are equivalent:

(1) There is a K-universal, K(K)-homogeneous object (universal homogeneous

for short).
(2) There is a K(K)-saturated object.

(3) K(K) has the amalgamation property.
Moreover a K-universal, K(K)-homogeneous object is uniquely determined up to
isomorphism.

PROOF. The proof of this theorem is an immediate consequence of the following
lemmas. The main difficulty lies in the proof of (3) = (2) (see lemma 7.3.14). O

Lemma 7.3.12 Let K be an algebroidal category of monos and let U,V be K(K)-
saturated. Then:

VAe K(K)Vf: A= UVg: A= VIi:U—Viso(iof=g).

ProoF. Let {(Ui, fi)}icw and {(V},9;)}jew be w-diagrams of compact objects
whose colimits are {U,{; }ie,, and {V,l!};c, respectively. Given f: A — U and
g: A — V., by compactness of A we have

Afr v A= Uny (lng o fr, = f)  (by compactness of A)
Iy : Uny = V (pro © [, = g)  (by saturation)
3hg : Upy — Vo, (I, 0 b = ppy)  (by compactness) .

We show how to iterate this construction once more. By saturation dp,, : V,,, —
U (pn, 0 hi = lyy). By compactness 3h7 : V,,, — U, (I, o hi = p,, ). We proceed
inductively building V,..,U,,,... We may suppose ng < ny < ... We observe
ln, o hi 0 hy = pn, o b = [,,. It is then possible, using the A7, to see V as
(the object of) a cocone for {(U;, fi) }iew and U as (the object of) a cocone for
{(V;,9j)}jew, by which the existence of the isomorphisms & and k& which commute
with f and ¢ follows. a

Lemma 7.3.13 Let K be an algebroidal category of monos. The following prop-
erties hold:
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) For any object U the following are equivalent: (a) U is K-universal and
(K)-homogeneous. (b) U is K(K)-universal and K(K)-homogeneous. (¢) U is
(K

)-saturated.

(1
K
K
(2) A K-universal, K(K)-homogeneous object is determined up to isomorphism.

3) If there is a K-universal and K(K)-homogeneous object then K(K) has the

)
amalgamation property.

PROOF. (1) We prove the equivalence as follows:

(a) = (b) Immediate, by definition.

(b) = (¢) Let ABe K(K), f:A—=U,g:A— B. By K(K)-universality
d¢' : B — U. By K(K)-homogeneity 3h : U — U(hog og = f). So hog gives
saturation.

(¢) = (a) Since there is an initial object 0, U is K(K)-universal by saturation
applied to the (unique) morphisms f: 0 — U and g : 0 — A. U is also K(K)-
homogeneous by lemma 7.3.12. It remains to show that U is K-universal. Let
A € K and let {(A;, fi)}icw be an w-chain in K(K) whose colimit is A. Take
advantage of K(K)-saturation to build a cocone with object U for such w-chain.
Then there is a morphism from A to U.

(2) Apply lemma 7.3.12 with A = 0.

(3) Let AAB,B e K(K), f: A— B, f': A— B. By K(K)-universality
dh: B — U. By K(K)-saturation 3~ : B" — U(ho f = h’ o f'). Now consider
an w-chain in K(K) whose colimit is U and use the compactness of B and B’ to
factorize h and A’ along some element of the w-chain. O

In the next lemma we use (for the first time) the countability conditions that
distinguish an w-algebroidal category from an algebroidal one.

Lemma 7.3.14 Let K be an w-algebroidal category of monos. If K(K) has the
amalgamation property then it is possible to build o K(K)-saturated onbject.

PrOOF. We use the hypothesis that K is w-algebroidal to build an enumeration
up to isomorphism of the compact objects H, = {A;}ic. and an enumeration of
all quintuples M, = {(B;,C}, gi, hi, Ji) biew, where B;,C; € H,, gi,h; : B — C,,
and j; € w, such that each quintuple occurs infinitely often. We build an w-chain
{(Ui, f:) }iew such that U; € H, and the following properties hold, where we set
fm’ : U]‘ — Ui7 and fm = f,_10---0 fj:

(2) Given i consider the corresponding quintuple in the enumeration. If j = j; <

and U; = C; then

dk :U; — Uiyi(ko fj;0hi = fio fiiog) .
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A consequence of (1) is that, for all C' € H, and j sufficiently large, we can find
g : C — U;. We also note that if g,h : B — C with B,C' € H,, and C = Uj,
then (B, C, g, h,j) will appear infinitely often in the enumeration, so we can find

an ¢ such that (B,C,g,h,7) = (Bi,Ci, gi, hiy 3i) and (5 =)j; < 1.

Then we define U as the colimit of the w-chain {(U,, f) }new. While condition
(1) is natural, condition (2) may seem rather obscure. First observe that if we
just want to build a K(K)-universal object, that is satisfy condition (1), then it is
enough to set Uy = Ag and proceed inductively using the amalgamation property
on the (uniquely determined) morphisms f: 0 — U, and g : 0 — A,41. So, given
lemma 7.3.13, condition (2) has to do with the fact that we want U to be K(K)-
saturated. Let us see how this is used. Let B,C' € Hyandg: B - C . h: B — U.
By (1) and B € K(K) we have:

3¢ : C = U;,h": B—=Uj,h = fioh”).
where f; . : U; = U. Let g* = go ¢’. Choose 1 large enough so that:
.j <1 and (BvUjvg*vh*vj) = (Blvclvglvhlvjl) .

By (2), 3k : U; = Uyq (ko f;;0h* = fi0 fj;0g*). From this, saturation follows.
Finally we show how to build the w-chain {(U;, f;) }iew. Set Uy = Ay, the first

element in the enumeration H,. Next suppose to have built U; and consider A;4;.

As observed above there are f: 0 — U; and g : 0 — A;11. By amalgamation we

get, for some U/, two morphisms f': U; — U/ and ¢’ : Ajy1 — U/.

o Ifj =y <1and U; = C; then apply amalgamation to f" o f;; o h; and

f"o fjio0g;obtaining k : U] — U{, and k' : U] — U/ . It just remains to select

Uity isomorphic to U/, and in H,.

e Otherwise it is enough to choose an object Uiy in H, isomorphic to U/. The

morphism from A;11 to U4y 1s then immediately obtained by composition. O

Corollary 7.3.15 The category Bif*? has a universal homogeneous object.

PrOOF. We have shown in proposition 7.3.10 that Bif” is an w-algebroidal
category with the amalgamation property. Hence theorem 7.3.11 can be applied.

O
Figure 7.3 draws a rough correspondence between domain theoretical and
category theoretical notions.

7.4 Representation

We are interested in the problem of representing subdomains of a domain D
as certain functions over D). In particular we concentrate on retractions and
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inacpoD in Cpo™” in Cpo

L initial object terminal object
directed lub w-colimits wP-limits

monotonic  functor 7 functor I (not always)

continuous  w-cocontinuous locally continuous
algebraic algebroidal

Figure 7.3: Domain-theoretical versus category-theoretical notions

projections, the idea being that subdomains are represented by the image of
such morphisms. When working with continuous cpo’s, not every retraction (or
projection) corresponds to a domain (i.e. an w-algebraic cpo). For this reason,
one focuses on the collection of finitary retractions, which are by definition those
retractions whose image forms a domain.

The theory is simpler when dealing with (finitary) projections. Then it is not
difficult to show that the collection of finitary projections FP(D) over a bifinite
domain D is again a bifinite. In other words the collection of subdomains of a
bifinite domain can be given again a bifinite domain structure. Having found
a representation of domains, we address the problem of representing domain
constructors, e.g. product, exponent, sum, lifting. It turns out that the basic
domain constructors we have considered so far can be represented in a suitable
technical sense.

The collection Ret(D) of retractions on a cpo D, is the collection of fixpoints
of the functional Af.f o f, and the image r(D) of a retraction r on D, coincides
with the collection of its fixpoints. Hence general results on fixpoints can be
immediately applied. We will see that under suitable hypotheses Ret(D) and
r(D) enjoy certain algebraic properties.

Definition 7.4.1 Let D be an algebraic epo and v € Ret(D). We say that r is
finitary if (D) with the induced order is an algebraic cpo. We say that r is a
closure if 1d < r.

Proposition 7.4.2 Let D be a cpo. Then:
(1) If f: D — D is a continuous morphism then Fix(f)={d € D | f(d) = d}

s @ cpo.
(2) Ret(D)= Fix(Af:D — D.fof)isaepo.
(3) Ifr € Ret(D) then r(D) = Fix(r) is a cpo.
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Proposition 7.4.3 Let D be an algebraic cpo and r € Ret(D). Then K(r(D)),
the collection of compacts in r(D), can be characterized as follows:

K(r(D)) ={rd|de K(D) and d < rd} .

In particular, if p is a projection then K(p(D)) = p(D) N K(D), and if ¢ is a
closure then K(c¢(D)) = ¢(K(D)).

PROOF. Suppose ry € K(r(D)). Since D is algebraic ry = V{z € K(D) | z <
ry}. So:

ry =r(ry) = r(\/{:z; cK(D) |z <ry})= \/{T:L‘ | € K(D)and  <ry} .

Since ry € K(r(D)), we have 3z (ry = rz and z € K(D) and z < ry). This =
gives the desired representation of ry. Vice versa suppose d € K(D) and d < rd.
Let A C r(D) directed. Then:

d<rd<\/A = FyeArd<ry=y).

The statements concerning projections and closures are an immediate corollary
of this characterization of the compact elements. a

Proposition 7.4.4 If D is a bounded complete cpo and r € Ret(D) then r(D)
is bounded complete.

PRrROOF. Let X C r(D) and suppose y € r(D) is an upper bound for X. Then X
is bounded in D and therefore \V, X exists. We show V,py X = r(Vp X).

o Ve X(x <VpX)impliesVae € X(x =rz <r(VpX)). Sor(VpX) is an
upper bound.

e If y is an upper bound for X in r(D) then it is also an upper bound for X
in D, so \Vp X <y. This implies r(\Vp X) < ry = y. So r(Vp X) is the lub in
r(D). O

Let D be an (w-)algebraic cpo and r € Ret(D). Can we conclude that r(D)
is again an (w-)algebraic cpo? The answer is no. In general it can only be shown
that r(D) is a continuous cpo (see chapter 5).

Example 7.4.5 Let Q and R be the rational and real numbers, respectively. Let
D = Do U Dy where Dy = {[0,q] | ¢ € Q}, and D, = {[0,7]| r € RU{o0}},
ordered by inclusion. Consider the projection p defined by:

p([0,q]) = (0,40  p([0,r]) = [0,r].

The domain D is an w-algebraic complete total order with Dy as compact ele-
ments. On the other hand im(p) fails to be algebraic.
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For the collection Ret(D) things get even worse. For example it has been shown
by Ershov (see exercise 18.4.10 in [Bar84]) that the collection of retractions over
P(w) is not a continuous lattice, hence a fortiori not the image of a retraction.
This also shows that the collection of fixpoints of a continuous function does not
need to be a continuous cpo, as Ret(D) = Fix(Af.fo f).

We will consider retractions again in the context of stable domain theory
(section 12.4). For the time being we will concentrate on the simpler case of
finitary projections. Let D be a bifinite domain. The notion of finitary projection
over D provides an adequate representation of the idea of subdomain, moreover
the collection of finitary projections over D, FP(D), is again a bifinite domain.
This is a powerful result that has applications for instance to the interpretation of
higher-order calculi (see section 11.3). The following notion of normal subposet
is useful in studying projections.

Definition 7.4.6 (normal subposet) Let (P, <) be a poset. A subset N C P
is called a normal subposet if Vo € P (| )N N is directed. We denote with N(P)

the collection of normal subposets of P ordered by inclusion.

Theorem 7.4.7 Let D € Bif. Then:

(1) There is an isomorphism between the collection of normal subposets of the
compact elements and the finitary projections over D: N(K(D)) = FP(D).

(2) FP(D) is an w-algebraic complete lattice.

PrROOF. We remark that if p is a projection and x € D then

(} 2)np(D) = (} p(x)) N p(D) .

Moreover, if p is a finitary projection then K(p(D)) € N(K(D)). We use the
hypothesis that p(D) is algebraic to show Vo € D (] ) N K(p(D)) = (J p(z)) N
K(p(D)) that is directed.

We now proceed with the proof of statement (1) while leaving (2) as an

exercise. If p is a finitary projection then define N, = K(p(D)). This is a normal
subposet of K(D) by the remark above. Vice versa, if N € N(KX(D)) we define:

px(d) =V({(Ld)nN) .

This is well defined because (| d) N N is directed. These two functions define an
isomorphism between FP(D) and N(K(D)). O

Exercise 7.4.8 Show that if D is a Scott domain then FP(D)a(D — D). Hint: given
f:D — D consider Xy ={z € K(D) |z < fa} and define Ny = U*(Xy). The set Ny
corresponds to a finitary projection py,. Set 7 : (D — D) — (D — D) as 7(f) = pn,.
Note that this property fails for bifinite domains (cf. exercise 12.4.21).
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Let U be a universal domain for some relevant category of domains, say Bif.
Then every domain is isomorphic to the image of a finitary projection over U.
Furthermore, it can be shown that certain basic operators over domains can be
adequately represented as continuous functions over FP(U). As a fall-out, one
gets a technique to solve domain equations via the standard Kleene least-fixed
point theorem.

Observe that there is an injective function I'm from the poset FP(U) to the
category Bif'” (this is immediately extended to a functor):

Im=Xpe FP(U).pU) .

Let F: Bif"? x Bif? — Bif” be a binary functor. The representation problem
for I consists in finding a continuous function Ry : FP(U) x FP(U) — FP(U)

such that the following holds, modulo order-isomorphism:

F(p(U), q(U)) = Rr(p,q)(U) .
Proposition 7.4.9 Product and FExponent are representable.

PrROOF. In showing that Bif is a CCC (proposition 5.2.4), one uses the fact
that if p € FP(D) and ¢ € FP(D) then Ad, e).(p(d),q(¢)) € FP(D x E) and
Af(gofop) € FP(D — E). If U is a universal (homogeneous) domain for Bif'?

then we may assume the existence of the injection-projection pairs:
(A, ) (uy ), Au(m(u), ma(w) : (U xU) = U (1,5): (U —=U) = U .

It just remains to combine the two ideas to define the operators representing
product and exponential:

Ap, q)-Aup(mi(u)), g(ma(w)))  A(p,q).Au.i(qo j(u)op) .

For instance, in the case of the exponential, we compose A(p, ¢).Au.(gowop) :
FPUXFPU—>FPU_>UWith)\T.iOTOj. O

Remark 7.4.10 It is good lo keep in mind that Im is not an equivalence of
categories between FP(U) and Bif'", as FP(U) is just a poset category. This
point is important when one interprets second order types (see section 11.3).

Exercise 7.4.11 (1) Verify in detail that we can apply the fized point proposition 1.1.7
to the domain FP(U) in order to get initial solutions of domain equations in Bif?. (2)
Consider the representation problem for the operators of coalesced sum and lifting. (3)
Consider the representation problem in the case we replace (finitary) projections with
(finitary) retractions.

Finally, we point out that our results about the limit-colimit coincidence
(theorem 7.1.15) and the existence of a universal homogeneous object (theorem
7.3.11) can be also applied to categories of cpo’s and stable functions (cf. exercise

12.4.23).



Chapter 8

Values and Computations

When considering the A-calculus as the kernel of a programming language it is
natural to concentrate on weak reduction strategies, that is strategies where eval-
uation stops at A-abstractions. In presenting the semantic counterpart of these
calculi it is useful to emphasize the distinction between value and computation.
A first example coming from recursion theory relies on the notions of total and
partial morphism. In our jargon a total morphism when given a value always
returns a value whereas a partial morphism when given a value returns a possi-
bly infinite computation. This example suggests that the denotation of a partial
recursive algorithm is a morphism from values to computations, and that values
are particular kinds of computations.

In domain theory the divergent computation is represented by a bottom el-
ement, say L, that we add to the collection of values. This can be seen as
the motivation for the shift from sets to flat domains. More precisely, we have
considered three categories (cf. definition 1.4.17).

e The category Dcpo in which morphisms send values to values, say D — FE.
This category is adapted to a framework where every computation terminates.

o The category pDcpo which is equivalent to the one of cpo’s and strict func-
tions, and in which morphisms send values to computations, say D — (£) . This
category naturally models call-by-value evaluation where functions’ arguments are
evaluated before application.

o The category Cpo in which morphisms send computations to computations,
or (D) — (E)L. In the models of the untyped A-calculus that we have presented
the distinction value-computation can actually be hidden by regarding | as an
element with the same status of a value.

Another framework where the distinction between values and computations
is useful is that of fixpoint extensions of typed A-calculi. Consider for example a
simply typed A-calculus and its Curry-Howard correspondence with the minimal
propositional logic of implication (cf. chapter 4). Suppose that we want to
enrich the calculus with a fixed point combinator on terms, say Y, allowing for

191
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fully recursive definitions. Which type should we assign to Y7 One possibility
considered in chapter 6 is to introduce a family of combinators Y7 of type (o —
o) — o. Then the correspondence with the logic is blurred as Y7 (Ax : o.2) has
type o for any type/proposition o, i.e. every type is inhabited/provable. Another
possibility is to regard Y7 (Ax : 0.x) as a computation of a proof, that is to assign
to Y7 the type (¢(o) — ¢(0)) — ¢(o), where ¢(o) is the type representing the
computations over . Then, at the cost of a complication of the formal system,
we may keep a correspondence between propositions and a subset of types.

In these examples, we have roughly considered computations as values en-
riched with an element denoting the divergent computations. There are however
other possible notions of computations that arise in the study of programming
languages. For instance, if we wish to model non-determinism then a computa-
tion may consist of a collection of values representing the possible outcomes of a
program.

Which are then the common properties of these notions of computation? The
notion of monad that we describe in section 8.1 seems to provide a good gen-
eral framework. We present a general technique to produce a monad out of a
category of partial morphisms. In particular the familiar category of dcpo’s is
revisited in this perspective. In section 8.2 we introduce a call-by-value version
of the language PcCF studied in chapter 6 which reflects the properties of the
function space in a category of partial morphisms. By a variant of the technique
presented in theorem 6.3.6, we prove the adequacy of the semantic interpretation
with respect to the operational semantics. In section 8.3 we describe a class of
abstract machines, known as environment machines, for the mechanical evalua-
tion of weak A-calculi. In section 8.4 we consider the full abstraction problem
for the call-by-value A-calculus. We show that a canonical filter model is fully
abstract for the calculus enriched with a parallel join operator. In section 8.5 we
revisit the continuation based semantics introduced in section 1.6 from a monadic
viewpoint. We introduce a typed call-by-value A-calculus enriched with control
operators for the manipulation of the execution flow and study its Continuation
Passing Style (Cps for short) translation into a standard A-calculus. The typ-
ing of control operators allows to push from intuitionistic to classical logic the
Curry-Howard correspondence between typed A-calculi and propositional calculi.
In this respect CPS translations can be regarded as a way to extract an effective
content form a classical proof. We also discuss simple variants of environment
machines which can handle control operators.

8.1 Representing Computations as Monads

In this section, following [Mog89], we present the notion of computation-as-
monad. The monads of partial computations, continuations, and non-deterministic
computations will be our leading and motivating examples.
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Monads (or triples) are an important category-theoretical notion, we refer
to section B.8 for some basic constructions and to [BW85, MLT71] for a deeper
analysis. What is important here, is to state which are the basic computational
properties we wish to formalize. Suppose that C is our category of data types.
An endofunctor T': C — C defines how to go from a certain collection of values
to the computations over such values. A natural transformation n : idg — T
determines how a value can be seen as a computation. Another natural transfor-
mation pu : 7% — T explains how to flatten a computation of a computation to
a computation. These requirements plus certain natural commutation properties
are expressed by the following equations (cf. definition B.8.1):

paonra=paoIns=1drs  paopra=paoTs .

We say that a monad satisfies the mono requirement if n4 is a mono, for any
object A.

Example 8.1.1 We give three basic examples of monads with a computational
flavour in the category of sets. We leave to the reader the needed verifications
(these monads satisfy the mono requirement).

e Partial computations. Define (-), : Set — Set as:

(X)L = XU{Lx}, where Lx ¢ X
(f)e(2) :{f(z) fzeX where f: X =Y

1y  otherwise

){'feX
T

1Ly otherwise .

o Non-deterministic computations. Define P : Set — Set as:

P(X) =Prin(X) PN
nx(z) = {z} (ix(2)

a) = f(a), where f: X =Y

=Uz.

o Continuations. We suppose given a set of results, R, containing at least two
elements. In order to understand the basic trick behind the notion of computa-
tion, one should think of the double negation interpretation of classical logic into

intuitionistic logic [TvD88]. Let =X = (X — R), and define C : Set — Set as:

C(X) =--X

C(f) =Xxge€-=XAvée-Yyglholf), where f: X =Y
nx(xz) =M e-X.h(x)

ux(H) =Xh e -X.H(Ag € ~—X.g(h)) .
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First, let us concentrate on the monads of continuations and non-deterministic
computations. We introduce two variants of the imperative language studied in
chapter 1, and analyse their interpretations in suitable monads (for the sake of
simplicity we leave out recursion and expressions).

Lo su=a|skip]|s;s|stop
Ly su=a|skip|s;s|s+s.

In Lo we have introduced a statement stop whose intuitive effect is that of ter-
minating immediately the execution of a program and return the current state.
As already discussed in section 1.6 the “direct” semantics used in section 1.5 is
not adequate to interpret commands which alter in some global way the control
flow. For instance we should have [stop; s] = [stop], for any s, which is hopeless
if we insist in stating [stop;s] = [s] o [stop]. The notion of continuation was
introduced in section 1.6 precisely to model operators that explicitly manipulate
the control flow.

Let ¥ be the collection of states. It is natural to take ¥ as the collection of
results. Then the monad of continuations is given by:

CE)y=Y—= (X —=1%).

The semantics of a program is a morphism from ¥ to C'(X¥). The interpretation

for L is defined as follows: !

[skip] = ns [e] =nsoa, fora:¥ — X%
[s1;82] = p 0 C([s2]) o [s1] [stop] = Aa.Af.o .

Exercise 8.1.2 Verify that [a;b] = Ao Af.f(b(ao)), and [stop; s] = [stop].

In Ly we have introduced an operator + for the non-deterministic composition
of two statements. The intuition is that the statement s, 45, can choose to behave
as either s or s,. It is then natural to consider the interpretation of a statement
as a morphism from ¥ to Ps;,(X), where ¥ is the collection of states. Hence,
using the monad of non-deterministic computations we define:

[skip] = ns [e] =nsoa, fora:¥ — X%
[s1;82] = ps o P([s2]) o [s1] [s1+ s2] = Ao [si]o U [s2]o .

An obvious remark is that the interpretations for Lo and Ly are formally
identical but for the fourth clause. As a matter of fact we have been using a
general pattern in these interpretations which goes under the name of Kleisli
category. Given a monad (T, n, i) over a category C the Kleisli category Ky is
formed as follows:

Kr=C Kr[d,d'] = Cld, Td']
idg=ng:d—=Td fog=pgoTlfog forg:d—d,f:d —d" in Kr.

! This definition is slightly more abstract, but equivalent to the one presented in section 1.6.
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The reader will find in [Mog89] more information on this construction, and on its
use in the interpretation of a meta-language where the notion of computation is
treated abstractly, as a monad with certain desirable properties. Going back to
the monads of power-sets, we hint to an application to the modelling of parallel
computation. We illustrate the idea on yet another variant of the imperative
language considered above:

Lp su=alskip|s;s|s| s.

The intuitive semantics of s; || sy is that of a parallel execution of the state
transformations performed by s; and by s,. Since s; and s, share the same state
different orders of execution might generate different final results, as is clear, for
instance, in the program « := ;2 := 0 || # := 1, which upon termination can
associate to x either 0 or 1.

In defining the semantics one has to establish what modifications of the state
are atomic, i.e. are executed as non-interruptible operations. For instance if we
assume that assignment is an atomic operation then the program « :=0 || x := 1
will terminate with = having value 0 or 1, and nothing else. The semantics of
a program is a collection of sequences of state transformations. For instance we
can take:

[s] € Prin((X = X)T)

where (¥ — ¥)* are non-empty finite sequences of functions. In this case it
is clear that we can distinguish the interpretations of = := 0;z := 4+ 1 and
x := 1. The interpretation of a parallel composition is an operator that shuffles
the sequences in all possible combinations.

Exercise 8.1.3 Define an interpretation of the language Lp in P, (5 — X)T).

In the presence of divergent programs things are a bit more complicated.
What is needed is an analogous of the power-set construction in a category of
domains. Various solutions to this problem will be presented in chapter 9. Let
us provisionally call Pp the powerdomain operator. The interpretation of the
imperative language with recursion is given in a domain of resumptions (see, e.g.,
[Plo83]) which is the least solution of the following equation:

R=% = Pp(S+ (X xR)).

A resumption is a function that takes a state and returns a collection of elements
that can be either a state or a pair (state, resumption). Intuitively, a program is
interpreted as a possibly infinite sequence of state transformations (cf. exercise
8.1.3) each state transformation in the sequence models an operation that the
program can perform atomically on the memory.
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Partial morphisms. In example 8.1.1 we have defined the monad of partial
computations over Set. We show next that the monad of partial computations
can be derived in a systematic way from a general notion of partial morphism.
We then apply this connection between partial morphisms and monads of partial
computations to the categories of domains introduced in the previous chapters.

It is standard to consider an equivalence class of monos on an object as a
generalized notion of subset. A partial morphism from a to b can then be repre-
sented as a total morphism from a subset of a to b. In most interesting examples
the domain of convergence of a partial morphism is not arbitrary. For instance
it is open (as in Depo), recursively enumerable, etcetera. It is then reasonable
to look for a corresponding categorical notion of admissible mono as specified by
the following definition.

Definition 8.1.4 (admissible family of monos) An admissible family of monos
M for a category C is a collection {M(a) | a € C} such that:

(1) If m € M(a) then m is a mono m :d — a.

(2) The identity on a is in M(a): id, € M(a).

(3) M is closed under composition i.e.
my:a—>be M(b),my:b—ceM(c) = mpomy:ia—ce M(c).
(4) M is closed under pullbacks i.e.

m:d—=be M), f:a=b = fl(m)e Ma).

An admissible family of monos M on C enjoys properties which are suffi-
cient for the construction of a related category of partial morphisms pC. ? A
representative for a partial morphism from a to b is a pair of morphisms in C,
(m, f), where m : d — a € M(a) determines the domain and f : d — b the func-
tional behavior. The category pC has the same objects as C and as morphisms
equivalence classes of representatives of partial morphisms, namely:

pCla,b)={[m, f]|m:d = a€ M(a), f:d— b}

where (m :d — a, f : d — b) is equivalent to (m’ : d" — a, f' : d'" — b) iff there is
an iso 7 : d = d' in C such that m' o¢ =m and f o1 = f.

To specify domain and codomain of a partial morphism, we write [m, f]: a —
b, and we write (m, f) : @ — b for a representative. Given (C, M) there is a
canonical embedding functor, Emb : C — pC, defined as:

Emb(a) =a, FEmb(f) =1, f].

2We refer to [CO88, Mog88, RR88] for extended information on the origins and the devel-
opment of the theory. The definition of pCCC can already be found in [LM84].
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Definition 8.1.5 (lifting) Given a category enriched with a collection of ad-
missible monos, say (C, M) and an object a in C the lifting of a is defined as a
partial morphism, open : (a)L — a, such that (cf. definition 1.4.16):

Vbe CVf:b—aIlf :b— (a).(f =openo f). (8.1)

The following theorem characterizes the lifting as the right adjoint of the embed-
ding functor and shows that it induces a monad (cf. section 1.4).

Theorem 8.1.6 (1) The partial category (C, M) has liftings iff the embedding
functor has a right adjoint. (2) The lifting functor induces a monad over C.

PROOF HINT. If f : b — a then we define f' : b — (a), according to condition
8.1. (1) (=) We define a lifting functor, Lift : pC — C, as:

Lift(a) = (a)1, Lift(f) = (f o open,)’, where f:a—1b.

Next we define a natural iso:

rpCL ] CLLif), i) = f'
(<) Given the natural iso 7, we define:

(@) = Lift(e),  open, = 7(id(n,)

2) This is a mechanical construction of a monad out of an adjunction (cf. section
B.8). We define n, = (id,)', and 1y = 7((a),), a(0pen, o open(y ). O

Exercise 8.1.7 Find a notion of admissible mono in Set that generates the monad of
partial computations defined in the example 8.1.1(1).

The notion of partial cartesian closed category (pCCC) arises naturally when
requiring closure under the partial function space.

Definition 8.1.8 (pCCC) Let M be an admissible collection of monos on the
category C. The pair (C, M) is a pCCC (partial cartesian closed category) if C
is cartesian and for any pair of objects in C, say a,b, there is a pair

(pexp(a,b), pev, , : pexp(a,b) x a — b)

(pev for short) with the universal property that for any f : (¢ x a) — b there
exists a unique h : ¢ — pexp(a,b) (denoted pAyy.(f), or pA(f) for short) such
that pevo (h xid,) = f.
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In other words, for any object b there is a functor partial exponent on b, say
b — _:pC — C, that is right adjoint to the product functor - x b : C — pC:

pClx b, ]~ Clb—].

By instantiating this natural isomorphism, we obtain the following version of
currying: a x b = ¢ = a — (b — ¢). By virtue of this isomorphism we can safely
confuse b — ¢ with pC[b,¢]. We remark that in any pCCC the lifting can be
defined as (a), = 1 — a, with the morphism open = pev o (id,!).

Every pCCC has an object X, called dominance, that classifies the admaissible
subobjects (in the same sense as the object of truth-values ) classifies arbitrary
subobjects in a topos).

Proposition 8.1.9 (dominance) In every pCCC the object ¥ = (1), =1 — 1,
called dominance, classifies the admissible monos in the following sense, where
T=pA():1—=X:

YaVm € M(a)3lx :a = X such that (m,!) is a pullback for (x,T) (8.2)

Exercise 8.1.10 Given a partial category define an admissible subobject functor M(_) :
C°? — Set. Show that the classifier condition 8.2 can be reformulated by saying that
there is a natural isomorphism between the functor M(_), and the hom-functor C[_, X].

Exercise 8.1.11 Show that in a pCCC the following isomorphism holds: a — Y =
a— 1.

In order to practice these definitions, let us consider the familiar category of
directed complete partial orders and continuous morphisms (Dcpo). In Dcpo
we can choose as admissible monos (i.e. subobjects) the ones whose image is a
Scott open. Then the dominance is represented by Sierpinski space O, the two
points cpo. The dominance O classifies the admissible monos because any Scott
open U over the dcpo D determines a unique continuous morphism, f: D — O
such that f~'(T) = U (this point was already discussed in section 1.2 and it will
be fully developed in section 10.1).

Definition 8.1.12 Let Dcpo be the category of depo’s and continuous mor-
phisms. We consider the following class of monos in Depo:

m:D— E e Mg iff im(m) e rs(E) .
We leave to the reader the simple proof of the following proposition.

Proposition 8.1.13 (1) The class Mg is an admissible family of monos for the
category Depo. (2) The related category of partial morphisms is a pCCC.
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We conclude by relating various categories of depo’s. Let D, E be dcpo’s.
A partial continuous morphism f : D — FE is a partial morphism such that its
domain of definition is a Scott open (Dom(f) € 7s(D)) and its total restric-
tion, fipom(s) : Dom(f) — I, is Scott continuous. We denote with pDcpo the
category of dcpo’s and partial continuous morphisms.

Let D, E be cpo’s. Recall from definition 1.4.17 that a strict continuous
morphism f: D — FE is a (Scott) continuous morphism such that f(Lp) = Lg.
We denote with sCpo the category of cpo’s and strict continuous morphisms.

Exercise 8.1.14 (1) Calculate the dominance of (Mg, Dcpo). (2) Define the equiva-
lences among the category of partial morphisms generated by (Mg, Dcpo), the category
sCpo, and the category pDcpo.

8.2 Call-by-value and Partial Morphisms

We apply the idea of distinguishing between total and divergent computations
which is implicit in the monad of partial computations to the design of a variant
of the language PCF (see chapter 6). This gives us the opportunity to revisit the
general problem of relating the interpretation of a programming language with
the way the programming language is executed.

We may start from the following question (reversing the historical evolution
of the topic): for which kind of simply typed A-calculus does a pCCC provide
an adequate interpretation? A crucial point is that we follow a call-by-value
evaluation discipline, hence in an application the evaluator has to diverge if the
argument diverges. To be more precise, we have to fix the rules of evaluation and
observation. We stipulate the following:

(1) The evaluator has to stop at A-abstractions.

(2) It is possible to observe the termination of a computation of a closed term
at all types, equivalently one may say that programs have arbitrary, possibly
functional, types.

Contrast these design choices with the definition of the evaluator —,, in chapter
6. There evaluation followed a call-by-name order and observation of termination
was allowed only at ground types. As in chapter 6, we wish to relate operational
and denotational semantics. The technical development of the adequacy proof
goes through three main steps.

(1) A language based on a fixed point extension of the simply typed A-calculus
is introduced and a call-by-value evaluation of closed terms is defined.

(2) A standard interpretation of the language in the pCCC pDcpo is specified.
(3) A notion of adequacy relation is introduced which allows to relate closed
terms and denotations.

It is first proved that the evaluation of a closed term converges to a canonical
term iff its denotation is a total morphism. As a corollary, a result of adequacy
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x:oel
A (Asmp) T
(=) Fe:obFM:7T (=x) '-M:0—~7 I'EN:o
D TrFXN:oM:0—~7 E I'EMN:7
'EM:(1—-0)—0
v) ( )

'tY"M:0o

Figure 8.1: Typing rules for the call-by-value typed A-calculus

of the interpretation with respect to a natural observational preorder is obtained.
The related proof technique introduces a family of adequacy relations indexed
over types that relate denotations and closed terms. These adequacy relations
are a variant of the relations already defined in the adequacy proof for PCF
(chapter 6). They combine ideas from the computability technique (a technique
used for proofs of strong normalization, see theorems 3.5.20 and 11.5.18) with
the inclusive predicates technique discussed in chapter 6.

Call-by-value AY-calculus. We consider a variant of the AY-calculus defined
in chapter 6 suited to the call-by-value viewpoint. Types and raw terms are
defined by the following grammars. We distinguish a special type 1 which is
inhabited by the constant *. This type corresponds to the terminal object and
it 1s used to define a lifting operator, according to what can be done in every

pCCC.

Type Variables tv u=1t]s]...

Types o u=1]tv](oc—0)

Term Variables v u=a|y]...

Terms M 2=x|v|(Av:oM)|(MM)|(Y°M) .

Contexts I' are defined as in chapter 4. Provable typing judgments are inductively
defined in figure 8.1 (in the following we often omit the type label from the Y
combinator).

The types of the Y clause may seem a bit puzzling at a first glance. One can
give a semantic justification by recalling that in a pCCC we define the lifting as
(a)L = (1 — a), on the other hand the partial function space, say —, relates to the
total function space, say —, as a = b=a — (b),. So (1 — o) — o is the “same”
as ((0)L — (o)1) and the implicit type we give to Y is ((0)L — (o)) = (o)1,
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* > ok

(=1) Ao M= oM
(=g) M= Xe:oM N—C M[C[z]—C
E MN — C
M Az : 1L.YM)— C
(Y) ( YM|—>C)' (x fresh)

Figure 8.2: Evaluation rules for the call-by-value typed A-calculus

that is the usual type of a fixed-point combinator over (o). One good reason to
restrict recursion to lifted objects is that these objects do have a least element! A
continuous function over a directed complete partial order without a least element
does not need to have a fix-point.

Evaluation. In chapter 6 we have defined the reduction relation as the reflex-
ive, transitive closure of a one-step reduction relation —,,. In the following we
follow a different style of presentation in which evaluation is presented as a re-
lation between programs, i.e. closed terms, and canonical forms. In the case
considered here, the canonical forms are the closed, well-typed terms C,C", ...
that are generated by the following grammar (other examples of definition of the
evaluation relation can be found in section 8.3):

Cu=x|(Av:oM).

The evaluation relation — relates closed terms and canonical forms of the same
type. Its definition is displayed in figure 8.2.

We write M | if 3C (M — ). Note that the definition of the relation
gives directly a deterministic procedure to reduce, if possible, a closed term to a
canonical form. In particular, canonical forms evaluate to themselves.

Interpretation. In order to define an interpretation of our call-by-value A-
calculus we concentrate on the category of directed complete partial orders and
partial continuous morphisms. Then, as usual, there is a least fixed point operator
over lifted objects that is calculated as the lub of an inductively defined chain.
Let Depo be the collection of decpo’s. We give a type interpretation that



202 CHAPTER 8. VALUES AND COMPUTATIONS

(>I<) [[F F o 1]] :![[F]]

(Asmp) [(x1:01)y..(xp o) a0 =may

(=71 [TFXe:oM:o— 7] =pA([lx:0b M :7])

(—g) [I'FMN:7] =pevo([lFM:0—7],[['FN:0o])
) [T YM ol Ve F()

Figure 8.3: Interpretation of the call-by-value A-calculus in pDcpo

depends on an assignment n : tv — Dcpo as follows:

[1]
[ (1)

1
[c = 7] =][o]—1[r] (the partial exponent) .

(the terminal object)

The interpretation of a judgment (z1 : oy1),...,(x, : 0,) F M : o is a partial
morphism of type: [1] x [o1] x -+ X [o.] = [o] (x associates to the left) as
defined in figure 8.3.

o If - M : o, that is the term is closed, then the interpretation f € [1 — o] is
either a divergent morphism or a point in [o]. We write f {} in the first case and
f { in the second case. We also write M |} if [M] |}, and we denote with L the
diverging morphism.

e In (%), Ifrp is the unique total morphism into 1.

e In (—p), the operation (_, ) is a partial pairing, that is it is defined only if its
arguments are both defined.

e In(Y), let gbe [['FM: (1 —0)—0c], f(0) be the divergent morphism, and
f(n+1) = pevo(g,id o f(n)). The morphism id : a — pexp(1l,a) is uniquely
determined by the identity over a, and the morphism open, : pexp(l,a) — a.

As in chapter 4 we can proceed by induction on the size of the typing proof
to establish the following properties of substitution.

Lemma 8.2.1 (substitution) If e : o W M : 7, and I' = C : o then (1)
I'EM[N/x]:7. (2)[UF M[N/z]:7]=[l,x:0bM:7]o(d,[I'FC:0o]).

Adequacy. We want to prove that given a well typed closed term M, M | iff
M |}. It is easy to show that if M | then M |} as the interpretation is invariant
under evaluation and the interpretation of a canonical form is a total morphism.
In the other direction the naive attempt of proving (M |} = M ]) by induction
on the typing of M does not work. Therefore, we associate to every type o an
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adequacy relation R, relating denotations and closed terms of type o (cf. chapter
6). Adequacy relations enjoy the property

(fR,Mand f1}) = M|

moreover they enjoy additional properties so that a proof by induction on the
typing can go through.

Definition 8.2.2 (adequacy relation) A relation S C [I — o] x A2 is an
adequacy relation of type o if it satisfies the following conditions:

(C.1) (fSM and f)= M|

(C.2) (fSM and M — C and M' — C) = fSM'

(C.3) LSM, for any M € AS

(CA4) ({fi}ncw directed in [1 = o] and ¥n f, SM) = (V,co, [n)SM .

We denote with AR, the collection of adequacy relations of type o. For any type
o, the relation {(L, M) | M € A%}, is an adequacy relation of type o.

It is interesting to observe certain geometric properties of adequacy relations.
To this end we make explicit a cpo structure on the collection of closed terms.
Define an equivalence relation, say /s, on terms by stating that

M~N iff (M1 and N1)or 3C (M — C and N — C) .

Given a type o consider the quotient A%/ =, with a flat order obtained by as-
suming that the equivalence class of diverging terms is the least element, and all
other equivalence classes are incomparable.

We can now consider £ = [l — o] x (A2/ =) as the product cpo. By
definition, a set P C F is an admissible predicate (cf. inclusive predicates in
section 6.3) if it is closed under directed sets. Note that any admissible predicate
P determines a relation Sp over [1 — o] x A2 as follows:

(f,M) € Sp it (f,[M]z) € P
Adequacy relations can be seen as a particular case of admissible predicates.

Exercise 8.2.3 Let U = {(f,[M]x) | f I implies M |} and L = {(L,[M]x) |
M closed}. Verify that U and L are admissible predicates. Next show that the ad-
missible predicates included between I and U are in bijective correspondence with the
adequacy relations.

Definition 8.2.4 Given an assignment 0 : tv — Uy, ARy, such that 0(t) € AR,
for any t, we associate to every type o a relation R, C [1 — o] x A2 as follows:

Ri zégf),M)lfﬂ or (f} and M |)}
Rt — t
Roor = {(LM)[ (I = M) and¥d.N(dR, N = (pevo (f.d) R, MN)} .
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Proposition 8.2.5 The relation R, is an adequacy relation of type o, for any
type o.

PrOOF. We proceed by induction on the structure of o.
1 By definition of R.
t By definition of 4.

o — 7 We verify the four conditions.
(C.1) By definition of R, .
(C.2) Suppose (fR,—, M and M — C and M’ — (). First observe:

(M — C and M' — C and MN — C") implies M'N s ' (8.3)
The interesting case arises if pev o (f,d) |}. Then we have to show:
pev o (f,d) R, MN implies pev o (f,d) R, M'N

that follows by induction hypothesis on 7 and property 8.3.

(C.3) L Ry—y M because pev o (L,d) = 1, and dR, N implies, by induction
hypothesis on 7, L R, M N.

(C.A4) pev o Vpcw frrd) = Voo pev o (fu,d), but ¥n(f, Ro—; M) and dR, N
implies Vn (pev o (f,,d) R, MN). The thesis follows by (C.4) over R,. O

Theorem 8.2.6 [fI' F M : o, ' = (x1 : o1),....(xn : 0n), and d; R, C;,
i=1,...,nthen (' M :c]o(dy,...,d,)) Re M[C1/x1,...,Cp/ay].

PROOF. By induction on the length of the typing judgment. We adopt the
following abbreviations: (dy,...,d,) = d and [Cy/xy,...,C,[/x,] = [C/Z].

—

(%) (['F*:1]od)Ry*, by definition of R;.

(Asmp) d; R,, C; , by assumption.

(=) We show (pA([l',z:0F M :7])o cf)Rg_\T (A : UM[é/f]) The first
condition that defines R,_., follows by the fact that Az : 0. M[C'/Z] |. For the

second suppose d R, N, N — (', and the application is defined, then by inductive
hypothesis we have:

(I0,z:0F M : 7)o (dd)R, M[C/Z|[C/x] .

We observe:

(1) pevo(pA([Tyx:0F M : T]])OCZd> =([lyx:o0bM:7])o <cf,d>
(2) M[C/Z)[C/x] — C' implies (\x : 0. M[C/Z])N s C"

(3) Hence by condition (C.2) follows:

(pevo (pA([l'yz:0F M :7])0 ch})RT (Az : o.M[C/Z])N .
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(—g) We show (pevo([I' F M :0 = 7],[T F N :0o])o _}RT (MN)[C/].
By induction hypothesis ([[' - M : 0 — 7] o cf)Rg_\T M[C/Z] and ([T + N :
o] o d)R, N[C/Z]. The result follows by the definition of R,_.

(Y) Weshow (V.. f(n) ocf) R, YM[@/:JZ"] We prove by induction that, for each
n, (f(n)o cf)Rg Y M[C/Z]. The case n = 0 follows by (C.3). For the induction
step we observe:

—

(pevo(g,ido f(n))) R, M(Ax : 1L.YM[C/Z]) .

by induction hypothesis on I' - M : (1 = o) — 0. Now we use (C.2) to conclude
pev o (g,ido f(n)) R, YM[C/Z]. Hence by (C.4) we have the thesis. O

Corollary 8.2.7 (1) If- M : o then M |} implies M |.
(2) IfTEM:o,l'EN:o,and [l M :0] <[['F N:o] then in any context
C such that = C[M]: 7 and = C[N]: 7 we have C[M] | implies C[N] .

PROOF. (1) We apply the theorem 8.2.6 in the case the context is empty.

(2) We prove by induction on the structure of a context C' that for any M, N
such that - C[M]: 7 and F C[N]: T,

[TEM:o]<[l'FN:o] = [FCM]:7]<[FC[N]:7].

Next apply the adequacy theorem to show C[M] ]| = C[M]| = C[N]| =
CIN] . 0

8.3 Environment Machines

The efficient reduction of A-terms is an important research topic (see, e.g., [PJ87]).
A central problem is the implementation of the substitution operation. In A-
calculus theory substitution is considered as a meta-operation whose definition
involves renaming of bound variables and a complete visit of the term in which
the substitution is carried on. In implementations, it is tempting to distribute the
price of substitution along the computation. The idea is to record the substitution
in a suitable data structure, the environment, which is kept on the side during
the evaluation. The environment is accessed whenever the actual “value” of a
variable is needed.

The weak A-calculus. Based on this idea we present a class of machines known
as environment machines which are related to the Categorical Abstract Machine
mentioned in section 4.3 (see [Cur91] for the exact connection). We concentrate
on the implementation of the weak A-calculus, a A-calculus in which reduction
cannot occur under \’s. Terms are defined as usual, we omit types since they are
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B) DN = MV

(1) M — M ) N — N/
M "MN S MN V) TMN S MN

Figure 8.4: Reduction rules for the weak A-calculus

M —, M N —, N’
(A M)V —, M[V/x] MN —, M'N VN —, VN’

Figure 8.5: Call-by-value reduction strategy

not relevant to our discussion. The rules for weak reduction are shown in figure
8.4.

Note that the reduction relation —* generated by these rules is not confluent.
For instance consider (Ay.Ax.y)(/1), where I is Az.z. This term can be reduced
to two distinct normal forms: Az.[[l and Az.l. Call-by-name and call-by-value
are two popular reduction strategies for the weak reduction.

e In the call-by-name strategy rule (v) is omitted. We denote the resulting
reduction relation with —,,.

e By definition, a value V is a term which begins with a A-abstraction. The
call-by-value reduction strategy is presented in figure 8.5.

Exercise 8.3.1 Formalize a call-by-name version of the typed A-calculus defined in
section 8.2. Define a translation of call-by-name in call-by-value according to the type
translation ¢ > 7 = (1 — o) — 7, where — is the exponentiation operator for the
call-by-name calculus.

In the study of abstract machines implementing a given strategy, one is often
interested in the evaluation relation that we conventionally denote with . in
order to distinguish it from the reduction relation (an example of evaluation
relation was given in figure 8.2). The evaluation relation relates terms to values
(or canonical forms). The evaluation relations —, and +—, for call-by-name and
call-by-value, respectively, are shown in figure 8.6.
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M =, da. M M'[N/z]—,V
Vi,V MN —, V

M s, de. M N =, V' M'[V'/z] s,V
Vi, V MN —,V

Figure 8.6: Evaluation relation for call-by-name and call-by-value

Mle] — -+ — (M. P)[€] e(x) — ¢
xle] — e(x) M Nle] — P[e'[N]e]/x]] Mle] = Me[c/z]]

Figure 8.7: Weak reduction for the calculus of closures

Exercise 8.3.2 Let s stand for n or v. Show that: (i) —sC—%, and (ii) the relations

57
s and —; are incomparable with respect to the inclusion relation.

A weak calculus of closures. Next we formalize the idea of environment. To
this end we define a calculus of closures which are pairs of A-terms and environ-
ments. Environments and closures are mutually defined as follows:

e An environment is a partial morphism e : Var — Closures where Dom(e)
is finite (in particular the always undefined morphism is an environment), and
Closures is the set of closures.

o A closure ¢ is a term M[e] where M is a term and e is an environment.

In general we evaluate closures M[e] such that FV(M) C Dom(e). The evalua-
tion rules for weak reduction are displayed in figure 8.7. In the second rule, M|e]
can be already of the form (Ax.P)[¢]. Observe that the schematic formulation of
this rule is needed in order to keep environments at top level.

Environments can be regarded as a technical device to fix the non-confluence
of the weak A-calculus. Indeed it is shown in [Cur91] that the relation —* is
confluent on closures. Next we formalize the evaluation relations for the call-by-
name and call-by-value strategies. By definition, a value v is a closure (Ax.M)[e].
The rules are shown in figure 8.8.
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e(x) =, v Mle]—, Ae.M'[e'] M'[€[N]/z]] =, v
x[e] U MN[@] = U

e(x) —y, v Mle] —, Aaz.M'[e'] Nle] s, v M'[e'[v"/z]] =, v
zle] v MN][e] —, v

Figure 8.8: Evaluation rules for call-by-name and call-by-value

(z[e], s) = (e(2), )
(MNe], s) — (Me], Ne] : s)
(Ae.Mle],c:s) — (Mle[e/x]],s)

Figure 8.9: Environment machine for call-by-name

Abstract machines. The evaluation rules described in figure 8.8 are pretty
close to the definition of an interpreter. What is still needed is a data structure
which keeps track of the terms to be evaluated or waiting for their arguments
to be evaluated. Not surprisingly, a stack suffices to this end. In the call-by-
name strategy, we visit the term in a leftmost outermost order looking for a
redex. During this visit the terms that appear as arguments in an application
are piled up with their environment in the stack. Therefore the stack s can be
regarded as a possibly empty list of closures that we denote with ¢; : ... : ¢,.
The related environment machine is described in figure 8.9 as a rewriting system
on pairs (M]e], s) of closures and stacks (this formulation is due to Krivine). At
the beginning of the evaluation the stack is empty.

In the call-by-value strategy, we need to know if what is on the top of the
stack is a function or an argument. For this reason, we insert in the stack markers
[ for left and r for right that specify if the next closure on the stack is the left
or right argument of the evaluation function. Therefore a stack is defined as a
possibly empty list of markers m € {[,r} and closures: m; : ¢y : ...m, : ¢,. The
related environment machine is described in figure 8.10.
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(z[e], s) = (e(@),

(M Nle].s) — (Mle],r: Nle] : s)
(v,r:c:s) —(e,l:v:s)

(v, 0 Xe.Mle] - s) — (Mle[v/z]], s)

Figure 8.10: Environment machine for call-by-value

8.4 A FA Model for a Parallel \-calculus

We build a filter model for an untyped, call-by-value A-calculus adapting the
techniques already introduced in chapter 3. Following [Bou94] we show that this
model is fully abstract when the calculus is enriched with a join operator (L)
allowing for the parallel evaluation of A-terms. Evaluation converges as soon as
one of the terms converges. The join operator fails to be sequential in the sense
described in section 2.4 and so one can show that it cannot be defined in the pure
A-calculus. Indeed it can be shown that in the calculus extended with the join
operator every compact element of a canonical model based on Scott continuity
is definable (i.e. it is the interpretation of a closed term of the Ay-calculus, a
similar result was stated in chapter 6 for PCF enriched with a parallel or). This
result entails the full abstraction of the model.

The M -calculus. We introduce a call-by-value, untyped A-calculus enriched
with a join operator LI and construct a model for it as the collection of filters over
a specifically tailored eats (cf. definition 3.3.1). The language of terms is defined
as follows:

v ou=aly]...

M =v| DM|MM|MUM .

Canonical forms are the closed terms generated by the following grammar:
Co= M|CUM|MUC .

Finally, the evaluation relation is defined inductively on closed terms as shown

in figure 8.11. As usual we write M | if 3C (M — C).

Exercise 8.4.1 Observe that a term may reduce to more than one canonical form.
Consider the reduction relation naturally associated to the evaluation relation defined
in figure 8.11. Observe that this relation is not confluent, e.q. (Az.Ay.x)(I1U II) —
Ay. (LU 1) and (Azdy.2)({TU D) — Xy.(ITUT). This is a typical problem of weak
A-calculi (cf. section 8.3). Define a suitable calculus of closures (where environments
are evaluated) and show its confluence (a solution is described in [Bou9j]).
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M~ daeM' N—C MI[C/z]—C
MN — C

M'—>M1|_|M2 M1N|_|M2N|—>C

MN — C
M C
C—C MUN—CUN
N—CC M—=C N—C(C

MUN—MUC MUN—CUC

Figure 8.11: Evaluation relation for the A -calculus

We have already proved in section 8.2 the adequacy of a model for a call-by-
value A-calculus in which the function space is composed of the partial continuous
functions. In the following, we build a filter model over an eats for call-by-value,
which is a solution of the equation D = D — D. ® More precisely we work with
total morphisms and build the initial solution of the equation D = D — (D),
in the category of algebraic complete lattices and injection-projection pairs (this
solution exists by the techniques presented in chapter 3 and generalized in chapter
7). * In a lattice the U operator can be simply interpreted as the lub. In the
definition of eats for call-by-value we have to axiomatize the strict behaviour of
the — operator.

Definition 8.4.2 (v-eats) An eats for call-by-value (v-eats) is a preorder having
all finite glb’s and enriched with a binary operation — which satisfies the following
properties (as usual w denotes a top element):

o <o <7
c—~17<og =7

(1)

(2) o= (tAT)<(c=T)N(0—=T)

3) c—~wlw—w 4) (cAN(w—w))=7<0—>7.

Rule (1) and Inequality (2) are inherited from the eats axiomatization. Inequality
(3) says that w — w is the largest defined element. The inequality 0 < w — w

3In op. cit. similar results are obtained for call-by-name, in this case one works with the
equation D = (D — D).

*Following Boudol, an equivalent presentation of the domain D is as the initial solution of
the system of domain equations D = (V) ,and V=V — D.
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states that o is a value, this is used in the —-elimination rule in figure 8.12.
Inequality (4) states that functions are strict, in other terms the behaviour on
undefined elements is irrelevant, for instance we can derive w —= 7 = (w = w) —
7. Given a v-eats S, consider the collection of filters F(5) ordered by inclusion.
We write x |} if w = w € = and z {} otherwise. We define a strict application
operation as follows.

Definition 8.4.3 (strict application) Given a v-eats S and x,y € F(S) define

J{rlo—=~Tex,oecy} ifal andyl
Y = Tw otherwise .

Definition 8.4.4 (representable function) Let S be a v-eats. A strict func-
tion f over F(S) is representable if 3z Yy (f(y) = zoy).

Proposition 8.4.5 Let S be a v-eats. Then: (1) F(S) is an algebraic complete
lattice. (2) The strict application operation is well-defined and continuous in both
arguments. In particular every representable function is strict continuous.

PROOF HINT. (1) Follow the corresponding proof in proposition 3.3.10. (2)
Simple verification. a

Proposition 8.4.6 Let T be the smallest theory including an element w and
satisfying the conditions in definition 8.4.2 (cf. definition 3.3.4). Then every
strict continuous function over F(T') is representable.

PROOF HINT. First show that in the initial v-eats A;cjo; = 7 < 0 — 7 implies
No<o;Ti < T, where 0,0; < w — w. Then the proof follows the schema presented
in proposition 3.3.18. O

Exercise 8.4.7 Show that if T is defined as in proposition 8.4.6 then F(T') is isomor-
phic to the initial solution of the equation D = D — (D) in the category of algebraic
complete lattices and embedding projections pairs.

Definition 8.4.8 (interpretation) Let S be a v-ealts. We define an interpre-
tation function [] : Au-term — (Env — F(S)), where Env = Var — F(S)
with generic element p. When interpreting a closed term we omit writing the
environment as it s irrelevant. As usual if © C S then T denotes the least filter
containing x.

[=]p = p(x) [MN]p = [M]p~.[N]p

DeMlp =To—r[re[Mplio/al} [MUN]p =TMIpULNp.



212 CHAPTER 8. VALUES AND COMPUTATIONS

x:0€el

'tz:0o I'EM:w
Fe:obFM:7T '-M:0-~7 I'FN:o c<w—=w
'tXaM:0—71 I'-MN 7

I'-M:0c TEN:7T

I'-MUN:cAT

'-M:0¢ 'EFM:7 I'-M:0 <7
I'M:oNT I'M:7

Figure 8.12: Typing rules for the A-calculus

Next we define a typing system that allows to compute the interpretation, in
the sense that the interpretation of a term is the collection of types that we can
assign to it. Types o, 7,... are elements of a v-eats. Contexts I' are defined as
usual. The typing system is displayed in figure 8.12.

An environment p is compatible with a context I' if  : o € " implies o € p(x).
In this case we write I 1 p.

Proposition 8.4.9 For any term of the Ay-calculus the following holds:
[Mlp=1{o | T+ M:0T1p}
ProoOF. O: By induction on the length of the derivation we prove that:
VoVI'tp('FM:0 = o€ [M]p).
C: First we observe a weakening property of the typing system (cf. lemma 3.5.5):
iflz:obM:7thenl,z:0A0'FM:7 (8.4)
Second, we note that for any environment p, the following set is a filter:
{o | (T tpand ' M :0)} (8.5)
By induction on the structure of M we show that for all p, n > 0:
T € [M]p[toi/ar,....,Ton/x,] = AT (T Tpand Uyay i 0oq,... 2,0, M 7).

Let us consider the case Ax.M. Fix an environment p. By 8.5 it is enough to
show that 7 € [M]p[t o/x] implies I' F Ae.M : 0 — 7, for some I'. By induction
hypothesis, I'yz : 0 = M : 7, and we conclude by —-introduction. a
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Full abstraction. We outline the proofs of adequacy and full abstraction of
the Ay-calculus with respect to the filter model built on the initial v-eats. The
adequacy proof follows a familiar technique already discussed in section 8.2. We
start by specifying when a closed term realizes a type.

Definition 8.4.10 We define a family of relations R, over closed terms as fol-
lows:

R =A%, (all closed terms)
RO’/\T — Rcr N RT
Rowsy ={M|M| andVNeR,(N|] = MNEeR,)}.

We write EM : o0 if M € R, and 1 : 01,...,2,: 0, F M : o if for all V; such
that N; J and E N;:0; (1 =1,...,n) we have |= M[Ny/x1,...,N,/z,]: 0.

Proposition 8.4.11 [fI'F M : 0 then ' E M : 0.

PROOF HINT. We prove by induction on o that: (1) ()\J}.M)Né € R, iff
M[N/l‘]@ € R, whenever N, |, and (2) (MI_IN)ﬁ € R, iff (MﬁLINﬁ) €R,.
Moreover, we verify that o < 7 implies R, C R, by induction on the derivation
of o < 7. Finally, we prove the statement by induction on the length of the
typing proof. a

Corollary 8.4.12 For any closed A-term M, M | iff [M] |} if - M : w — w.

PROOF. We prove that M +— C implies [M] = [C] by induction on the length
of the proof of the evaluation judgment. We observe that for any canonical form
C,F C:w— w,and that R, is the collection of convergent (closed) terms. O

This concludes the kernel of the adequacy proof. The full abstraction proof
relies on the definability of the compact elements of the model. To this end,
we inductively define closed terms M, of type o, and auxiliary terms 7, for
7 <w — w, in figure 8.13.

Exercise 8.4.13 The definitions in figure 8.13 are modulo equality, where o = 7 if
o <71 and T < 0. Check that we associate a term to every type, and that equal types
are mapped to the same term.

Theorem 8.4.14 For all types o, 7 such that 7 < w — w the following holds:

Tw otherwise .

M =to [T = { [l ifrex
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M, =0

M,pnr =M, U M,

M,—; = Xa.(T,2)M- (0 <w—w)
Tosw =M1

Tonr  =AATHTLf) (07 Sw—w)
Tor =MT:(fM,) (1 <w—-w)

Figure 8.13: Defining compact elements

Proor. By induction on o. We just consider two cases. Case M,_.,. We check:
Te(T,]to)tT = o—=7<d —=7".

Case Myp,. Weuse T oUT T =1 (0 AT). O

We have derived the adequacy of the interpretation from the soundness of
the typing system with respect to the realizability interpretation (proposition
8.4.11). Symmetrically, the full abstraction result will be obtained from a com-
pleteness property of the typing system (which follows from the definability the-
orem 8.4.14).

Definition 8.4.15 Let M, N be closed terms. A logical preorder M <; N is
defined as: Yo(EM:0 = EN:o).

Corollary 8.4.16 Let M, N be closed terms. If M <; N then [M] < [N].

PROOF. It is enough to show E M : ¢’ implies = M : ¢’ by induction on o’.
Let us consider the case for ¢/ = ¢ — 7. From F M, : o we derive E M, : o,

by proposition 8.4.11. Without loss of generality we assume ¢ < w — w. Then
M, |. It follows = MM, : 7. By induction hypothesis - MM, : 7. We conclude

by the following chain of implications:

FMM,: 7 = te[M]to = o' =~71€[M], 0 <o
=>FM:0/ -7, 0<0¢ =FM:0c—>1.

O
This result virtually concludes the full abstraction proof. It just remains to

formally define an operational preorder and to verify that it coincides with the
preorder induced by the model.
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Definition 8.4.17 An applicative simulation S is a binary relation on closed
terms such that whenever MSN: (1) M | implies N |, and (2) for all P, P |

implies (MP)S (NP). Let <gn, be the largest applicative simulation.
Proposition 8.4.18 Let M, N be closed terms. If [M] < [N] then M <g,, N.

PRrROOF. It follows from the observation that {(M, N) | [M] < [N]} is a simula-

tion. O
Proposition 8.4.19 [f M <, N then M <; N.

PrROOF. We suppose M <,,, N. We prove by induction on o that = M : o
implies £ N : 0. 0

Corollary 8.4.20 Let M, N be closed terms. Then [M] < [N] iff M <gm N iff
M <; N.

PRrOOF. By corollary 8.4.16 and propositions 8.4.18, 8.4.19. O

Exercise 8.4.21 (1) Let M, N be closed A -terms. Define:
M <un N iff VPi,...,Pi(MP,...P, L= NPi...P, ).
Show that M <., N iff M <g, N. (2) Let M, N be arbitrary terms. Define:
M <,, N iff YC such that C[M],C[N] are closed (C[M]] = C[N]]) .

Show that for M, N closed, M <,, N iff M <,y N (this is called context lemma in
the context of the full abstraction problem for PcF, cf. chapter 6).

8.5 Control Operators and Cps Translation

Most programming languages whose basic kernel is based on typed A-calculus,
also include control operators such as exceptions or call-with-current-continuation
(see for instance Scheme or ML). In the following we show how to type certain
control operators and how to give them an adequate functional interpretation. As
already hinted in example 8.1.1, the monad of continuations is a useful technical
device to approach these problems.
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A A-calculus with control operators. Asin section 8.2, we consider a simply
typed call-by-value A-calculus. This language is enriched with a ground type
num, numerals 0,1,..., and two unary combinators: C for control and A for
abort. Formally we have:

Types: o u=num|(c — o)
Terms: v u=z]y]...

M c=nlax|lw:ocM|MM|CM|AM .

We briefly refer to the related calculus as the A¢-calculus. In order to formalize
the behaviour of the control operators C and A it is useful to introduce the notion

of (call-by-value) evaluation context E (cf. [FFKDS87]):
Ex=[]|EM|(Ax:0.M)E .

Note that an evaluation context is a context with exactly one hole which is not
in the scope of a lambda abstraction. Using evaluation contexts one can provide
yet another presentation of the reduction relation. First, we define a collection
V' of values as follows:

Vi=n|iv:oM.

If we forget about type labels the one step reduction relation on terms is defined
as follows:

(8.) E[Az.M)V] — EIM[V/x]]
(C)  E[CM] ~ M(A\e.AE[z]) © ¢ FV(E)
(A)  E[AM] M.

We can now provide a syntactic intuition for what a continuation for a given
term is, and for what is special about a control operator. A redex A is defined
as follows:

A=A MV |CM | AM .

Given a term M = FE[A], the current continuation is the abstraction of the
evaluation context, that is Az.E[x]. We will see later that there is at most one
decomposition of a term into an evaluation context F and a redex A. A control
operator is a combinator which can manipulate directly the current continuation.
In particular the operator A disregards the current continuation and starts the
execution of its argument, while the operator C applies the argument to Ax. AFE[z],
when Az.FE[z] is the current continuation.

We illustrate by an example the role of control operators in functional pro-
gramming. We want to write a function F' : T'ree(num) — num where Tree(num)
is a given type of binary trees whose nodes are labelled by natural numbers. The
function F' has to return the product of the labels of the tree nodes, but if it finds
that a node has label 0, in this case it has to return zero in a constant number of
steps of reduction. Intuitively the termination time has to be independent from
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I'EM:——0o ' M : num .
(©) 'ECM : 0o (A) ' AM : num where o = o = num .

(By) El(Ax o0 M)V] — E[M[V/z]]
(C) FEICM] — M(Ax : 0. AF[z]) where CM : o
(A) E[AM] - M

Figure 8.14: Typing control operators and reduction rules

the size of the current stack of recursive calls. There is a simple realization of this
specification that just relies on the abort operator A (more involved examples

can be found in [HF87]):

let F(t) = F'(Ax. Ax)t
where F'= XY (Af . if empty(t') then 0
else if val(t') = 0 then kO
else val(t") « f(left(t")) = f(right(t'))) .

At the beginning of the computation we have F(t) — F'[Ax.Ax/k]. If at some
point the exceptional branch “if val(#') = 0...” is selected then the following
computation is derived, in some evaluation context E:

El(Ax.Ax)0] — F[A0] — 0 .

By applying a CPS translation (to be defined next) it is possible to obtain a purely
functional program with a similar behaviour. This is an interesting result which
finds applications in compilers’ design [App92]. On the other hand, one should
not conclude that we can forget about control operators. CPS translations tend
to be unreadable, and programming directly in CPS style is a tricky business.
In practice, control operators are directly available as primitives in functional
languages such as ML, and Scheme. We refer to [FFKDS87] for a syntactic analysis
of a A-calculus with control operators.

Typing control operators. It is possible to type the operators C and A coher-
ently with the reduction rules as shown in figure 8.14 (this typing naturally arises
in proving subject reduction, cf. proposition 8.5.2). A program is a closed term
of type num. The reduction rules (3,), (C), (A) define a deterministic procedure
to reduce programs. In the following a subscript C indicates that we refer to the
full A¢-calculus.
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Proposition 8.5.1 (unique decomposition) Suppose ¢ M : o . Then either
M is a value or there is a unique evaluation context £ and redex A such that

M = E[A].

PRrOOF. By induction on the structure of M. The only interesting case is when
M = M'M". Then M is not a value, k¢ M’ : 7 — o, and k¢ M"” : 7, for some 7
(note that we cannot type A, and C alone).

e M’ is a value. Then M' = dx : o.M;. If M" is a value take £ = [ ]
and A = (Ax : o.M)M"”. Otherwise, if M” is not a value then, by inductive
hypothesis, there are £y, Ay such that M"” = E[A4]. Then take £ = M'E; and
A=Ay

e M’ is not a value. Then, by inductive hypothesis, there are I, Ay such that
M’ = Eqi[Aq]. Then take F = F4M" and A = A;. O

Proposition 8.5.2 (subject reduction) If ¢ M : num and M —¢ N then
Fe N : num.

PROOF. Suppose there are F, A such that M = E[A]. There are three cases to
consider according to the shape of the redex.

e A= (Ax:0.M)V. This requires a simple form of the substitution lemma. We
observe that @ : o F¢ M : 7 and k¢ V : o implies Fe M[V/x] : 7.

e A=CM. Suppose ¢ CM : o. Then F¢ M : =—=o and z : ¢ F¢ FElz] : num.
Hence x : 0 F¢ AFE[z] : num, which implies F¢ Az : 0. AF[z] : =0, and finally
Fe M(Ax : 0. AE[x]) : num.

o A= AM. ¢ AM : num forces F¢ M : num. Also by definition of program
e EJAM] : num. 0

The previous propositions show that the rules (Gv), (C), (A) when applied to
a program define a deterministic evaluation strategy which preserves the well-

typing.

Remark 8.5.3 One may consider other control operators. A popular one is the
call-with-current continuation operator (callec). The typing and reduction rule
for the callee operators can be formalized as follows:

Ik:-ocbFM:o
I'F callee(Ak.M) : o

Eleallec(Ak.M)] — (Ak.kM)(Ax. AE[x]) .

Exercise 8.5.4 (1) Find a simulation of the callcc operator using the C operator. (2)
Fvaluate the expression C(Ak.(Az.n)(km)) following a call-by-value and a call-by-name
order.
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z = Me.kx MN =X e M(Am.N(An.mnk))
n = \k.kn CM = Xc.M(Amm(Az A d.kz)\x.x)
A M = Mkk(Ae. M) AM = k.M (Mx.x)

Figure 8.15: CPs translation

Cps translation. Next we describe an interpretation of the Ag-calculus into
the A¢-calculus without control operators. We begin with a translation of types.

num = num ¢ —T=0g— 7T

The interpretation of the arrow follows the monadic view where we take num as
the type of results. From another point of view observe that replacing num with
1 one obtains a fragment of the double-negation translation from intuitionistic
to classical logic. The rule for typing the C operator can then be seen as stating
the involutive behaviour of classical negation.

Note that the translation involves both types/formulas and terms/proofs. In-
deed a variant of the translation considered here was used by Friedman to extract
algorithmic content from a certain class of proofs in (classical) Peano arithmetic
(see [Fri78, Gri90, Mur91] for elaborations over this point). We associate to a
term M a term M without control operators so that:

T1:101,..., T, 0, b M o impliesxy 10y, .., 2, 10, B M0

The definition is presented in figure 8.15 (we omit types). This is known as
Continuation Passing Style translation.

Before giving the explicit typing of the translation we recall three basic com-
binators of the continuation monad.

M:o n(M) =Xk :=0o kM : —=—0o
M:o—=71 —=M=XMe:==0 M7 k(Ax : num .h(Mz))
M :—===0 p(M)=Ak:=0c . M(Mh:——o .hk):—==0 .

The explicitly typed CpS translation is given in figure 8.16.
It is now a matter of verification to prove the following, where conventionally
NNe:o=L2:0.

Proposition 8.5.5 (typing Cps translation) With reference to the transla-
tion in figure 8.15, if 'te M : o then I'Fe M . —=—g .



220 CHAPTER 8. VALUES AND COMPUTATIONS

> >
el

o kx -0 ifz:o
:—num kn : m—num

z:oM =Xk:-oc=71.k(Ax:a M): o =1

> I3 I8
Il

MN =Xz . M(Am:o—=1.N(An:ao.mnk)): -~
CM =Mk o M(Am: 20g .m(Az : g Ad 2 —num kz) e num .x) @ g
AM = Ak : —num M(Ax : num .x) 1 "—num

Figure 8.16: Typing the CPs translation

Exercise 8.5.6 There are many possible Cps translations which from a logical view
point correspond to different ways to map a proof in classical logic into a proof in
constructive logic. In particular verify that, consistently with the proposed typing, one
can give the following translation of application:

MN =Xk :—z.N(An:a.M(Am : g = T.mnk)) .

The main problem is to show that the CpS translation adequately represents
the intended behavior of the control operators. Suppose F¢ M : num, the desired
result reads as follows:

M —zn it Mid —"n.
The difficulty in proving this result consists in relating reductions of M and Mid.

Example 8.5.7 [t is not the case that for a provable judgment = M : num,
M —¢ N implies Mid —* Nid. Consider for instance (Ax.x)(An) —¢ n. Note
(Ax.z)(An) == Mk.n, whereas n = Nk.kn.

An optimized translation. Givenaterm M, a new translation (M) = Ak.M:k
is defined with the following relevant properties:

(1) M —~ (M)
(2) if M : num and M — N then M:id —* N:id.

This optimized translation is instrumental to the proof of the adequacy of the
Cps translation (cf. following theorem 8.5.14). We limit our attention to the
fragment of the calculus without control operators. An extension of the results
to the full calculus is possible but it would require a rather long detour (see
[DF92]). The translation considered here, also known as colon translation (cf.
[Plo75]) performs a more careful analysis of the term, the result is that a certain
number of redexes can be statically reduced. By this, we can keep term and
Cps-translation in lockstep, hence avoiding the problem presented in example

8.5.7.
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Definition 8.5.8 We define a y-translation on values. Frpected typing: if V : o
then (V) : a.
p(n)=n YvAr:oM)=Ax:a.M.

Lemma 8.5.9 For any V, M[y(V)/z] = M[V/z].

We associate to every evaluation context E a well-typed closed term x(F) as
follows:

&([]) = Az.x
k(E][IN]) = Im.N(An.mnk(E))
SEVIT) = Ano(Vyas(E)

Let K be the image of the function x with generic element K.

Definition 8.5.10 We define a semi-colon translation on pairs M:K, where M
is closed and K € K. Ezxpected typing: if M : 0 and K : =g then M:K : num
(note the double use of “:7).

VK = Ku(V)

Vivaer K =y(Vi)(Va) K
VIN:K = N:anayp(Vi)nk
MN:K = M:Am.N(An.mnK) .

We observe that if ' = M : o then ' - (M) : =—o. Next we prove three

technical lemmas that relate the standard and optimized CPS translations.
Lemma 8.5.11 If+ M :0, K € K, and - K : =g then MK —* M:K.

PROOF. By induction on M and case analysis of the semi-colon translation. For
instance let us consider:

MNK = (Ae.M(Am.N(An.mnk)))K .
By induction hypothesis on M, MNK —* M:Am.N(An.mnK)= MN:K. O
Lemma 8.5.12 If+ M : o and M is not a value then
E[M]:k(E") = M:x(E'[E]) .

PrRoOOF. By induction on FE. For instance let us consider £ = Ei[[ |[N]. By
induction hypothesis on Fjy:

EA[[MIN]:e(E") = [M]N:x(E'[Ey [ ]])
M:dm. N(An.mne(E'[Fi]]])

M:r(ETEA[IN]]) -
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Lemma 8.5.13 I[fF V :0 and - k(F) : =g then V:c(E) = E[V]:id.

PROOF. By induction on the structure of E.
o If F[V]is a value then F = ].

e Otherwise we distinguish three cases: (1) E' = Ei[[ |N], N not a value, (2)
E = Ei[[ V1], and (3) E = E [Vi] ]]. For instance let us consider case (1):

Vie(EL[[ IN]) = Vidm . N(An.mne(E4q] ]))
= (Am.N(An.mnr(Er[ ]))(V)
S NOw(Vynw(B] 1)
—+ N:dnp(V)nk(Fi[])) (by lemma 8.5.11)
= VN:k(E1]])
= Fi[VN]:id (by lemma 8.5.12)
= E[V]:id .

Theorem 8.5.14 (adequacy Cps-translation) Suppose ¢ M : num, where
M does not contain control operators. Then M —* n iff Mid —*n .

Proor.

(=) Suppose M —* n. By lemma 8.5.11: Mid —* M:id. We show M — M’
implies M:id —+ M':id.

El(Ax.M)V]:id (Ae.M)V:c(E) (by lemma 8.5.12)

Ove MYV )

— M[V/z]k(F) (by lemma 8.5.9)

—+ M[V/z]:k(E) (by lemma 8.5.11)

{ —* B[[V/x]M]:id if [V/x]M is a value (by lemma 8.5.13)

= F[[V/x]M]:id  otherwise (by lemma 8.5.12) .

(<) By strong normalization of f-reduction, M —* m for some numeral m,
hence by (=) Mid —* m. On the other hand, by hypothesis Mid —* n, and by
confluence n = m. O

Exercise 8.5.15 Given a program M show that when following a call-by-name evalu-
ation of M:id all redexes are actually call-by-value redexes, that is the rhs of the redex
is always a value. This fact is used in [Plo75] to simulate call-by-value reduction in a
call-by-name A-calculus.
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(z[e], s) — (e(2), )
(MNle], s) — (Mle], Nle] : )
(Ae.Mle],c:s) — (Mle[e/x]],s)
(CM[e], s) — (Mle],ret(s))
(AM[e], s) — (Mle], )
(ret(s),c:s")  — (¢ 9)

Figure 8.17: Call-by-name environment machine handling control operators

Environment machines and control operators. Environment machines
provide a simple implementation of control operators. The stack of environment
machines corresponds to the current evaluation context. The implementation of
control operators then amounts to the introduction of operations that allow to
manipulate the stack as a whole. To this end we introduce an operator ret that
retracts a stack into a closure. Roughly, if the stack s corresponds to the evalu-
ation context E then the closure ret(s) corresponds to the term Ax. AFE[x]. We
consider first the situation for call-by-name. The syntactic entities are defined
as follows (note that the collection of closures is enlarged to include terms of the
shape ret(s)).

Terms M:a=v| o M|MM|CM| AM
Environments ¢: Var — Closures

Closures ¢ = Mle] | ret(s)

Stack S=Cli...1Cp .

The corresponding machine is described in figure 8.17. The formalization for
call-by-value is slightly more complicated. Value closures and stack are redefined
as follows (as usual m stands for a marker):

Value Closures wvc ::= (Av.M)[e] | ret(s)

Stack S=Mp:1Cl... Ty, Cp .

The corresponding machine is described in figure 8.18. The last rule deserves
some explanation: if ret(s) corresponds to Az.AFE[z], ve corresponds to V, and
s" corresponds to I’ then the rule implements the reduction:

E'[(Ae. AE[z])V] — E'[AE[V]] — E[V] .

It is possible to relate environment machines and CPS interpretations [LRS94].
We give a hint of the connection. Consider the following system of domain
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(z[e], s) — (e(2), )
(MNTlel, s) — (Mle],r: Nle] : s)
(ve,r:ic:s) — (e,l:ve:s)
(ve,l: de.Mle]: s) — (M[e[ve/x]], s)
(CMJe], s) — (Mle],r : ret(s))
(AM[e], s) — (Mle], -)
(ve,l:ret(s):s')  — (veys)

Figure 8.18: Call-by-value environment machine handling control operators

equations where D is the domain of interpretation of closures, that is terms with
an environment e € Env, C is the domain of continuations with generic element
k, and R represents a domain of results:

C =D xC keC

D =C—= R
Env =Var - D e€ Env.

We interpret the terms as follows, where stop is an arbitrary but fixed element

in C, and ret(k) = A(c, k').ck.

[x]ek = e(a)k

[MNJek = [M]e([N]e, k)
[Ae.M]e(d, k) =[M]e[d/x]k
[CM]ek = [M]e (ret(k), stop)
[AM]ek = [M]e stop .

Note that in the interpretation we work up to isomorphism. If we regard the
continuation k as representing the stack s and (ret(k), stop) as representing ret(s)

then this interpretation follows exactly the pattern of the call-by-name machine
described in figure 8.17.

Exercise 8.5.16 * Define a Cps interpretation for call-by-value which corresponds to
the machine described in figure 8.18.



Chapter 9

Powerdomains

In example 8.1.1 we have presented a monad of non-deterministic computations
which is based on the finite powerset. We seek an analogous of this construc-
tion in the framework of domain theory. To this end, we develop in section
9.1 the convex, lower, and upper powerdomains in categories of algebraic cpo’s
[Plo76, Smy78]. In order to relate these constructions to the semantics of non-
deterministic and concurrent computation we introduce in section 9.2 Milner’s
Ccs [Mil89], a simple calculus of processes interacting by rendez-vous synchro-
nization on communication channels. We present an operational semantics for
Ccs based on the notion of bistmulation. Finally, in section 9.3 we give a fully
abstract interpretation of CcS in a domain obtained from the solution of an
equation involving the convex powerdomain [Abr9lal.

9.1 Monads of Powerdomains

We look for a construction in domain theory which can play the role of the finite
(or finitary) subsets in the category of sets. The need for this development clearly
arises when combining recursion with non-determinism. One complication is that,
in the context of domain theory, there are several possible constructions which
address this problem. Their relevance might depend on the specific application
one is considering. In the following we concentrate on three powerdomains which
rely on the notion of semi-lattice.

Definition 9.1.1 A semi-lattice is a set with a binary operation, say *, that is
associative, commutative, and absorptive, that is:

(x*xy)*z=ax*x(y*z), x*xy=y*x, T*xTr=20.

From our perspective we regard the binary operation of a semi-lattice as a
loose generalization of the union operation on powersets. We seek a method
for generating freely this algebraic structure from a domain. We illustrate the

225
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construction for preorders and then extend it to algebraic cpo’s. Let us consider
semi-lattices whose carrier is a preorder.

Definition 9.1.2 A preordered semi-lattice is a structure (P, <,*) where (P, <)
is a preorder, (P, *) is a semi-lattice, and the semi-lattice operation is monotonic,
that isx < 2’ and y <y’ implies xxy < a2'xy’. Moreover, we say that a preordered
semi-lattice (P, <,*) is a join preordered semi-lattice if it satisfies x < @ *y, and
a meet preordered semi-lattice if it satisfies v xy < x.

Incidentally, we note in the following exercise that every semi-lattice gives rise to
a poset with specific properties.

Exercise 9.1.3 Given a semi-lattice (P, ) define z <. y iff x + y = y. Show that
(P, <) is a poset with lub’s of pairs. Fzhibit a bijective correspondence between semi-
lattices and posets with lub’s of pairs.

However, we are looking in the other direction: we want to build a semi-lattice
out of a poset. We define the category in which we can perform this construction.

Definition 9.1.4 We denote with SP the category of preordered semi-lattices
where a morphism [ : (P, <,%) — (P',<',«') is a monotonic function f: (P, <
)= (P, <) such that f(x +y) = f(x) « f(y). Let ISP (MSP) be the full

subcategory of SP composed of join (meet) preordered semi-lattices.

The category SP has a subcategory of semi-lattices whose carriers are alge-
braic cpo’s with a continuous operation *, and whose morphisms are continuous.

Definition 9.1.5 We denote with SAcpo the category of preordered semi-lattices
(P, <,%) such that (P, <) is an algebraic epo, the operation * is continuous, and
a morphism f : (P,<,%) — (P',<',«) is a continuous function f : (P,<) —
(P',<") such that f(x*y) = f(x)« f(y). Let JSAcpo (MSAcpo) be the full

subcategory of SAcpo composed of join (meet) preordered semi-lattices.

We show that given an algebraic cpo there is a freely generated semi-lattice in the
category SAcpo. In view of the technique of ideal completion (cf. proposition
1.1.21) this problem can be actually decomposed in the problem of freely gener-
ating a semi-lattice in the category SP, and then completing it to a semi-lattice
in the category SAcpo. So, let us consider the situation for preorders first. We
fix some notation. Let P;n(X) denote the non-empty finite subsets of X.

o P is the category of preorders and monotonic maps.

o Forget : SP — P is the functor that forgets the semi-lattice structure.
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Theorem 9.1.6 The functor Forget : SP — P has a left adjoint Free : P — SP
that is defined as:

Free(P) = (P}, (P). .,U), Free(f)(X) = f(X)

where the semi-lattice operation is the set-theoretical union, and the so-called
convex preorder is defined as:

XY iff VeeXJyeY(e<y)and VyecY Iz e X(z <y).

PROOF. The natural transformation 7p s : P[P, Forget(S)] — SP[Free(P), 5] is
defined as:

Tes(fIX) = flay) * - * f2,)

where X = {xy,...,2,} € P;n(P) and * is the binary operation in S. The inverse
is defined as Tﬁg(h)(p) = h({p}). We have to verify that these morphisms live in
the respective categories.

e 7ps(f) is monotonic. Suppose {w1,...,2,} =X <. Y ={v1,...,ym}. By the
definition of the convex preorder we can find two multisets X' = {|wy,...,w}
and Y’ = {|z1,...,z[} in which the same elements occur, respectively, as in X
and Y and such that w; < z;, ¢ = 1,...,[. By monotonicity of f, and of the
binary operation in S, we have:

flwi) s flwr) s flz1) % f(z)

and by absorption:

tes()X) = flw) *...x f(w), 7ps(F)Y) = flz1)*...% f(z1) .

e 7ps(f)is a morphism in SP. Immediate by associativity and absorption. We

leave to the reader the verification that 7p & is well defined as well as the check
of the naturality of 7. a

Remark 9.1.7 The adjunction described in theorem 9.1.6 canonically induces
(cf. theorem B.8.7) a convex monad (P, {_},U), where:

( <
{}: D — P(D), {-Hd) ={d}
U: P.P.(D)) = P.(D), U{ar,...;en}t=21U-- Uz, .

Theorem 9.1.6 can be adapted to join and meet preordered semi-lattices by
following the same proof schema.
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Theorem 9.1.8 The forgetful functors Forget : JSP — P and Forget : MSP —
P have left adjoints Freezgp : P — JSP and Freepsp : P — MSP, respectively,
defined as:

Freeysp(P) = (Pfiu(P), <i1,U)

Freepsp(P) = (P;n(P),Su,U)

Freeysp(f)(X) = Freemsp(f)(X) = f(X)

where the semi-lattice operation is the set-theoretical union, and the so-called
lower and upper preorders are defined as: !

XY ff Vee XdyeY(x<y)
X< Y iff vyeYdee X(a<y).

Example 9.1.9 We consider the poset O = {L, T} where as usual L < T.
We suppose that the semantics of a non-deterministic program is an element of
Pr.(0) = {{L} {T}{L, T}}, L eapressing divergence and T convergence. The
convex, lower, and upper preorders induce three distinct preorders on 77}';»71(0). In
the convex preorder { L} <. {L, T} <.{T}, in the lower preorder{L, T} ={T},
and in the upper preorder { L} = {L, T}. In this context, the lower preorder can
be associated to partial correctness assertions, as it compares the outcomes of
a program neglecting divergence, whereas the upper preorder can be associated to
total correctness assertions, as it collapses programs that may diverge. The convex
preorder is the most discriminating, as it compares computations with respect to
both partial and total correctness assertions.

Let us see how theorem 9.1.6 can be extended to the category Acpo of alge-
braic cpo’s and continuous functions via the ideal completion.

o There is a functor Forget : SAcpo — Acpo.

o Let Ide : P — Acpo be the ideal completion from preorders to algebraic
cpo’s which is left adjoint to the relative forgetful functor. Similarly, one can
define a functor Side : SP — SAcpo, which makes the ideal completion of the
semi-lattice and extends the monotonic binary operation to a continuous one.

Definition 9.1.10 Let D be an algebraic cpo and let x stand for ¢, [, or u. Then
we define a function P,[]: Acpo — Acpo as follows: *

P,[D] = Ide(PF,,(K(D)), <) .

Proposition 9.1.11 (1) If D is finite then P.[D] can be characterized as the
collection of convex subsets with the convexr partial order. Namely, we have

({Con(u) | v € P, (D)}, <.), where Con(u) = {d | 3d',d" € u(d < d < d')}.

!Observe the combination of the terminologies for semi-lattices and preorders: the lower
preorder occurs with join preordered semi-lattices, and the upper preorder occurs with meet
preordered semi-lattices. Note that X <. Y iff X <; Y and X <, Y.

ZNote the difference between, say, P.(_) as defined in remark 9.1.7, and P.[] as defined here.
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(2) For the flat domain (w)y the order P.[(w)L] is isomorphic to the following
set with the convex preorder, {u | u € Pf (w)} U{uU{L} |u Cw}.

PROOF HINT. (1) This follows from the observation that X(D) = D and the fact
that the ideal completion of a finite set does not add any limit point. (2) Left as
an exercise. Note that every computation with a countable collection of results
may also diverge. O

Exercise 9.1.12 Characterize P,[D] when x equals w or | and D is finite or (w), .

The function P.[_] can be extended to a functor which is left adjoint to the
forgetful functor.

Proposition 9.1.13 There is a left adjoint Free to the forgetful functor Forget :
SAcpo — Acpo.

PROOF HINT. We define Free(D) = P.[D]. Given f: D — F, we define Free(f)
on the principal ideals by:

Free(f)(} {di, ..., dn}) = {u € PEK(E)) | u <. {fdi,..., fdn}} .

Note that this is an ideal, and that Free(f) can be extended canonically to P.[D].
O

Exercise 9.1.14 Prove the analogous of proposition 9.1.13 for the categories JSAcpo
and MSAcpo.

Exercise 9.1.15 Show that the category of Scott domains is closed under the lower
and upper powerdomains constructions. Hint: it is enough to prove that every pair
of compact elements which is bounded has a lub. On the other hand, show that the
category of Scotlt domains is not closed under the convexr powerdomain construction.
Hint: consider the domain T? where T = {1, tt, [f}.

Exercise 9.1.16 Let D be a bifinite domain and let {p;};cr be the associated directed
set of image finite projections such that \/;c;p; = tdp. Show that \/;c; P.[p;] = P.[id].
Conclude that bifinite domains are closed under the convex powerdomain. Fxtend this
result to the lower and upper powerdomains.

9.2 (Ccs

The semantics of the programming languages considered so far associates to every
input a set of output values. For instance, a finite set if the computation is non-
deterministic but finitely branching (cf. example 8.1.1(2)). On the other hand,
system applications often require the design of programs which have to interact
repeatedly with their environment (e.g. other programs, physical devices,...).
In this case the specification of a program as an input-output relation is not
adequate. In order to specify the ability of a program to perform a certain action
it is useful to introduce the simple notion of labelled transition system.
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Definition 9.2.1 A labelled transition system (lts) is triple of sets (Pr, Act, —)
where —C Pr x Act x Pr.

We have adapted our notation to a process calculus to be introduced next, Pr
stands for the collection of processes and Act for the collection of actions. We
write p = q for (p, a, q) €—, to be read as p makes an action a and becomes q.

Definition 9.2.2 A lts is said to be image finite if, for all p € Pr, a € Act, the
set {p' | p = p'} is finite. An image finite lts can be represented as a function
—: Pr x Act — Pri(Pr).

Next we present (a fragment of ) Milner’s Calculus of Communicating Systems
(Ces) [Milg9]. Ccs is a model of computation in which a set of agents interact by
rendez-vous synchronization on communication channels (syntactically one can
think of an agent as a sequential unit of computation, that is as a process that
cannot be decomposed in the parallel composition of two or more processes).

In general several agents can compete for the reception or the transmission on
a certain channel, however each accomplished communication involves just one
sending and one receiving agent. Moreover any agent may attempt at the same
time a communication on several channels (a non-deterministic sum is used for
this purpose).

In CcS communication is pure synchronization, no data are exchanged be-
tween the sender and the receiver. Therefore, it is not actually necessary to
distinguish between input and output. All we need to know is when two interac-
tions are one dual of the other. This idea can be formalized as follows. Let L be a
finite collection of labels (we make this hypothesis to simplify the interpretation
described in section 9.3). Each label [ € L has a complement [ which belongs to
L ={l|l€ L}. The overline symbol can be understood as a special marker that
one adds to an element of L. The marker is chosen so that L and L are disjoint.

We denote with a, b, ... generic elements in LU L. The complement operation
is extended to L by making it involutive, that is @ = a. Finally we define the
collection of actions Act = LULU{7}, where 7 ¢ LUL. We denote with a, 3, ...
generic elements in Act.

The actions a,@ may be understood as complementary input /output synchro-
nization operations on a channel. The action 7 is an internal action in the sense
that a process may perform it without the cooperation of the environment.

In figure 9.1, we define a calculus of processes which includes basic combina-
tors for termination, sequentialization, non-deterministic sum, parallel composi-
tion, and restriction.

A process is well-formed if it is: (i) closed, that is all process variables are
in the scope of a fir operator, and (ii) guarded, that is all (bound) process
variables are preceded by a prefix, for instance fir X.a.X is guarded whereas
fixY.(firX.a.X)+Y is not. In the following we always assume that processes are
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Process variables. V == XY, 7 ...
Processes. P:=0|V]|a.P|P+P|P|P|P\a|fixV.P

Figure 9.1: Syntax Ccs

well-formed, these are the objects for which an operational semantics is defined.
The intuitive operational behaviour of the process operators is as follows. 0 is
the terminated process which can perform no action. «.P is the prefizing of
a to P, that is a.P performs the action a and becomes P. P + P’ is the non-
deterministic choice (sum) between the execution of P and that of P’. The choice
operator presented here is very convenient in the development of an algebra of
processes. On the other hand its implementation on a distributed architecture
requires sophisticated and expensive protocols. For this reason most parallel
languages adopt a restricted form of non-deterministic choice. P | P’ is the
parallel composition of P and P’. P\a is the process P where the channel « has
become private to P. This operation is called restriction. Finally, fiz is the least
fix-point operator with the usual unfolding computation rule. We define next
a lts on processes. The intuitive interpretation of the judgment P =5 P’ is the
following:

o If a = 7 then P may reduce to P’ by means of an internal autonomous
communication.

o If @ = a then P may reduce to P’ provided the environment supplies a dual
action @.

The definition of the lts proceeds non-deterministically by analysis of the process
expression structure. The rules are displayed in figure 9.2. The rules (sum)
and (comp) have a symmetric version which is omitted. Given a process P one
may repeatedly apply the derivation rules above and build a possibly infinite tree
whose edges are labelled by actions.

Exercise 9.2.3 (1) Show that any process without a fix operator generates a finite
tree. (2) Verify that any Ccs process generates an image finite lts. (3) Consider the
non-guarded process P = fir X.((X.04 a.0) | b.0). Verify P % 0[56.0|---]5.0, for an
arbitrary number of b.0’s. Conclude that Ccs with unguarded recursive definitions is
not image finite.

The tree representation is still too concrete to provide a reasonable semantics
even for finite CCS processes built out of prefixing and sum. In the first place
the sum should be commutative and associative, and in the second place two
identical subtrees with the same root should collapse into one. In other words
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P P
(prefie) — P p R Y
PSP PSP PSP
com 3 sync T
(comp) PP, S PP, (syne) PP, = PP
P3P ad¢{aal PlfizX.P/X] > P’
(res) P\a N P\a (fix) fix X.P &5 p

Figure 9.2: Labelled transition system for Ccs

the sum operator of Ccs should form a semi-lattice with 0 as identity. For
processes generating a finite tree, it is possible to build a canonical set-theoretic
representation. We define inductively:

STy =0 STps1 = Prin(Act x ST,) ST, =U{ST, | n < w} .

If P generates a finite tree then let [P] = {(«,[P']) | P = P’}. For instance one
can compute:

[[a.() | E'O]] = {(av {(67 Q)})v (7—7 ®)7 (67 {(av Q)})} .

Exercise 9.2.4 Verify that the previous interpretation is well-defined for processes
generating a finite tree and that it satisfies the semi-lattice equations.

There are serious difficulties in extending this naive set-theoretic interpreta-
tion to infinite processes. For instance one should have:

[fir X.a.X] = {(a,{(a,{(a,...

This seems to ask for the construction of a set A such that A = {(a, A)}. As-
suming the standard representation of an ordered pair (x,y) as {x,{x,y}} we
note that this set is not well-founded with respect to the belongs to relation as
A € {a, A} € A. This contradicts the foundation axiom which is often added to,
say, Zermelo-Fraenkel set-theory (see e.g. [Jec78]).

On the other hand it is possible to remove the foundation axiom and de-
velop a non-standard set-theory with an anti-foundation axiom which assumes
the existence of sets like A (see in particular [Acz88] for the development of the
connections with process calculi). In section 9.3, we will take a different approach
which pursues the construction of a set-theoretical structure in domain theory re-
lying on the convexr powerdomain. The initial idea, is to associate to [fiz X.a.X]
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the lub of elements of the shape {(a,{(a,...,{(a, L)}...)})}, modulo a suitable
interpretation of the set-theoretical notation.

In the following we develop the operational semantics of Ccs. To this end we
introduce the notion of bisimulation [Par81] which is a popular notion of equiva-
lence on 1ts’s. Let (Pr, Act,—) be a lts. We define an equivalence relation over
Pr that can be characterized as the greatest element of a collection of relations
known as bisimulations or, equivalently, as the greatest fix-point of a certain
monotonic operator defined on the powerset of binary relations on Pr.

Definition 9.2.5 (operator F) Let (Pr, Act,—) be a given lts. We define
F :P(Prx Pr)— P(Prx Pr) as:

F(X)= {pa)| ¥ alp=p =3¢(q=q and (p,¢) € X)) and
Vi alq=q¢ =3 (p=p and (p',¢) € X))} .

Definition 9.2.6 The operator F is iterated as follows:

F = Pr x Pr Frtt = F(F*")
FA = Nucr F* for X limit ordinal .

Proposition 9.2.7 The operator F is a monotonic operator over P(Pr x Pr).

PROOF HINT. In the definition 9.2.5, the relation X occurs in positive position.
O

It follows from exercise 1.1.9 that the operator F has a greatest fix-point (gfp),
where gfp(F) = M., F", for some ordinal p.

Proposition 9.2.8 If the lts is image finite then the operator F preserves codi-
rected sets, in particular gfp(F) = Nypew FF.

PROOF. Suppose {S;}ics is a codirected set of relations over Pr. The interesting

point is to show:

(F(S:) € F(()50) -

el el
Suppose Vi € I (pS; q) and p = p'. By hypothesis, Vi € I 3¢’ (¢ = ¢ and p' S; ¢').
Moreover, the set Q = {¢' | ¢ = ¢ and Fi € I(p'S;q')} is finite, and the
set {S;}ier is codirected. It follows that there has to be a ¢ € @ such that
Vi e I(p'S;q). To see this, suppose ¢',¢" € Q, p' S; ¢, and p' S; ¢", for i,5 € I.
Then 3k € 1(S;,5; 2 Sk). Moreover, 3¢ € Q (p Sk q"), from which pS; ¢"”
and pS; ¢ follows. By applying a symmetric argument on () we can conclude

PF(Nier Si) q. O

Definition 9.2.9 (bisimulation) Let (Pr, Act,—) be a given lts. A binary re-
lation S C Pr x Pr is a bisimulation if S C F(S).
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Exercise 9.2.10 Show that: (i) the empty and identity relations are bisimulations,
(ii) bisimulations are closed under inverse, composition, and arbitrary unions, and
(iii) there is a greatest bisimulation. Verify that bisimulations are not closed under
(finite) intersection.

Definition 9.2.11 Let Pr be the collection of CCs processes. Let F be the oper-
ator related to CCS bisimulation. We denote with ~ the largest CCS bisimulation
and we set ~"= F*.

Exercise 9.2.12 Show for Ccs that ~=~“. Hint: apply exercise 9.2.3 and proposition
9.2.8.

Exercise 9.2.13 Prove that ~ is a congruence for prefiving, sum, parallel composition,
and restriction. Hint: to prove that P ~ () il is enough to find a bistmulation S such
that P.S Q. Let [Pr] be the collection of equivalence classes generated by the greatest
bisimulation ~ on the set of Ccs processes. Fxtend the operations + and | to [P] and
prove that ([Pr], +,[0]) is a semi-lattice, and that ([Pr],|,[0]) is a commutative monoid.

The previous exercise suggests that bisimulation equivalence captures many
reasonable process equivalences. However, as stated it is still unsatisfactory as
the internal action 7 and an input-output action on a channel are treated in the
same way. This implies that for instance, the process 7.7.a.0 is not bisimilar to
the process 7.a.0. One needs to abstract to some extent from the internal actions.
A standard approach to this problem, is to consider a weak labelled transition
system in which any action (in the sense of the lts defined in figure 9.2) can be
preceded and followed by an arbitrary number of internal T-actions.

Definition 9.2.14 Labelled weak reduction, say =, is a relation over CCS pro-
cesses which is defined as follows:

PP iff P(S) S (D) P
PE P iff PSP

Weak bisimulation is the greatest bistmulation relation built on top of the weak
Its (which is uniquely determined according to definition 9.2.9).

The properties of weak bisimulation with respect to CcS operators are de-
scribed in [Mil89]. We will meet again this equivalence in chapter 16, for the time
being we just observe some basic properties.

Exercise 9.2.15 Verify that the following equations hold for weak-bisimulation:

arP=aP P+ P=17P a(P+7.Q)+a.Q=a(P+7.0Q).
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9.3 Interpretation of Ccs

We define an interpretation of CcS in the bifinite domain D which is the initial
solution of the domain equation:

D = P[(Act x D).] @ (1), (9.1)

where & is the coalesced sum (cf. definition 1.4.22), (1)L is the lifting (cf. defi-
nition 1.4.16), and 1 is the one point cpo. The role of the adjoined element (1),
is to represent the terminated process 0 (cf. [Abr91b]). We denote with F' the
functor associated to P.[(Act x ) ] & (1)L.

We will show that the related interpretation captures bisimulation (a full
abstraction result). To this end, we will introduce a notion of syntactic approxi-
mation (definition 9.3.5). A syntactic approximation plays a role similar to that
of finite Bohm trees in the A-calculus (cf. definition 2.3.1): it provides an ap-
proximate description of the operational behaviour of a process. It turns out
that syntactic approximations, are interpreted in the domain D by compact el-
ements. The key lemma 9.3.12 relates syntactic and semantic approximations.
Full abstraction, is then obtained by going to the limit.

The existence of an initial solution to equation 9.1 can be proven by the tech-
nique already presented in section 3.1 and generalized in section 7.1. However,
in order to relate denotational and operational semantics of CcS it is useful to
take a closer look at the structure of D. The domain D is the w-colimit in Bif®
of the w-chain {F"(1), F"( fo) }new where the morphism fo : 1 — F/(1) is uniquely
determined in Bif? (cf. theorem 7.1.15). We note that, for each n € w, the
domain F(1) is finite. Therefore the ideal completion has no effect, and we have
that F"t1(1) = (P;n((Act x F*(1)).) & (1)1, <.). Every compact element in
D can be regarded as an element in (1), for some n € w, and, vice versa,
every element in F*(1) can be regarded as a compact element in D. It is actually
convenient to build inductively the collection of compact elements.

Definition 9.3.1 (compacts) The sets K,,, for n € w, are the least sets such
that:

{J—} S [(0 @ € [X7n+1

a; € Act,d; € K,,m >1 a; € Act,d; € K,,,m >0
{(Ozl, dl), ceey (Oém, dm)} - [X7n+1 {J_} U {(Ozl, dl), ceey (Oém, dm)} - [X7n+1

Proposition 9.3.2 For anyn € w, (1) K,, C Kpy1, and (2) if d,d'" € K, then
dud e K,.

PROOF HINT. By induction on n. a
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It is easy to verify that elements in K, are in bijective correspondence with ele-
ments in F™(1). The bijection becomes an order isomorphism when the elements
in K =U

hew I, are ordered as follows.

Definition 9.3.3 (order) Let < be the least relation on K such that (I,.J can
be empty):

~

Vie Idj € J(a; =a} and d; < d)
VieJdicl(a;=aland d; < d))
{lai,di) |1 e 1} <{(af,d}) | j € J}

R

~ s

[~

ViE[EIjEJ(oq:oz; anddigd;)
{L}U{(ai,di) i€ T}y <{(",d:)|jeJ}

R

ViE[EIjEJ(oq:oz; anddigd;)
{L}U{landi) |ie I} <{L}U{(a},d}) [j €} °

R

This provides an explicit description of the compact elements. We can assume
D = Ide(K, <) with the inclusion order, and K(D) ={] d | d € K'}. We denote
with 7, .J elements in D. We can explicitly define a chain {p, }.c. of image finite
projections on D by:

pa(l)=1NK, (9.2)

In figure 9.3 we define inductively on K monotonic functions corresponding to
the Ccs operators. Of course, these functions can be canonically extended to
continuous functions on D. In general, given f : K" — K we define f: D" — D
as:

f(hyo L) =L fldi, .. dy) | dj eI, 5=1,...,n} (9.3)
Next we define a notion of syntactic approximation of a process. Syntactic ap-
proximations can be analysed by finite means both at the syntactic level, as it is
enough to look at a finite approximation of the bisimulation relation (proposition
9.3.7), and at the semantic level, as they are interpreted as compact elements (def-
inition 9.3.8). To this end we suppose that the language of processes is extended
with a constant L. The notion of labelled transition system and bisimulation for
this extended calculus are left unchanged (so L behaves as 0, operationally).

Definition 9.3.4 We define inductively a collection of normal forms Ny:

Vie [(N;eNy) 4 <w
1 ENO ZZ'GIO[Z'.NZ' ENk_H

If I ={1,...,n} then ¥;cr0;.N; is a shorthand for a;.Ny + -+ + a,,.N,,. Con-
ventionally 0 stands for the empty sum. We consider terms up to associativity
and commutativity of the sum, hence the order of the summands is immaterial.
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Nile K Nl =
Pre,: K - K Pre,(d) ={(a,d)}
Sum: K* - K Sum(d,d') =duUd

Res, : K — K
Res ({L})
esa(0)
esa({(ai,di) [ € 1})

Res ({L} U {(ci,di) [1 € 1})

}

{L
0
{(ci, Reso(d;)) | i € 1,00 ¢ {a,a}} (1 #0)
{L}U{(eu, Reso(dy)) |1 € I, & {a,a}}

Par: K* 5 K

Par({L},d) = Par(d,{L}) {L}
Par(®,d) = Par(d,D) d
{(e, Par(d,{(o/,d')}))}U
Par({(a,d)},{(a/,d)}) {(e’, Par({(a, d)}, d))yU
{(r, Par(d,d")) |a =o' € LU L}
Par({d; |ve I},{d; |7 € J}) =Uierjes Par(di,d;) (81 +4J >3, $1,8J > 1)

Figure 9.3: Interpretation of CCS operators on compact elements
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Definition 9.3.5 (syntactic approximation) For any process P, we define a
k-th approxzimation (P), € Ny, as follows:

(P)o =1 (. Py = a.(P)y
(P+Piyr = (Pl + (P (fir X Pl = ([fiz X P/X]P )i

(P)it1 = Sierai. P
(P\@)k+1 = X{ai.(P\a)r |1 € 1,0 & {a,a}}

(P)rs1 = Bierey. N (P)gy1 = Bjeg ;. N
{ Yieroi (N | Yies 35 Ni)r+
(P | P =< YjeaBi(Bierai Ny | Ni)p+
Z{T(NZ | N]/)k | 1 € [, ] - J,Oéi :ﬁ_]} .

To show that the definition is well-founded we define a measure nfiz on processes
that counts the number of recursive definitions at top level:

nfix(0) = n :1:( ) = nfiz(a.P) =0

nfix(P\a) = nfiz(P)

Wfir(P | P') = nfie(P + P') = mar{nfir(P), nfix(P')}
nfie(fir X.P) =1 + nfiz(P) .

By the hypothesis that recursive definitions are guarded we have nfiz(fir X.P) =
L + nfiz (P[fir X.P/X]).

Exercise 9.3.6 Prove that the definition of k-th approximation is well-founded. by
induction on (n, nfix(P), P).

Proposition 9.3.7 Let P, Q) be processes. Then:
P~Q iff Ykew(P~"(Q) .

PROOF. First, we observe that for any process P:

(P)O — J_ E NO
(Pisr = S{a (P | PSP} e Nigs .

It follows that for any process P, and for any k € w, (P); ~* P. Combining with
proposition 9.2.8 and using the transitivity of the relation ~*
that:

we can conclude

Pr~Q iff Ve€cw(P~FQ) iff VEcw((P)~"(Q)h) .
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Definition 9.3.8 We define an interpretation in K of the normal forms (with
reference to the operators in figure 9.3):

[L1*  ={Ll} oot =0 ! !
[o.NT* = Prea(IN]") [N+ NT% = Sum([N]", [N]*) .

Proposition 9.3.9 Let NN’ € N, be normal forms, for n € w. Then (1)
[N]® € K,,, and (2) N ~™ N’ iff [N]¥ = [N]¥.

PROOF HINT. By induction on n. a

The interpretation of normal forms is canonically lifted to all processes, by
taking the continuous extensions (cf. equation 9.3) of the functions defined in
figure 9.3, and interpreting fiz as the least fix-point. This is spelled out in the
following definition.

Definition 9.3.10 (interpretation) Let V' be the collection of process vari-
ables, and let p : 'V — D be an environment. We interpret a process P in
the environment p as follows:

[0]p =1 (0)

[a.Plp  =U{l {(a,d)}) | d € [P]p}

[P+ Plp =U{l(dU d’) | d € [P]p,d" € [P]p}

[P\alp  =U{l (Res.(d)) | d € [P]p}

[P|PTp =U{l (Par(d,d))|de [[P]],ovd’ c [Pp}
[fizX.Plp = Uneu In with Iy =} ({L}), Ly = [Plplls/X]
[XTp = p(X) .

Exercise 9.3.11 Prove that the function A\d.[P]p[d/X] is continuous.

Lemma 9.3.12 (approximation) For any process P, n € w,

po([P]) = IPTOV Ky = [(P)n] -

PROOF HINT. By induction on (n, nfix(P), P). We consider a few significative
cases.

a. P We compute:

[o.P) A Ko = U{L ({(end)}) | d € [PIN K, )
= U ({(a,d)}) [ d < [(PLIF)
=L ({(o, [(P)IF)) =1 ([(@.P)uia]) -

fir X.P A direct application of the induction hypothesis:

[fie X.P] N Kpp1 = [PlfieX.P/X]] O Ky

=L ([(P[fizX.P/X])ua ]¥)
= ([(fixX.P)ppi]™) .
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P | P We have:

[PIP]N Ko =U{ (Par(d,d)) [ d € [P],d" € [P} N Knpy
=U{} (Par(d,d")) | d € [P]N Kpy1,d € [PTN Kyp1} N K
= U{L (Par(d,d)) | d < [(P)osil o' € [(Pn ]} 0 Ko
=} (Par([(P)nra]™, [(P)nsa]™)) O Kor =L ([(P | P')nia]™) -

O
Theorem 9.3.13 (full abstraction) Let P, () be CcS processes. Then:
P~@Q if [PI=1[Q].

PROOF. By proposition 9.3.7, P ~ Q iff Vk € w((P)r ~* (Q)x). By propo-
sition 9.3.9, Vk € w((P)r ~* (Q)) iff VE € w[(P)x] = [(Q):]. By lemma
9.3.12, [(P)x] = pe([P]), and since Ve, pr = id, we have [P] = [Q] iff
vk € w (pe([PT) = p([Q]))- 0

Remark 9.3.14 (1) Not all compact elements in D are definable by a Ccs pro-
cess. Indeed, if this was the case then full abstraction would fail. For instance
we would have P+ 1 ~ P, whereas in general [P + L] # [P]. It is possible
to refine the bisimulation relation by taking diverging elements into account (cf.
[Abr91b]). (2) At the time of writing, the denotational framework described here

has not been adapted in a satisfying way to capture weak bisimulation.



Chapter 10

Stone Duality

We introduce a fundamental duality that arises in topology from the consideration
of points versus opens. A lot of work in topology can be done by working at the
level of opens only. This subject is called pointless topology, and can be studied
in [Joh82]. It leads generally to formulations and proofs of a more constructive
nature than the ones “with points”. For the purpose of computer science, this du-
ality is extremely suggestive: points are programs, opens are program properties.
The investigation of Stone duality for domains has been pioneered by Martin-Lof
[ML83] and by Smyth [Smy83b]. The work on intersection types, particularly in
relation with the D* models, as exposed in chapter 3, appears as an even earlier
precursor. We also recommend [Vic89], which offers a computer science oriented
introduction to Stone duality.

In sections 10.1 and 10.1 we introduce locales and Stone duality in its most
abstract form. In sections 10.2 and 10.4 we specialise the construction to Scott
domains, and to bifinite domains. On the way, in section 10.3, we prove Stone’s
theorem: every Boolean algebra is order-isomorphic to an algebra of subsets of
some set X, closed under set-theoretic intersection, union, and complementation.
The proof of Stone’s theorem involves a form of the axiom of choice (Zorn’s
lemma), used in the proof of an important technical lemma, known as Scott
open filter theorem. In contrast, the dualities for domains can be proved more
directly, as specialisations of a simple duality, which we call the basic domain
duality. (We have not seen this observation in print before.) Once the dualities
are laid down, we can present the domain constructions “logically”, by means
of formulas representing the compact opens. This programme, which has been
carried out quite thoroughly by Abramsky [Abr91b], is the subject of sections
10.5 and 10.6.

241
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10.1 Topological Spaces and Locales

If we abstract away from the order-theoretic properties of the opens of a topology,
we arrive at the following definition.

Definition 10.1.1 (locale) A locale, or a frame, is an ordered set (A, <) satis-
fying the following properties:

1. every finite subset of A has a greatest lower bound,
2. every subset of A has a least upper bound,

3. the following distributivity property holds, for any x € A and Y C A:
s AVY)=\{zAy|lyeY}h

In particular, there is a minimum (the empty lub) and a maximum (the empty
glb). For any topological space (X, QX), the collection 2.X, ordered by inclusion,
is a locale. The elements of a locale will be often called opens, even if the locale
does not arise as a topology. We make some remarks about this definition:

e Condition (1) is implied by condition (2), which in fact implies that all glb’s
exist. But the maps we consider being those which preserve finite glb’s and
arbitrary lub’s, it is natural to put condition (1) explicitly in the definition
of a locale.

o Locales are equivalently defined as complete Heyting algebras, where a com-
plete Heyting algebra is a complete lattice which viewed as a partial order
is cartesian closed (cf. definition 4.2.3 and example B.5.3).

Definition 10.1.2 (frames/locales) The category Frm of frames is the cate-
gory whose objects are locales, and whose morphisms are the functions preserving
finite glb’s and all lub’s. The category Loc of locales is defined as Frm®". Locales
and frames are named such according to which category is meant.

Since we develop the theory of locales as an abstraction of the situation with
topological spaces, it is natural to focus on Loec: for any continuous function

f:(X,0X) — (Y,QY), the function f~! is a locale morphism from QX to QY.

Definition 10.1.3 The functor ) : Top — Loc, called localisation functor, is
defined by
QX,0X)=0X Q) ="

The two-points flat domain O = {L, T} (cf. example 1.1.6) lives both in
Top (endowed with its Scott topology {0, {T},{L,T}}) and in Loc, and plays
a remarkable role in each of these categories:
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Top: For any topological space (X,QX), the opens in QX are in one-to-one
correspondence with the continuous functions from (X, QX) to O.

Loc: O considered as a locale is terminal in Loc: let (A, <) be a locale, and
f+A—={L T} be alocale morphism. Then f(L) = L and f(T) =T,
since the minimum and maximum elements must be preserved.

The fact that O is terminal in Loc suggests a way to recover a topological
space out of a locale. The standard categorical way of defining a point in an
object A is to take a morphism from the terminal object. We shall thus define
points of a locale A to be locale morphisms g : { L, T} = A. One may approach
the reconstruction of points from opens in a perhaps more informative way by
analyzing the situation of the locale QX of some topological space X. If we try
to recover a point x out of the locale QX the simplest idea is to collect all the
opens that contain it. The fact that the mapping @ — {U | @ € U} is injective
is exactly the property of the topology to be Ty. Any set F' = {U | 2 € U} («
fixed) has the following properties:

1. It is closed under finite intersections.
2. It is upward closed.
3. fPCQOX and UP € F, then U € F for some U in P.

The first two conditions are those defining filters (cf. chapter 3). We abstract
the three properties together in the following definition, which generalises and
extends definition 3.3.8.

Definition 10.1.4 ((completely coprime) filter) Let A be a partial order. A
filter over A is an ideal over A°P, that is, a non-empty subset F' such that:

1. Ifr e Fand x <y, theny € F.

2. Nzx,ye Fdze F z<uz,y.
A filter F in (a complete lattice) A is called completely coprime if:
3. VYCA (VY eF = dyeY yeF)
We consider two restrictions of condition (3) (in a lattice, in a depo, respectively):

3.VY Crn A (VY €eF = JyeY yel)

VY Cuir A VY €F = JyeY yeF)

A filter satisfying (3') is called coprime, and a filter satisfying (3") is called a
Scott-open filter (indeed, (3") is the familiar condition defining Scott opens, cf.
definition 1.2.1). We write:

F(A) for the set of filters of A,
Spec(A) for the set of coprime filters of A,
Pt(A) for the set of completely coprime filters of A.

All these sets are ordered by inclusion.



244 CHAPTER 10. STONE DUALITY

Remark that if L =\ @ € F, then F' is not coprime. In particular, coprime
filters are proper subsets.

Here is a third presentation of the same notion. The complement G of a
completely coprime filter F' is clearly closed downwards, and is closed under
arbitrary lub’s. In particular G =] (\V (), and we have, by conditions (1) and
(2):

NP <\ G (P finite) = IpePp<\/G.

Definition 10.1.5 ((co)prime) Let (X, <) be a partial order. An element x of
X is called prime if

VP Cq X (/\P exists and /\ng):>5|p€P p <.

Dually, a coprime element is an element y such that for any finite Q C X, if \V P
exists and x < \/ Q, then x < q for some g € ().

Notice that a prime element cannot be T (= A ). Dually, the minimum, if it
exists, is not coprime.

Exercise 10.1.6 Show that if (X, <) is a distributive lattice, then z € X is coprime
off it is irreducible, i.e., z = 2 V y always implies x = z or y = z.

Thus the complements of completely coprime filters are exactly the sets of
the form | ¢, where ¢ is prime, and there is a one-to-one correspondence be-
tween prime opens and completely coprime filters. The following proposition
summarises the discussion.

Proposition 10.1.7 (points) The following are three equivalent definitions of
the set Pt(A) of points a locale A:

locale morphisms from O to A,
completely coprime filters of A,
prime elements of A.

We write « |= p to mean x(p) = T, p € &, or p £ x, depending on how points
are defined. The most standard view is p € & (completely coprime filters).

We have further to endow the set of points of a locale A with a topology.

Proposition 10.1.8 For any locale A, the following collection {U,},ca indexed
over A is a topology over Pt(A): U, = {x | « | p}. This topology, being the
image of p— {x | x | p}, is called the image topology.

PROOF. We have U, N U, = U,p,y, and H{U, | p € B} = Uy p for any B C A.
Osuch thattionThe Basic Duality The following result states that we did the right
construction to get a topological space out of a locale. We call spatialisation, or
Pt, the operation which takes a locale to its set of points with the image topology.
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Proposition 10.1.9 (2 4 Pt) The spatialisation A — Pt(A) provides a right
adjoint to the localisation functor Q (cf. definition 10.1.3). The counity at A is
the map p — {x | « |E p} (in Loc), and the unity is the map « — {U | x € U}
(in Top).

PROOF HINT. Take as inverses:

f=="{ylyEph)) (f: X = PiB)(in Top),p € B)
g— (x—A{p|zegp}) (¢9: QX — B (in Loc),z € X) .

a

Theorem 10.1.10 (basic duality) The adjunction @ 4 Pt cuts down to an
equivalence, called the basic duality, between the categories of spatial locales and
of sober spaces, which are the locales at which the counity is iso and the topological
spaces at which the unity is iso, respectively.

Proor. Cf. exercise B.6.4. O

We shall restrict the basic duality to some full subcategories of topological
spaces and locales.

The following is an intrinsic description of sober spaces. We recall that the
closure A of a subset A is the smallest closed subset containing it.

Proposition 10.1.11 (sober-irreducible) Let (X,QX) be a Ty-space. The
following are equivalent:
1. (X,0QX) is sober,
2. each irreducible (cf. exercise 10.1.6) closed set is of the form {x} for some x.
3. each prime open is of the form X\{xz} for some x.

PRroOOF. Looking at the unity of the adjunction, sober means: “all the completely
coprime filters are of the form {U | « € U}”. Unravelling the equivalence of
definitions of points, this gets reformulated as: “all the prime opens are of the

form U{U | € U}”, which is the complement of {z}. 0

Remark 10.1.12 Any set of the form {z} is irreducible, so that in sober spaces,
the irreducible closed sets are exactly those of the form {x} for some x.

By definition of spatiality, a locale A is spatial if and only if, for all a,b € A:
(Ve e Pt(A) s lma=2=b) = a<b

or equivalently: « £ b= Ja € Pt(A) x = a and x £ b. Actually, it is enough to
find a Scott-open filter /' such that ¢ € I" and b ¢ I'. But a form of the axiom
of choice is needed to prove this.
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Theorem 10.1.13 (Scott-open filter) Let A be a locale. The following prop-
erties hold:

1. For every Scott-open filter F', we have N{x € Pt(A) | F Cx} = F.

2. A is spatial iff for all a,b € A such that a £ b there exists a Scott-open filter
F such that a € F and b & F.

PROOF. (1) 2 is obvious. We prove C by contraposition. Suppose a ¢ F. We
want to find an @ such that /' C x and a ¢ x. We claim that there exists a prime
open p such that p € F and a < p. Then we can take @ = {¢| ¢ £ p}. Consider
the set P of opens b such that b ¢ F' and a < b. It contains a, and every chain
of P has an upper bound in P (actually the lub of any directed subset of P is in
P, because F'is Scott open). By Zorn’s lemma P contains a maximal element ¢.
We show that ¢ is prime. Suppose that S is a finite set of opens, and that b £ ¢
for each bin S. Then bV ¢q is larger than ¢, and thus belongs to F', by maximality
of ¢q. Since F'is a filter, it also contains A{bV ¢ | b € S} = (AS)V ¢, which is
therefore larger than ¢, by maximality of ¢. A fortiori A S £ ¢. Hence ¢ is prime
and the claim follows.

(2) One direction follows obviously from the fact that a point is a fortiori a Scott
open filter. Conversely, if a € F and b € F, by (1) there exists a point & such
that /' C x and b € x. Then x fits since @« € F and F C z imply a € x. a

We shall not use theorem 10.1.13 for the Stone dualities of domains. But
it is important for Stone’s theorem (section 10.3). Another characterisation of
sobriety and spatiality is obtained by exploiting the fact that in the adjunction
Q2 4 Pt the counity is mono (by definition of the topology on Pt(A), the map
p—{x | x |E p} is surjective, hence, as a locale morphism, is a mono).

Proposition 10.1.14 Spatial locales and sober spaces are those topological spaces
which are isomorphic to QX for some topological space X, and to Pt(A) for some
locale A, respectively.

Proor. By application of lemma B.6.6 to the adjunction Q - Pt. O

We now exhibit examples of sober spaces. If a topological space is already T,
one is left to check that the mapping x — {U | « € U} reaches all the completely
coprime filters.

Proposition 10.1.15 T3-spaces are sober.
PrOOF. Let W be a prime open; in particular its complement is non-empty.

Suppose that two distinct elements , y are in the complement, and take disjoint
U,V containing z,y respectively. Then U NV, being empty, is a fortiori contained
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in W, but neither U nor V" are, contradicting primeness of W. Thus a prime open
W is necessarily the complement of a singleton {z}. We conclude by proposition

10.1.11 (in a Ty-space, {z} = {z}). O

In exercise 1.2.6 we have anticipated that algebraic dcpo’s are sober. This
provides an example of a non-Ty (even non-Ti, cf. chapter 1) sober space. Ac-
tually, more generally, continuous dcpo’s (cf. definition 5.1.1) are sober. Before
proving this, we exhibit a friendlier presentation of {z} in suitable topologies on
partial orders.

Proposition 10.1.16 Given a poset X, and a topology 2 over X, the following
are equivalent:

1. YeeX {2y =]z,

2. weak C Q C Alexandrov,

3. <q=5,

where the weak topology is given by the basis {X\ | = | x € X}, and where <q is
the specialisation ordering defined by Q.

PROOF. (2) = (1) If x € A (A closed), then |  C A, since Q2 C Alexandrov.

Moreover | x is closed, since weak C ). Hence {2} =] z.

(1) = (2) If {x} =] 2, then a fortiori | z is closed, hence weak C Q. If A is
closed and x € A, then {x} C A, hence Q C Alezandrov.

(2) & (3) Wehave: <C<g&e (v elU,x<y=yecl)& QC Alezandrov.

o (weak C Q) = (<q € <): Suppose & £ y. Then X\(| y) is an open
containing = but not y, hence = £ yq.

o (<o C< and Q C Alexandrov) = (weak C Q): We have to prove that any
X\({ 2)isin Q. Pick y € X\(] ), i.e., y £ x. Then <o C < implies that
there exists an open U such that y € U and = ¢ U. Since Q C Alezandrov
implies z € U for any z < a, we have U C X \(] z). O

Proposition 10.1.16 applies in particular to the Scott topology 7s, since weak C
s (cf. exercise 1.2.2) and since 7¢ C Alezandrov by definition.

Proposition 10.1.17 The Scott topology for a continuous dcpo is sober.

PROOF. Let A be closed irreducible, and consider B = U,c4 | @, (cf. definition
5.1.1). We first prove that B is directed. Suppose not: let d,d" € B such that
there exists no @ € A and d” < a such that d,d < d”. We claim:

NdnfdnA=p.

!'We refer to section 1.2 for the definition of Alexandrov topology and specialisation ordering.
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Indeed, suppose d,d < a for some a € A. Then by directedness of || a there
would exist d” < a such that d,d" < d”, contradicting our assumption about
d,d'. This proves the claim, which we rephrase as

AC(D\ 1t d)U(D\ ©d).

But this contradicts the irreducibility of A, since {} d and {} d' are open (see
exercise 5.1.12), and since d,d" € B can be rephrased as

AN d#£0and AN Ay d' # 0.

Hence B is directed. Since closed sets are closed downwards, we have B C A.
Hence V B € A since A is closed. We show that \/ B is an upper bound of A:
this follows immediately from the definition of continuous dcpo: if @ € A, then

a=V\ | a<VB. Therefore A =] (VB)=VB. O

Scott topologies are not always sober.

Proposition 10.1.18 (Johnstone) Consider w U {oco}, ordered by: n < n’ iff
n < n'inw orn = oo. Consider the following partial order on the set D =
w X (wU{oo}):

(m,n) < (m',n") if (m=m"andn <n')or(n’=o0 andn <m’).
This forms a dcpo. Its Scott topology is not sober.

PROOF. We first check that we have a dcpo. We claim that any element (m, o)
is maximal. Let (m,o00) < (m/,n): if m = m’ and co < n/, then co = n’, while
the other alternative (n’ = co and co < m') cannot arise because m’ ranges over
w. In particular, there is no maximum element, since the elements (m, o) are
comparable only when they are equal.

Let A be directed. If it contains some (m,o0), then it has a maximum.
Otherwise let (m’,n’), (m”,n”) be two elements of A: a common upper bound in
A can only be of the form (m”,n""), with m"” = m’ = m”. Hence A = {m} x A/,
for some m and some A’ C4,. w. It is then obvious that A has a lub.

Next we observe that a non-empty Scott open contains all elements (p, o),
for p sufficiently large. Indeed, if (m,n) € U, then p > n = (m,n) < (p,00).
In particular, any finite intersection of non-empty open sets is non empty. In
other words ) is a prime open, or, equivalently, the whole space w x (wU {oc}) is
irreducible. By lemma 10.1.16, we should have D =| x for some z, but we have
seen that D has no maximum. O

Nevertheless, sober spaces have something to do with Scott topology.

Proposition 10.1.19 The specialisation order of any sober space (X,8) forms
a depo, whose Scott topology contains 1.
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PROOF. Let S be <g-directed. We show that its closure S is irreducible. Let
S = FyUF,, and suppose S ¢ Fy and S ¢ Fi. Let x € S\F, and y € S\ I, and
let z >q x,y in S. Since S C Fy U Fy, we have, say, z € Fy. Then = € F| by
definition of <g: contradiction. Therefore S = {y} for some y.

e yis an upper bound: Pick s € S and suppose y ¢ U. Then S = {y} € X\U,
and a fortiori s € U. Hence s <q y. We claim:

IfSNU =0, then y & U.

Indeed, SN U = @ implies SN U = (), and a fortiori y ¢ U. The rest of the

statement follows from the claim:

e y is the least upper bound: Let z be an upper bound of S, and suppose z ¢ U.
Then SN U = () by definition of <g, and y ¢ U follows by the claim.

e Any open is Scott open: By the claim, since we now know that y =V 5. 0O

Exercise 10.1.20 Show that the statement of proposition 10.1.18 can actually be strength-
ened by replacing “Its Scott topology is not sober” by: “There is no sober topology whose
specialisation order is the order of D”. Hint: use proposition 10.1.19.

10.2 The Duality for Algebraic Dcpo’s

We recall that in algebraic depo’s the basic Scott-open sets have the form 1 a (a
compact), and have the remarkable property that if T« C U; U;, then T a C U;
for some ¢. This motivates the following definition.

Definition 10.2.1 (coprime algebraic) Let (A, <) be a partial order. A com-
pact coprime is an element a such that, for all B C A, if | B exists and a < \/ B,
then a < b for some b € B. A poset (D, <) is called coprime algebraic if each
element of D is the lub of the compact coprimes it dominates. We write C(D)
for the set of compact coprime elements of D.

Remark 10.2.2 [In definition 10.2.1, we do not specify under which lub’s we
assume A to be closed. In this chapter we are concerned with complete lattices,
and in chapter 7?7, we shall have to do with bounded complete coprime algebraic
Cpo’s.

Lemma 10.2.3 (lower-set completion) A complete lattice is coprime alge-
braic iff it is isomorphic to the lower set completion of some partial order (X, <),
defined as Del(X) = {Y C X | Y is a lower subset}. In particular, a coprime
algebraic partial order is a (spatial) locale, since Dcl(X) is Alexandrov’s topology
over (X >).

PROOF. Like the proof of proposition 1.1.21. a
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Exercise 10.2.4 Show that “compact coprime” defined as above is the same as “com-
pact and coprime”. Show that a partial order A is coprime algebraic iff it is an algebraic
depo such that all finite lub’s of compact coprime elements exist, and such that every
compact is a finite lub of compact coprimes.

Lemma 10.2.5 Let A be a coprime algebraic locale. The points of A are in one-
to-one correspondence with the filters over the set C(A) of compact coprimes of

A.

PROOF. The inverses are G —71 G and F — {x € F' |  compact coprime}. O

Proposition 10.2.6 (duality — algebraic dcpo’s) The basic duality cuts down
to an equivalence between the category Adcepo of algebraic depo’s and continuous

functions, and the category of locales arising as lower set completions of some

partial order.

ProOOF. By lemma 10.2.3, any coprime algebraic locale is spatial. By proposition
1.1.21, any algebraic dcpo is isomorphic to Ide(X) for some partial order (X, <).
By lemma 10.2.5 we have

Ide(X) = F(X?) = PL(Del(XT)).

(We omit the proof that the topology induced by Pt on Ide(X) is Scott topology.)
Therefore, up to isomorphism, the class of algebraic dcpo’s is the image under Pt
of the class of coprime algebraic locales. The statement then follows (cf. exercise

B.6.5). O

We call the duality algebraic dcpo’s / coprime algebraic locales the basic
domain duality. The key to this duality is that both terms of the duality have a
common reference, namely the set C(A) of compact coprimes on the localic side,
the set K(D) of compacts on the spatial side, with opposite orders:

(K(D), <) = (C(A), 2).

y

We shall obtain other dualities for various kinds of domains as restriction of the
basic domain duality, through the following metalemma.

Lemma 10.2.7 If () is a property of algebraic depo’s and (L) is a property
of locales such that any algebraic depo satisfies (S) iff its Scott topology satisfies
(L), then the basic domain duality cuts down to a duality between the category
of algebraic depo’s satisfying (S) and the category of coprime algebraic locales

satisfying (L).

Proor. Cf. exercise B.6.5. O

Here are two examples of the use of lemma 10.2.7.
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Proposition 10.2.8 (duality — algebraic cpo’s) The basic domain duality res-
tricts to an equivalence between the category Acpo of algebraic cpo’s and con-
tinuous functions on one side, and the category of locales arising as lower set
completions of a partial order having a largest element.

PROOF. By lemma 10.2.7, with “has a minimum element” for (5), and “has a
maximum compact coprime” for (L). If D satisfies (5), then T L fits. If T «
is the maximum compact coprime of QD, then T y C1 x for any other compact
coprime, 1.e., x 1S minimum. a

Proposition 10.2.9 (duality — Scott domains) The basic domain duality cuts
down to an equivalence between the category of Scott domains (cf. definition
1.4.9) and continuous functions on one side, and the category of locales arising
as lower set completions of a conditional lower semi-lattice (i.e., a poset for which
every finite lower bounded subset has a glb).

PrROOF. Take “has a minimum element, and binary compatible lub’s” as (.9),
and “compact coprimes form a conditional lower semi-lattice” as (L), and notice
that = V y exists iff 1 2,1 y have a glb. a

We can use exercise 10.2.4 to get an alternative description of the posets
arising as lower set completions of conditional lower semi-lattices:

Proposition 10.2.10 The following conditions are equivalent for a coprime al-
gebraic partial order A:

1. A is isomorphic to the lower set completion of a conditional lower semi-
lattice.

2. Finite glb’s of compacts are compact and any finite glb of compact coprimes
1s coprime or 1.

PROOF. By proposition 10.2.3, (1) can be replaced by:
1". The compact coprimes of A form a conditional lower semi-lattice.

Also, since all lub’s exist in A, glb’s also exist and are defined by
\VA{z|Vpe P x <p}=\{q|q compact coprime and Vp € P ¢ < p}.

Now, consider a finite set P of compact coprimes. There are two cases:

P has no compact coprime lower bound: then AP =V 0 = L.
P has a compact coprime lower bound: then A P # L.

(1) = (2) We already know that A is a locale; a fortiori it is distributive. Let
d=ayV---Va, and ¢ = by V--- Vb, be two compacts. Then dAe =V, ;(a; Ab;).
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It is enough to check that each a; A b; is compact. If {a;,b;} has no compact
coprime lower bound, then a; A b; = L, which is compact. Otherwise, a; A b; is
compact by assumption.

(2) = (1) We have to prove that, in case (b), A P is compact and coprime.
It is compact by the first part of the assumption. By the second part of the
assumption, A P is either coprime or L. Since (b) implies AP # L, AP is
coprime. a

Information Systems An alternative description of Scott domains is obtained
by starting, not from a conditional upper semi-lattice, but from a partial order
equipped with a weaker structure, which we first motivate. Let A be a conditional
upper semi-lattice. Let [y, Iy, I € Ide(A) be such that I1, 15 C I. Then the lub

of I, I, is given by the following formula:
Lvio={a|a< \/X for some X Cg, [ U 1o}

This suggests us to consider the collection of the finite bounded subsets X of A,
and the pairs (X, a) with the property ¢ <V X. It turns out that we actually do
not need to be so specific about this structure. It is enough to have a distinguished
collection Con of finite subsets over which X ranges, and an “entailment” relation
F consisting of pairs (X, a). This view leads us to Scott’s notion of information
system [Sco82], whose axioms we shall discover progressively.

Given a partial order A of tokens, a subset Con of finite subsets of A, and
a relation FC Con x A, we construct a “completion” whose elements are the
non-empty subsets x € A which satisfy:

1. XCg,ax= X € Con,
2. (XChozand XFa)=a€ua.

If A is a conditional upper semi-lattice, if C'on is the boundedness predicate and
X F ais defined by ¢ <V X, then it is easily checked that conditions (1) and (2)
together characterise the ideals of A (notice that (1) is weaker than directedness,
and (2) is stronger than downward closedness). A directed union A of elements
is an element: if X Cg, UA, then by directedness X Cg, « for some z € A, and
(1) and (2) for UA follow from (1) and (2) applied to z.

Candidates for the compact elements are the elements of the form X = {a |
X F a}. The sets X are not necessarily finite, but can be considered finitely
generated from X. We expect thatX C X and that X is an element (which by
construction is the smallest containing X'). This is easily proved thanks to the
following axioms:

(A) (XeConanda€e X)= Xt a,

(B) XCY € Con= X € Con,

(C) XFa= XU{a} € Con,

(D) ({ar,...,antFaand X Fay,..., X Fa,) = XFa
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Axiom (D) is exactly condition (2) for X. As for (1), we check, say, that if
ay,ay € X, then {ay,ay} € Con. First, an easy consequence of (A) and (D) is:

(XCYeConand X Fa)=YFa.

Applying this to X, XU{as} (which isin Con by (C)) and ay, we obtain XU{a;}
az, and deduce {ay,az} € Con by (A) and (B).

The elements X form a basis: Consider an element x and {X | X C z} =
{X | X C x}. This set is directed, since if X;, Xy C z, then X; U X, C x and
X1, X; C X; UX,. Its union is = thanks to the following axiom:

(E) Yae A {a} € Con.

We are left to show that X is compact. This follows easily from: X C z iff
X C z. Finally, we address bounded completeness. If xy, x5, C x, then

riVaya=Ha|IX CaxyUxy XFal.

Definition 10.2.11 We call information system a structure (A, Con,t) satis-
fying the above axioms (A)-(E), and we write D(A, Con,t) for the set of its

elements ordered by inclusion.

Theorem 10.2.12 The class of all bounded complete algebraic depo’s is the class
of partial orders which are isomorphic to D(A, Con,t), for some information
system.

PROOF. We have done most of the work to establish that D(A, Con,t) is al-
gebraic and bounded complete. Conversely, given D, we take the “intended”
interpretation discussed above: A = K(D), X € Con iff X has an upper bound,
and X Fdiff d <V X. O

Theorem 10.2.12 is an example of a representation theorem, relating abstract
order-theoretic structures (Scott domains) with more concrete ones (information
systems). Event structures, concrete data structures, considered in sections 12.3,
14.2, respectively, will provide other examples of representation theorems.

Exercise 10.2.13 In our treatment, we have not included the axiomatisation of the
minimum element. Show that this can be done by means a special token (which Scott

has called A).

Information systems allow for an attractive characterisation of injection-projec-
tion pairs, in the line of proposition 3.1.4 and remark 3.1.5.

Exercise 10.2.14 Show that, for any two bounded complete algebraic depo’s D, D',
there exists an injection-projection pair between D and D' iff there exist two information
systems (A, Con, ) and (A’, Con' F') representing D and D' (i.e., such that D, D' are
isomorphic to D(A, Con,t), D(A’, Con’ V'), respectively), and such that

ACA Con=Con’'nA F=t'"n(Con x A).



254 CHAPTER 10. STONE DUALITY

10.3 Stone Spaces *

In this section we focus on algebraicity on the localic side, and prove Stone’s theorem.
The “algebraic cpo line” (section 10.2) and the “algebraic locale line” will be related
when addressing Stone duality for bifinite domains (section 10.4).

Proposition 10.3.1 Algebraic locales, i.e., locales which viewed as cpo’s are algebraic,
are spatial.

Proor. Let a £ b. By theorem 10.1.13, it is enough to find a Scott-open filter F such
that @ € I and b ¢ F. By algebraicity, we can find a compact d such that d < a and
d £ b. Then the filter F' =1 d is Scott-open and fits. a

Proposition 10.3.2 1. The ideal completions of sup-semi-lattices are the algebraic
complete lattices (i.e., the algebraic cpo’s with all lub’s).

2. The ideal completions of lattices are the algebraic complete lattices whose compact
elements are closed under finite glb’s.

3. The ideal completions of distributive lattices are the algebraic locales whose compact
elements are closed under finite glb’s.

Proor. (1) Let A be an algebraic complete lattice. Then K(A) is a sup- semi-lattice,
since the lub of a finite set of compacts is always compact. Conversely, it is enough to
define binary lub’s, since the existence of directed and binary lub’s implies the existence

of all lub’s. Define avVb=\{dVe|d,ec K(A),d<aande<b}.
(2) Obvious.
(3) Let X be a distributive lattice. We show that A = Ide(X) is distributive. We

have, for ideals:

INS = {z|Jaecl,beJ z<anb}

\/IZ' {z|3Fir,...,ip,ar €L,...;a, €1, z<ayV---Va,}.
el

Hence, if 2 € J A (V;er 1i), then 2 < aA(ay V-V ay) for some a € J and a; €
Lij,...;a, € I, hence = < (a Aay) V- ---V (a Aa,) by distributivity of X, and
S \/iEI(J/\ Iz) O

Definition 10.3.3 (coherent locale) Locales arising as ideal completions of distribu-
tive lattices are called coherent (or spectral). A topological space is called coherent if
its topology is coherent.

In particular, coherent topological spaces are compact (the total space is the empty

glb).

Proposition 10.3.4 (duality — coherent) The basic duality cuts down to an equiv-
alence between the category of coherent topological spaces and the category of coherent
locales.
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ProOOF. Coherent locales are a fortiori algebraic locales, hence they are spatial by
proposition 10.3.1. The statement follows (cf. exercise B.6.5). O

It is then possible to combine the correspondences:
coherent spaces ¢« coherent locales + distributive lattices.

However, these correspondences do not extend to dualities of the respective “natural”
categories of continous functions, locale morphisms, and DLat®® morphisms, where
DLat is the category of distributive lattices and lattice morphisms. The reason is that
a locale morphism does not map compact elements to compact elements in general.
However, this will be true of Stone spaces.

As for coprime algebraic locales, the points of a coherent locale enjoy a simple
characterisation.

Lemma 10.3.5 Let A be a coherent locale. Then the points of A are in one-to-one
correspondence with the coprime filters over K(A):

Spec(K(A)) = Pt(A).

ProoF. The inverse mappings are: G —1 G and F — {z € F'| 2 compact}. We check
only that T G is coprime. Let 2 Vy €17 G. Let g € GG be such that g < a2V y. Since G is
completely coprime, we may assume that ¢ is compact. Since A is an algebraic lattice,
we can write

evy=(\{dld<a) v (el e<al) = \{dVe|d<ae<a)

By compactness, g < d Ve, for some d,e € K(A). Hence dV e € (G, and we have d € GG
or e € (¢, since (G is prime, implying # €1 G or y €1 G. O

Remark 10.3.6 The following table should help to compare lemmas 10.2.5 and 10.3.5:

F(C(A)) = Pt(A) filter lower set completion
Spec(K(A)) = Pt(A) prime filter ideal completion .

We move on to Stone spaces. There are several equivalent definitions of Stone
spaces [Joh82]. We choose the one which serves to prove the duality.

Definition 10.3.7 (Stone space) A Stone space is a Ty-space whose topology is co-
herent.

Proposition 10.3.8 (duality — Stone) The Stone spaces are the topological spaces
whose topology is isomorphic to the ideal completion of a Boolean algebra. The three
following categories are equivalent:

1. Stone spaces and continuous functions,

2. The category of locales arising as ideal completions of Boolean algebras,
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3. Bool®?, where Bool is the cateqory of Boolean algebras and lattice morphisms,
that is, the functions preserving finite glb’s and lub’s.

Proor. Let (X,QX) be a Stone space. We show that K£(QX) is Boolean. In compact
Ty-spaces, compact subsets are closed, and hence the compact subsets are the closed
subsets. Hence the compact open subsets are the closed open subsets, which are closed
under set-theoretic complementation.

Conversely, let B be a Boolean algebra, and consider two distinct coprime filters
(1,G3 of B. Combining proposition 10.1.8 and lemma 10.3.5, the opens of Pt(Ide(B))
are the sets Uy = {G | b €T G'}. We look for by, by in B such that Gy € Uy, , Gy € Uy,
and Uy, N Uy, = 0.

o Gy €Uy, Gy € Up,: Since (1 # (9, we can pick, say, by € G1\G3. We have, setting
bg = _|b1§

bl vV bg =1 = bl vV b2 € G2 (G2 ﬁlter)
= by € Gyor by € Gy (coprimeness)
= by e Gy (0 ¢ G2) .

A fortiori, by € G1,be € Gy imply Gy € Uy, Go € Up,.
o Uy, NU;, = 0: Suppose not, and let G be such that by €1 G and by €1 G. We have:

biAby=0 = 061G (TG is afilter)
= 0€G  (definition of 1 G)
= G =B (G filter).

But G = B contradicts the primeness of G.

The categories (1) and (2) are equivalent by restriction of the basic duality. The
equivalence between categories (2) and (3) follows from the following claim: the mor-
phisms of category (2) map compact elements to compact elements. The claim is proved
easily by taking advantage of spatiality and of the duality (1)/(2). We have seen that
the compact opens are the closed opens. The claim then follows from the observation
that for any continuous function f in Top, f~! maps closed subsets to closed subsets.
O

10.4 Stone Duality for Bifinite Domains *

In order to relate propositions 10.2.6 and 10.3.4, we have to understand under which
conditions the Scott topology of an algebraic dcpo is coherent.

Proposition 10.4.1 An algebraic depo D is coherent as a topological space iff it has
a minimum element and its basis satisfies property M (cf. definition 5.2.6).

ProOOF. Recall from the proof of proposition 10.2.6 that the compact coprimes of the
Scott topology Q of D are the 1 d’s (d € K(D)). Therefore, the compacts of Q are the
finite unions t dy U -+ U 1T d,.

o M = coherent: We have to check that the compacts of Q are closed under finite
intersections. For the empty intersection, take T L. For the binary intersection, observe
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that (1 dq4U---UTdp)N(TegU---UTey,)is aunion of sets 1 d;N 1 e;, which can be
written as

tdnte = UB(di,ej)
= Tz U---Utz, (where MUB(d; e;) ={z1,...,2,}) .

e coherent = M: Let Y = {y,...,y,} be a finite subset of K (D). Then
UBYY) = tyin---0N1Ty,
= ta;U---Utz, (forsomezy,...,2,, by coherence).

a

Definition 10.4.2 (coherent algebraising) A coherent locale is called coherent al-
gebraising ? if it coprime algebraic.

Thus “coherent algebraising” means “coherent + coprime algebraic”. The following
proposition provides an alternative definition of coherent algebraising locale.

Proposition 10.4.3 A bounded complete algebraic cpo D is coprime algebraic iff it
satisfies the following decomposition property:

every compact d # L is a finite lub of compact coprimes.

ProOF. (=) Let d be compact, and let X = {e < d | e compact coprime}. We have:

d=V X (by coprime algebraicity)
d<e V---Ve, for some eq,...,e, € X (by bounded completeness and algebraicity) .
Hence d =e; V---Ve,.
(<) Putting together the algebraicity and the decomposition property, we have for
any ¢ € D:

x = \{d<a|dcompact}
= V{e1V---Ve,|e,..., e, compact coprime and ey V---Ve, <z}
= V{e <z | e compact coprime} .

a

Proposition 10.4.4 (duality — algebraic + M) The basic domain duality cuts down
to an equivalence between the category of algebraic cpo’s whose basis satisfies M and
the category of coherent algebraising locales.

ProOOF. The statement follows from proposition 10.4.1: we apply lemma 10.2.7 with
“has a minimum element and the basis satisfies M” for (S), and “coherent” for (L).O

The following lemma indicates the way to axiomatise bifinite domains logically.

2A more standard terminology for this is “coherent algebraic”. We prefer to use “algebrais-
ing”, to stress that one refers to the algebraicity of the Stone dual cpo, rather than to the
algebraicity of the locale (which is also relevant and is part of the definition of “coherent”).
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Lemma 10.4.5 Let D be an algebraic cpo. The following properties hold:

1. K(D) satisfies M iff (VX Cgn K(D) Y Cpin K(D) Npex (T 2) = Uyey (T9)).
2. D is bifinite iff

Y X Cpo K(D) 3Y Cpio K(D)
XCYand (V24 CY 32 CY Muer, (1 2) = Uyer, (1 9)) -

Proor. (1) follows from the following claim, for X Cg, K(D):

AY Cpn KD) (Yt 2)= |J(ty) & MUB(X) CY and MUB(X) is complete.
z€X yey

(=) It is easy to check that MUB(X) is the set of minimal elements of Y.

(<) Take Y = MUB(X).

(2) By the claim, the equivalence can be rephrased as: D is bifinite iff

VX Cp, K(D) Y Cp K(D)
XCYand (VZCY MUB(Z)CY and MUB(Z) is complete) .

and by definition, D bifinite means: VX Cz, K(D) U™ (X) is finite.
(=) Take Y = U™ (X).

(<) By induction on n, we obtain U"(X) C Y for all n, and since Y is finite the
sequence {U"(X)},>o becomes stationary. O

Proposition 10.4.6 (duality — bifinite) The basic domain duality cuts down to an
equivalence between the category of bifinite cpo’s and the category of coherent algebrais-
ing locales A satisfying the following property:

B VX Cpn C(A) Y Cpp C(A)
(/\\/ ClOS) {XgYand(VZgY 17, CY /\Z:\/Zl).

PrOOF. The statement follows from lemma 10.4.5: we apply lemma 10.2.7 with “bifi-
nite” for (), and the property of the statement as (L). a

In figure 10.1, we summarise the dualities for domains that we have proved in this
chapter.

10.5 Scott Domains in Logical Form *

We present domains via their compact open sets, constructed as (equivalence classes
of) formulas. Abramsky has called this “domains in logical form”. As a first step in
this direction, we show how to present the compact opens of D — FE in terms of the
compact opens of D and F. When we write 2D, we mean the Scott topology on D.
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sober spaces / spatial locales
U U
algebraic depo’s / coprime algebraic locales  coherent spaces / coherent locales
U U
algebraic cpo’s whose basis satisfies M / coherent algebraising locales
U
bifinite cpo’s / coherent algebraising locales satisfying (A V —clos)
U
coprime algebraic locales where
compact coprimes form a conditional lower semi-lattice

Scott domains / {

with:
coprime algebraic = lower set completion of a partial order
coherent = ideal completion of a distributive lattice
_ algebraic 4
- closure of compacts under finite glb’s
.. ideal completion of a distributive lattice +
coherent algebraising = . . .
every compact is a finite lub of compact coprimes
_ coprime algebraic +
N closure of compacts under finite glb’s
coprime algebraic 4+ compact coprimes _ coherent algebraising + glb’s of
form a conditional lower semi-lattice - compact coprimes are coprime or L

Figure 10.1: Summary of dualities
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Proposition 10.5.1 If D and F are algebraic cpo’s such that D — F is algebraic and
its basis satisfies M, then:

1. For any U € K(QD) and V € K(QF), the following set is compact:

U—=V={f:D-=FLE|fU)CV}

2. Any compact open of D — F is a finite union of finite intersections of such sets
U — V, where U,V are moreover coprime.

Proor. (1) Let U =t dyU---U1d, and V =1 e U---Ue,. The definition of U — V
can be reformulated as

U=V o= {f:D—=E|Yi3j f(d)>e}
= NU (i =€) -

]

Each 1 (d; — ¢;) is compact, therefore each |J; (1 (d; — ¢;)) is compact; the conclusion
follows by propositions 10.4.1 and 10.3.2.

(2) The compact opens of D — E are the subsets of the form 1 f1 U---U 1 f? where
each f!is compact, hence is of the form (d' — ')V .-V (d? — ¢7), that is:

PP = )N (d ).

Then the conclusion follows from the observation that 1 d =1 e =1 (d — ¢), for any
compact d, e. a

A second step consists in constructing a logical theory based on these sets U — V/,
now considered as (atomic) formulas. We seek a complete theory in the sense that if
two different formulas u, v present two opens [u], [v] such that [u] C [v], then v < v
is provable.

Proposition 10.5.2 Let D, F be Scott domains. Then the set of compact opens of
D — FE s order-isomorphic to the partial order associated to a preorder ® defined as
follows. The elements of ® are formulas defined by:

UeKQD)V e K(QE) Viel u €® (I finite)y Viel u; € (I finite)
U—=-Ved Aie[uie@ \/iEIui€¢

and the preorder is the least preorder closed under the following rules (where = stands
for the equivalence associated with the preorder):
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u<u

< e uA(vVw)<(uAv)V(uAw)

Viel w;<v (I finite)
Vierui v

u; < \/ieI Uz

Viel u<w (I finite)
u < Niey vi

Nicrvi < vy

Ucu vev
U=sV<U—=V

U— (Mier Vi) = Nies(U = Vi)

U coprime

U— (Uier Vi) = Vi, (U = Vi)

(Uier Ui) =V = N (Ui = V)

ProoF. Proposition 10.5.1 gives us a surjection [_] from ® to QD — FE (interpreting
A,V as N,U). The soundness of the rules defining the preorder is easy to check, and im-
plies that the surjection is monotonic. All what we have to do is to prove completeness:
if [u] < [v], then u < v is provable. By proposition 10.5.1, each formula u is provably
equal to a finite disjunction of formulas of the form A;c;(U; — V;), with the U;’s and the
Vi’s coprime. We know from proposition 10.2.10 that [A,;c;(U; = Vi)] = Nier(Ui = V5)
is either coprime or (). The proof goes through two claims.

Claim 1. If the U;’s and V;’s are coprime and (;c;(U; — Vi) = 0, then A;c;(U; —
Vi) =0 (= V0) is provable.

Since U;, V; are coprime, we can write U; =1 d;, Vi =1 ¢;, and U; — V; =1 (d; — ;).
Therefore, A;cr (Ui — Vi) # 0 iff {d; — ¢; | i € I} has an upper bound iff {d; — ¢; | i €
I} has a lub iff

VJ C1I {d;|je€ J} has an upper bound = {e; | j € J} has an upper bound.

Hence ;e (U; = Vi) = 0 iff there exists J C I such that (;c; U; (hence is coprime,
by proposition 10.2.10) and Njes Vi = (). Now the subclaim is proved as follows:

A= Vi) < AU = Vi) < AU T) = Vi) = (T = ([ Vi)
i€l jeJ jeJ jeJ jeJ jed
The last formula can be written ((;c; U;) — (U0), and since ;¢ ; U; is coprime, we
have
()= (v)=\o
jed jed
By the subclaim, we can eliminate the conjunctions A;c;(U; = V;) such that ;¢ /(U; —
Vi) = 0. Call v/, v the resulting v’ = ujV---Vul,, =wand v = v{V---Vu/, =wv. Then

we can write

[vil =t g1, [on] =1 gn
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and

<@ & WI<[] & ¥p 16 CIV]
e Vp helV] & Vp3q fr>29, & Yp Iq[u] <[]

which brings us to the following second claim.
Claim 2 (coprime completeness). If u,v both have the form A;;(U; — Vi),

with the U;’s and V;’s coprime, if [u] < [v], and if [«/], [v"] are coprime, then u < v is
provable.

By the definition of A, we can assume that v is reduced to one conjunct: v =U —
V =1 (d — e). Then, setting U; =1 d; and V; =1 ¢; for all ¢, the assumption [u] < [v]
reads as d — ¢ < \/,;c7(d; — €;), or, equivalently:

e < (\V(di = e))(d) = \/{e; | d; < d}.

el
Setting .J = {j | d; < d}, we have: U C (;c; U; and ;¢;V; C V. Then
AW = Vi) <((VU) = (V) SU =V
i€l JjeJ Jed
We now complete the proof of the completeness claim:

[u]l <[v] < Vp 3q [u,] < [vg] & Vp g
& u'= \/kzl,...,m u?c < \/l:L...,n u? =v = u=4

The last step consists in further “syntaxizing” domains, by defining a language of
formulas, not only for L(Q(D — E)), but also for K(QD), K(QF), and more generally
for all types. Since the axioms used to describe £(Q(D — E)) involve coprimeness at
the lower types, the coprimeness predicate has to be axiomatised as well.

Definition 10.5.3 Let{ky,...,k,} be a fixed collection of basic types, and let Dy,...,D,
be fixed Scott domains associated with ry, ..., k,. Consider:

o The following collection of types:

ocu=r; (t=1,...,n)| 0 — 0.

o The formal system for deriving typed formulas given in figure 10.2. We write
AD=1and \/) = 0.

o The formal system for deriving two kinds of judgements

u<v (withu=v standing for: (u < v and v < u))
C(u) (“u is coprime”)

given in figure 10.3.
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Ue (I)(I{Z')

Viel u € ®(o) (I finite)

uw € P(o) veP(r)
u—veEdo—T)

Viel u € ®(o) (I finite)

Nier wi € ®(0)

Vierui € (o)

Figure 10.2: Domain logic: formulas

u<u

Viel w;<v (I finite)
Vieruwi < v

Viel u<wv; (I finite)
u < Niey vi

U,V € K(QD;
U<

UcCv

)
u— (Niervi) = Nier(v — vi)
(1)

UeKQD;) U coprime
)

uNh(vVw) < (uAv)V (uAw)

u; < \/iel Uz

Niervi < vy

v <y v<y
w—=v<u—=v

(Vierwi) = v = Nies(wi = v)

C(u)

u— (Viervi) = Vier(u — v;)

Viel Cuw) and C(v))VJ C 1 (/\jeJUj =0= Ajesu; =0)

(C'— Scott)

C(Nier(u = vi))

Figure 10.3: Domain Logic: entailment and coprimeness judgments
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z:u€el '-M:u A<D u<vw

'Cz:u AFM:v
'FM:u—v T'EN:u Fu{z:u-M:v

I'-MN :v '-XxeM:u—v

Viel 'U{az:u;} - M:v (I finite) Viel 'EM:u; (I finite)
Fu{z:Viggw}-M:v I'EM:Nerus

Figure 10.4: Domain logic: typing judgments

[U] = U [w—=v] = [u]l = [v]
Nicrud = Mierlu] [Vierw] = Userlu]

Figure 10.5: Semantics of formulas

o The “type” system whose judgements have the form I' = M : u, where M is a A-
term and I' is a set consisting of distinct pairs x : v, given in figure 10.4. All the
free variables of M are declared in I, and A < T means: A ={xy tuy,...,2,:
wnt, D'=A{ay vy, o2, t v}, and w; < v for all d.

The denotational semantics of types and of simply typed \-terms are defined as in
chapter 4: [o — 1] = [o] — [7], etc... The meaning of the formulas of ®(o), for all
o, is given in figure 10.5. Validity of the three kinds of judgements is defined in figure
10.6.

Theorem 10.5.4 The following properties hold:

Cu<o i [ <[]
EC(u) iff  [u] is coprime
Tyiug, 2ty EMiuo dff YV (Vi pa) € [u]) = [M]p € [u])

Figure 10.6: Semantics of judgments
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1. u<w is provable iff = u <w,
2. C(u) is provable iff = C(u),
3. 'EM:uiff TEM:u

ProOF HINT. (1) and (2) have been already proved in substance in proposition 10.5.2.
(3) is proved via a coprime completeness claim (cf. proposition 10.5.2). For an u
such that [u] is coprime, i.e., [u] =1 d for some compact d, [M]p € [u] reads d <
[M]p. Then the coprime completeness claim follows from the following almost obvious
equivalences:

d<[MN]p iff Je (d—e) <[M]pand e <[N]p by continuity
(d—e) <[reM]p iff e <[M]pl[d/z] by definition of d — e .

10.6 Bifinite Domains in Logical Form *

We sketch how the logical treatment just given for Scott domains can be adapted to
bifinite cpo’s.

Definition 10.6.1 (Gunter joinable) A finite subset v C K(D) x K(E) is called
Gunter joinable if

Vdy € K(D) {(d,e) € v|d < do} has a mazimum in 7.
Any Gunter joinable set v induces a function G(v) defined by

G(y)(z) =max{e |Id (d,e) € v and d < z}.

Lemma 10.6.2 If~, 7' are Gunter joinable, then:

1. Gv)=Vid—e|(de) €7},
2. d—e€ <G(y)edde (d<d, ¢ <eand(de)€r),
3. G <G ev(d d)eqy Tde d<d' e <eand (d,e) €,

Proor. (1) follows from the following remark: by definition of G(v), if G(y) # L,
then G(v)(z) = (d — €)(z) for some (d,€) € 7.

(2) First recall that d' — €' < G(v) can be reformulated as ¢’ < G(v)(d).
(<) Then d' — ¢ < d — e, and a fortiori &' — € < G(7).

(=) By definition of G(v), G(v)(d') = e for some (d,e) € v with d < d'.

(3) is an obvious consequence of (2). O

Proposition 10.6.3 If D, F are bifinite, then K(D — E) = {G(vy) | v is Gunter joinable}.
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Proor. Clearly, each G(v), as a finite lub of step functions, is compact. Conversely,
we know from proposition 5.2.4 that the compact elements of D — FE have the form
r(f), where f : D — FE is a continuous function, and r is a finite projection defined
from two finite projections p : D — D and ¢ : & — E by r(f)(z) = ¢(f(p(z))). We
have to find a v such that r(f) = G(v). We claim that the following does the job:

v =A{(ry),q(f(py) |y € D}.

e v is finite: by the finiteness of the ranges of p,q.
e v is Gunter joinable: Let z € D. We claim:

p(x) = max{p(y) |y € D and p(y) < z}.
Then obviously (p(z), ¢(f(p(x)))) is the maximum of {(d,e) € v | d < a}.
e r(f)=G(y): We have:

r(f(z)) = q(f(p(x))) by definition of r
G(y)(x) = q(f(p(x))) by definition of G(y) .
O
The following equivalent formulation of Gunter joinable subsets is due to Abramsky,
and is more easy to capture in logical form.

Proposition 10.6.4 Let {(d;,e;) | i € I} C K(D) x K(E) be finite. Then {(d;, ¢€;) |
i € I} is Gunter joinable iff

VJCI 3K CI MUB({d;|jeJ})={dp |k e K} andVje J ke K e; <ey.

Proor. (=) Let m € MUB({d; | j € J}), and let (dj, e;) = max{(d;,e;) | d; < m}.
We claim: m = dj,. Since d < m by definition, it is enough to show that d, € UB({d; |
J € J}), which follows from the obvious inclusion {d; | j € J} C {(d;,¢;) | d; < m}.
This inclusion also implies Vj € J ¢e; < e.

(<) Let d e K(D),J ={j|d; <d}, and let K be as in the statement. By property
M there exists k € K such that d > dj. But then & € J by definition of .J, and since
dj is both an upper bound and an element of {d; | j € J}, it is a maximum of this set.
Moreover, since e; < ey, for all j € J, we have that (dj, eg) is the desired maximum.O

Exercise 10.6.5 (*) Show that the statement of theorem 10.5./ remains true after the
following two changes in definition 10.5.3: (1) D1, ..., D, are now fized bifinite cpo’s.
(2) Aziom (C' — Scott) of definition 10.5.3 is replaced by the following axiom:

Viel Cu;) and C(v;)
VJCIT IK CIT Ajejuj =Viexgup andVj e J ke K v <y

C(Ner(ui = vi))

Hints: The principal difficulty is to make sure that any u can be written as a disjunction
of formulas of the form \;c;(u; — v;) where the u;’s and the v;’s satisfy the conditions
of rule (C' — bifinite). Remove faulty disjunctions and replace them by disjunctions of
conjunctions. Design a terminating strateqgy for this.

(C' — bifinite)




Chapter 11

Dependent and Second Order
Types

The main goal of this chapter is to introduce A-calculi with dependent and second
order types, to discuss their interpretation in the framework of traditional domain
theory (chapter 15 will mention another approach based on realizability), and to
present some of their relevant syntactic properties.

Calculi with dependent and second order types are rather complex syntactic
objects. In order to master some of their complexity let us start with a discussion
from a semantic viewpoint. Let T be a category whose objects are regarded as
types. The category T contains atomic types like the singleton type 1, the type
nat representing natural numbers, and the type bool representing boolean values.
The collection T is also closed with respect to certain data type constructions.
For example, if A and B are types then we can form new types such as a product
type A x B, a sum type A+ B, and an exponent type A — B.

In first approximation, a dependent type is a family of types indexed over
another type A. We represent such family as a transformation F' from A into the
collection of types T, say F': A — T. As an example of dependent type we can
think of a family Prod.bool : nat — T that given a number n returns the type
bool x --- X bool (n times).

If the family F' is indexed over the collection of all types T, say F': T — T,
then we are in the realm of second order types. As an example of a second order
type we can think of a family Fun : T — T that given a type A returns the type
A — A of functions over A.

If types, and the collection of types T, can be seen as categories then we can
think of dependent and second order types as functors. Let us warn the reader
that in this preliminary discussion we are considering a simplified situation. In
general we want to combine dependent and second order types. For example, we
may consider the family Poly.Prod : T x nat — T that takes a type A, a number
n, and returns the type A X -+ x A (n times).

Probably the most familiar examples of dependent and second-order types

267
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arise in logic. If ¢(x) is a formula depending on the variable @ then we can
think of ¢(x) as a family of propositions indexed over the universe of terms
U, say ¢ : U — Prop. This is a dependent type. On the other hand, if we
consider a formula ¢(X), parametric in a formula variable X then we can think
of ¢(X) as a family of propositions indexed over the universe of propositions, say
¢ : Prop — Prop. This is a a second order type. If we allow quantifications
over variables we can form the formulas Vz.¢, and dz.¢. This is the realm of
first-order logic. If moreover we allow quantifications over formula variables we
can form the formulas VX.¢, and 4X.¢, and we are in the realm of second order
logic.

Dependent types also appear in several type systems (or generalized logics)
such as DeBruijn’s Automath [dB80], Martin-L6f’s Type Theory [ML84], and
Edinburgh LF [HHP93]. Second order types appear in a rather pure form in
Girard’s system F [Gir72] (which is equivalent to a system of natural deduction
for minimal, implicative, propositional second order logic), they also appear, for
instance, in the Calculus of Constructions [CH88] but there they are combined
with dependent types and more.

Let us now look at the interpretation. Given a family A : U — Prop we
can obtain two new propositions VA, and dyA where we understand Vi as a
meet or a product, and Jy as a join or a sum. In general, given a family of
types F': I — T indexed over a category I we are interested in building two new
types that we may denote, respectively, with 1I1F and ¥1F, and that correspond,
respectively, to the product and the sum of the family F'.

Relying on this informal discussion, we can summarize the contents of this
chapter as follows. The main problem considered in section 11.1 is to provide a
concrete domain-theoretical interpretation of the constructions sketched above.
In particular, we build a category of domains that is “closed” under (certain)
indexed products, and (certain) indexed sums. The first simple idea is to interpret
types as domains of a given category C, and the collection of types as the related
category C* of injection-projection pairs. What is then a dependent type F
indexed over some domain D7 Since every preorder can be seen as a category, it
is natural to ask that F' is a functor from D to C”. Analogously a second order
type will be seen as an endo-functor over C?. However this will not suffice, for
instance we will need that the family F' preserves directed colimits, namely it is
cocontinuous.

In section 11.2 we provide a syntactic formalization of the semantic ideas
sketched above. To this end we introduce a calculus of dependent and second
order types and discuss some of its basic properties. We call this calculus A P2-
calculus, following a classification proposed in [Bar9la] (the “P” stands for pos-
itive logic and the “2” for second order). We also briefly discuss an interpre-
tation of the AP2-calculus which relies on the domain-theoretical constructions
introduced in section 11.1. The interpretation is presented in a set-theoretical
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notation, a general categorical treatment would require an amount of category-
theoretical background that goes beyond our goals. In this respect let us mention
[AL91] which contains a rather complete analysis of the categorical structure
needed to interpret second order types from the viewpoint of indexed category
theory and internal category theory. Several approaches to the categorical se-
mantics of dependent types have been considered, we refer to [JMS91] for an
account based on fibrations.

In section 11.3 we describe another interpretation of type theories based on
the idea that types denote retractions. In this respect we take two different
but related approaches. First, we further develop the properties of the domain of
finitary projections studied in section 7.4. In particular we show how to represent
dependent and second order types in this structure. It turns out that certain “size
problems” encountered in the domain constructions described in section 11.1 can
be avoided in this context. Second, we present an extension of the A3-calculus
called Af@p-calculus in which “p” is a constant that denotes the retraction of all
retractions. We define a simple, adequate translation of the AP2-calculus in the
A p-calculus.

The AP2-calculus can be seen as the combination of two systems of indepen-
dent interest: the system LF of dependent types and the system F of second
order types. We reserve the sections 11.4 and 11.5 to a careful presentation of
the syntactic properties of these two systems the main result being that both
systems enjoy the strong normalization property (this property is enjoyed by the
AP2-calculus as well and can be proved by combining the techniques for system
F and system LF). We also discuss two interesting applications that illustrate
the expressive power of these systems: (1) The system LF has been proposed
as a tool for the encoding of certain recurring aspects of logical systems such
as a-conversion and substitution. We illustrate this principle by presenting an
adequate and faithful representation of first-order classical logic in LF. (2) The
system F can represent a large variety of inductively defined structures and func-
tions defined on them by iteration.

11.1 Domain-Theoretical Constructions

In set theory we may represent a family of sets as a function F': X — Set. More
precisely, we consider a graph given as {(x, F'z)},ex. In this way we do not have
to speak about the class of sets. We formulate some basic constructions that will
be suitably abstracted in the sequel. In the first place we can build the (disjoint)
sum of the sets in the family as:

YxF={(z,y) |z € X and y € Fa}.

Observe that there is a projection morphism p : ¥x F — X that is defined as
p(x,y) = x. On the other hand we can build a product of the sets in the family
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as:
OIxF={f:X—= |J Fz|Vee X (foveFz)}.
z€X

There is another way to write Il x F' using the notion of section of the projection
morphism p : ¥x F — X (the weakness of this method is that it requires the
existence of ¥ x F'). A section is a morphism s : X — Yy F' such that pos = idx,
in other words for any € X the section s picks up an element in F'x. It is then
clear that the collection of sections of p is in bijective correspondence with 1l x F'.

Exercise 11.1.1 Verify that the definitions of Xx F and llx F' can be completed so to
obtain sum and product of the objects in the family in the category of sets.

Exercise 11.1.2 Suppose that the family F : X — Set is constant, say F(xz) =Y for
each x in X. Then verify that XxF 2 X XY, andlIxy F=2 X —» Y.

Exercise 11.1.3 Show that every small category with arbitrary products is a poset (this
is an observation of Freyd). Hint: We recall that a category is small if the collection of
its morphisms is a set. Given two distinct morphisms f, g : a — b in the small complete
category C consider 11;b. The cardinality of Cla,117b] exceeds that of Morc when I is
big enough.

Remark 11.1.4 Observe that in the definition of X x F' and llx F' it is important
that X s a set, so that the graph of F' is again a set, and so are Xx F and Il x F'.
This observation preludes to the problem we will find when dealing with second
order types. In the interpretation suggested above neither the graph of a family
I': Set — Set nor Yget I and gt I turn out to be sets!

In the following we generalize the ideas sketched above to a categorical setting.
Given a family F' as a functor F' : X — Cat, the category Xx F' provides the
interpretation of the sum. On the other hand, the product is represented by the
category of sections, say llx F', of the fibration p : ¥x F' — X that projects Xx F'
onto X. A section s of p is a functor s : X — Xx F such that p o s = idx.

Dependent types in Cat. Let F': X — Cat be a functor where X is a small
category, we define the categories Yx F,IIx F', and the functor p : ¥x F' — X as
follows:

Yx F ={(z,y) |z € X,y € Fa}
Sx Fl(z,y), (@ y)] ={(f,e) | fra =20 F([)y) =y}
1dz.) = (idy,idy)

(9.8) 0 (f,a) =(go f,B0(Fg)(a))

The category Yx F' is often called the Grothendieck category. The functor p :
Yix F'— X is defined as:

ple,y) =z p(fio)=[.
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The category IlIx F' is defined as:

x # ={s: X = Yx ¥t |pos=idx}

HUx F[s,s] ={v:s— s |visa cartesian natural transformation}

where a cartesian natural transformation v : s — s’ is a natural transformation
determined by a family {(id,,v.)}rex with s(z) = (z,y), '(¢) = (x,z), and
Ye : Yy — z (so the first component of the transformation is constrained to be the
identity). Observe that for a section s we have s(x) = (z,y), for all € X, and
s(f)=(f,a), for all f € Morx.

The next issue concerns the specialization of these definitions to the categories
of cpo’s and Scott domains. The problem is to determine suitable continuity
conditions so that the constructions of sum and product return a “domain”, say
an algebraic cpo’s. It turns out that everything works smoothly for dependent
types. On the other hand second order types give some problems.

(1) The sum of a second order type is not in general a domain.

(2) The product of a second order type is only equivalent, as a category, to a
domain.

(3) Bifinite domains are not closed under the product construction (this moti-
vates our shift towards Scott domains).

Dependent types in Cpo. We refine the construction above to the case where
F:D — Cpo® is a functor, D is a cpo, and Cpo™ is the category of cpo’s and
injection-projection pairs. In other terms X becomes a poset category D and the
codomain of the functor is Cpo”. By convention, if d < d in D then we also
denote with d < d' the unique morphism from d to d in the poset category D.
If f: D — E is a morphism in Cpo™ then we denote with f* the injection and
with f~ the projection.

Proposition 11.1.5 (dependent sum in Cpo”?) Let D be a cpo and F : D —
Cpo' be a functor, then the following is a cpo:

YpF ={(d,e)|d e D,e € Fd}, ordered by
(dye) <s (d'.¢') iff d<pd and F'(d < d)"(e) <pw) €.

PROOF. By proposition 3.1.3, the category Cpo® is the same as the category
where a morphism is the injection component of an injection-projection pair. The
latter is a subcategory of Cat. It is immediate to verify that (X¥pF, <y) is a poset
with least element (Lp, Lg1,)).

Next let X = {(d;, €;) }ier be directed in XpF. Set for d = V7 d;:

VX = (d,\ F(di < ) (e0)) |

el
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We claim that this is well defined and the lub of X in Xpf.
o {F(d; < d)t(ei)}ier is directed. Since X is directed:

Vi, 7, 3k(d; < dy., d;j < dy, F(d; < dp)t(e;) <ep, F(d; <di)t(ej) <ep) .
Hence F(d; < d)*(e;) = F(dpy < d)t o F(d; < dp)T(e;) < F(dy, < d)*(er), and
similarly for j.

e \/ X is an upper bound for X: immediate, by definition.

e V X is the lub. If (d',€') is an upper bound for X then it is clear that d < d'.
Next we observe:

F(d < d)* (Vier F(di < d)(e:))

Vier I'(d <
Vie (F(d < d)* (e

Exercise 11.1.6 Verify that the definition of XpF is an instance of the definition in
Cat.

Proposition 11.1.7 (dependent product in Cpo') Let D be a cpo and F -
D — Cpo™ be a functor, then the following is a cpo with the pointwise order
induced by the space D — XpF':

MIpF]={s: D — XpF | s continuous, pos=1idp} .

PROOF. First we observe that p: ¥pF — D is continuous as for any {(d;, €;) }ier
directed set in ¥ pF' we have, taking d = V;¢; d;:

p(viel(div ei)) = p(\/iel d;, Vier F(di < d)+(€i))
= Vierdi = Vierp(di, ¢) .

We can also define a least section as s(d) = (d, Lp(g)). Next we remark that for
any directed set {s;}ier in [lIpF] we have, for any d € D:

po(\ s)(d) = p(\ si(d)) = \/ p(si

el i€l el

Hence the lub of a directed set of sections exists and it is the same as the lub in

D —YpF. O
We given an equivalent definition of continuous section.

Definition 11.1.8 Let D be a ¢po and F : D — Cpo® be a functor. Consider
f D = Ugep Fd such that fd € Fd, for each d € D. We say that [ is
cocontinuous if F'(d < d")V*(fd) < fd', and for any {d;}ier directed in D, such
that \/;e; d; = d,

_\ F(d < ()

el
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Clearly [IIpF1] is isomorphic to:

{f:D = Ugep Fd |Vd(fd € Fd) and [ is cocontinuous}, ordered by

Exercise 11.1.9 Verify that the definition of [IIpF] in Cpo'® corresponds to select a
Sfull subcategory of cocontinuous sections out of the general construction described for
Cat.

Dependent types in Scott domains. We denote with S (S for Scott) the cat-
egory of algebraic, bounded complete, cpo’s (Scott domains for short, cf. chapter
1). The following hypotheses suffice to guarantee that the constructions defined
above return Scott domains:

e The domain of the family is a Scott domain.

o The codomain of the family is the category S of Scott domains and injection-
projection pairs.

o Less obviously, the functor F'is cocontinuous in a sense which we define next.

Definition 11.1.10 (directed colimits) A directed diagram is a diagram in-
dexed over a directed set. We say that a category has directed colimits if it has
colimits of directed diagrams. We say that a functor is cocontinuous if it preserves
colimits of directed diagrams.

Applying the theory developed in section 7.1 it is easy to derive the following
properties.

Proposition 11.1.11 (1) The category S has directed colimits.

(2) Given a Scott domain D and a functor F : D — S, I is cocontinuous iff
for any {d; }ier directed in D such that \/;c; d; = d,

el
(3) A functor F : S — S is cocontinuous iff for any Scott domain D and any
directed set {p;}icr of projections over D,

\Vpi=idp = \ F(pi)=1idpgy .

el el

Proposition 11.1.12 (dependent sum and product in Scott domains) Let
D be a Scott domain and F : D — S be a cocontinuous functor, then the cpo’s
YpF and [UpF] are Scott domains.
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PROOF. o XpF' is bounded complete. Let X = {(d;, ¢;)}icr be bounded in ¥p F

by (d',€'). Then: (i) {d;}ier is bounded in D by d" and therefore 3V;c;d; = d.
(i1) Moreover {F(d; < d)*(¢e;)}ier is bounded by F(d < d')~(¢') as:

F(d; <d)(e;)) = F(d <d")V"F(d; < d)T(e;) < ¢ implies
F(d; <d)t(e;)) < F(d < d)(€) .

Hence we set e = ;¢ Fi(d; < d)t(e;). Tt is immediate to check that (d, e) is the
lub.

o YXpF is algebraic. We claim:

(1) K(EpF)2{(d,e)|deK(D)and e € K(F(d))} = K.

(2) For any (d,e) € EpF, | (d,e) N K is directed with lub (d, e).

Proof of (1). Let d' € K(D), ¢ € K(F(d')), and X = {(d;, &) }ier be directed
in XpF with & < Verdi = d, and F(d' < d)*(e') < Vier F(di < d)t(e;). By
hypothesis, d" and ¢’ are compact. F(d" < d)*(¢) is also compact, hence we
can find j such that d' < d;, F(d' < d)*(¢') < F(d; < d)*(e;), that implies
F(d <d;)*(e) <e¢j. Thatis (d',¢') < (d;,e;). Hence (d',¢') € K(XpF).

Proof of (2). The set is directed because ¥p F' is bounded complete. Given (d, €)
we consider: (i) {d;}ier C K(D) directed such that V,crd; = d, and (ii) Vi € [
{ei;}jes, € K(F(d;)) directed such that \/;c; e;; = F(d; < d)™(e).

Then the following equations hold (the last one by cocontinuity of F'):

\/iel,jeJi(div ei;) = (d, Vier e, F(d; < d)+(€m))
= (d,Vier F(d: < d)"(Vjey, €i4))
= (d,Vier Fl(d; < d)*F'(d; < d)~(e)) = (d,e) .

o [lIpF] is bounded complete. Suppose {s;}ier is a bounded set in [l F]. Since
bounded completeness is preserved by exponentiation we can compute V;c;s; in
D — YpF. It remains to show that po (V,c; s;) = idp. We observe that for any

de D:
p((V si)(d) = p(\/ si(d)) = \/ p(si(d)) =d .
el el el
o [lIpF] is algebraic. We consider the step sections (cf. lemma 1.4.8) [d, ¢] for
d e K (D), e € K(F(d)), defined as:

(z, F(d<az)t(e)) ifd<ua
(2, Lr) otherwise

.- {

One can verify that [d, e] is compact in [IIp F]. It remains to observe that for any
s € [lIpF], {[d, €] | [d,e] < s} determines s. 0
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Second order types in Scott domains. We look for an interpretation of
second order types as domains. Suppose that F : S — S is a cocontinuous
functor. Then, as an instance of the general categorical construction, we can
form the category Ygip . It is easily verified that Ygir F' does not need to be a
preorder as there can be several injection-projection pairs between two domains.
We therefore concentrate our efforts on products. To this end we spell out the
notion of cocontinuous section.

Definition 11.1.13 Let F' : S — S be a cocontinuous functor. A cocontinu-
ous section s is a family {s(D)}pesir such that:

f:D—=EinS? = F(f)*(s(D)) <s(k) (11.1)
and for any D € S™ for any {f; : D; — D}icr such that {fi" o fi }ier is directed

we have:

V(fifofi)=idp = s(D)=\/(Ffi)"(s(Dy)) (11.2)

el el

Let [HiSpF] be the collection of cocontinuous sections with the pointwise partial
order:

s<s iff ¥YDeS™” (s(D) < s$'(D)) .

The problem with this partial order is that the cocontinuous sections are not sets,
hence a fortiori [Ilgi» F'] cannot be a Scott domain. However there is a way out of
this foundational problem, namely it is possible to build a Scott domain which
is order isomorphic to [Ilgi F]. To this end we observe that the compact objects
(cf. definition 7.3.3) in S are the finite bounded complete cpo’s, and that there
is an enumeration S, = {C;};c, up to order-isomorphism of the compact objects.
We define [llgip F'] as the collection of sections {s(D)}gir such that:

s:D—EinS? = F(f)*(s(D)) <s(E) (11.3)

This is the monotonicity condition 11.1 in definition 11.1.13 restricted to the
subcategory S% (there is no limit condition, as S is made up of compact objects).
We observe that [llgip /'] with the pointwise order is a poset. The following
theorem is due to [Coq89], after [Gir86]. The basic remark is that a cocontinuous
section is determined by its behaviour on S%.

Theorem 11.1.14 (second order product) Let F' : S — S be a cocontin-
wous functor then: (1) [llgin "] is order isomorphic to [Ugin k'], and (2) the poset
[(Hgir F] is a Scott-domain.

PROOF HINT. (1) Any cocontinuous section s € [lIgi» F'] determines by restriction
a section res(s) € [lgipF]. Vice versa given a section s € [lgip /] we define its
extension ext(s), as follows:

ext(s)(E) = \/{(FFT(s(D))| D €SP and f: D — F in S7} (11.4)
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The set {(Ff)*(s(D)) | D € S?and f : D — FE in S*?} is directed. Given
fO:D0—>E,f1:D1—>EwecanﬁndD’ESZpanng:DoﬁD’,gl:D1—>D’,
g: D" — FE such that go gy = fo and go g; = f;.

The section ext(s) satisfies condition 11.1 because given g : £ — FE' we
compute:

(Fg)*(eat(s)(E)) = (Fg)*(V{(Ff)*(s(D)) | D € 87 and f: D — L})
=V{F(go )(3(D)|D§SZpandf:D—>E}
SV{F(R)T(s(D)) | D eS?and h: D — E'} = (ext(s))(E') .

With reference to condition 11.2 we need to check that:

ext(s)(D) < \/(Ff)t(eat(s)(D;))

i€l

(the other inequality follows by condition 11.1). According to the definition of
ext consider D' € S and f: D' — D. We can find j € [ and h : D' — D; such
that f; oh = f. Then:

F(NT(s(D) = F(fjoh)T(s(D))
= F()TER)T(s(DN)) < F(f;) (ext(s(Dy))) -

It is easily checked that res and ext are monotonic. We observe that s(D) =
ext(s)(D) if D € S®. To show < consider the identity on D, and to prove > use
condition 11.1. Tt follows res(ext(s)) = s.

To prove ext(res(s)) = s we compute applying condition 11.2:

ext(res(s))(D) = V{(Ff) ((res(s))(D')) | D" € S and f: D' — D}
=V{(FNHT(s(D)) | D €SP and f: D — D} =s(D) .

(2) The least element is the section { Lp} ,gir. Thelub s of a directed set {s; }icr

is defined as s(D) = V;cr s;(D). Bounded completeness is left to the reader. To
show algebraicity, we define for D € S and e € K(F D) the section:

(D, e](D') =\ {(Ff)t(e)| f: D— D" in S7} (11.5)

Compact elements are the existing finite lub’s of sections with the shape 11.5. O

Hence, although [IlgirF'] is not a poset because its elements are classes, it is
nevertheless order-isomorphic to a Scott domain [HSQPF]' Figure 11.1 summarizes
our results on the closure properties of the ¥ and II constructions in the categories
Cpo® and S,

Exercise 11.1.15 Consider the identity functor Id : S — S, Prove that [[lgipId] is
the cpo with one element. Hint: let s be a cocontinuous section and D a Scott domain.
Then there are two standard embeddings, tn; and in,., of D in D + D, where + is
the coalesced sum. The condition on sections requires that s(D + D) = ini(s(D)) =
in,(s(D)), but this forces s(D) = Lp.
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F:D — Cpo™, F functor, D cpo = YpF, [UpF] cpo’s
F:D — S® F cocont., D Scott domain = YpF, [IpF] Scott domains

F:S? — 87 F cocont. = [llgin ] = [llgip F'] Scott domain

Figure 11.1: Dependent and second order types in Cpo” and S?

Remark 11.1.16 (1) Fzercise 11.1.15 hints at the fact that cocontinuous sec-
tions satisfy certain uniformity conditions, namely the choice of the elements has
to be invariant with respect to certain embeddings. In practice syntactically de-
finable functors are “very” uniform so we can look for even stronger uniformity
conditions in the model. Here is one that arises in the stable case (see chapter 12
and [Gir86]) and that leads to a “smaller” interpretation of certain types. Fvery
section s satisfies the following uniformity condition:

h:D — E in S® implies s(D) = (I'(h))™(s(E)) (11.6)

This condition implies the standard condition in the continuous case. In the stable
case one considers stable injection projection pairs (cf. section 12.4) and the
sections s are such that for all D, s(D) is stable. (2) It can be proved that bifinite
domains are not closed with respect to the [IlgiF] construction (see [Jun90]).
The basic problem arises from the observation that S does not need to satisfy

property M (cf. definition 5.2.6).

The following two exercises require the knowledge of stability theory and of
coherence spaces (chapters 12 and 13). The first exercise witnesses the difference
between the stable and the continuous interpretation. The second presents the
uniformity condition as a requirement of stability.

Exercise 11.1.17 (1) Show that, in the stable setting just described, the interpretation
of Vt.t — t is (isomorphic to) O. (2) In contrast, show that in the continuous setting
the interpretation of Vt.t — t is infinite. Hints: For (1), consider a section s. Show that
if xe € trace(s(F,)), then x C {e}; make use of two injections from E into E U ¢,
where €' is coherent with all the events of x. Show that x # L with a similar method (¢’
being now incoherent with e). Show that if s is not L for all D, then s({e}, _) = id,
and hence s(D) is the identity everywhere. For (2), consider the (non-stable) functions
defined by s(D)(x) = x if v bounds at least n compact elements of D, and s(D)(z) = L
otherwise.
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Exercise 11.1.18 (Moggi) Let s be a section satisfying the condition in the proof
of theorem 11.1.14 and consisting of stable functions. Show that s satisfies the uni-
Sformity condition 11.6 iff s, viewed as a functor in the Grothendieck category, pre-
serves pullbacks. Hints: (1) Show that f : (D,z) — (D',2') and ' : (D,z) —
(D', 2"y form the limit cone of a pullback diagram in the Grothendieck category iff
= F(f)= (@) ANF(f)"(2"). (2) Show that for any stable injection-projection pair
f:D — D', the pair of f and f forms the limit cone of a pullback diagram.

11.2 Dependent and Second Order Types

We introduce the typing rules of the AP2-calculus, a A-calculus with depen-
dent and second order types. We restrict our attention to the introduction and
elimination rules for products. The syntactic categories of the AP2-calculus are
presented as follows.

Variables ve=aly]...

Contexts [u=¢|lv:o|lv: K

Kinds K:=tp|lv:o K

Type Families o :=v|llv:oc|Hv:tpo|v:oco|ocM
Objects M:ai=v|Xv:oM| :tp M| MM | Mo .

Contexts, type families, and objects generalize the syntactic categories we have
already defined in the simply typed case (cf. chapter 4). Kinds form a new
syntactic category, which is used to classify type families, so, intuitively, kinds
are the “types of types”. The basic kind is ¢p which represents the collection of all
types. More complex kinds are built using the II construction and are employed
to classify functions from types to the collection of types (type families). The
formal system is based on the following judgments.

Well formed kind I'- K :kd
Well formed type family I'Fo: K
Well formed object I'EM:o.

The formal rules are displayed in figure 11.2. In the following we will use A, B, . ..
as meta-symbols ranging over objects, type families, kinds, and a special constant
kd which is introduced here just to have a uniform notation.

A well-formed context has always the shape x; : Ay,..., 2, : A, where A;
is either a kind or a type (that is a type family of kind ¢p, but not a function
over types). Note that A; might actually depend on the previous variables. Syn-
tactically this entails that the rule of exchange of premises is not derivable in
the system; the order of hypotheses is important. Semantically we remark that
a context cannot be simply interpreted as a product. We will see next that the
product is replaced by the Grothendieck category (cf. exercise 11.1.2)
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The formation rules for kinds are directly related to those for contexts, indeed
we use [' F tp : kd to state that the context I' is well-formed. One can consider
a slightly less synthetic presentation in which one adds a fourth judgment, say
I' b ok, which asserts the well-formation of contexts.

We remark that not all premises in the context can be A-abstracted. In
particular, type families cannot be abstracted with respect to kinds, and objects
can be abstracted only with respect to types and the kind ¢p. By convention we
abbreviate Ila : A.B with A — B, whenever « ¢ FV(B).

In the AP2-calculus it is not possible to type a closed type family Az : 0.7 :
Iz : o.tpin such a way that 7 actually depends on x. In the applications (e.g., see
section 11.4) we enrich the calculus with constants such as Prod.bool : nat — tp.

Finally, we note that the rules 1I; and Ilg for type families and objects follow
the same pattern.

Kinds and types are assigned to type families and objects, respectively, mod-
ulo B-conversion (rules (tp.Eq) and (Fq)). Formally, we define the relation = as
the symmetric and transitive closure of a relation of parallel 3-reduction which
is specified in figure 11.3. This is a suitable variation over the notion of parallel
(J-reduction that we have defined in figure 2.5 to prove the confluence of the un-
typed A3-calculus. Note that the definition of the reduction relation does not rely
on the typability of the terms. Indeed this is not necessary to obtain confluence
as stated in the following.

Proposition 11.2.1 (confluence) If A = A’ and A = A" then there is B such
that A’ = B and A” = B.

PROOF HINT. Show that if A= A’ and B = B’ then A[B/z] = A'[B'/z]. O

We state three useful properties of the AP2-calculus. We omit the proofs
which go by simple inductions on the length of the proof and the structure of the
terms.

Proposition 11.2.2  Type uniqueness: If ' A: B and ' H A : B’ then
B=F.

Abstraction typing: If I' - dx : AA" . lle : B.C then ',z : AF A" : C and
A=B.

Subject reduction: IfI'F A: B and A= A" then '+ A": B.

Let us briefly discuss two relevant extensions of the AP2-calculus:

e When embedding logics or data structures in the A P2-calculus it is often useful
to include n-conversion as well (cf. sections 11.4 and 11.5):

(n) Ae:A(Bx)=B x¢ FV(B).
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'K :kd = ¢ dom(I
(K9) SEpid (K.kd) : & dom(L)

Iye: KEtp:kd

(K.tp) I'Fo:tp ¢ dom(T)

. I've:oFK:kd I'bo:tp
Ix:obtp:kd (K1)

'tz :0.K : kd

Well formed kind

z: Kecl T'kip:kd 'to: K
(tp.Asmp) T Kp (tp.Eq)

'K :kd K=K
I'Fo: K’

De:obFT:tp 'Fo:tp 9 ye:tpbk7:tp
(tp-IT) 'z :o7:tp (tpIT%) I'-1ax :tp.7:tp

Ie:obF7:K I'Fo:tp
(tp-11) 'tXdz:or:1llz:0 K

ol 'tr:lz:0 K TEM:0o
(tp-Ilz) T+ M : K[M/z]

Well formed type family

x:oel T'kHip:kd 'EM:o0c 'Fr:itp o=1
(Asmp) I'Fz:o (Eq) 'EM:7

(1)) Fe:oFM:7 I'bo:tp

(ITp) 'M:lzx:07r 'EFN:0o
'tXe:0M:lzx:o.7 B

' MN :7[N/z]

(112) ye:tpkEM: 7
DTk X tpM U : tp.7

(112,) I'EM:Ilx:tpr 'Fo:tp
E ' Mo:7[o/x]

Well formed object

Figure 11.2: Typing rules for the AP2-calculus
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A=A B=PB A=A B=PB
(Ax: C.A)B = A'[B'/x] AB = A'B’
A=A B=PB A=A B=PB

M A.B= da: AB Ha: A.B=la: A.B

A=C B=C
A=A A=1B

Figure 11.3: Parallel g-reduction and equality for the A P2-calculus

The system with (n-conversion is still confluent and strongly normalizing but
the proof of this fact is considerably harder than the one for (3-conversion. A
basic problem is that confluence cannot be proved without appealing to typing.
Consider:

N=Xdx:o(y:m.M)x ¢ FV(M)
N =g Ax 0. M[x/y]
N =, dy:7.M.
It is not possible to close the diagram unless ¢ and 7 are convertible. This is

proven by appealing to judgments of the shape ' Fo=17: K.

o The following rules can be used to formalize the ¥-construction on dependent
types. Observe the introduction of the constructor (_, ) and destructors fst, snd
which generalize the familiar operators associated to the cartesian product.

oS ye:obF71:tp S '-M:o I'Ne:obFN:7T
(tp-%) I'FXz:o7:ip (1) I'F(M,N[M/z]): Xx : 0.7

(S '-M:¥z:0.7 (S,) '-M:%z:0.7
= I'FfstM:o B) T snd M« 7[fstM /]

Interpretation in Scott domains. We interpret the A P2-calculus in the cat-
egory of Scott domains and injection-projection pairs by appealing to the con-
structions introduced in section 11.1. The interpretation is given in a naive
set-theoretical style, our goal being to suggest how the sum and product con-
structions can be used in an interpretation.

In first approximation the interpretation of a context I' such that I' - tp : kd,
is a category, say [I'], the interpretation of ¢p is the category S” of Scott domains
and injection-projection pairs, the interpretation of a type, I' b o : tp, is a
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functor F' = [ F o : tp] from [I'] to S®, and the interpretation of a term,
I' = M : 0, is a section of the Grothendieck fibration p : ¥prpF” — [I']. Note
that the interpretations are inter-dependent, and they are defined in figure 11.4
by induction on the derivation of the judgment. We use a set-theoretical style,
in a rigorous approach we should make sure that the defined objects exist in
the domain-theoretical model. Another aspect which we ignore is the soundness
of the equality rules. Indeed, one should verify that F-reduction is adequately
modelled ([CGWS8| carries on this verification for second order types).

We start with the trivial category 1, and we use the Grothendieck category
to extend the context. The interpretation of a kind judgment is a functor from
the context interpretation to Cat. We define the interpretation parametrically
on y € [I']. Given a variable, say x, occurring in the well formed context I' we
write y, for the projection of the z-th component of the vector y € [I'].

Exercise 11.2.3 Fxtend the interpretation to handle the rules for dependent sum
stated above.

11.3 Types as Retractions

We present two approaches which are based on the interpretation of types as
(particular) retractions over a domain. In the first approach, we develop the
properties of finitary projections (cf. chapter 7) towards the interpretation of
dependent, and second order types. In the second approach, we present a purely
syntactic interpretation of the AP2-calculus into the A@p-calculus, which is a
A-calculus enriched with a constant p that plays the role of a retraction of all
retractions.

In section 7.4, we have discussed how to represent countably based Scott
domains as finitary projections over a universal domain U. In the following we
briefly describe the construction of the operators ¥ and II in this framework (see
[ABLS86]). Suppose that U is a Scott domain such that:

UxUaU via (A(u, u).(u, u'), Au.((fst u), (sndu))) : U x U = U
(U —=U)aU via(i,j):(U—=U)—=U

We also know that (see exercise 7.4.8):
FP(U)ﬂ(U — U) via (ide(U),W) .

We set r =iomoj € FP(U). We suppose the following correspondences:
e A projection p € FP(U) represents the domain im(p).

e A function f : U — U such that f = m o f o p represents a cocontinuous
functor from the domain im(p) to the category S, where f(d) = im(fd) and

Jld <d) = (id, [(d)).
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(K.0) [4] =1
(K.kd) [Iyx: K] =Xl F K : kd]
(Ktp) [Dyz:o] =3XqllFo:tp]

Context interpretation

(K., kd,tp) [I'ttp:kd](y) =S
(K.10) [TFz: oK kd](y) = gAYy . Fy,y)]
where: Gy =[['F o : tp](y)
and F(y,y) =1,z :0F K :kd](y,y)

Kind interpretation

(tp-Asmp) [I'tx: tp](y) =Y
(tp.10) [I'F o7 tp](y) = Mgy Ay F(y, y')]
where: Gy =[I' F o : tp](y)
and F(y,y) =T,z :0bt71:tp](y,y)
(tp.IT%) [T F Tz : tp.r: tp](y) = Mg Ay’ . F(y, y')]
where: F(y,y') =[T,a:tpt 7 :tp](y,y)
(tp.I1y) Az o llz:0K](y) =M e€Gy([Iz:oF7:K])(y,y)
where: Gy =[I' F o : tp](y)
(tp.1g) MM : K[M/z]](y) =([I't7:lz:a.K])('FM:o](y))

Type family interpretation

(Asmp) [I'Fz:0o](y) =y,
(I1y) [TEXe:oM:llz:or)(y) =M e€Gy.([I'yz:0FM:7])(y,y)
where: Gy =[I'F o : tp](y)

(Ig)  [I'FMN :7[N/z]](y) = (=M : 1z :or](y)([I'E N :o](y))
(113) [TFXe:tpM T tp7](y) =N € SP([Ta:tpt M 7)) (y,y")
(1% [I'F Mo :7[o/2]])(y) =([UF M : Tz :tp.r)](y) ([T o = tp)(y))

Object interpretation

Figure 11.4: Interpretation of the AP2-calculus in S
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It has already been remarked in 7.4.10 that FP(U) and S (more precisely,
the subcategory of countably based domains) are not equivalent categories as
FP(U) is just a poset. As a matter of fact we get a different model of the AP2-
calculus where, in particular, one can interpret the second order Y-construction
as a domain.

Definition 11.3.1 (¥ and II constructions in FP(U)) Let p € FP(U), and
f:U — U be such that f =7 o fop. We define:

Yo = Aup(fstu), (f(fstu))(snduw)): U = U
ILf = AXui(Axg(fa)((Ju)(px)): U —= U .

Exercise 11.3.2 Show that under the hypotheses of definition 11.3.1, ¥,f,1l,f €
FP(U).

When f : im(p) — S is regarded as a functor, the sum and product construc-
tions defined in propositions 11.1.5 and 11.1.7, respectively, apply. In particular
we have:

S = {(d€) | pd = d and (fd)e = c}
Wi f] = {6: U > U | $op =6 and ¥d ((fd)(éd) = $d)} .

We can then show that ¥,f and II,f are finitary projections representing the

=1
={

“right” domains.

Exercise 11.3.3 Show that under the hypotheses of definition 11.5.1 the following
isomorphims hold:

im(E,f) 2 i/ and im(l, f) = [0 f] -

Exercise 11.3.4 Compute 11.1d. Compare the corresponding domain with the one
obtained in exercise 11.1.15.

Exercise 11.3.5 Consider the formal system for the AP2-calculus with the identifica-
tion tp = kd. This system has been shown to be logically inconsistent (all types are
inhabited) by Girard. However, not all terms are equated. To prove this fact propose
an interpretation of the calculus in the domain of finitary projection. Hint: the finitary
projection © represents the type of all types (see [ABL86]).

We now turn to the syntactic approach. We present an extension of the
untyped Af-calculus with a constant p whose properties are displayed in figure
11.5 (by convention, let P o @) stand for Ax.P(Qx), with x fresh). The intention
is to let p denote the retraction of all retractions. On this basis, (p;) states that
elements in the image of p are retractions, (ps) entails that p is a retraction as
pop = ppopp = pp = p, and (ps3) states that all retractions are in the image of p.
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() ——— (ps) oM =M
(pr)o(pr) =px ¥ Tpp=p W° pM =M

(Pl)

Figure 11.5: Additional rules for the A@p-calculus

kd) =p
t};> =p

ﬁx :ABY = Az (A (B)((A))(2((A))) z,t¢ FV(A)UFV(B)
Ar: AB) = (Ax.(B))o (A)
AB) = (A)(B)

s s

Suppose: c=ax A Ae=1,.000 0.

<A>F = <A>[P1/l‘1, 7Pn/$71]
Py = (A )iz,
Py = <A1 €1

Figure 11.6: Translation of the AP2-calculus into the A@Fp-calculus

We want to show that: (i) every model of the A@p-calculus is also a model of
the AP2-calculus, and (ii) there are models of the ABp-calculus. Point (ii) is a a
corollary of theorem 12.4.18. In particular, we will we will see that every reflexive
object in the category of bifinite (stable) domains and stable morphisms (there
are plenty of them) can be canonically extended to a model of the A@p-calculus.

We remark that the finitary projection model presented above, although based
on similar ideas, does not provide a model of the A@Bp-calculus if we interpret (as
it is natural) p as the projection m. The problem is that the rule (p3) requires
that every retraction is in m image (a similar problem would arise in models based
on finitary retractions).

In order to address point (i), we exhibit a syntactic translation of the AP2-
calculus into the A@p-calculus which preserves equality. By combining (i) and
(ii) we can conclude that every model of the AF-calculus based on bifinite stable
domains, canonically provides a (non-trivial) interpretation of the AP2-calculus.

Let us give some intuition for the interpretation. A type or a kind is rep-
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resented as a retraction, say r. An object d has type r if d = r(d). When
interpreting the A-abstraction Az : A.B the retraction (A) is used to coerce the
argument to the right type. A similar game is played in the interpretation of
Iz : A.B which resembles 11, f in definition 11.3.1. Note that if « ¢ F'V(B) then
(Ile : A.B) = Az.(B) o z o (A), which is the way to build a functional space in
Karoubi envelope (cf. definition 4.6.8). Another special case is when A = {p,
then we obtain At.Az.(B)[pt/x](z(pt)). Here the type of the result “(B)[pt/x]”
depends on the input type “pt”. The translation is defined in figure 11.6, it
respects typing and reduction as stated in the following.

Proposition 11.3.6 (1) IfT'F A: B then (A)L =5, (B)'(A)L.
(2) IfTHA: B and A= B then (A)V =5, (B)L.

PROOF. In the first place we observe that (A[B/z])' =5, (A [(B)''/z]. Next
we prove the two statements simultaneously by induction on the length of the
typing proof. We consider some significative cases.

(K.¢) We apply axiom (pz).

(K.II) Let Q = (Ilz : 0.K)'. We prove pQ =5, Q by showing Q) o Q =5, Q. To
this end we expand the left hand side of the equation and apply the inductive
hypotheses: p(K)1'#7 =5 (K)'#9 and p(a)t =5, (o).

(tp.Asmp) There is a shorter proof of I' F K : kd. Then by induction hypothesis
we know p(K)' =5, (K)'. We conclude observing that (z)l' =5, (K)''z.

(tp.Eq) There are shorter proofs of ' K : kd and I' K’ : kd. By confluence
we know that A and K’ have a common reduct. By applying the second part
of the statement above we can conclude that (K)' =5, (K’)'. By inductive
hypothesis we know (K) (o)t =5, (o). Combining with the previous equation
we get the desired result.

(tp.1l;) By expanding definitions as in the (K1) case.
(Ilg) We observe:

(MN)" =g, (Il 2 o.m) (M)T)((N)") =3, (7[N/2])" ((M)T(N)) .

For the second part of the statement we proceed by induction on the typing and
the derivation of a (-reduction. For instance consider the case (Ax : A.B)C' —
B[C/z]. Tf (Ax : A.B)C is typable in a context I' then we can extract a proof
that I' F C : A. By (1) we know (A)I(CY =5, (C)'. Hence we can compute
(A : A.B)O)Y =5, (Az(B)))((A(C)HY). Which is convertible to (B)Y [(C)/z].
O



11.4. SYSTEM LF 287

11.4 System LF

The system LF corresponds to the fragment of the A P2-calculus in which we drop
second order types. Formally one has to remove the following rules: (¢p.11%), (I13),
and (I1%).

It has been shown that the system can faithfully encode a large variety of
logical systems [AHMP95]. We will highlight some features of this approach by
studying the encoding of a Hilbert style presentation of classical first-order logic
with equality and arithmetic operators. Dependent products play a central role
in this encoding. From this one may conclude that dependent products are more
“expressive” than simple types. !

On the other hand from the view point of the length of the normalization
procedure dependent types do not add any complexity. As a matter of fact we
show that the strong normalization of system LF can be deduced from the strong
normalization of the simply typed A-calculus via a simple translation. 2

Remark 11.4.1 Kinds, type families, and objects in 3-normal form have the
following shapes where recursively the subterms are in F-normal form:

Kind: My :oy... lx, : 0,.tp
Type family: Axy:op... Ax, oy om0y 2 Toa My ... My
Object: Az 10y Axy, coaMy L M.

In order to define precise encodings of logics in LF it is useful to introduce the
notion of canonical form. Roughly a term is in canonical form if it is in 3 normal
form and n-expansion is performed as much as possible. Canonical forms can be
regarded as a way to avoid the problematic introduction of full #n-conversion.

Definition 11.4.2 The arity of a type or kind is the number of Il’s in the prefix
of its B-normal form (which is to say the number of arguments). Let '+ A: B
be a derivable judgment. The arity of a variable occurring in A or B is the arity
of its type or kind.

Definition 11.4.3 Let ' = A : B be a derivable judgment. The term A is in
canonical form if it is in B-normal form and all variable occurrences in A are fully
applied, where we say that a variable occurrence is fully applied if it is applied to
a number of arquments equal to the variable’s arity.

Tt is known that the validity of a sentence is a decidable problem for propositional logic
and an undecidable one for first-order logic. Dependent types can be connected to predicate
logic in the same way simple types were connected to propositional logic in section 4.1.

?From a logical view point this relates to the well-known fact that the cut-elimination
procedures in propositional and first-order logic have the same complexity.
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Figure 11.7: First-order logic with equality

In figure 11.7 we give a presentation of classical first-order logic (FOL) with
equality and arithmetic operators. In figure 11.8 we encode the language in the
system LF. To this end we build a context I'rp;, composed of:

o The declaration of two new types ¢, 0 corresponding to the collection of indi-
viduals and formulas, respectively.

e The declaration of objects 0, § corresponding to the arithmetic operators and
objects =, D, 5.,V corresponding to the logical operators.

Next we define a function [_] that translates terms into objects of type ¢ and
formulas into objects of type o. Note in particular that:
o Variables are identified with the variables of system LF.
e M-abstraction is used to encode the quantifier V.
These features are essential to inherit the definitions of a-renaming and substi-

tution available in the meta-theory, i.e. in LF. The correspondence between the
language of FOL and its encoding in LF is quite good.

Proposition 11.4.4 There is a bijective correspondence between terms (formu-

las) having free variables in xq,...,x, and terms M in canonical form such that
syn : : : syn : : )
Uity yan e BEM oo (Ul a1 ity 0 B M o).

A second task concerns the encoding of the proof rules. The complete defi-
nition is displayed in figure 11.9. The basic judgment in FOL is that a formula
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Figure 11.8: Coding FOL language in LF

holds, say = ¢. Correspondingly we introduce a dependent type T : 0 — tp. This
is the point where dependent types do play a role! We also note that the rule
(tp.Ilg) is used to type the proof encodings. The basic idea is to introduce a series
of constants which correspond to the proof rules in such a way that objects of
type T'([¢]) relate to proofs of the formula ¢. The property of the proof encoding

can be stated as follows. >

Proposition 11.4.5 There is a bijective correspondence between proofs of a for-
mula ¢ from the assumptions ¢1,...¢, and with free variables xq,...,x,, and
terms M in canonical form such that:

P¥or Trows w1t tyee s an ey s T[]y = T([0n]) M 2 T([4]) -

=

Vioen) Ve associate the term pey(Ax @ .=xx)(eqr).
Next we turn to the strong normalization problem for the system LF. This is

For instance, to the proof

proven via a translation in the simply typed A-calculus which is specified in figure
11.10. The function ¢ applies to kinds and type families whereas the function |_|
applies to type families and objects. The function ¢ forgets the type dependency
by replacing every variable by the ground type o and ignoring the argument of a
type family. The function |_| reflects all possible reductions of the LF term. In
order to translate terms of the shape Ilx : A.B we suppose that the simply typed
A-calculus is enriched with a family of constants = having type o — (¢(A) — 0) —
o. In the first place, we observe some syntactic properties of these translations.

Lemma 11.4.6 [f M is an object then: (1) t(A[M/z]) = t(A), and (2) |A[M/z]| =
| AJ[|M]/x].

3Detailed proofs for propositions 11.4.4 and 11.4.5 can be found in [HHP93].
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Figure 11.9: Coding FOL proof rules in LF
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Figure 11.10: Translation of LF in the simply typed A-calculus
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PROOF HINT. By induction on the structure of A. a

Lemma 11.4.7 If ' F A: B and A = A’, where A is a kind or a type family,
then t(A) = t(A').

PRrROOF. By induction on the proof of the reduction. In the basic case (A :
A.B)C — B[C/z] we use the fact that, by the typability hypothesis, C' is an
object. a

The translations ¢ and |_| preserve typing.

Proposition 11.4.8 I[f ' - A : B and B # kd then t(I') & |A| : ¢(B), where
g Ay eeyan s An) = a1 0 (AL, 0 EH(AR).

PROOF HINT. By induction on the length of the proof. a

Finally we can show that the translation reflects reductions, which, by the
strong normalization of the simply typed A-calculus, implies immediately the
strong normalization of system LF.

Theorem 11.4.9 [fI'- A: B, B# kd, A= A’, and in the reduction A = A’
we find at least one B-reduction, then |A] =7 |A'].

PrOOF. By induction on the derivation of A = A’. For instance, suppose we
derive (Ax : A.B)C = A'[C'/z] from B = B’ and C = C’. Then:

|(Az: A.B)C| = ((Ay: 0.z t(A).|B|)|A])|C|
— (Az : t(A).|B))|C]
—t (Az: t(A).|B')|C’| by induction hypothesis
— |B'|[|C'|/x] = |B'[C"/x]| by lemma 11.4.6 .

a

Remark 11.4.10 By combining the results on confluence and strong normaliza-
tion it is possible to prove that it is decidable if a judgment is derivable in the
system LF.

11.5 System F

System F is the fragment of the AP2-calculus where dependent types and type
families are removed. Formally we eliminate the rules: (K.II), (¢p.ll;), and
(tp.1lg). With these restrictions, types cannot depend on objects and the equal-
ity rules (tp.Eq) and (Fq) can be dispensed with, as type equality becomes a-
conversion. Note that in the type Ilz : 0.7, the type 7 never depends on x and
therefore we can simply write ¢ — 7. Finally we remark that the rules for the
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Figure 11.11: Typing rules for system F

kind (and context) formation are redundant. Namely we can represent a context
as a list #y : 09,...,2, : 0, (as in the simply typed A-calculus), where the types
o; may depend on type variables. According to these remarks we give a more
compact presentation of system F. Since we have eliminated the kinds, we need
some notation to distinguish between type variables (i.e. variables of type tp)
and term variables (i.e. variables of type o, where o has kind ¢p): we denote the

former with ¢, s,... and the latter with z,vy,... Terms and types are defined as
follows:
Types tv ==t]s]...
o u=tv|o—o|Vive
Terms v =z |y]...

M :=v|Xv:oM|MM]|Mo.M]| Mo .

Note that the type of all types is never explicitly mentioned. V¢.... is an abbre-
viation for Ilt : ¢p.... and At.... is an abbreviation for At : tp....

A context I'is a list #1 : o1,..., 2, : 0,, so the type variables declarations are
left implicit. We denote with F'V,(I') the collection of type variables that occur
free in types occurring in I'. Derivable typing judgments are specified in figure

11.11. Mutatis mutandis, the system is equivalent to the one presented in section
11.2.

Exercise 11.5.1 Show that in system F gn-reduction is locally confluent on well-typed
terms.

The system F was introduced by Girard [Gir72] as a tool for the study of the
cut-elimination procedure in second order arithmetic (PA3), more precisely the
normalization of system F implies the termination of the cut-elimination proce-
dure in PA;. By relying on this strong connection between system F and PA,
it was proven that all functions that can be shown to be total in PA, are repre-
sentable in system F. This is a huge collection of total recursive functions that



11.5. SYSTEM F 293

goes well beyond the primitive recursive functions. System F was later redis-
covered by Reynolds [Rey74] as a concise calculus of type parametric functions.
In this section we illustrate the rich type structure of system F by presenting a
systematic method to code finite free algebras and iterative functions defined on
them.

In the following an algebra S is a sort S equipped with a t-uple of constructors:

freSx-voxS—Sfori=1,....k,k>0,n,>0.
D ——

n; times

We inductively define a collection of total computable functions over the ground
terms of the algebra as follows.

Definition 11.5.2 The collection of iterative functions f : S™ — S over an
algebra S is the smallest set such that:

g
7

o The basic functions f', constant functions, and projection functions are iter-

ative functions.

o The set is closed under composition. If f; : S™ — S,.... f, : 5™ — 5, and
g:S™ — S are iterative then AZ.g(f1(Z),..., fo(Z)) is iterative.

o The set is closed under iteration. If h; : S™+™ — S are iterative functions for
i=1,...,k then the function f: S™! — S defined by the following equations is
iterative.

[terative definitions, generalize to arbitrary algebras primitive recursive defi-
nitions (cf. appendix A). The basic idea is to define a function by induction on
the structure of a closed term, hence we have an equation for every function of
the algebra.

Exercise 11.5.3 Consider the algebra of natural numbers (w,s*,0°). Show that the
iterative functions coincide with the primitive recursive ones. Hint: the definitions by
primitive recursion are apparently more general but they can be simulated using pairing
and projections.

Definition 11.5.4 (coding) In figure 11.12 we associate to an algebra S a type
o of system F, and to a ground term a of the algebra a closed term a of type o.

Example 11.5.5 [f we apply the coding method to the algebra of natural numbers
defined in exercise 11.5.3 we obtain the type Vt.(t — t) — (t — t). The term
s(--+(80)---) can be represented by the term M Af :t — t e t.f(---(fa) ),
which is a polymorphic version of Church numerals.
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Figure 11.12: Coding algebras in system I

Exercise 11.5.6 Laplicit the coding of the following algebras: the algebra with no oper-
ation, the algebra with two 0-ary operations, the algebra of binary trees (T, nil°, couple?).

Proposition 11.5.7 There is a bijective correspondence between the ground terms
of the algebra S and the closed terms of type o modulo Bn-conversion.

PROOF. Let M be a closed term in #-normal form of type ¢. Then M has to
have the shape:
M=MMe; 7. e M 1< k.

If ¢ <k and M’ is not a A-abstraction then M’ has the shape (--- (x;My)--- Mp)
and so we can np-expand M’ without introducing a f-redex. By iterated n-
expansions we arrive at a term in # normal form of the shape

MAxy i1 g e M

where M" has type ¢, it is in § normal form, and may include free variables
x1,...,25. We claim that M” cannot contain a A-abstraction:

e A JX-abstraction on the left of an application would contradict the hypothesis
that M is in 8 normal form.

o A A-abstraction on the right of an application is incompatible with the “first-
order” types of the variables 7;.

We have shown that a closed term of type o is determined up to $n conversion by
a term M" which is a well-typed combination of the variables x;, for: =1,..., k.
Since each variable corresponds to a constructor of the algebra we can conclude
that there is a unique ground term of the algebra which corresponds to M”. O

Having fixed the representation of ground terms let us turn to the represen-
tation of functions.
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Definition 11.5.8 A function f : 5™ — S is representable (with respect to the
coding defined in figure 11.12) if there is a closed term M : o" — o, such that
for any ground term d, Mda =g, f(d).

Proposition 11.5.9 The iterative functions over an algebra S are representable.

PrOOF. We proceed by induction on the definition of iterative function. The
only non-trivial case is iteration. Let h; : S™*™™ — S be iterative functions for

i=1,...,k, and the function f:S™" — S be defined by:

F@E i) = hil@, f(Z, ), (@ yn)) =1,k (11.7)

where ¥ = x4,...,2,. We represent f with the function:
f= o dxy c o de oo (hyT) - (b T)

where we know inductively that h; represents h;. Note that iteration is already
built into the representation of the data. We prove by induction on the structure
of a ground term « that for any vector of ground terms b fba =5y f(b a).

o If a = f? then fbfo = flo(hy ) (@Q) —* @Q = hi(b), the last step holds
by induction hypothesis on h;.

o Ifa= f(a1,...,a,) then f(b, fi(as,... an)) = hi(b, f(b,ar), ..., f(b,an)), by
equation 11.7. Then by induction hypothesis on h;:

(b, filar, . an)) = hi(b, f(b,ar). ..., f(b,an)) = hibf(b.ar) ... f(b.ay) -

On the other hand we compute:

fofr(ay,. .. a)
— fM(ag,. .. ,an)a( 1

= -

= (hib)(@o(hib) - (i ))---(a_na(h_é)---(@@)-

and we observe that by induction hypothesis on a:

|®‘l
~

- (hi)

—

f(b,a;) = fba; = aio(hib) -+ (hib)) .

a

Exercise 11.5.10 Consider the case of algebras which are defined parametrically with
respect to a collection of data. For instance List(D) is the algebra of lists whose ele-
ments belong to the set D. This algebra is equipped with the constructors nil : List(D)
and cons : D x List(D) — D. Define iterative functions over List(D) and show that
these functions can be represented in system F for a suitable embedding of the ground
terms in system F. Hint: The sort List(D) is coded by the type Vt.t — (t = r — 1) — ¢,
where r is a type variable, and generic elements in List(D) are represented by (free)
variables of type r.
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In system F it is also possible to give weak representations of common type
constructors. We explain the weakness of the representation in the following
example concerning products.

Example 11.5.11 For o, 7 types of system F define:
oxXT=Vt(o—>T—=1)—>1.

Pairing and projections terms can be defined as follows:

(M,N) =XAf:0—>7—=1LfMN
m M =Mo(Ax:ody: T.x)
T M =Mr(Ax o y:Ty) .

Note that m;{ My, My) =5, M; bul pairing is not surjective, i.e. (miM,moM) #g,
M.

Exercise 11.5.12 Study the properties of the following codings of sum and existential:

o7 =Vi(oc—=t) = (T—1t) >t
dt.o =Vs.(Vt.o —s) = s.

We conclude by proving the core of Girard’s celebrated result: all terms ty-
pable in system F strongly normalize. The proof is based on the notion of re-
ducibility candidate already considered in definition 3.5.13 and in the adequacy
proof of section 8.2. In order to make notation lighter we will work with untyped
terms obtained from the erasure of well-typed terms.

Definition 11.5.13 The erasure function er takes a typed term and returns an
untyped A-term. It is defined by induction on the structure of the term as follows:

er(x) =ux er(Az:o.M) = Av.er(M) er(MN) = er(M)er(N)
er(M.M) =er(M) er(Mt)=er(M) .

In system F we distinguish two flavours of -reduction: the one involving a
redex (Ax : 0. M)N which we call simply 3 and the one involving a redex (At.M)o
which we call g;. Erasing type information may eliminate some reductions of the
shape (AM.M)o — M[o/t], however this does not affect the strong normalization
property as shown in the following.

Proposition 11.5.14 Let M be a well-typed term in system I. Then:
(1) If M =45 N then er(M) —5 er(N).

(2) If M —p, N then er(M) = er(N).

(3) If M diverges then er(M) diverges.
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PROOF. We leave (1-2) to the reader. For (3), we observe that sequences of
Oi-reductions always terminate. Hence we can extract an infinite reduction of
er(M) from an infinite reduction of M. O

Definition 11.5.15 (reducibility candidate) Let SN be the collection of un-
typed \B-strongly normalizable terms. A set X C SN is a reducibility candidate

if:
(1) Q;eSN,i=1,...,n,n >0 implies 2Q,...,Q, € X.

(2) PlQ/x|Q1,...,Q, € X and Q € SN implies (Az.P)QQ4,...,Q, € X.
We denote with RC' the collection of reducibility candidates and we abbreviate

Or,...,0Q, with Q.

Proposition 11.5.16 (1) The set SN is a reducibility candidate.
(2) If X € RC then X #0.
(3) The collection RC is closed under arbitrary intersections.

(4) If X,Y € RC then the following set is a reducibility candidate:

X=Y={M|VYNe X(MN e€Y)}.

PROOF. (1) We observe that P[Q/x]@ € SN and ) € SN implies ()\J}P)Q@ €

SN. Proceed by induction on In(P)+In(Q)+In(Q1)+- - +In(Q,), where In(P)
is the length of the longest reduction.

(2) By definition = € X.
(3) Immediate.

(4) Here we see the use of the vector Cj For instance let us consider the second
condition. To show (Ax.P)QQ € X =Y observe V@)’ € X (P]Q/x]QQ" € Y)
since by hypothesis P[Q/z]Q € X = Y. 0

Definition 11.5.17 Given a type environment n : Tvar — RC we interpret
types as follows:
[t1n = (1)

[o = 7ln =loln=1[rln
[Vt.oln = NxerclolnlX/t] .

Theorem 11.5.18 (strong normalization of system F) Given an arbitrary
type environment n, and a derivable judgment ©y : oy,...,x, 1 o, = M 7, if

P, € [oin, fori=1,...,n then er(M)[P1/x1,..., P./x,) € [7]n.

PROOF. We abbreviate [Py /21, ..., P,/x,] with [P/Z]. We proceed by induction
on the length of the typing proof. The case (Asmp) follows by definition.
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(—7) We have to show Az.er(M)[P/Z] € [0 — 7]n. By inductive hypothesis we

know er(M)[ﬁ/f][P/x] € [rln, for all P € [o]n. We conclude using property (2)
of reducibility candidates.

(—x) By the definition of =.

(V1) We have to show er(M)[ﬁ/f] € NxerclrIn[X/t]. By the side condition
on the typing rule we know [o;]n = [o:]n[X/t], for an arbitrary X € RC. By
inductive hypothesis er(M)[P/Z] € [7]n[X/t], for an arbitrary X € RC.

(VE) We have to show er(M)[P/Z] € [r]nlle]n/t]. By inductive hypothesis
er(M)[P[7] € NxerclTIn[X/l]. Pick up X = [o]n. O

The formal statement of theorem 11.5.18 can be regarded as a syntactic ver-
sion of the fundamental lemma of (unary) logical relations (cf. 4.5.3). The
following exercises present two variations over this result.

Exercise 11.5.19 We say that a set X of untyped A-terms is saturated (or closed by
head expansion) if P[Q/z]Q1,...,Qn € X implies (Ax.P)QQ1,...,Q, € X. Following
definition 11.5.17 associate a saturated set to every type and prove the analogous of
theorem 11.5.18.

Exercise 11.5.20 We say that a term is neutral if it does not start with a A-abstraction.
The collection RC" (cf. [GLT89]) is given by the sets X of strongly normalizing terms
satisfying the following conditions:

(1) M€ X and M —3 M’ implies M' € X.

(2) M neutral and VM'(M —g M’ = M’ € X) implies M € X.

Carry on the strong normalization proof using the collection RC’.

Exercise 11.5.21 FEzxtend the strong normalization results for system F to fn-reduction,
where the n rule for type abstraction is: \Xt.Mt — M t ¢ F'V(M).

Remark 11.5.22 Note that n-expansion in system F does not normalize, as:
Ax cVidte — v Vit Mot — -

Remark 11.5.23 [t is possible to reduce the strong normalization of the AP2-
calculus to the strong normalization of system F by a translation technique that
generalizes the one employed in section 11.4 for the system LI [GN91].



Chapter 12

Stability

The theory of stable functions is originally due to Berry [Ber78]. It has been
rediscovered by Girard [Gir86] as a semantic counterpart of his theory of dilators.
Similar ideas were also developed independently and with purely mathematical
motivations by Diers (see [Tay90a] for references).

Berry discovered stability in his study of sequential computation (cf. theorem
2.4) and of the full abstraction problem for PCF (cf. section 6.4). His intuitions
are drawn from an operational perspective, where one is concerned, not only with
the input-output behaviour of procedures, but also with questions such as: “which
amount of the input is actually explored by the procedure before it produces an
output”. In Girard’s work, stable functions arose in a construction of a model
of system F (see chapter 11); soon after, his work on stability paved the way to
linear logic, which is the subject of chapter 13.

In section 12.1 we introduce the conditionally multiplicative functions, which
are the continuous functions preserving binary compatible glb’s. In section 12.2
we introduce the stable functions and the stable ordering, focusing on minimal
points and traces. Stability and conditional multiplicativity are different in gen-
eral, but are equivalent under a well-foundedness assumption. They both lead
to cartesian closed categories. In section 12.5 we build another cartesian closed
category of stable functions, based on a characterisation of stable functions by
the preservation of connected glb’s. This category involves certain L-domains
satisfying a strong distributivity axiom, which are investigated in section 12.6.

In the rest of the chapter, we impose algebraicity, as in chapter 5. In Section
12.3 we introduce event domains and their representations by event structures,
and we show that they form a cartesian closed category. Berry’s dI-domains are
examples of event domains, and Girard’s coherence spaces (which give rise to a
model of linear logic) are examples of dI-domains. In section 12.4 we discuss the
stable version of bifiniteness. Within this framework a remarkably simple theory
of retractions can be developed. Figure 12.4 summarises the cartesian closed
categories described in this chapter.

The present chapter is based on [Ber78| (sections 12.1, 12.2, 12.3), [Win80]
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(section 12.3), [Tay90a] (sections 12.5 and 12.6), and [Ama9la] (section 12.4).

12.1 Conditionally Multiplicative Functions

In this section we focus on functions preserving the compatible binary glb’s.
We therefore work with cpo’s which have such glb’s. Moreover, this partial glb
operation is required to be continuous. This condition ensures that function
spaces ordered by the stable ordering are cpo’s.

Definition 12.1.1 (meet cpo) A cpo (D, <) is called a meet cpo if

1. Va,y (2 Ty= x Ay exists),
2. Ve VACyu D (21T (VA)=aAVA)=V{zAd|de A}).~

The condition (2) of definition 12.1.1, which expresses the continuity property
of binary glb’s, can be relaxed. Morevover, it comes for free in an algebraic cpo.

Lemma 12.1.2 1. In a meet cpo, as soon as x N (\/ A) exists, then the dis-
tributivity equality x A (VA) =V{x A |d € X} holds.

2. An algebraic cpo is a meet cpo iff condition (1) of definition 12.1.1 holds.
PROOF. (1) We apply condition (2) with # A (V A) in place of x:

@A VAYANA) =V{(@n(VA)YAS|6e X} =\/{zAd|de X},

(2) To check z A (VA) < V{zAd | € X}, it is enough to check that every
compact e such that e < A (V A) is also such that e < \V{x A |6 € X}, which
is clear since, by the definition of compact elements, e < \/ A implies ¢ < § for

some & € A. O

In particular, in bounded complete cpo’s the glb function is defined every-
where and is continuous. Some (counter-)examples are given in figure 12.1.

Definition 12.1.3 (conditionally multiplicative) Let D and D' be meet c¢po’s.
A function f: D — D" is called conditionally multiplicative, or ¢cm for short if

Ve,ye D wty= flxhy)=fz)Afly)
We write D —.,, D" for the set of em functions from D to D'.

The fonction por considered in section 6.4 is an example of a continuous
functions which is not cm:

por(L,tt) A por(tt, L) =1t # L = por(L, L).



