12.1. CONDITIONALLY MULTIPLICATIVE FUNCTIONS 301

(A) {L,a,b,c,d}, ordered as follows:
L minimum a <e¢,d b<e,d

is a meet cpo which is not bounded complete.

(B) {L,a,b,¢,d,e} , ordered as follows:
L minimum a <e¢,d b<e¢,d c,d<e
is not a meet cpo (condition (1) of definition 12.1.1 is violated).

(C) wU{a,b}, described in example 1.1.6 to give an example of a non-algebraic
cpo, also fails to be a meet cpo (condition (2) of definition 12.1.1 is violated).

Figure 12.1: Meet cpo structure: example, and counter-examples

The following function from T? to O due to Berry (and independently to
Kleene, see section 14.1) is a stable function:

T ife=ttandy=[ff
T ife=ff and z =1t
T ify=ttand z = ff
1 otherwise .

gustave(x,y,z) =

The simplest way to verify that this function is stable is by checking that its min-
imal points, i.e., the mimimal elements (x, y, z) of T? such that gustave(z,y,z) =
T (see definition 12.2.1), are pairwise incompatible. Indeed, if (x1,y1,21) T
(2,Y2, 22), gustave(xy,y1,2z1) = T and gustave(xz,yq, 22) = T, then (x1,y1,21)
and (22, ys, 22) dominate the same minimal point (x,y, z) by the incompatibility
of distinct minimal points, hence (x,y, z) < (21, y1,21) A (22, y2, 22), and

gustave((x1,y1,21) A (22, Y2, 22)) = T = gustave(x1,y1, 21) A gustave(xz, ya, 23).

The main difficulty in getting a cartesian closed category of ecm functions
resides in making the evaluation morphism ev stable. The pointwise ordering
<t on functions does not work. Consider the identity function id, and the
constant function T = Az.T, both in O —.,, O. Then id <.; T, so that if ev
were to be stable, we should have that ev(id, L) and ev(id, T) A ev(T, L) are
equal. But in fact

ev(id, T)Nev(T,L)=TAT# L =-ev(id, L).

302 CHAPTER 12. STABILITY

To overcome the difficulty, Berry defined the stable ordering <,;. Actually, the
goal of making ev cm forces the definition of <;; given next. Indeed, suppose
f <4 g and y < x. Then we must have

fly) = evo(f ANg,x Ny) = ev(f,z) A ev(g,y) = flz) Agly).

Definition 12.1.4 (stable ordering (cm)) Let D and D' be two meet cpo’s,
and f, f': D —., D'. We define [<, [by

Ve (2 <o’ = f(2) = [(2) A S ().

In particular, if f <g g, then f <.u g (take x = 2'). (From now on, to avoid
ambiguities, we use o for the pointwise ordering, cf. definition 1.4.4.)

Lemma 12.1.5 The relation <, of definition 12.1.) is a partial order.

PROOF. Reflexivity is obvious. For the transitivity, assume f < f', f' <« f”,
and z < 2

f@) = @) A f@) = f@)AFEYA (@)= @) A [(a).
Antisymmetry follows from the antisymmetry of <.,;. a

Exercise 12.1.6 Suppose that D, D’ are meet cpo’s and let f,f' : D —., D'. (1)
Show that [< f'iff

[[hand V2! (a2’ = f(2) A f'(2') = () A f/ ().

(2) Show that if f Ts f', thenVz, 2" (x 12" = f(z) A fl(2') = f(a') A f'(2)).

(3) Conversely, assuming that D' is a distributive meet cpo (see definition 12.1.12),
show that if

[et [/ (Jor Seot) andVa 2" (@ 12" = f2) A f/(2) = (') A f(2))

then f 15 f'. Hint for (3): one uses exactly the information in the assumption to show
that the pointwise lub of f, ' is their lub in the stable ordering, see the proof of theorem
12.1.13.

Exercise 12.1.7 Show that if [<c.p g <o h and f <, h, then f <4 ¢.

Exercise 12.1.8 Let f,g: D — FE, with f continuous, g ecm, and f <, ¢g. Show that
[is em.

Theorem 12.1.9 (cm - CCC) The category of meet cpo’s and conditionally
multiplicative functions is a cpo-enriched CCC.

12.1. CONDITIONALLY MULTIPLICATIVE FUNCTIONS 303

PROOF. The verification that the composition of two ¢m functions is cm is
immediate. As for the cpo-enriched CCC structure, we content ourselves with

the verifications that D —.,, D', ordered by the stable ordering, is a meet cpo,

and that the evaluation morphism ev is cm 1.

Directed lub’s and binary compatible glb’s are defined pointwise (and there-
fore the continuity property of A comes for free). Let H Cyp D —.p D', and

define h by h(z) =V{f(x) | f € H}.

e hiscm:

W) Nh(y) = (N F) AV Fy) = N{F(@) Agly) | f.g € HY

feH feH

We conclude by observing that f(x) A g(y) < k(2) A k(y) = k(x Ay) if k is an
upper bound of f,g in H.

e h is an upper bound of H. Let fo € H and = < y:
foy)nh(x) = \H{folw)Af(x) | [€ HY =\ {folx)Af(y) | f € H} = folx)Ah(y).

A similar argument shows that it is the least upper bound in the stable ordering.

If f 15 g, wedefine f Agby (fAg)(x)= f(z)Ag(x). We check fAg <y f.
Let x < y:

(fAGY) A () = gly) A flz) = g(z) A f(y)
= g A flz)Aglz) A fly) = flz)Ag(z)

(cf. exercise 12.1.6). Suppose k <4 f,g. We show k < fAg. Let z <y

(f A g)(x) N(y) = flx) Nk(z) = k(z).
The stability of ev follows from the definition of the stable ordering:
ev(fr) Aev(g,y) = flx) Agly) = fly) Agle)

= J@)ANFy) Ngle) Agly) = eo(f ANg e Ny).
O
Exercise 12.1.10 Show that the following combination of order-theoretic compatible

binary glb’s (where (h, z) is an upper bound of (f,z),(g,y)), borrowed from [Tay90a],
offers an attractive picture of the proof that ev is cm:

(fAg)(zAy) — (fAg)(z) — [(@)
} (f A g stable) 3 (fAhg<af) L
(fANg)(y) — (fAg)(z) — f(z)
d (fAg<s9) i} (definition) 1
9(y) — 9(2) — h(z)

In all the CCC’s presented in this chapter, the pairing and currying are the set-theoretical
ones (cf. exercises 4.2.11 and 4.2.12). We have written one of the proofs (theorem 12.2.8) in
full detail.

304 CHAPTER 12. STABILITY

(A) {L,a,b,c,d}, ordered as follows:

L minimum a,b,c < d

(B) {L,a,b,c,d}, ordered as follows:

1 minimum a¢<d b<c<d

Figure 12.2: Examples of non-distributive finite lattices

Exercise 12.1.11 Show that the composition operation on meet cpo’s is cm.

If we assume bounded completeness of the domains, we are led to introduce
distributivity to maintain cartesian closure.

Definition 12.1.12 (distributive cpo) A cpo is called distributive if it is boun-
ded complete (cf. definition 1.4.9) and satisfies

Va,y,z {x,y,z} compatible = x AN (yV z)=(xAy)V(xA z).
Some counterexamples are given in figure 12.2.

Theorem 12.1.13 The category of distributive meet cpo’s and cm functions is

a cpo-enriched CCC.

PrOOF. Let f 14 g. We show that fV g defined pointwise is also the stable lub
of f,g. Let h(x) = f(a) V g(x).

e h is stable: On one end we have

h(z Ay) = (flz) A fly)) V (g(z) A g(y))

and on the other end we have

h(z) A(fVg)y) = (f(x)Valz)) A (fy)Valy))

By distributivity we have

(f(z)Vg(z)) A(fly)Va(y))
(f(z) A fly)) V (g(z))

12.2. STABLE FUNCTIONS 305

The conclusion follows from the observation that f T, ¢ impliesf(xz) A g(y) =
9(x) A f(y), hence f(z) A g(y), g(x) A fly) < f(z) A fly).

e /1 is a stable upper bound: Let x < y. We have
h(z) A fly) = (f(@) A f()) v (g(x) A fy)) = Fle) vV (f(x) Agly)) = fl).

o /1 is the stable lub: Let f,g <, k and x < y. We have:

k() ANh(y) = (k) A fly) VvV (k(x)Agly) = (ky) A f(x) Vv (k(y) Ag(x))
= k(y) A h(x) = h(z).

12.2 Stable Functions

Stable functions can be defined on arbitrary cpo’s. Their definition brings us
closer to an operational intuition.

Definition 12.2.1 (stable) Let D and D' be cpo’s. A function f: D — D' is
called stable if it is continuous and if, for any x € D, o' € D" such that ' < f(x):

Jag < (2 < flwo) and (Vy <z (2" < fy) = 20 <y))).

This uniquely determined xq is written m(f,z,2"), and is called a minimal point
of [(relative to x'). We write D —5 D' for the set of stable functions from D
to D'. The following set is called the trace of f:

trace(f) ={(z,2"y € D x D" | 2’ < f(x) and x = m(f,z,2")}.

The function m(f,-,-) is called the multi-adjoint of f (the situation ' < f(y)
versus m(f,x,x') <y is reminiscent of an adjunction).

In computational terms, m(f, x, 2") represents the amount of & which is “read”
by f in order to “write” (at least) 2’. Stable functions can also be described by
glb preservation properties, as we now explain.

Proposition 12.2.2 1. Let D and D' be cpo’s, and let f: D —4 D'. Then for
any bounded X C D such that N X exists, f(NX) = A f(X).

2. Conversely, if D and D' have all non-empty bounded glb’s, then a continuous
function preserving all such ¢lb’s is stable.

306 CHAPTER 12. STABILITY

ProoF. (1) f(AX) is a lower bound of f(X) by monotonicity. Suppose that
2 < f(X). Let y > X. Then 2’ < f(y). Let zo = m(f,y,2"). Pick + € X. Then
zo < x by the minimality of zg, since z’ < f(x) and < y. Hence zo < A X, and
2" < f(z0) = 2 < f(ANX). Hence f(AX) is the glb of f(X).

(2) Let y < f(x). Consider zo = {z | z <z and y < f(2)}. We claim that zg is
m(f,z,y). This amounts to y < f(z0), which holds since

F(z0) = NIf(2) | = < @ and y < f(2)}.

a

In section 12.5, we shall see that stable functions preserve even more glb’s (the
connected ones, provided they exist). Meanwhile, going from “more” to “less”, by
proposition 12.2.2, stable functions on meet cpo’s are conditonally multiplicative.
Berry has provided the following example of a ¢cm, non stable function. Let

D=wU{L}with L <...<n<..-<1<0.

Let f: D — O bedefined by: f(L)= L, f(n) =T. Then fiscm, but m(f,0,T)
does not exist. If we prevent the existence of infinite descending chains, then cm
and stable are equivalent notions.

Proposition 12.2.3 If D and D’ are algebraic meet cpo’s, and if K(D) is well-
founded, then f: D — D’ is stable iff it is cm.

PROOF. Let f be cm. Consider 2’ < f(x). By continuity, ' < f(d) for some
compact d < x. If d is not minimum with that property, then for some compact
di < a we have 2’ < f(dy) and d £ di. Hence 2’ < f(d) A f(dy) = f(d A dy).
In this way we construct a strictly decreasing chain d > d A d; > --- that must
eventually end with e satisfying the definition of m(f, z,2’). O

The stable ordering between stable functions can be defined in terms of min-
imal points.

Definition 12.2.4 (stable ordering (stable)) Let D, D' be cpo’s, and f, [:
D = D', Wewrite f <, f"iff

[<ewt frandVa, 2" (2" < f(2) = m(f,z,2") = m(f z,2")).
FEquivalently, <, can be defined by the inclusion of traces:
f<af iff trace(f) C trace(f').

It is immediate that < is a partial order, called the stable ordering. We write
f Ts g to mean that f,qg are compatible with respect to <.

12.2. STABLE FUNCTIONS 307

Exercise 12.2.5 Show that the stable ordering can be equivalently defined as follows:
F<a fff(f Sear frand Va2 (2 < f(z) = Vy <z (2 < f'(y) = 2" < fy))))-

The next lemma shows that the stable ordering just defined coincides with
the stable ordering on the underlying cm functions.

Lemma 12.2.6 Let D and IV be two cpo’s, and f, f': D —y D'. The following
equivalence holds:
f<affeVoa (x<d = fz)=f(2') A f(2))
(in particular, the glb’s f(2') A f'(z) exist).
PROOF. (=) f(z)is alower bound of {f(2'), f'(x)}. If 2/ < f(a') and ' < f'(x),

then m(f,2',2") < x, since 2z’ < f/(x) and by definition of m(f’,2’,2"). Hence
' < f(x) since y = m(f, 2/, 2").

(<) Inparticular, taking @ = 2/, we get f <. f', hencem(f’, z,2") <m(f,z,2'),
for z/ < f(2). From the implication, we get that for any z; < z, 2/ < f'(2z1) implies
2" < f(z1), which shows m(f, z,2") <m(f',z,2"). 0

Lemma 12.2.7 Let D, D’ be cpo’s and let f: D —4 D'. The following proper-
ties hold:

1 IfFA Chp D'y and if VA" < f(x), then
m(f,z,\/A") = \/{m(f,2,8) |8 € A"}
2. If D and D" are bounded complete, and if 2} < f(x) and 2y < f(x), then

m(f, 2,21V ay) =m(f,2,27) Vm(f,z,)
(provided these lub’s exist).
3. If D and D' are algebraic, then f : D — D’ is stable iff for any compact
r € K(D), ' € K(D'), such that ' < f(x), m(f,z,2') exists.

PROOF. We only prove (3). Let € D, 2’ € D', not necessarily compact. We
have:

m(f,z,2") = V{m(f,z,d)|d compact and d' < 2’} by (1)
m(f,z,d) = m(f,d,d) for some d by continuity.

a

Theorem 12.2.8 (stable - CCC) The category of distributive meet cpo’s* and
stable functions is a cpo-enriched CCC (c¢f. definition 6.1.1).

?Bounded completeness comes in to get products. Distributivity comes in to show that
binary compatible lub’s are stable.

308 CHAPTER 12. STABILITY

PROOF. First of all, we need to check that the composition of two stable functions
is stable. Let f: D —y D' and f': D' =4 D", and let 2” < f'(f(x)). Then we

claim:
m(f/ © f7 x? x//) = m(f7 x7 m(f/7 f(x)7 x//))'
Indeed, for y < x, we have: m(f’, f(z),2") < f(y) iff 2" < f/(f(y)). We leave

the reader check that the set-theoretic product, with the componentwise ordering
and the usual projections and pairing, is a categorical product. Notice that for

f:D—u4D, g:D—, D"

m((f,9), 2, (2',2")) = m(f,2,2) V- m(g,z,2").

We check in detail that D —,, D’ is a categorical exponent. We first show that
D —, D' is acpo. Let H Cy. D —, D'. Then a fortiori H is directed for <.
Consider h defined by h(z) = VV{f(x) | f € H}. We check that h is stable by
showing m(h,z,2') = Viegm(f,z,2' A f(z)), for all z,2’ such that 2’ < h(z).
Let y < z. We have, using the continuity of glb’s:

m(h,z,2") <y &' <h(y) & \/ (@' A fly)) =2
feHd

On the other hand we have

\ m(f.x,a' A f(x) <yeVfieH ' Af(x) < fly)

feH

which can be rephrased as: Vf € H a' A f(x) = 2’ A f(y). Thus we are left to
show:

VieH (@'Aflz)=2"Afly) & \/ (@' A fly)) = 2').

feH
(=) Vseu(@' A f(y)) = Vsen(z' A f(z)) = 2" A h(z) = 2".
(<) Let fo € H. We have (cf. exercise 12.1.6):
' A fole) = Ve AN fy) A fo(z)) = Vien(z' A f(z) A foly))
= @' A foly) A h(z) = 7' A foly) .

Hence h is stable. Next we show: Vf € H f <y h. Let f € H and 2/ < f(a).
Since f <.u h, we have m(h,z,2') < m(f,z,2'). On the other hand, since
m(h,z,2") =V egm(f,z, 2" A f(z)), we have

m(f,z,z") =m(f,z, 2" A f(z)) < m(h,z,2").
Finally let £ be an upper bound of H in the stable order. We show h <, k:

m(h,z,2') = \/ m(f,z, 2" A f(z)) = \/ m(k,z, 2" A f(z)) = m(k,z,2").

feH feH

12.2. STABLE FUNCTIONS 309

This completes the proof that D —, D' is a cpo.

Binary compatible glb’s exist, and are defined pointwise: for f,g <, h, define
k(x) = f(x) A g(z). This is a continuous function by continuity of the glb
operation. Let @’ < k(x), and y < 2. Then we have

(2" <k(y) & (m(f,z,2") <y) and (m(g,z,2') <y) < m(h,z,2") <y)

since m(f,x,2") and m(g,x,2') are both equal to m(h,z,2’) by assumption.
Hence m(k,z,2') = m(h,z,2’). Thus k is stable, k <y f, and k <4 ¢. Fi-
nally, suppose k' <; f,g. Then m(K',x,2") = m(f,x,2") = m(g,x,2'), hence
m(k',x,2") = m(k,x,2"). This completes the proof that k = f A g (with respect
to the stable ordering). The continuity property fA(V H) = Vypeg(f Ah) follows
from the fact that the operations are defined pointwise.

Binary compatible lub’s exist too. Suppose f,g <, h, and define k(x) =
f(z)Vg(x). The proof that k is stable and is the lub of f, g in the stable ordering is
completely similar to the proof of directed completeness D —,; D’. One replaces
everywhere uses of the continuity of the glb operation by uses of its distributivity.
The distributivity equation follows from the fact that the operations are defined
pointwise. Thus we have proved that D —,; D’ is a distributive meet cpo.

We now prove that ev is stable. Consider (f,«) and 2’ such that 2’ < f(x) =
ev(f,x). We show that m(ev,(f,z),2") = (g,2), where z = m(f,z,2’) and
g = y.a2' A f(y A z). (By bounded completeness, all binary glb’s exist, thus g is
well-defined and continuous, cf. lemma 12.1.2.) First, z < x by definition. We
check g < f. We have (for y < y;)

gy A fy) =2 A flyr A2) A fy) = 2" A fl Az Ay) = g(y)-
Second, we check 2’ < ¢g(z). We actually even have 2’ = ¢g(z):
g2)=a'ANf(znz)=a"A f(z) =2

Finally, let (fi,21) < (f,2) be such that 2’ < fi(«1). Then a fortiori 2’ < f(ay),
hence z < x;. Next we show ¢ <. fi:

g A fily) = dAFlyA) N fly) = 2'AfilyAz)
2 AfilyNz) A flz) = 2 AfyAz)A filz))
= (@' ANfz))ANflynz) = gly).

Finally, we prove ¢ <, fi . Let y < y;:

gy)N Fily) = AN A2) A fily) = 2" Afu(yA2)Afy) < A FnAz)Af(y) = g(y).

This completes the proof that m(ev,(f,z),2’) = (g,z), and hence that ev is
stable.

310 CHAPTER 12. STABILITY

Next we show that A(f)(x) is stable. Let m(f, (x,2"),2") = (y y'). We show
that m(A(f)(x),2’,2") = y'. Since (y,y") < (x,y'), we have 2" < f(x,y'), that
is, 2" < A(f)(:z;)(y’) If 2/ <2’ and 2" < A(f)()(z'), then (y,y") < (x,2'), and

in particular y' < z’. This proves the stability of A(f)(x), and al S0 that A(f) is
monotonic: if z < xy, then

m(A(f) (@), 2", 2") = m(A(f)(21), 2", 2") =y,
Finally, we check that A(f) is stable. We show, for ¢ <, A(f)(z):

m(A(f),z,9) = \T where T'={y |y <z and g <, A(f)(y)}.

We have to check that g <, A(f)(AT). For any 2/, since g(a’) < f(y,2) for any
y € T', we have by stability (cf. proposition 12.2.2)

v) < A fly,2") = FINT,2)

yeT

ie, g <er AS)AT). By exercise 12.1.7, g <o A(f)(2) and A(f)(AT) <
A(f)(x) imply g <o A(f)(AT). Thus we have established the CCC structure.
Finally, we check that A is monotonic. Suppose f <, g. We first show
A(f) <ewt Ag),1e, YV A(f)(2) <s A(g)(x). Recall that m(A(f)(z), 2", 2") = ¢/,
where y’ is the second component of m(f,(x,2'),2"). Since f <, g, we have

m(g, (x,2"),2") = m(f, (z,2'),2"). Hence
m(A(f)(z), a’, x”) = m(A(g)(2), a’, x”)'

Next, suppose y < x. We have to check A(f)(y) = A(f)(2) A A(g)(y). By
the pointwise definition of binary compatible glb’s, this amounts to f(y,z') =
flz,2") A g(y, "), which holds since f <y g¢. 0

Exercise 12.2.9 (trace factorisation [Tay90b]) Show that trace(f), ordered by the
induced componentwise order, is a cpo. Consider the following functions:

7 trace(f) = D w(x, ')

7't trace(f) — D' w'(z,2')
h:D — trace(f) h(z)

x
x/
{(m(f 2, f(2)), f(z)) |z € D}.

(1) Show that = - h, i.e., (z1,11) < h(z) & 23 < z. (2) A monotonic function

f X =Y between two partial orders is called a fibration if for any pair (x,y) such
that y < f(z), there exists an element w(f,z,y) of D such that:

((I)O) (f7 Ty y) z

(@) flw(f,z,y) =
(Py) V< (f(z) < y:>z<w(f,x,y))

—~

Show that = : trace(f) — D' is a stable fibration, by which we mean that it is stable,
and that it is a fibration with w(f, -, -) as multi-adjoint. (Fquivalently, a stable fibration

12.3. DI-DOMAINS AND EVENT STRUCTURES 311

can be defined as a fibration (with w), which is stable (with m) and is such that all fibers
are groupoids, i.e., all subsets f~1(x) consist of non comparable points.) (3) Show that

the sets
M of functions with a left adjoint and

E of stable fibrations

form a factorisation system for stable functions, by which we mean: (a) Any stable
function f factorises as f = 7' oh, withh € M andw' € £. (b) M and & contain the
order-isomorphisms and are closed under composition with order-isomorphisms. (c)
For every commuting square goh = lo f where h € M andl € £, there exists a unique
stable ¢ (called diagonal fill-in) such that lo¢ = g and poh < f. (The unique diagonal
fill-in property allows us to show the uniqueness of the £-M factorisation.)

Exercise 12.2.10 Show that the category of cpo’s and stable functions is not cartesian.
Hints: consider example (B) in figure 12.1 (ahead). Call this domain D and define a
pair of functions f: D — O and g : D — O such that the pairing fails to be stable.

Exercise 12.2.11 * Develop a theory of stable, partial functions by analogy with the
continuous case. Discuss lifting and sum in this framework.

12.3 dI-domains and Event Structures

We now address algebraicity. In continuous domain theory, the compact functions
are finite lub’s of step functions d — e (cf. proposition 1.4.8). Step functions are
stable, but they do not serve as approximations of functions as in the continuous
case. In the continuous case, one simply has (d — e) <. f iff e < f(d).
However it is not true in general that e < f(d) (or even m(f,d,e) = d) implies
(d — e) < f. The point is that for e; < e, one may have m(f,d,e;) < d, which
precludes (d — e) <4 f, since m(d — e,d,e1) = d. This suggests to “saturate”
our candidate d — e by forming a lub (d = e)V---V (d; = €;) V---, with ¢; < e
and d; = m(f,d,e;). To ensure the finiteness of this saturation process, one is
lead to assume the following property [, which may be read as “finite is really
finite”.

Definition 12.3.1 (dI-domain) Let D be an algebraic cpo. Property I is de-
fined as follows:

(I) Each compact element dominates finitely many elements.

An algebraic, bounded complete and distributive cpo satisfying property I is called
a dl-domain.

Exercise 12.3.2 Show that an algebraic domain satisfies I iff each compact element
dominates finitely many compact elements. Hint: for any y < x the approximants of y
are also approximants of x, hence are finitely many.

312 CHAPTER 12. STABILITY

Clearly, property [implies well-foundedness, hence under the assumption that
property [is satisfied stable functions are the same as cm functions.

The dl-domains are due to Berry, who showed that they form a cartesian
closed category. In fact, distributivity is not needed. We take a concrete ap-
proach, based on event structures. An event structure can be perceived as the
specification of how to build data out of distinct discrete pieces, or events, re-
specting consistency and causality requirements. These intuitions come from the
theory of concurrency, and, indeed, event structures have been investigated in
connection with Petri nets. Winskel [Win80, Win86] noticed that they could be
used for domain theory, and this is what concerns us here. Any event structure
generates a cpo, and dI-domains are recast from a subclass of event structures
satisfying an axiom corresponding to distributivity.

Definition 12.3.3 (event structure) An event structure (E, Con,t) (E for
short) is given by:
o a set F whose elements are called events,

e a non-empty predicate Con C Pyi(F), called consistency, satisfying:

(C Con) (X € ConandY C X)=Y € Con.

o a relation FC Con x E, called the enabling relation; if X e, we say that
X is an enabling of e.

Enablings serve to define proof trees for events. A proof of an event e is a tree
labelled by events, formed recursively as follows. If - e, then e is a proof of e. If
t1, ..., l, are proofs of e1,...,e,, and if {e1,...,e,} F e, then the tree formed by
placing a root labelled with e above t1,...,t, is a proof of e.

A state (or configuration) of an event structure E is a subset x of F which
is:
e consistent, that is, VX Cg, £ X € Con

o safe, that is, for any e € x there exists a proof tree for e whose nodes are
all in x.

We write D(E, Con,t) for the collection of states, ordered by inclusion.

An event structure is called stable if for any state x, for any X,Y, and e such
thateex, X Cp 2, Y Chp 2z, then X FeandY Fe= X =Y.

A partial order is called (stable) event domain if it is generated by some (sta-
ble) event structure, i.e., if it is isomorphic to D(E, Con,t) for some (stable)
event structure (E£, Con,F).

12.3. DI-DOMAINS AND EVENT STRUCTURES 313

The stability condition on event structures allows us to define the glb of two
compatible states as their set-theoretic intersection.

Proposition 12.3.4 Fvent domains are Scolt domains satisfying property 1.
The minimum element is the empty state which is indifferently written 1L or
(). Stable event domains are dI-domains.

PROOF. Let E be an event structure. We first show that D(F, Con,F) (D for
short) is a bounded complete cpo. Let A be a directed set of states, and consider
its set-theoretic union x. We prove that = is a state. Let X Cg, 2. Then, by
directedness, X Cg, 0 for some 6 € A. Hence X € Con. Safety is obvious for a
union. Let now x,y, z be states such that x,y < z. The set-theoretic union of
x and y is again a state, by the same argument. The algebraicity of D follows
from the observation that finite states are compact, and that every state x is the
union of the finite states underlying the proof trees of the events e € . Moreover
the compact states are exactly the finite ones, from which property I follows.
Let us now assume that F is stable. Distributivity follows from the set-
theoretic distributivity of intersection over union, since the binary compatible
glb of two states is its intersection, thanks to the condition of stability. a

We shall see that in fact dI-domains and stable event domains are the same
(proposition 12.3.10).

Example 12.3.5 Consider ' = {e1, €3, €3,¢€4}, and = given by
Fei Fe {en,eafbes {er,ea} boeq

And consider the two following consistency predicates Cony and Cong, described
by their maximal elements:

{e1,e9,e3} € Cony {ey,ey,e4} € Cony
{617 €2, €3, 64} - COTLQ .

Then (E, Cony,t) is a stable event structure, and (F, Cony, &) is an event struc-
ture which is not stable (consider {ey, es, e3,€4}).

Where does the consistency predicate and the enabling come from? We let
them arise from the consideration of a of a stable function f, viewed as a state
(anticipating theorem 12.3.6).

o If (dy,e1),(da, e2) € trace(f) and if di,dy < d, then eg,e3 < f(d). Therefore
{(d1,€1),(dz, €2)} should not be consistent if d; T dy and e ¥ es.

o If (di,e),(ds,e) € trace(f) (with dy # ds), then di ¥ ds by definition of
a stable function. Therefore {(dy,e1),(dz2,e3)} should not be consistent if
dl T dg, dl 7£ dg, and €1 = €9.

314 CHAPTER 12. STABILITY

o Let (d,e) € trace(f) and e; < e. Then e; < f(d) implies (m(f,d,e1),e1) €
trace(f). Thus the should be closed under some form of enabling, such that
(m(f,d,e1),er) occurs in the proof of (d,e) in trace(f) (cf. the discussion
on step functions at the beginning of the section.)

Theorem 12.3.6 (event domains - CCC) The category of event domains and
stable (or em) functions is a cpo-enriched CCC.

PrROOF. We only give the construction of the product and exponent objects.
Specifically, given F and E’, we construct £ x £’ and £/ — E’ in such a way that
D(E x E') is the product of D(E) and D(FE’) in Poset, and that D(E — E') =
D(FE) =5 D(E"). We define E x E' as follows:

e The collection of events is the disjoint union of £ and F’.

o Consistency is defined componentwise: X is consistent iff both X N £ and
X N E are consistent.

e The enabling relation is the disjoint union of the component enabling rela-
tions.

We define £ — E’ as follows:

e Events are pairs (x, €') where x is a finite state of F, and ¢’ € E'.
e A finite set {(x;,€}) |7 € I} is consistent iff

VJCI {z;]j€ J} bounded = {¢} | j € J} € Con, and
Vi,j el = e = (v, =x; or x; Y ;).

o {(ziel) 1€l (x,e)iff Vi o, Caand {e |iel}F €.

Axiom (C Con) is trivially satisfied. We show that there is an order-isomorphism
between D(F) — D(FE') ordered by the stable ordering and D(E — E’) ordered
by inclusion. With f: D(E) —4 D(E’) we associate”

trace(f) = {(a,¢) | ¢ € f(x) and (y < v = ¢ & [(y))}.

We show that trace(f) is a state. Consider {(z;,¢!) | ¢ € [} C trace(f) and
J C I such that {z; | j € J} has a bound z. Then {¢} | j € J} C f(x), hence is
consistent. The second condition follows from the definition of stable function.
As for safety, consider (z,¢€’) € trace(f) and a proof of ¢ in f(x). We can attach
to any node €/ in this proof the minimal point under « where f reaches e]. In

this way we obtain a proof of (z,¢€’) in trace(f).

3This definition of trace is a variation of the one given in definition 12.2.1, taylored to event
structures.

12.3. DI-DOMAINS AND EVENT STRUCTURES 315

That f < ¢ is equivalent to trace(f) C trace(g) is just the definition of the
stable ordering (cf. definition 12.2.4; see also lemma 12.2.7(3)). The converse
transformation is defined as follows. Given a state z of £ — FE’, we define

fun(=)(@) = {¢'| 3y (y.¢) € = and y C a}.

We first have to check that fun(z)(z) is a state. Its consistency follows from the
first condition in the definition of higher-order consistency. Its safety follows from
the safety of z, noticing that all the nodes in a proof of (y,€’) € z have the form
(y1, €}), with y1 < y. The definition of fun(z) ensures that it is continuous (notice
that the y in the right hand side is finite). As for the stability, suppose that y;
and y» are minimal under x relative to ¢’. Then by the definition of fun(z), it
must be the case that (yi,€'),(y2,€’) € z, hence y; = yz by the definition of
higher-order consistency.

Finally, it is easy to check that trace and fun are inverse bijections. a

The distributivity plays no role in the proof of theorem 12.3.6. But it can be
added without harm.

Theorem 12.3.7 (dI-domains - CCC) The category dI-Dom * of stable event
domains and stable functions is a cpo-enriched CCC.

ProOF HINT. Check that £ — E’ is stable if ¥ and E’ are stable. O

What we lack at this point are representation theorems, in the style of theorem
10.2.12, giving an abstract order-theoretic characterisation of event domains and
stable event domains. Droste [Dro89] has provided a representation theorem for
event domains (adapted from [Win80]). We present this material in the form of
a (difficult) exercise, which relies on the following definition.

Definition 12.3.8 In a partial order, a prime interval is defined as a pair of
elements x,y such that x <y, t.e., x <y and Az <z < y.

Prime intervals capture the intuition of an event as a discrete increment.

Exercise 12.3.9 * Show that the event domains are the algebraic epo’s which satisfy
I as well as the following two axioms on compact elements:

C) (x<y,z<zy#zyltz)=(yVzerstsy<yVzz<yVz)
(S) [z,2T=[y,yle<y=2a"<y".

In aziom (S), [z, 2] stands for a prime interval, and =< stands for the reflexive, sym-
metric and transitive closure of the relation [x,y] < [z,y V z] (where z,y, z satisfy the

4This name will be justified by proposition 12.3.10.

316 CHAPTER 12. STABILITY

assumptions of (C)). The idea is to take as events the equivalence classes of prime inter-
vals. Hints: If x,y are compact and x < y, there exvists x = z9 < -+ < z, < y. Such a
sequence is called a chain from x toy. If 29, ..., 2, and 2}, ..., 2, are two chains from
z to y, then for any equivalence class e of prime intervals §{i | [z, zi11] € €} = #{j |
(24, 25, 1] € e}. Show the following implication: © < z' <y < y" = —([z, 2] =< [y,y']).

If distributivity is assumed, then the characterisation is much friendlier: the
stable event domains are exactly dI-domains.

Proposition 12.3.10 The following classes of cpo’s coincide:

1. stable event domains,
2. dl-domains,
3. coprime algebraic Scott domains (cf. definition 10.2.1) satisfying I.

PROOF. (1) = (2) This is the second statement of proposition 12.3.4.

(2) = (3) Let D be a dI-domain.We use the characterisation given in proposition
10.4.3, and show that the compact elements of D are finite lub’s of compact
coprime elements. We follow a proof of Zhang [Zha9l]. We first claim:

Claim. The compact coprimes are those compact elements that cover exactly
one element.

To prove the claim, we notice that by property [, for any compact d, {e | e <
d} is finite, and if d; < d, dy < d and d; # d3, then we must have d; V dy = d,
and hence d is not coprime. Conversely, if d covers exactly one element dy, let
d <\ X for a finite bounded X. By distributivity we get d = V{d Az | 2 € X}.
Pick x € X. If d A @ # d, by property [we can find an element covered by d
above d A x, which by assumption means d A x < dy. Hence at least one d A «
must be such that d Az = d (and hence d is coprime) as otherwise we would have
d=V{dANz |z e X} <d.

Now we show that any compact element d # L is a lub of finitely many
compact coprimes. Consider the tree rooted at d formed by taking as sons of the
root all the distinct elements dy, ..., d, covered by d if there are at least two such
elements, and continuing so recursively. Notice that d; # L for all ¢, otherwise

we would have
d;=1=<d

d; =1 <d; <d (picking j #1).
Then d is the lub of all the leaves of the tree, which are coprime since they cover
exactly one element.

(3) = (1) Let D be as in (3). We define (F, <,F) as follows.

E consists of the compact coprime elements of D,
Con consists of the finite bounded subsets of F,
{e| e < d} F dfor any d € E, i.e., the unique enabling of e is {e | ¢ < d}.

12.3. DI-DOMAINS AND EVENT STRUCTURES 317

This is clearly an event structure, and the uniqueness of enablings makes it a
fortiori stable. We show that D is order-isomorphic to D(E, Con,t). To x € D
we associate g(x) = {e | e compact coprime and e < x}: g(x) is consistent since
it is bounded, and it is safe since by property [any event has a unique finite
proof tree. Conversely, to any state y € D(FE, Con,t) we associate \/y which
exists by bounded completeness. The composition \/ og is the identity of D by
definition of coprime-algebraic. If ¢/ < \/y, then ¢’ < e for some e € y since €’ is
compact coprime. Then, by the definition of enabling, ¢’ occurs in the proof tree

of e and is therefore in y by safety. Hence g oV is the identity on D(F, Con,t).
O

Special classes of stable event structures are those of Girard’s qualitative
domains, and of Girard’s coherence spaces. Coherence spaces will be discussed
at length in section 13.1.

Definition 12.3.11 (qualitative domain) Qualitative domains are event do-
mains all of whose events are initial: F= {F ¢ | e € E}. Then, clearly,
Con = K(D(FE)). If moreover Con is specified by means of a reflexive and sym-
metric relation _, i.e., (X € Con & Va,y € X a _ y), then we say that we
have a coherence space (see definition 13.1.1).

Exercise 12.3.12 Show that the qualitative domains are the dI-domains in which the
compact coprime elements p are atomic, i.e., L < p.

Exercise 12.3.13 Show that the category of qualitative domains and stable functions

is a cpo-enriched CCC.

Exercise 12.3.14 Show that the dI-domains are the distributive cpo’s such that the
finite stable projections (see definition 12.4.2 ahead) form a directed set (with respect
to the stable ordering) which has as lub the identity. Use this characterisation to give
another proof that the category of dI-domains and stable functions is cartesian closed.
Hints: consider for each X Cg, K(D) the projection defined by p(z) = \/[{dAz | d € X};
proceed as in the proof of proposition 5.2.4.

Exercise 12.3.15 (stable neighborhoods [Zha91]) Let D be an w-algebraic meet
cpo satisfying property I. (1) Characterise {f~Y(T) | f: D —5 O}. (2) Such sets are
called stable neighborhoods. Prove that they are closed by intersection but not by union.
(3) Show that there is no topology for which the stable functions are continuous. Hint:
consider the stable functions from O x O to O. There are four possible choices of a
topology for O; show that for each choice the sets of stable and continuous functions do
not coincide. (4) Characterise stable functions as those functions that preserve stable
neighborhoods by inverse image.

Exercise 12.3.16 Show that property I may not be preserved by the function space
construction with the pointwise ordering. Hints: take (v — O) — O; define f,(z) =
T iff « < n, and consider the step functions f, — T.

318 CHAPTER 12. STABILITY

Exercise 12.3.17 (1) If D is a complete w-algebraic lattice with property I, show:
(D =4 O) 2 K(D) , with the flat ordering on K(D). (2) On the other hand, given a
flat cpo E, show that (E, — O) = (P(F),C) 4 O, where + is the coalesced sum
(cf. definition 1.4.22).

12.4 Stable Bifinite Domains *

We investigate the stable version of bifiniteness. Stable projections are better behaved
than the continuous ones. Stable bifinite domains enjoy a characterisation similar to
that for bifinite domains (cf. theorem 5.2.7). They lend themselves to a simple theory
of retractions. In particular, there is a retraction of all retractions. Also, there exists
a universal bifinite domain.

Proposition 12.4.1 Let D be a meet cpo, and let p,q: D — D' be such that p,q <
id. Then:

1. pog=pANq.
2. p s a projection.
3. im(p) is downward closed.

Proor. (1) Remark first that since p and ¢ are bounded their glb exists. Next observe

qd < d = p(qd) = pd A qd = (p A q)(d).

(2) For p = g we obtain from (1): p(pd) = pd A pd = pd.
(3) d<pd = pd=ppd) Nd=pd Nd=d O

Proposition 12.4.1 justifies the following definition.

Definition 12.4.2 (stable projection) Let D be a meet cpo. A stable function p :
D =4 D such that p <y idp is called a stable projection. If moreover im(p) is finite, p
is called finite. A stable injection-projection pair is an injection-projection pair whose
projection is a stable projection.

Now we define stable bifinite domains (cf. definition 5.2.2).

Definition 12.4.3 (stable bifinite) A meet cpo D is called a stable bifinite domain
if the finite stable projections p : D — 4 D form a directed set which has as lub the
identity (in the stable ordering). We call Bifs the category of stable bifinite domains
and stable functions.

Proposition 12.4.4 (stable bifinites-CCC) 1. Stable bifinite domains are alge-
braic and satisfy property I. The compact elements are those of the form p(z), where
p is a finite stable projection.

2. The category Bif, of stable bifinites and stable functions is cartesian closed.

12.4. STABLE BIFINITE DOMAINS * 319

Proor. Cf. the proof of proposition 5.2.4.
(1) The satisfaction of I follows from proposition 12.4.1 (3).

(2) All we have to do is to check that if p, ¢ are finite stable projections, then both
p x q and r defined by r(f) = Az.q(f(p(z))) are stable projection.

o (die) < (d'ye)= (p(d),q(e)) = (p(d') Nd,q(e') Ae) = (p(d), q(e')) A (d,).
e We have to show that f <, ¢ implies r(f) = r(g) A id, that is, for all d:
qn(f(p(d))) = q(g(p(d))) A f(d).

We set a(d) = q(f(p(d))) and 5(d) = q(g(p(d))) A f(d). Observe:

Therefore: a(d) = q(g(d)) A f(d) A g(p(d)). On the other hand:

g(p(d)) < g(d),q <o id = B(d) = q(g(d)) A g(p(d)) A f(d).
So a(d) = p(d). 0

Exercise 12.4.5 A stable bifinite domain D is called a stable w-bifinite domain if it is
w-algebraic. (1) Show that D is a stable w-bifinite domain iff id is the lub of a countable
increasing chain of finite stable projections. (2) Show that the stable w-bifinite domains
form a full sub cartesian closed category of Bif,.

Characterisation of stable bifinites. The main result here is a characterisation
of the objects in Bif,. Roughly they are algebraic meet cpo’s satisfying a combination
of properties M (definition 5.2.6) and [that we call (M)*. In first approximation,
the combined property (M1)> consists in asking that the iteration of the operator
that computes the mub’s and the operator that computes the principal ideals on a
finite collection of compacts returns a finite collection. It is convenient to decompose
property I in simpler properties.

Definition 12.4.6 Let D be a cpo. We define the three properties Iy, Iy, and I3 as
follows:

(I1) Fvery decreasing sequence of compacts is finite:

{zn}new CK(D) and¥n € w x4 > Tpt1) = {@n tnew is finite.

(I3) Fvery increasing sequence of compacts under a compact is finite:

{z}U{zntnew CK(D) andV¥n € w z, < 2p41 < @) = {2, tnew finite.

320 CHAPTER 12. STABILITY

(Is) The immediate predecessors of a compact are in finite number:
x € K(D) = pred(z) is finite
where pred(z) ={y € D |y < z}

Proposition 12.4.7 Let D be an algebraic cpo. Then it has property I iff it has
properties I, Iy, and Is.

ProoF. (=) Observe that {z,},e. and pred(z) are contained in | d (where d is an
appropriately chosen compact).

(<) Letd € K(D). First observe that | d C K(D). If there is a non compact element z
under d, then | 2NK(D) is directed since D is an algebraic cpo, and \/(| 2NK(D)) = z.
So we can build an infinite strictly ascending chain under d, contradicting I5. Property
I5 also implies that pred(d) is complete in the sense that

e<d= e € pred(d) e <€ < d.
Otherwise we can again build a strictly growing chain under d. Now define

Xo = {d} Xpt1 = U{pred(x) |z € X,,}UX,.

Then:
Unew Xn =l dand d3n € w X, = X,, (by property I)
Va € K(D) pred(z) is finite (by property I3).
Hence all X,,’s are finite, which implies that | d is finite®. a

Figure 12.3 presents typical situations where property [fails.

Lemma 12.4.8 1. If D is an algebraic cpo satisfying property I, then K(D) = m
(cf. definition 5.2.6).

2. If D is an algebraic meet cpo such that K(D) E m, then D is an L-domain (cf.
definition 5.2.11.

3. Stable bifinite domains are L-domains.

Proor. (1) Given any upper bound y of X, there exists a compact y’ < y that is also
an upper bound for X. By the property [there exists y” < y’ such that y” € MUB(X).
Otherwise we could build an infinite decreasing chain under 3.

(2) Let A C K(D) and & € UB(A), and suppose y1,y2 < @ and y1,y2 € MUB(A).
Then y1 Ay, € MUB(A), which forces y; = y2. We then conclude by exercise 5.2.13.

(3) This follows immediately from (1) and (2), since stable bifinite domains are alge-
braic and satisfy property I by proposition 12.4.4. a

>This is the contrapositive of Kénig’s lemma adapted to directed acyclic graphs.

12.4. STABLE BIFINITE DOMAINS * 321

(A) I fails for {L} Uw, with w ={n | n € w}, ordered as follows:
1 minimum (m < n iff » <m)
(B) I, fails for w U {00, a}, ordered as follows:
<y iff y=aor (y=o00and 2 € wU{oo}) or (z,y € wand z < y)

(C) I fails for w U {L,a}, ordered as follows:

Vnew L<n<a

Figure 12.3: Failure of property [

As a consequence, the operator U (cf. theorem 5.2.7) is idempotent for stable
bifinite domains (cf. proposition 5.2.15). This indicates that a more liberal operator
than U has to be introduced in order to characterise stable bifiniteness in a way similar
to the characterisation of bifiniteness. We have already exploited the fact that images
of projections are downward closed. This should motivate the following definition.

Definition 12.4.9 (property (M1)>) Let (P, <) be a poset, and let X Cg, P. We
set UL (X) =U(} (X)). Let (U})*(X) be the least set containing X and closed with
respect to the U] operator. We say that X has property (M1)> if (U])*>(X) is finite.
If D is an algebraic meet cpo, then we say that D has property (MI)* if

VX Csn, K(D) X has property (MI)>.

Let D be an algebraic meet cpo. If D has property (M1)> then it also has property
I and property M, as if 2,y € K(D) then

Lo CUD™(a}) and U({z,y)) C (UD*{z.).

The converse does not hold: see example 12.4.13.

Theorem 12.4.10 A cpo D is a stable bifinite iff D is an algebraic meet cpo with
property (MI)%.

Proor. Cf. the proof of theorem 5.2.7. (=) If X Cg, K(D), then X C p(D) for
some finite stable projection. The argument in the proof of theorem 5.2.7 yields not

only U(X) C p(D), but also (U})(X) C p(D).

(<) Let A Czp, K(D), and consider py defined by pa(y) = V(U L)®(A)N | y).
Notice the use of the (U]) operator, instead of U. The fact that B = (U])*(A4) is

322 CHAPTER 12. STABILITY

downward closed serves in establishing py <y id, (A C B = p4 <4 pB), and that
pa is stable. We only check ps < id. Let 2 < y. We check pa(y) Az < pa(z).
Since pa(D) = (U})*(A) is downward closed, we have pa(y) Az € (U})*(A), hence
pa(y) Az < pa(X) by definition of py. O

This characterisation of stable bifinites allows us to prove that the category of event
domains is a full subcategory of the category of stable bifinites.

Exercise 12.4.11 Show that any event domain is stable bifinite. Hints: In a Scott
domain, all glb’s exist, and U(X) ={VY | Y Cg, X and Y bounded}, for all finite X.
Show that (U})*(X) CUX, for any n.

We now list without proof some results from [Ama91a] towards the goal of a Smyth like
theorem: is Bif, the maximum cartesian closed full subcategory of w-algebraic meet
cpo’s and stable functions? It turns out that properties M, Iy , and I, are necessary
to enforce the w-algebraicity of function spaces. One can also show that property I3
is necessary under a rather mild hypothesis. The necessity of property (M) is still
open. In the first place, a stable version of theorem 5.2.17 holds: in any full subcategory
of algebraic meet cpo’s if the terminal object, the product, and the exponent exist then
they coincide up to isomorphism with the ones defined in Cpo,. The proof is basically
the same as in the continuous case. Here is a summary of the results in [Ama91a]

o If D and D —, D are w-algebraic meet cpo’s, then D has properties M, Iy and
I. (Property M is not necessary if we do not ask for the countability of compact
elements.)

o If Dand D —4 D are w-algebraic meet cpo’s and, for each d € K(D), | d =4l d
is an w-algebraic meet cpo, then D has property Is.

The following properties serve as stepping stones in the proof. If D and D — D are
w-algebraic meet cpo’s, then:

If d € D, then | dis an w-algebraic lattice.
If d € K(D) and | d is distributive, then | d is finite.
If | dis distributive for each d € K(D), then D has property I.

Of the two following examples 12.4.12 and 12.4.13, the first, due to Berry, illustrates
a situation where Iy does not hold, while the second shows that M+1I does not imply
(MT)°°.

Example 12.4.12 Let D be example (B) from figure 12.3. This domain is a well-
founded chain, hence D —4 D = D —., D = D —.,, D. We claim that any
continuous function h such that h(a) = a is compact. If h <4 \/ K, then

a=h(a) <\/{k(a) | k € K}
hence a = k(a) for some k € K, by compactness of a. We prove the following subclaim:

(h(a)=a, k(a)=a, hts k)= h=k.

12.4. STABLE BIFINITE DOMAINS * 323

Indeed, k(z) = k(z) A h(a) = k(a) A h(z) = h(z). By the subclaim we have h € K,
which proves a fortiori that h is compact. But the set {h | h(a) = a} is not countable
(any monotonic function from natural numbers to natural numbers yields an h in the
set, and a diagonalisation argument can be applied). Therefore D — D, ordered by the
stable ordering, is not w-algebraic.

Example 12.4.13 Let D = {1} Uwp Uwr where wg ={np | n € w} and wr = {nr |
n € w}, ordered as follows:

L is the minimum,
ng < nr,(n+1)7 (n > 0)
ng<(n—1)r(n>1).

Observe that (U])>({ir}) = D and that it is compact. If D were bifinite there would
exist a finite stable projection p, such that p, (i) = i, which implies (U})*({ir}) C
im(py). Contradiction. As a matter of fact this example also shows that the iteration
of the U] operator does not need to collapse at any finite level.

Example 12.4.13 also serves to illustrate the case of a compact function with an
infinite trace. Let D be as in this example. Clearly trace(idp) is infinite. We show
that idp (id for short) is a compact element of the functional space. We write f = id
if Vi <k f(ig) =ip and f(ir) = i7. We first claim:

f =k Zdvf <st d = f =k+1 id.
This follows from
[<ag9.(k+1)p<kr= f((k+1)p)=krAN(k+1)p=(k+1)B

(f((k+ 1)r) = (k+ 1)7 is proved similarly).

kg < fllk+1)7): f<a9,kp<(k+1)r=kp= f(kB) = f((k+1)7) ANEB.
(k415 < F((k+ D7) = (kD = F((+ 1)) < F((k+ 1)),

f((k+1)r) < (k+ 1) : This follows obviously from f <, id.

Applying the claim repetitively, we get that if f =¢ id (and f(L) = 1) and f < id,
then f = id. Suppose now that id = \/ A (cf. remark 12.4.20). Then we may choose
f € A such that f =¢ id, hence f = id, and id is compact.

A retraction of all retractions. Scott [Sco80] has shown that the collection of
finitary retractions (cf. definition 7.4.1) over a bounded complete algebraic cpo D is the
image of a finitary retraction over the space D —,,; D of continuous functions. In the
stable case Berardi [Ber91] was apparently the first to observe that when working over
dI-domains the image of a stable retraction is still a dI-domain. It was then possible to
adapt Scott’s technique to show that the set of retractions over a dI-domain is itself the
(image of a) retraction. We shall give the corresponding of Berardi’s result for stable
bifinites. The proof exploits the fact that stable bifinites can be described as directed
colimits of stable projections. A retraction of all retractions serves to provide a model
for a type theory with a type of all types (see exercise 11.3.5).

324 CHAPTER 12. STABILITY

Proposition 12.4.14 Let D be a stable bifinite and rD be a stable retraction over D.
Then r(D) is a stable bifinite.

ProoF. Let p : D —, D be a finite projection. Define ¢ = r o por. We have
q <st roidor =r; moreover im(q) is finite. Moreover, since the lub of the p’s is id,
the lub of the ¢’s is r. a

We give a simple proof of the fact that the collection Ret(D) of the stable retractions
over a stable bifinite D is a retract of its functional space D —; D. The keyvault of
the construction is to observe that given f : D —, D, with im(f) finite, there is a
natural way to associate to f a retraction, namely iterate f a finite number of times.
First we recall a simple combinatorial fact.

Lemma 12.4.15 Let X be a set and let f : X — X, with im(f) finite. Then #{f* |
kE>1}N Ret(X)=1.

PrOOF. First observe Yk > 1 im(f*1) C im(f*). Since im(f) is finite the following
h is well defined: h = min{k > 1 | im(f**') = im(f*)}. Hence the restriction of f to
im(f") is a permutation (being a surjection from im(f*) onto itself). Let n = im(f"):
then (f")* is the identity on im(f"), and therefore is a retraction over X. As for the
uniqueness observe that if f'o f' = f* and f/o fi = fi fori,j > 1 then fi = fii = fI.
a

Lemma 12.4.16 Let D be a stable bifinite domain. Then for any f : D —4 D and
any p < id:
H{(fopo) [k 110 Ret(D) = 1.

ProoF. The finiteness of im(p) implies the finiteness of im(fopo f) C f(im(po f)),
and the conclusion then follows from lemma 12.4.15. a

Lemma 12.4.17 If D is a meet cpo, then Ret(D) is a meet cpo (with the order induced
by D —>st D)

PrOOF. Analogous to the continuous case. a

Theorem 12.4.18 Gliven a stable bifinite D the collection Ret(D) of stable retractions
is a retract of the functional space D — 4 D.

PRrOOF. In the hypotheses of lemma 12.4.16 we write
fp=fopof k, = tim(p)!.

Note that £, is a multiple of the least & such that fzf € Ret(D), and is independent
from f. The crucial remark is that

r € Ret(D) = r, € Ret(D)
because by the definition of stable order, for any z:

rp <o ror =mrrp(z) <r(a) = rprp() = rp(r(z)) Ar(rp(e)) = ry(e).

12.4. STABLE BIFINITE DOMAINS * 325

Notice that the form of f, has been precisely chosen to have r,(rd) = r,d and r(r,d) =
rpd. We define p : (D — D) —4 Ret(D) as follows:

p(f)= \ (f)".

p<stid

We check that this definition is correct. First, we observe, for p <4 ¢:

(fp)kp = (fp)kpkq Sst (fq)kpkq = (fq)kq-

It follows that {(f,)" | p <y id} is directed. Hence p(f) is defined and is a retraction,
since the join of a directed set of retractions is a retraction. Also, p is a retraction,
because
r € Ret(D) = p(r) = \/ (rp)' = \/ r,=ror=r.
p<stid p<stid
Next we show that p preserves binary compatible glb’s. Suppose f, g <, h. Since the
composition operation is cm (cf. exercise 12.1.11), we have

p(fAg) = \/pgstid((f/\g)p)kp = Vpc<,iallp A gp)kr
= \/pgstid(fp)kp Algp)r = (\/pgstid(fp)kp) A (Vp< pid (9)")
= p(f)Aplg).

It remains to show that p preserves directed sets. Let H be a directed set in D —4 D.
We have

(VH),=(VH)op,o(NVH)=Vyeghop,oh) =Vuemhy
(\/heH hp)kp = \/heH(hp)kp .

Hence
p(VH) =\ (VH))»=\ V®)r=\ \V (h) =\ p(h).
p<stid p<stid heH heH p<gpid heH
O

Exercise 12.4.19 1. Let D be a meet cpo and suppose that p is a stable projection.
Show that if D is an (w-)algebraic meet cpo (stable bifinite) then im(p) is an (w-
Jalgebraic meet cpo (stable bifinite).

2. Show that if D is a stable bifinite then Prj(D) =\ (idp) is a stable bifinite and a
lattice.

Exercise 12.4.20 Show that the identity is always a mazimal element in the stable
ordering. (In particular, the only stable closure is the identity.)

Exercise 12.4.21 Let D be the cpo of example 12.1(A). Show that it is not the case
that Prj(D) is (the image of) a projection of D — D. Hints. Consider py,ps, f
defined by

p1<w>:{j gz p2<w>:{’i oz f<w>:{d s

otherwise otherwise x otherwise .

326 CHAPTER 12. STABILITY

Show that py, po are stable projections, that f is stable, and that pi,ps <4 f. Suppose
that w : (D —5 D) = Prj(D) is a projection. Then p1,p2 <g 7(f) <g f. Derive a
contradiction by showing that there is no stable projection p such that pi, ps <4 p other
than id, using that MUB({a,b}) = {c,d}.

We end the section with a brief account of universality in the stable bifinite frame-

work [DR93].

Proposition 12.4.22 Let Bif P be the category whose objects are the w-algebraic
cpo’s which are stable bifinite domains and whose arrows are the stable injection-
projection pairs (notation: (i,j): D —;, D'). The following properties hold:

1. Bif\"?* is an w-algebroidal category and the collection of compact objects has the
amalgamation property.

2. Bifa"’s has a universal homogeneous object.

ProoF HINT. (1) The proof follows the pattern of the one for the continuous case. Let

us just show that Bif,"”* has the amalgamation property. Consider three finite posets
(E, <), (D1, <1), (D3, <5) with functions (hf,h]) : E =y, Dy, (i € {1,2}), in Bifs7:.
Without loas of generality we may assume F = Dy N Dy. Then

Ve, e F e<e o (e<ie and e <5 ¢€).

Now we define the amalgam as F' = F'U (Dy\E) U (D2\F). It is helpful to recall that
F is downward closed in D;, so we define:

F<pfle3ic{l,2) f,f eD;and f<; f.

We are left with the definition of the morphisms (k}, k) : D; =4, F (i € {1,2}).
Take the inclusions for k. Define:

o f if feD
ke (f) = { hy (f) otherwiste .

k5 is defined symmetrically.

(2) By theorem 7.3.11. o
Exercise 12.4.23 Prove that Cpo, has limits of w°? -diagrams. By analogy with what
was done in chapter 7, study the representation problem of the functors over Bify*Ps as

stable function over Prj(U), where U is some universal (homogeneous) domain. Show
that product and exponent are representable.

12.5 Connected glb’s *

Following Taylor [Tay90a], we focus on a characterisation of stable functions by the
property of preservation of all connected glb’s. This leads to another cartesian closed
category of stable functions, exploiting a different kind of distributivity (of connected

12.5. CONNECTED GLB’S * 327

glb’s over directed lub’s), whereas in the previous section we had focused on distribu-
tivity of binary glb’s over binary compatible lub’s. In section 12.6, we investigate the
objects of the latter category in more depth.

First we introduce the notions of connected set and of connnected meet cpo. These
notions are related with those of L-domain and of continuous dcpo investigated in
chapter 5.

Definition 12.5.1 (connected) Let X be a partial order. We say that Y C X is
connected if for any two points x,y of Y there exists a zigzag between them in'Y, that
1S, T = zZg % 21 * - x 2, = 1y, where x stands for < or >, and where z; €Y for all v.

The notion of zigzag induces a natural equivalence relation over any subset ¥ C X:
for z,y in Y, write z & y if there exists a zigzag from x to y in Y. The equivalence
classes for this relation can be seen as the disjoint connected components of Y.

Proposition 12.5.2 If X is a connected partial order, then its Alexandrov topology
is locally connected, i.e., every open is a disjoint union of connected opens. If D is a
connected depo, then its Scott topology is locally connected.

Proor. First note that if Y is upper closed, then the connected components are
also upper closed, and that if X is a cpo and if Y is Scott open, then the connected
components are also Scott open.

Let U,V be opens such that UNV = § and Y C U U V. Suppose that z =
Zogkz1 k- kz, = 1y is a zigzag in Y from & € U toy € V. Let ¢ be such that z; € U and
ziy1 € V. Then, since U, V are upper closed, either z; € V or z;41 € U, contradicting
UNV = (. Conversely, if Y cannot be divided in components, then it has only one
equivalence class for the zigzag relation, i.e., it is connected in the graph-theoretic
sense. O

Lemma 12.5.3 A partial order X has compatible binary glb’s iff any zigzag, viewed
as a collection of points, has a glb.

Proor. By induction on the length of the zigzag, in the notation of definition 12.5.1.
If the last x is <, then clearly zgA-- Az, = 20N+ -Az,_q1; if it is >, then zoA---Az,_q
and z, both have z,_1 as an upper bound, hence zg A --- Az, = (20 A -~ Azpo1) A 2y
exists. a

Definition 12.5.4 In a partial order X, a multilub of a subset Y C X is a set J of
upper bounds of Y that is multiversal, i.e., such that any upper bound x of Y dominates
a unique element of J.

Proposition 12.5.5 For a partial order, the following properties are equivalent:

1. All compatible binary glb’s and codirected glb’s exist.
2. All connected glb’s exist.

3. All | x’s have all glb’s.

4. All | z’s have all lub’s.

5. All subsets have multilub’s.

We call such partial orders L partial orders.

328 CHAPTER 12. STABILITY

Proor. (1) = (2) Let Y C X be connected. Let Z be the set of the glb’s of all finite
zigzags in Y (7 is well defined by lemma 12.5.3). Clearly, if Z has a glb, then its glb is
also the glb of Y. Thus it is enough to show that 7 is codirected. Let zgA---Az, € Z
and zy A -+ Az, € Z. Then by connectedness one may build a zigzag between z, and
2. Then the glb of the zigzag obtained by joining these three zigzags is in Z and is a
lower bound of zg A -+ A z, and 25 A--- A 2,.

(2) = (3) Let Y C| 2. Then Y U {2} is connected, hence has a glb in X, which is the
same as the glb of Y (this includes the limit case ¥ = ().

(3) = (1) Let 21,23 be a bounded pair. Its glb exists in | z, for any upper bound z
of z1, x4, and is their glb in X. For codirected glb’s, notice that if ¥ is codirected, and
x € Y, then Y and YN | have the same glb if any.

(3) < (4) For a partial order, having all glb’s is equivalent to having all lub’s.

(4) = (5) Let Y C X. Consider the collection Z of all upper bounds of Y. We form
the set J ={\/*Y | z € Z}, where \/* denotes a lub taken in | z. Clearly, this is a set
of upper bounds of Y, and by construction every upper bound z € Z of Z dominates
V?Y € J. We are left to show the uniqueness: if z > \/**' Y then \/*'Y > *Y since
V*'Y is an upper bound of Y in | z. Next, zy > V*Y follows, since z; > V*Y.
Finally we have \/*Y > \/*'Y (whence the uniqueness), since since \/*Y is an upper
bound of Y in | z.

(5) = (4) Obvious. O

The terminology of L partial order is in accordance with that of L-domain (cf.
definition 5.2.11), as shown in exercise 12.5.6.

Exercise 12.5.6 (1) Show that a cpo is an L partial order iff all its finite subsets
have multilub’s. (Hint: use characterisation (5) of proposition 12.5.5.) (2) Show that,
relaxing the finiteness assumption, proposition 5.2.15 provides a sixth characterisation
of L partial orders.

Proposition 12.5.7 1. Let D and D’ be cpo’s, and lef f : D — D' be stable. Then
for any connected X C D such that A X exists, f(NX) = A f(X).

2. If all connected glb’s exist, the stable functions are exactly the continuous functions
preserving connected glb’s.

Proor. (1) f(AX) is a lower bound of f(X) by monotonicity. Suppose that 2z’ <
F(X). We show that all m(f,z,2’)’s are equal, for 2 ranging over X. This follows obvi-
ously from the fact that for two comparable z1, 24, we have m(f, z1,2") = m(f, x2,2').
Let z stand for this common value. Then we have z < A X and 2’ < f(z). Therefore

2 < fINX).
(2) This follows from proposition 12.2.2, observing that the preservation of the glb of

a bounded set M can be rephrased as the preservation of the glb of the connected set
M U{z}, where z is an upper bound of M. O

12.5. CONNECTED GLB’S * 329

To get cartesian closedness, similarly to the cm case, a property of distributivity
(or continuity of glb’s) is required, namely that connected glb’s distribute over directed

lub’s. Equivalently, the domains are required to be continuous L-domains (see section
12.6).

Definition 12.5.8 (connected meet cpo) A connected meet cpo is a cpo which is
an L partial order such that connected glb’s distribute over directed lub’s, that is, if
{A;};es is an indexed collection of directed sets, and if {\/A; | j € J} is connected,

then
AN 25 =V [{z;}ies € MesAj}.

JEJ JjeJ

Theorem 12.5.9 (continuous L-domains - CCC) The category CLDom® of con-
nected meet cpo’s and stable functions is a cpo-enriched CCC.

Proor. The composition of two stable functions is stable, because a monotonic func-
tion maps connected sets to connected sets. As for cm functions and stable functions,
directed lub’s and binary compatible glb’s of stable functions are defined pointwise.

Let H Cgir D —5 D'. The lub of H is h defined by h(z) = V{f(z)| f € H}. We
check that h is stable. Let X = {z; | i € I} be connected:

h(AX) = Vyien(f/(ANX))
/\ielh(xi) = /\zeI(erH fl@i) = \/{/\iel fi@:) [{fi}ier € igrH} .

The distributivity gives us too many glb’s: we are only interested in the families {f;}
which are constant. We cannot use the same argument as in the cm case, because we
do not have an upper bound available for a family like {f;}. We claim:

N filzi) = N{filz)) |i,5€1} (= N\ fi(AX)

el el
The claim can be reformulated as Vi,j A;cr fi(2:) < fi(x;). For fixed i, we prove the
inequality A;cr fi(zs) < fi(x;) by induction on the length of the zigzag from z; to z;.

Let 1, be the point preceding z; in the zigzag. Thus by induction A;c; fi(z;) < fi(zr)-
There are two cases:

o z; <zt Nier filzs) < fi(z;) follows obviously by monotonicity.
o z; <z Let f € H be such that f;, f; < f. We have
filag) = filar) A flag) 2 filar) A fi(2)-

Using induction, we get

/\fz zi) < filze) A fi(z;) < filz;).

el

5This name will be justified by theorem 12.6.6.

330 CHAPTER 12. STABILITY

Turning back to the stability of h, we are left to show:

\V (FIANX) = VAN FOAX) | {Fidier € MigrH 3,

feH i€l
(<) Take the constant family f.
(2) Nier ilAX) < Vier il AX) < Vyen(f(AX)).
Let K be a connected subset of D —; D. Its glb k is defined by k(z) = Asep f().

e [is stable: the preservation of glb’s is obvious, but the continuity requires a proof,
which is somewhat dual to the proof of stability of \/ H. We write K = {f; | i € I}.

EVA)Y = Ner(Vi(A) = V{Aier fi(6:) | {di}ier € ierA}
VEA) = Vseak(d) .

We claim:

N F:(8) = N{Fi(6) |ije Ty (= k()

€] el
The claim can be reformulated as Vi,5 A;cr fi(8:) < f;(8;). For fixed 7, we prove the
inequality A;cr fi(d:) < f;(6;) by induction on the length of the zigzag from f; to f;.
Let fi be the point preceding f; in the zigzag. Thus by induction A;cy fi(6:) < fr(d:)-
There are two cases:

o fi < [fit Nier fi(d:i) < [f;(5;) follows obviously by monotonicity.

o f; < fr: Let & € A such that §;,; < 4. We have

Fi(8:) = fu(6i) A fi(8) = ful(d0) A fi(55).

Using induction, we get

/\fz 4 <fk /\f]()<f]()

el

Turning back to the continuity of k, we are left to show:

\/ k(o \/{/\ k(8:) | {0s}ier € ier A}

SEA el

(<) Take the constant family 4.
(Z) /\zelk() < \/zelk() < \/SeAk(‘s)

and let fo € K. We have to prove that

e [k is a lower bound of K: Let z § Y,
z < fi(z) for all f; € K. It is enough to check

z < fo(x), k(y) implies z < k(z), i.
this for fo <4 f1 or fi <g fo:

o fo < fi: then a fortiori fo <cu f1, hence z < fo(z) < fi(2).

o f1 <y for then a fortiori z < fy(), fi(y), hence z < fo(z) A fi(y) = fi(=).

12.6. CONTINUOUS L-DOMAINS * 331

o L is the greatest lower bound of K: Suppose k1 <, K. We show ky <, k. Let 2 <y,
and let fo € K: k(2) Aki(y) = k(z) A folz) ANk (y) = k(z) ANk (2) = ki (2). a

Summarizing, we have obtained cartesian closure for two categories of stable func-
tions exploiting two different sorts of distributivity: the (compatible) distributivity of
binary meets over binary joins, and the distributivity of connected glb’s over directed
lub’s, respectively. The proof techniques are quite different too, since Berry’s proof
uses the definition of stability through minimal points, while in Taylor’s category the
techniques used for meet cpo’s and cm functions are extended to the connected glb’s.

Exercise 12.5.10 Show that a dI-domain satisfies the distributivity of connected glb’s
over directed lub’s. Hint: go through stable event structures.

12.6 Continuous L-domains *

In this section we show that connected meet cpo’s can be alternatively presented as
continuous L-domains. We call continuous lattice a partial order which is both a
complete lattice and a continuous cpo (cf. definition 5.1.1). We first investigate some
properties of continuous lattices. Recall example B.5.3: if XY are partial orders which
have all glb’s (i.e., are complete lattices), a monotonic function f : X — Y has a left
adjoint iff f: X — Y preserves all glb’s.

Remark 12.6.1 The complete lattice assumption in example B.5.3 can be weakened
to the requirement that the glb’s of the form N{z |y < f(2)} exist. (They are the ones
involved in the proof.)

Remark 12.6.2 Stable functions do not preserve enough glb’s to have a left adjoint:
the set {z | y < f(2)} is not bounded in general, nor connected. But stable func-
tions preserve enough glb’s to be characterised as having a multi-adjoint (cf. definition
12.2.1). Indeed, the proof of proposition 12.2.2 is a variation of the proof of example
B.5.3.

We shall apply example B.5.3 to (subclasses of) continuous depo’s. First we char-
acterise continuous dcpo’s by an adjunction property.

Proposition 12.6.3 A dcpo D is continuous iff \/ : Ide(D) — D has a left adjoint.

Proor. («) Call g the left adjoint of \/. For any ideal I and any & we have: 2 <\/ [
iff g(2) C I. We show that g(z) =J} (z).

e || () C g(x): We have z < \/ g(2) by adjointness. Hence if y < z, we have
y € g(z) by definition of < and of ideal. Thus | (z) = g(z) is directed, and
z =\ ({} (z)) since z dominates || (z).

o g(z) C| (2): If y € g(x), then for any ideal I such that z
Hence for any directed A such that z < \V A, we have y
which means exactly y < .

VI we have y € I.

<
< 4 for some § € A,

332 CHAPTER 12. STABILITY

(=) Obvious. O

Proposition 12.6.4 A complete lattice D is continuous iff arbitrary glb’s distribute
over directed lub’s, that is, if {A;};ey is an indexed collection of directed sets, then

AN A) = VN zj [{zs}jes € WjesAs).
J€J jed
Proor. We first show that ideals are closed under intersection. Let {I;};es be a
collection of ideals. Take z1,z9 € ﬂjej I;. In each I; we can pick y; > z1,22. Then
Njesy; is an upper bound for @y, 22 in (¢ I
By proposition 12.6.3 and example B.5.3, D is continuous iff \/ preserves the inter-
section of ideals. Hence D is continuous iff

VL= AN forany {I;}es

JjeJ JjeJ

which is equivalent to the equality of the statement since | {A;cs2; | {zs}jes €
MiesAj} = Njes ¥ (4)- O

We can require less glb’s. Indeed, connectedness suffices to make the above proof
work. We now adapt proposition 12.6.4 to L-domains, i.e., L partial orders which are
complete (cf. definition 5.2.11).

Lemma 12.6.5 Let D be an L-domain. If {I;};c; is an indexed collection of ideals of
D, and if {\/ I; | j € J} is connected, then (;c; 1; is an ideal.

Proor. Take z1,73 € ();cs 1, and pick y; > x1,22 in each [;. We show that the
collection {y;} ey is connected. Indeed, for any ji,j2 € J, we have

Yj, < \/Ijl *"'*\/Ijz 2 Yjp-
Hence A ;¢ ;y; exists, and is a bound for zy, 22 in ;¢ ;7 [;. a
Theorem 12.6.6 An L-domain D is continuous iff it is a connected meet cpo.

ProOF. We adapt the proof of proposition 12.6.4. We know that D is continuous iff \/
preserves the intersection of ideals, provided “enough” of these intersections exist: by
remark 12.6.1, we have to check that {I | y < \/ I} satisfies the conditions of lemma
12.6.5: y = V(| y) implies | y € {I | y < I}, from which the connectedness of
{V 1|y <V I} follows. Therefore D is continuous iff \/(N;cs I;) = N\;es(V I;) for any
collection {I;};cs of ideals such that {\/ I; | j € J} is connected. This is equivalent to
the following property for any collection of directed sets A; such that {\/A; | j € J}

is connected:
VAN 2 [z} jer € Mieadh = AV A))
JjeJ JjeJ
provided the glb’s A;c;#; in the equality exist. Since {\/A; | j € J} is connected,
we also have that {\VA; | j € J}U{z; | j € J} is connected, and its glb is the glb of
{1 €} O

12.6. CONTINUOUS L-DOMAINS *

333

meet cpo’s and cm functions
distributive meet cpo’s and cm functions
distributive meet cpo’s and stable functions

connected meet cpo’s and stable functions

Domains satisfying I (stable = cm)

(4) stable bifinite domains axiomatised via:

e finite stable projections

e property (M1)™
(5) event domains axiomatised via:

e event structures (concrete)

e [, (C), (S) (abstract)
(6) dI-domains axiomatised via:

e d, [(abstract)

e coprime algebraic + [(abstract)

e bounded complete + finite projections (abstract)
e coprime event structures (concrete)

e stable event structures (concrete)
(7) qualitative domains

(8) coherence spaces

C (4) (exercise 12.4.11) C (1)
)< (1)

)
) (exercise 12.5.10)

Figure 12.4: CCC’s of stable and ¢m functions

334 CHAPTER 12. STABILITY

Chapter 13

Towards Linear Logic

Girard’s linear logic [Gir87] is an extension of propositional logic with new con-
nectives providing a logical treatment of resource control. As a first hint, consider
the linear A-terms, which are the A-terms defined with the following restriction:
when an abstraction Ax.M is formed, then x occurs exactly once in M. Linear
A-terms are normalised in linear time, that is, the number of reduction steps
to their normal form is proportional to their size. Indeed, when a [(-reduction
(Ax.M)N occurs , it involves no duplication of the argument N. Thus all the
complexity of normalisation comes from non-linearity.

Linear logic pushes the limits of constructivity much beyond intuitionistic
logic, and allows in particular for a constructive treatment of (linear) negation.
A proper proof-theoretic introduction to linear logic is beyond the scope of this
book. In this chapter, we content ourselves with a semantic introduction. By
doing so, we actually follow the historical thread: the connectives of linear logic
arose from the consideration of (a particularly simple version of) the stable model.

In section 13.1, we examine stable functions between coherence spaces, and
discover two decompositions. First the function space £ — E’ is isomorphic
to a space (IE) (E’, where (constructs the space of linear functions, and
where ! is a constructor which allows reuse of data. Intuitively, linear functions,
like linear terms, can use their input only once. On the other hand, the explicit
declaration of reusability ! allows to recover all functions and terms. The second
decomposition is the linear version of the classical definition of implication: E (
E' is the same as EL @ I, where | is the negation of linear logic and where
is a disjunction connective (due to resource sensitiveness, there are two different
conjunctions and two different disjunctions in linear logic).

In section 13.2, we introduce the categorical material needed to express the
properties of the new connectives. We introduce a sequent calculus for linear
logic, and we sketch its categorical interpretation.

In the rest of the chapter, we investigate other models in which linear logic can
be interpreted. In section 13.3, we present Bucciarelli-Ehrhard’s notion of strong

stability, and Ehrhard’s model of hypercoherences [BE94, Ehr93]. Strongly stable

335

336 CHAPTER 13. TOWARDS LINEAR LOGIC

functions provide an extensional (although not an order-extensional) higher-order
lifting of first-order sequentiality (cf. section 6.5). A non-extensional treatment
of sequentiality, where morphisms at all orders are explicitly sequential, and in
which a part of linear logic can also be interpreted, is offered in chapter 14. In
section 13.4 we present the model of bistructures, which combines the stable
order of chapter 12 and the pointwise order of chapter 1 in an intriguing way
[CPWO96]. Finally, in section 13.5, we show that also Scott continuous functions
lend themselves to a linear decomposition based on the idea of presentations of
(Scott) topologies [Lam94].

Summarizing, linear logic cuts accross most of the flavours of domain theory
met in this book: continuity, stability, and sequentiality.

13.1 Coherence Spaces

Coherence spaces offer an extremely simple framework for stability. They were
briefly mentioned in section 12.3.

Definition 13.1.1 (coherence space) A coherence space (E,) (E for short)
is given by a set F of events, or tokens, and by a binary reflexive and symmetric
relation _ over E. FE is called the web of (E,), and we sometimes write
E=|(E,Z)|. A state (or clique) of E is a set x of events satisfying the following
consistency condition:

Vep,ea €Ex ep _ eo.

We denote with D(FE) the set of states of F, ordered by inclusion. If (£,) is a

coherence space, its incoherence! is the relation = defined by
€1 = es & (e L ez) or e = es.
Clearly, coherence can be recovered from incoherence:
€1 _ ex = (eg < eg) or e = ey,

Since a coherence space F is a special case of event structure (cf. definition
12.3.11), we already know from proposition 12.3.4 that D(F) is a dl-domain
whose compact elements are the finite states, whose minimum is L = (), and
whose bounded lub’s are set unions.

Definition 13.1.2 We call Coh the category whose objects are coherence spaces
and whose homsets are the stable functions:

Coh[E, E'] = D(E) = D(E").

INotice that the incoherence is not the complement of the coherence, since the coherence
and the incoherence are both reflexive.

13.1. COHERENCE SPACES 337

Proposition 13.1.3 The category Coh is cartesian closed.

PROOF. The category Coh can be viewed as a full subcategory of the category of
dI-domains, and the following constructions show that the terminal dI-domain is
a coherence space, and that the products and the exponents of coherence spaces
are coherence spaces.

o 1=(0,0)

e The events of F x E’ are either either e.1, with e € I/, or €'.2, with ¢’ € F’
(with an explicit notation for disjoint unions), and the coherence is

(e1.0) Z (e2.7) & i # jor (i =7 and e; _ e3).

e The events of £ — E’ are pairs (x,¢€’), where x is a finite state of £, and
where ¢’ € E’, and the coherence is

(01,6) T (02,64) (1 T2 = (¢4 T e and (a1 £ 22 = €] #).
The proposition thus follows as a corollary of theorem 12.3.6. O

The key observation that served as a starting point to linear logic is that the
dissymetry in the pairs (state,event) indicates that — should not be taken as
primitive. Instead, Girard proposed a unary constructor ! and a binary construc-

tor (such that £ — E' = (IE) (F'.

Definition 13.1.4 (linear exponent — coherence spaces) The linear expo-
nent £ (E' of two coherence spaces E and E' is the coherence space whose
events are the pairs (e,€') where e € E and € € E’', and whose coherence is given

by
(e1,€1) Z (ea,€h) & (e1 Zea = (€ T e} and (&1 # e2 = €] # €)))).

Lemma 13.1.5 In E (F', the following equivalences hold (and thus may al-
ternatively serve as definition of coherence):
(1) (e1,€)) Z (e2,6y) & (1 Zex=e€) Zeh) and (¢f = e, = e1 = e3)
(2) (e1,€)) = (e2,€)) & e ey and ey = e .
PROOF. The equivalence (1) is clearly a rephrasing of the equivalence given in
definition 13.1.4 (turning (e} = €}, = €1 < e3) into —~(e1 < ez) = —(e] < €})).
We next show that (2) is equivalent to (1). We have, by successive simple Boolean
manipulations:

!l

“((er Zeg =€) T €y) and (€] < € = €1 < e3))
ey)) or (ef = ey and —=(e; < ey))
/ JA—

eh)or (e] = ey and =(e; < e3)))
and (—(e] Z €}) or =(e1 < e3)) .

N
(e1 Z ez and =
€1 _ ez and (-

TN

e1 _ eg and €] <

toe

S~ () ()

338 CHAPTER 13. TOWARDS LINEAR LOGIC

We next observe:
e1 Z ey and €] < e, = ((e1,€]) = (e2,€,) or =(e] T ey) or =(e1 = €3)).
which we use as follows:

(6176/1) X (6276/2) g (6176/1) = (6276/2) or _'((6176/1) C (6276/2))
= { (6176/1) = (6276/2) or

o~ !

(e1 Z egand €] = e, and (—(e] T €}) or =(e; = e3)))

o~ !

& ep _egand €] T e

a

The states of F (E’ are in one-to-one correspondence with the linear func-

tions from D(F) to D(E'), which we define next.

Definition 13.1.6 (linear function) Let (E,) and (E',) be two coherence
spaces. A stable function f: D(E) — D(FE') is called linear if

f(L)y= 1 and
Va,y (xty= flzVy)=flz)V f(y)).

We write D(E) =, D(E") for the set of linear functions from D(E) to D(FE').

Proposition 13.1.7 Let Y and E' be coherence spaces. A stable function f :
D(E) — D(FE') is linear if and only its trace (cf. theorem 12.3.6) consists of

pairs of the form ({e},€'). Hence we freely write, for a linear function:

trace(f) = {(e,€¢') | ¢ € f({e})}

Moreover, trace is an order isomorphism from D(F) —u, D(E') (ordered by the
stable order) to D(F (E') (ordered by inclusion).

PROOF. (=) Let f be linear, and let (x,€') € trace(f), and suppose that x
is not a singleton. If @ = L, then ¢ € f(L), and this violates f(Ll) = L.
Otherwise, since in a coherence space any subset of a state is a state, = can
be written as x; U a2, with xy,29 < x. Then ¢ ¢ f(xy) and € & f(x2) by
definition of a trace, therefore ¢’ & f(x1) U f(x2) = f(x1) V f(x2), violating
f@) = flaiVa) = flz1) V fa2).
(<) Suppose that f(L) # L, and let ¢ € f(L). Then (L,€) € trace(f)
by definition of a trace, violating the assumption on trace(f). Suppose that
x1 T 22, and let € € f(xq Uxz). Then there exists ({e},€’) € trace(f) such that
{e} C (x1 U x3), which obviously implies {e} C x; or {e} C x5, and therefore
¢ € f(x1) or € € f(x2).

Finally, the isomorphism D(F) —, D(E') = D(E (E') follows from the
observation that a set ¢ of pairs (e, €’) is a state of F' (E"iff {({e},€') | (e, €) €
¢} is a state of £ (F'. 0

13.1. COHERENCE SPACES 339

Remark 13.1.8 A computational interpretation of the characterisation of a lin-
ear function f given in proposition 13.1.7 can be given as follows. In order to
produce an atomic piece of output €', needs to build, or explore, or consume an
atomic piece of input e. In contrast, if (x,€') is in the trace of a stable function
f and if x is not a singleton, then f needs to look at x “more than once”, specif-
ically fx times, before it can produce ¢'. In this framework, events can be viewed
as units of resource consumption (see remark 14.3.22 for a different flavour of
resource counting).

Proposition 13.1.9 The composition of two linear functions [and g is linear,
and its trace is the relation composition of trace(f) and trace(q).

PROOF. Let, say, f: D(F) — D(E') and ¢g : D(E') — D(E"). The first part
of the statement is obvious using the characterisation of linearity by lub and
meet preservation properties. We show trace(g o f) C trace(g) o trace(f). Let
(e,€”) € trace(g o f). By linearity, there exists e’ such that (¢’,€”) € trace(g),
and € € f({e}) (that is, (e, €') € trace(f)). We now show trace(g) o trace(f) C
trace(g o f). Let (e, €') € trace(f) and (€', €") € trace(g). Since ¢’ < f({e}) and
e” < g({€'}), we have ¢’ < g(f({e})), that is, (e, e”) € trace(go f). O

This characterisation of the composition of linear functions by trace compo-
sition holds in general for dI-domains.

Exercise 13.1.10 Show the dI-domain version of proposition 13.1.9. Hint: traces
then consist of pairs of prime elements.

Definition 13.1.11 The category Coh; is the category whose objects are coher-
ence spaces, and whose morphisms are the linear functions:

COhl[E,E/] = D(E) —>lin D(E/)

Proposition 13.1.12 The category Coh; is cartesian. The terminal object and
the products are those of Coh.

PROOF HINT. The projection functions are linear, and the pairing of two linear
functions is linear. O

Definition 13.1.13 (exponential —coherence spaces) Let (E,) be a co-
herence space. The exponential 'E (pronounce “of course E7, or “bang E”) is
the coherence space whose events are the finite states of E, and whose coherence
is given by (1 _ a9 & 21 T 2).

Proposition 13.1.14 The operation | extends to a functor ! : Coh — Coh;
which is left adjoint to the inclusion functor C: Coh; — Coh

340 CHAPTER 13. TOWARDS LINEAR LOGIC

PROOF HINT. The natural bijections from Coh[FE, E’] to Coh[!E, E'] are ob-
tained by replacing the pairs (x,¢’) by pairs ({x},€’) in the traces. O

Remark 13.1.15 Here are some more abstract comments on the adjunction
' 4C. The finite states of D('E) can be seen as presentations of the states
of B, via the lub operation associating \| X with X = {xy,...,2,}. There are
two presentations of L: 0, and {L}. It follows that D(!E) contains a lifting of
D(E)* (c¢f. definition 1.4.16). Keeping this in mind, it becomes clear how an
arbitrary function from D(FE) to D(E') becomes a strict function from D(1E) to
D(E'") (¢f. proposition 1.4.18).

The second equivalence of the statement of lemma 13.1.5 naturally suggests
a further decomposition of E (E' as E* o E’, where the new constructors *
and @ are defined as follows.

Definition 13.1.16 (linear negation — coherence spaces) Let (F,) be a
coherence space. The linear negation E*+ (pronounce “E perp”) of a coherence

space (E,) is defined as E+ = (E, Z).

Definition 13.1.17 (par — coherence spaces) Let F, E' be coherence spaces.
Their multiplicative disjunction FE o E' (pronounce “E par E'”) is the coherence
space whose events are pairs (e,€') where e € K and ' € E', and whose incoher-
ence is given by

(e1,€]) = (€2,¢) & (e1 = ez and € = €).
Other connectives can be defined by De Morgan duality. The dual of x is
another disjunction @, called additive. The dual of 1 is written 0. The dual of
l'is written 7 and called “why not”. The dual of g is the tensor product, whose

direct definition, dictated by (F @ E')t = E+ o E'*, is as follows.

Definition 13.1.18 (tensor — coherence spaces) The tensor product (or mul-
tiplicative conjunction) E @ E' of two coherence spaces E and F' is the coherence
space whose events are pairs (e,¢') where e € E and ¢’ € E', and whose coherence
is given by

(e1,€]) Z (e2,€5) & (e1 Z ez and] _ €)).

Finally, there is a connective called tensor unit:

I = ({x},id).

The dual of [is written L. These connectives obey some categorical construc-
tions, which ensure that they allow to interpret linear logic. Some of them were
already discussed in this section (propositions 13.1.3 and 13.1.14). The rest will
be completed in the next section.

?Actually, this containment is strict. For example, !0 is isomorphic to O x O, which has
four elements, while (O), has three elements and is not a coherence space.

13.2. CATEGORICAL INTERPRETATION OF LINEAR LOGIC 341

13.2 Categorical Interpretation of Linear Logic

The connectives introduced in section 13.1 fall into three groups, which Girard
has named as follows:

multiplicatives: [, 1, ®, e, and linear negation.
additives: 1,0, x, &.
exponentials: 7.

In figure 13.2, we present a sequent calculus for linear logic. A much better
presentation of the proofs of linear logic is by means of certain graphs called
proof nets, which forget some irrelevant details of syntax, and are the gate to a
geometric understanding of logic and computation. This goes beyond the scope
of this book. We simply refer to [Gir87] and [Dan90], and mention that sequential
algorithms introduced in chapter 14 are in the same spirit. The sequents of figure
13.2 are of the form F I', where I' is a list of formulas, possibly with repetitions.
In the rule (Fzchange), o(I') means any permutation of the list T'.
Here are brief comments on this proof system:

e There are no weakening and contraction rules. Weakening allows to add as-
sumptions to a sequent, contraction allows to identify repeated assumptions
with a single assumption. They express the two aspects of non-linearity (cf.
definition 13.1.6): weakening allows non-strictness, while contraction allows
repeated use of resources.

e The rule (@) expresses a splitting of resources: I' for A, and A for B. Multi-
plicative connectives correspond to a form of parallelism without communi-
cation. The corresponding categorical notion is that of monoidal category,
introduced below.

e The rule (x) expressed sharing of resources: I' is used both by A and B.
The corresponding categorical construction is the product

e The exponential rules regulate the explicit reusability of resources. Rule
(Promotion) says that a formula proved under reusable assumptions is itself
reusable. Rule (Dereliction) says that a resource that can be used once is a
resource which can be used n times, for some n. Since n can in particular be
0, some information is lost when this rule is applied. Rules (Contraction)
and Rule (Weakening) say that reusable data can be duplicated.

We now sketch the categorical interpretation of the formlas and proofs of linear
logic. We first introduce a few categorical notions, building upon the structure

of monoidal category [ML71, Bar91b].

Definition 13.2.1 (monoidal) A monoidal category is a category C equipped
with:

342 CHAPTER 13. TOWARDS LINEAR LOGIC

LOGICAL RULES

L
() FAT L FARA

(Aziom)

A, AL FT,A
T
(Exchange) Fom)
MULTIPLICATIVES
T
() F1 =
(@) AT FB,A (©) A B,T
Ao B,T,A) TFAeB.T
ADDITIVES
(1) F1,T
(x) AT +B,T (@) AT B, T
FAxB,T FA®B,T FA®B,T
EXPONENTIALS
, HA?B,..., 1B, . AT
(Promotion) A5, 7B, (Dereliction) m
. F?A,7A,T . T
(Contraction) AT (Weakening) AT

Figure 13.1: Sequent calculus for linear logic

13.2. CATEGORICAL INTERPRETATION OF LINEAR LOGIC

a functor @ : C x C — C, called tensor product,

a distinguished object I, called tensor unit, and

natural isomorphisms, also called canonical isomorphisms:

a: AR (BaC)= (A B)aC
u:loA—= A
L AT — A

satisfying the following two so-called coherence equations:

(a—a) aoa = (a®id)oao (id @ a)

(a—1) (,@id)oa = Wd@y.

343

Where do the two coherence equations of definition 13.2.1 come from? As ob-
served by Huet (unpublished), a good answer comes from rewriting theory (which
came much after monoidal categories were defined in 1963 by Mac Lane). Con-

sider the domains and codomains of the canonical isomorphisms and of the
equated arrows as the left and right hand sides of rewriting rules and rewrit-

ing sequences, respectively:

(o) AR (B®C) — (A@B)aC
(Ll) I A — A
(¢r) A1 - A

(a—a) AR(B@(C®D) =" (AB)aC)® D

(a—1) AR (B®I) —* AQB.

Then the two coherence equations correspond to equating different reduction

sequences: o o« encodes

A (Bo(CaD) = (AeB)o(CaD)—=(AeB)@C)e D

while (a @ id) o a0 (id @) encodes

ARB@(CoD)-A(BoC)@D)="(A®B)®C)® D.

Similarly, the two sides of the second equation encode

AR (I@B)—=(Al)®oB—-A®B
Ao (I®B) = A9 B.

More precisey, these reductions correspond to the so-called critical pairs of the
rewriting system on objects induced by «, ¢, and ¢.. We pursue this in exercise

13.2.2.

344 CHAPTER 13. TOWARDS LINEAR LOGIC

Exercise 13.2.2 (coherence — monoidal) 1. Find all the critical pairs of the rewrit-
ing system underlying o, t;, and v, and show that the corresponding equations between
canonical isomorphisms are derivable from the two equations given in definition 13.2.1.

2. Prove the so-called coherence theorem for monoidal categories: every two canonical
arrows (that is, written by means of the canonical isomorphisms and their inverses only)
with the same domain and codomain are equal. Hints: (1) There are three other critical
pairs; exploit the fact that o, v, and v, are isos. (2) Remove first 04—17”—17 and 171,
and proceed as in the proof of Knuth-Bendiz theorem (confluence of critical pairs implies

local confluence) [HOB80)].

Definition 13.2.3 (symmetric monoidal) A symmetric monoidal category is
a monoidal category together with an additional natural isomorphism vy : AQ B —

B ® A satisfying:

(v=7) vyey = id
(a—7) aoyoa = (y®id)oao (id@~y).

The coherence theorem case still holds in the symmetric monoidal case, but needs
more care in its statement: clearly we do not want to identify vy : A® A - A® A
and id : A® A — A® A. Category theorists exclude this by speaking, not of
terms, but of natural transformations:

v 1 (MA, B).AQB) = (AA, B).B®A) id : (\(A, B).A®B) — (\MA, B).AQ B).

do not have the same codomain. A more elementary point of view is to restrict
attention to linear terms for objects.

Exercise 13.2.4 (coherence — symmetric monoidal) * Show that, in a symmet-
ric monoidal category, any two canonical natural transformations between the same
Sfunctors are equal. Hints: Use monoidal coherence, and the following presentation of
the symmetric group by means of the transpositions o; which permute two successive
elements 1 and 1+ 1:

gioo;=1id o0;,00;=0j00; (j—i>1) 0;00,4100; =0;4100;00;41.

Definition 13.2.5 (monoidal closed) A monoidal closed category is a monoi-
dal category C such that for any object A the functor NC.(C @ A) has a right
adjoint, written AB.(A (B). In other words, for every objects A, B, there
exists an object A (B, called linear exponent, and natural bijections (for all
C):

A :ClC® A, B — C[C,A(B].

We write ev; = A7'(id).

13.2. CATEGORICAL INTERPRETATION OF LINEAR LOGIC 345

Notice that there are no accompanying additional coherence equations for
monoidal categories. This comes from the difference in nature between the con-
structions @ and (: the latter is given together with a universal construction
(an adjunction), while the first is just a functor with some associated isomor-
phisms. This difference is often referred to as the difference between “additional
structure” (®) and “property” ((). The notion of dualising object, introduced
next, is “additional structure”.

Definition 13.2.6 (x-autonomous) A symmetric monoidal closed category C
is called x-autonomous if it has a distinguished object 1, called dualising object,
such that for any A the morphisms (called canonical)

Ai(evioy) : Ci[A (A (L) (L]

have an inverse. If no ambiguity can arise, we write A+ for A (L, and A++

Jor (AL)*.

Proposition 13.2.7 Let C be a x-autonomous category.

1. There exists a natural bijection between C[A, B] and C[B*t, AL].
2. There exists a natural isomorphism (A (B)L ~ A® Bt
3. There exists a natural isomorphism I = 1+

PROOF HINT. (1) By functoriality of (, with every f: A — B we can associate
(f (L): B* = A, In the other direction, starting from ¢g : B+ — A+, we
arrive at (g (L) : A** — BY+ which up to natural isomorphism is in C[A, B].

(2) 1In one direction, by associativity, and using ev; twice, we get a morphism
from (A ®@ BL) @ (A (B) to L. In the other direction, we exploit the following
chain of transformations:

Cl(A(B)H A B = Cl(A@BY)= (A(B)H] (by (1))
~ C[(A® BY)* A(B] (L is dualising)
~ C[A(B*, A(B] (C is closed)
~ C[A(B,A(B] (L is dualising) .

(3) We proceed similarly, as suggested by

id: T® L
evy: I+

1 — 1
ol — L.

1R

a

Part (3) of proposition 13.2.7 shows in restrospective that the name L for the
dualising object is deserved: we can indeed understand it as the multiplicative
false. Often, the linear negation comes first in the semantics. The following
approach is thus helpful.

346 CHAPTER 13. TOWARDS LINEAR LOGIC

Proposition 13.2.8 Suppose that C is a symmetric monoidal category, and that
(1) : C? — C is a functor (which we shall call the dualising functor) which is
given together with:

1. A natural isomorphism A = A+,
2. A natural bijection C[I,(A @ B+)*] = C[A, B].
Then C is monoidal closed, with (defined by A (B = (A ® B)*.

Proor. We have:

C[A,B(C] = Cl[A,(BeChH (by definition)
= C[l,(Aa(B@CH)M)t] (by (2)
= Cl,(A® (B®CL))L] (by (1))
=~ CJ[l, ((A ® B) @ C*+)*] (by associativity)
= ClA® B,(] (by (2)) -

a

Remark 13.2.9 The above data are close to ensuring that C is *-autonomous.

Indeed, from A = A+L and
A(It=A ')t =2 A)t 2 At

we obtain A = (A (I+) (I*. However, one would need to impose tedious
coherence axioms relating the natural isomorphisms and bijections of proposition
13.2.8, in order to ensure that this isomorphism is indeed the one obtained by
twisting and currying the evaluation morphism. One such condition is that the
composition of isomorphisms

CIA, B] = C[1, (A@ BY*] = C[I, (B* @A) = C[1, (B@ A1 = C[B*, A
has to be the action of the functor - on C[A, BJ.

The last ingredient we need is the notion of comonad, which is dual to that

of monad (cf. definition B.8.1).

Definition 13.2.10 (comonad) A comonad over a category C is a triple (T, ¢,)
where T : C = C is a functor, ¢ : T — idg, 6 : T — T? are natural transforma-
tions, and the following equations hold:

€T A O(SA = ZdTA TGAO(SA = ZdTA (STAO(SA = T(SAO(SA.

The following derived operation is useful. For all f : TA — B, one constructs
K(f): TA—TB as follows:

k(f)=!fod.

We define the co-Kleisli category cKyp (often simply called Kleisli category) as
follows. The objects of cKp are the objects of C, and for any A, B:

cK7[A, B] = C[T A, B].

13.2. CATEGORICAL INTERPRETATION OF LINEAR LOGIC 347

The identity morphisms are given by ¢, and composition o.x is defined by

g OcK f =go /i(f)
As with monads, every adjunction induces a comonad.

Proposition 13.2.11 FEvery adjunction (L, R,n,€), where F': C — C' and G :
C' — C, induces a comonad (F o G,e,8) on C', where € is the counit of the
adjunction, and where § = FnG, i.e. ég = F(nes) (for all B). The Kleisli
category associated with the comonad is equivalent to the full subcategory of C
whose objects are in the image of R.

We follow [Bar91b, See89] in our definition of a category allowing to interpret
linear logic. Recently, it was pointed out by Bierman that Seely’s definition does
not validate all the proof reductions rules one would wish for. He proposed a
satisfactory definition of a model of intuitionistic linear logic. We refer to [Bie95]
for details (see also remarks 13.2.18 and 13.2.22). Here we stick to Seely’s style of
definition, which is more synthetic and is good enough for introductory purposes.

Definition 13.2.12 (!x-autonomous category) A !x-autonomous category is
a structure consisting of the following data:

1. A x-autonomous category C; which is at the same time cartesian.

2. A comonad (1,¢,6) over Cy, called the exponential, together with the pre-
ceding structure by two natural isomorphisms:

AxB)=Z(A)e(!B) I1=1.

Remark 13.2.13 If C; is only symmetric monoidal closed (that is, if it is not
equipped with a dualising object), but has the rest of the structure of a l%-autonomous
category, then we can interpret in it intuitionistic linear logic only.

Remark 13.2.14 [t is often the case that the comonad ! = F o GG is defined via
an adjunction F' 4 G between two functors F': C — C; and G : C; — C. By
proposition 13.2.11, if each object of C is isomorphic to some object in the image
of G, then the Kleisli category associated with the comonad is equivalent to C.
This is a fortiori the case when G is the (surjective) identity on objects, as in the
stable model.

We next complete the work of section 13.1 and show that coherence spaces
form a %-autonomous category.

Theorem 13.2.15 The category Coh; together with the comonad on Coh; in-
duced by the adjunction ! 4C is a %-autonomous category whose Kleisli category
is equivalent to Coh.

348 CHAPTER 13. TOWARDS LINEAR LOGIC

PROOF. For the symmetric monoidal structure, we just notice that at the level
of events the canonical isomorphisms are given by

((e,€),€") & (e,(e,€") (e,%x) <> e (*,¢€) <> e

There is a natural bijection Coly[/, F] = E, since (x,e1) _ (%, €2) boils down to
e1 _ es. Hence we have

12

Coh,[[,(E @ E'*)4] (B @ B)|
|E (£

Coh[E, E'] by proposition 13.1.7 .

[1l

Then the closed structure follows from proposition 13.2.8.

To see that Coh; is x-autonomous, we set | = [+ (= I), and we observe the
trace of Aj(ev;ov): A — (A (L) (L, whichis {(e,((e,x),*)) | e € F}. It
clearly has as inverse the function whose trace is {(((e,*),*),)e | e € E}.

That Coh is equivalent to the Kleisli category follows from remark 13.2.14.
We are left to verify the two natural isomorphisms. The first one holds by propo-
sition 13.2.17. For the second one, notice that D(1) is a singleton. O

We examine some consequences of our definition of +-autonomous category.

Proposition 13.2.16 If C; is a 'x-autonomous category, then the associated co-
Kleisli (Kleisli for short) category K(Cy) is cartesian closed.

PROOF. As product on objects and as pairing of arrows we take the product on
objects and the pairing of arrows of C;. As projections we take 7 o ¢ and 7’ o e.
We check one commutation diagram:

(mo)ouc (£, 1) = mo(con((f,)
= 7o lf,f) = /.

Next we define A — B = (1A) (B. The natural bijections are obtained via the
following chain, where we abbreviate K(C;) as C:

C[Ax B,C] = C[(AxB),C] = C[('A)®(!B),C]
>~ ClA,('B)(C] = CA,B— (]
= C[A,B—(C].

a

Conversely, the first of the natural isomorphisms of definition 13.2.12 is im-
plied by the CCC structure of the Kleisli category.

Proposition 13.2.17 Let C; be a x-autonomous category which is at the same
time cartesian, and which is equipped with a comonad (!, €,8) such that the associ-
ated Kleisli category is cartesian closed. Then there exists a natural isomorphism

from ('A) @ (1B) to (A x B).

13.2. CATEGORICAL INTERPRETATION OF LINEAR LOGIC 349

PROOF. Note first that the assumptions of the statement are slightly redundant
since we have already seen that the cartesian structure on the Kleisli category
is implied. We still denote with C the Kleisli category. We derive the desired
isomorphisms by exploiting the following chains of transformations:

C/[[(Ax B),Y(A x B)] C[A x B,!(A x B)]

C[A, B —!(A x B)]
Cl'A, (IB) ((A x B)]
CllA) @ (!B),(Ax B)].

We obtain the desired arrow from (!A4) @ (!1B) to (A x B) by starting from

id :Y(Ax B) =!(Ax B). The arrow in the other direction is constructed similarly.
O

[1l

[1l

Remark 13.2.18 [t would be more agreecable to have the other natural isomor-
phism 11 = [implied as well, but the categorical structure considered here is not
rich enough to provide us with an arrow from I to!1. This anomaly is repaired in
the setting of [Bie95], where the existence of an isomorphism I =1 is postulated.

Another implied structure is that each object of the form !4 is endowed with
the structure of a comonoid: there are two arrows

e:lA—=1T d:1A—= (1A)® (1A4)

satisfying the three (categorical versions of the) comonoid laws (see exercise
13.2.19). These arrows are constucted as follows:

' (the second lis!: A — 1)

(id, id)

where 2 is to be read as “composition with the isomorphisms 1 2 [and (A x
A)=(1A) @ (1A)".

Exercise 13.2.19 let d and e be as just defined. Show that the following equations
are satisfied:

€

d

[1l

yo(e@id)od = id
tyo(id@e)od = id
ao(id®@d)jod = (d®@id)od
yod = d.

This implicit comonoid structure may serve as a guide in constructing a -
autonomous category. Some authors have even insisted that ! should be a free
comonoid construction. We content ourselves with the following exercise and the
following remark.

Exercise 13.2.20 Show that, for any symmetric monoidal category C, the category
Com(C,;) whose objects are comonoids (A,d,e) over C and whose morphisms are
comonoid morphisms (i.e. morphisms of C; which commute with d,e in the obvious
sense) is cartesian, and that the forgetful functor U : Com(C); — C; maps products
to tensor products.

350 CHAPTER 13. TOWARDS LINEAR LOGIC

Remark 13.2.21 FExercise 13.2.20 suggests a “recipe” for constructing a 'x-
autonomous category out of a cartesian and *-autonomous category C;.

e Focus on an appropriate (full) subcategory C of Com(C,) which has the
same products as Com(C,).

o Construct an adjunction of the form U & G between C and C;), where U
is the restriction of the forgetful functor to C.

Then, setting ! = U o G, the natural isomorphism (A x B) = (1A) @ (IB) comes
for free:

G(Ax B)=Z G(A) x G(B) (right adjoints preserve limits)
U(G(A) x G(B)) = (U(G(A)) @ (U(G(B)) c¢f. exercise 13.2.20 .

Interpretation of linear logic proofs. Finally, we sketch the interpretation
of the sequents of linear logic in a !x-autonomous category C;. A proof of a
sequent = Ay, ..., A, is interpreted by a morphism f : [— (A1 ¢ ... ¢ A,)
(confusing the formulas with their interpretations as objects of C;). The rules
are interpreted as follows:

(I) & Iis interpreted by id : [— I.

(L) Obvious, since L is the dual of I (cf. proposition 13.2.7).

(@) f: 1T = (ApTl)and g: 1 — (B o A), then by the isomorphisms
ApT =T o A=2Tt (A (and similarly B o A = At (B) and by
uncurrying, we can consider f : 't — A and g : A — B. Then we form
f@g:T+t @At -+ A® B which by similar manipulations yields:

fog:l—=(AaB)p(TtaAHYt=(Aa B)p (I pA).

() Obvious by associativity of p.

(Aziom) Since A p A+ = A (A. we interpret - A, AL by the currying of the
identity considered as from I @ A to A.

(Cut) Similar to (@): from f: 1 — (A pT)and g : I — (At ¢ A) we get
evioyo (f@g): T+ ®AL — 1, which we can read as a morphism from I to
TeA)p L=TpA.

(Fxchange) By associativity and commutativity.

(1) Interpreting - 1 o T' amounts to give an arrow from I't to 1. Since 1 is
terminal, we take the unique such arrow.

(x) The pairingof f: I - (ApT)andg:I — (B pT) yields (f,g) : T+ —
(A x B).

13.3. HYPERCOHERENCES AND STRONG STABILITY 351

(@) Given f: 1 — (A pT), we build for : A* x BY — T', which we can
consider as a morphism from [to (A& B) p I

(Dereliction) Given f: I — (A pT), we build foe:!(At) — T, where ¢ is the

first natural transformation of the comonad.

(Weakening) Let f : I — I'. Then we can consider that fod =!(A*) — T

(where d comes from the comonoid structure induced on !A) is a proof of F?7A, T
ontraction is case is similar to the case (Weakening), replacin €.
Contracti Thi is similar to th Weakening), replacing d by

(Promotion) Let f: 1 — (A !By ¢ ... p?B,), which we can consider as an
arrow from !(Bf x ... x BY) to A. Here we have made an essential use of the

natural isomorphisms required in the definition of x-autonomous category. Then
we can consider k(f) : (B x ... x Bf) —!A as a proof of F1A,?By,...,7B,.

Remark 13.2.22 The interpretation given above for the rule (Promotion) has
the drawback of appealing explicitly to products. This is a bit odd since linear
logic without additive connectives, but with exponentials, is interesting enough.
In the setting of [Bie95], the existence of isomorphisms (A®@ B) = (1A)®@ (1B) is
postulated. Then (Promotion) is interpreted as follows. Let f : 1 — (A 7B ¢
.. 1B,), which we can consider as an arrow from !(BIL) ® ...®!(BnL) to A.
Consider

§@...08 (B @...0(Br) = W(BH) @...0NBH) 2B @...a4Br)).

Then!fo(6@...®4) can be considered as an arrow from !(BIL) Q... ®!(BnL) to
'A, hence is a valid interpretation for F1A, 7By, ..., 1B,.

Remark 13.2.23 In some models, like the sequential model presented in chapter
14, the terminal object is the unit. Then we can define projections m;: AQ B — A
and m]: A®@ B — B as follows. One goes, say, from A®@ B to A®@ 1 (using that
1 is terminal) and then to A by a coherent isomorphism. A consequence is that
the usual weakening rule:

- T
AT

is valid. Indeed, given f : I — T, we build fom : I @ At — I'. Intuitionistic
linear logic plus weakening is called affine logic and can be interpreted in any

symmetrical monoidal closed category which has a! and where the terminal object
is the unait.

13.3 Hypercoherences and Strong Stability

In this section, we investigate Ehrhard’s hypercoherences. They have arisen from
an algebraic characterisation of sequential functions (see theorem 13.3.16).

352 CHAPTER 13. TOWARDS LINEAR LOGIC

Definition 13.3.1 (hypercoherence) A hypercoherence is a pair (F,T'), where
E is a set, called the web of E, and where I is a subset of P, (F), called atomic
coherence (or simply coherence), such that for any a € E, {a} € I'. We write
I ={u € I' | fu > 1}, and call T the strict atomic coherence. If needed
from the context, we write £ = |(E,1)| (or simply E = |E|) and ' = T'(E). A
hypercoherence is called hereditary if

Vuel,v (WCu=vel).
A state of a hypercoherence (E,1') is a set @ C E such that
VuCh zuel

where u Cf, « means that u is a finite and non-empty subset of x. We call D(E)
the set of states of K, ordered by inclusion.

Proposition 13.3.2 Let (E,1') be a hypercoherence. The poset D(E), ordered
by inclusion, is a qualitative domain (cf. definition 12.5.11), whose compact
elements are the finite states.

PROOF. We observe that singletons are states, and that the definition of state
enforces that (v € K(D(F)) and v C) imply v € K(D(F)). O

Remark 13.3.3 Since any qualitative domain can be obviously viewed as a hered-
itary hypercoherence, we can say in view of proposition 13.3.2 that qualitative
domains and hereditary hypercoherences are the same (see proposition 13.3.23).
But of course there are more hypercoherences than those arising naturally from
qualitative domains (see definition 13.3.14).

The atomic coherence gives also rise to a collection of distinguished subsets
of states, enjoying some interesting closure properties. They will allow us to get
a more abstract view of the morphisms of the hypercoherence model, in the same
way as linear or stable functions are more abstract than their representing traces.
We need a technical definition.

Definition 13.3.4 (multisection) Let £ be a set, and let w C F and A C
P(E). We write u< A, and say that u is a multisection of A, iff

(Vecu JeeAeca) and (Vzxe A decu ecu).

Remark 13.3.5 If both u and A are finite, u< A holds exactly when we can find
a list of pairs (e1, 1), ..., (€n, x,) such that e; € x; for all i and

u={e |1 <i<n} A={zx;]1<1<n}.

13.3. HYPERCOHERENCES AND STRONG STABILITY 353

Definition 13.3.6 (state coherence) Let (E,1') be a hypercoherence. We de-
fine a set C(E) C Pj;, (D(F)), called the state coherence of (E,T), as follows:

C(E)={A C}, D(E) [¥uCh, F uaA=uel}

We recall the convex ordering from theorem 9.1.6. Given a partial order D and
two subsets B, A of D, we write B <. A for

(VyeB dzeAy<z) and (Vzxe A dJyeB y<ua).

(Notice that this obeys the same pattern as the definition of «.)

Lemma 13.3.7 Let (E,I') be a hypercoherence. The state coherence C(E) sat-
isfies the following properties:

1. Ifxe D(E), then {2} € C(E).

2. IfA€C(F) and B <. A, then B € C(F).
3. If ACy, D(E) has an upper bound in D(E), then A € C(E).
4. IfACH, D(E) and) € A, then A € C(E).

ProoF. (1) If u<{x}, then a half of the definition of < says v C 2, and v € T
then follows by definition of a state.

(2) Let A€ C(E), B <. A, and u< B. It follows from the definitions of <. and
a that u < A, and from A € C(F) that u € T

(3) This follows from (1) and (2), since we can express that A has an upper
bound z as A <. {z}.

(4) If @ € A, then we cannot find a u such that u < A, and the condition
characterising A € C(F) holds vacuously. O

Definition 13.3.8 (strongly stable) Let (F,T') and (E',1") be hypercoherences.
A continuous function f: D(E) — D(FE') is called strongly stable from (F,T") to
(B, T if

VAEC(E) (f(A) €C(E") and f(\A) =\ [(A)).

We call HCoh the category of hypercoherences and strongly stable functions.

Strongly stable functions are to form (up to equivalence) the Kleisli category
of our model. We turn to the definition of the linear category.

Definition 13.3.9 (linear exponent — hypercoherences) Let (E,I'), (F', ")
be two hypercoherences. The linear exponent F (E' is the hypercoherence whose
events are the pairs (e,e’) where e € E and ¢’ € ', and whose atomic coherence
consists of the finite non-empty w’s such that

m(w) €T = (7'(w) € I' and (47’ (w) = 1 = g7 (w) = 1)).

354 CHAPTER 13. TOWARDS LINEAR LOGIC

Definition 13.3.10 The category HCoh; is the category whose objects are hy-
percoherences, and whose morphisms are given by

HCoh/[E, E'| = D(E (E')

for all E,E', with identity relations and relation composition as identities and
composition.

Proposition 13.3.11 The data of definition 13.3.10 indeed define a category.

PROOF. The only non-obvious property to check is that the relation composition
of two states is a state. Suppose thus that (£,1'), (E',1"), and (E”,I") are given,
as wellas ¢ € D(E (E') and ¢ € D(E' (E”) . We first claim that if (e, e”) €

¢’ o ¢, then there exists a unique ¢’ € E’ such that (e,e’) € ¢ and (¢/,€") € ¢'.
Let w' be a finite non-empty subset of W' = {e’ | (e,¢') € ¢ and (¢,¢") € ¢'}
(e,€” fixed). Considering {(e,¢’) | ¢ € w'}, we obtain that w' € I since {e} € T".
Then, considering {(¢’,€”) | ¢’ € w'}, we get fw’ = 1 since §{e”} = 1. Therefore
W' is also a singleton. Let now w be a finite non-empty subset of ¢’ o ¢ such that
m(w) € I'. Consider

u {(e,e) € ¢ | " (¢,e") € ¢ and (e,€") € w}
v o= {(,e") e | Te (e,¢) € pand (e,€") € w} .

The claim implies that v and v are finite. We have m(u) = w(w) by definition
of u and of ¢’ o ¢. It follows that 7'(u) € [since we have assumed 7(w) € T
But 7'(u) = 7(v), hence 7'(w) = 7'(v) € I". If furthermore fn'(w) = 1, then
fr(v) =1 =f4n'(u), and f7(u) =1 = fr(w). O

Proposition 13.3.12 The category HCoh; is cartesian. If (E,I') and (E',T")
are hypercoherences, their product E2 x E' is defined as follows:

o [vents are either e.l where e € E or €.2 where ¢’ € F'.

o The atomic coherence consists of the (finite non-empty) subsets w such that
(w[p=0= w[pel’) and (w[p=0= w[geT)
where, say, wip={e|e.l € w}.
We have

D(E x E) ~ D(E) x D(E')
AeC(ExFE) & (A[p€C(E) and Alg€ C(E"))

where, say, Alg= {u[g| v € A}. The terminal object is the empty hypercoher-
ence.

13.3. HYPERCOHERENCES AND STRONG STABILITY 355

PRrROOF. The projection morphisms and pairing are given by

m = {(e.l,e) | e€ E}
! = {(.2,¢) | e € F'}
(0,¢") = (" ed) [(" e) € oy UL(e" €2) [(", ¢') € '} .

The only point which requires care is the verification that (¢, ¢’) is a morphism.
Let w C%, (¢, ¢') be such that 7(w) € I'. Notice that, in order to tell something
about 7'(w)| g, we are led to consider wg = {(€”,¢€) | (¢”,e.1) € w}. If m(wg) is a
strict subset of m(w), we don’t know whether 7(wg) is in the atomic coherence of
FE, unless (F, ') is hereditary (see remark 13.3.13). These considerations should
help to motivate the definition of I'(E'x E’). Indeed, all we have to check is that if
7' (w)[= 0 then 7'(w)[g€ T (the other implication being proved similarly). The
assumption 7'(w)[p= 0 implies w = wg, 7(wg) € ', and 7'(w)[p= 7'(wg) €
I'. If moreover §7'(w) = 1, then, say, 7'(w) = {e.l}, hence n'(wg) = {e},
which entails fr(wg) = 1, and f7(w) = 1 since n’(w) = {e.1} a fortiori implies
(0) [= 1.

We show that Ax.(x|g,x[g) defines a bijection (actually an order isomor-
phism) from D(E x E') to D(FE) x D(FE’). All what we have to do is to show
that this mapping and its inverse have indeed D(E) x D(FE') and D(E x E') as
codomains, respectively. This follows easily from the following observation (and
from the similar observation relative to E'):

VuCr, 2[p (el & {ellecu} el (E x E).

The same observation serves to prove the characterisation of C(F x E'), since in
order to check that A € C(E x E'), we need only to consider u’s such that either
u[g=0 or u[g= 0. a

Remark 13.3.13 The cartesian product of two hereditary hypercoherences is not
hereditary in general. Indeed, given any finite w C E and v’ C E', where, say,
u & U'(F), we have {e.l | e e uf U{e'.2 | e € u'} € I'(E x E') as soon as both
u and v’ are non-empty, but {e.l | e € u} & I'(F x E'). (See also proposition
13.3.15.)

The full subcategory of hereditary hypercoherences, being equivalent to that of
qualitative domains, has a product, though, which is given by the same set of
events, but a different atomic coherence, consisting of the w’s such that

wlpe I and w[ge T

The product structure gives rise to an interesting class of hypercoherences,
which are the key to the link between sequentiality and strong stability, and which
are therefore at the root of the theory of hypercoherences and strong stability.
Coherence spaces (F,) are special qualitative domains, and can therefore be
seen as hereditary hypercoherences. But they can also be endowed with another
hypercoherence structure, which we define next.

356 CHAPTER 13. TOWARDS LINEAR LOGIC

Definition 13.3.14 1. Let (E,) be a coherence space. It induces a hyperco-
herence (F,1'1), called linear hypercoherence, where

I7={uCs, F|3er,ea € E (61 # ez and 1 _ e3)}.

2. Let X be a set. The hypercoherence X| = (X, {{z} | © € X}) is called the flat
hypercoherence associated to X. Clearly, D(X) = X, whence the name and
the notation.

Proposition 13.3.15 Let Iy,..., E, be flat hypercoherences. Let I be the prod-
uct of By, ..., E, in the category of coherence spaces. Then (E,1'L) is the product
of Fr,..., E, in HCoh;.

Proor. Without loss of generality, we consider a product of three flat hyperco-
herences Ey, F5, and F5. By definition, the product hypercoherence consists of
those w’s such that

(m1(w) # 0 or ma(w) # 0 or fmz(w) = 1) and
(m1(w) # 0 or m3(w) # 0 or fma(w) = 1) and
(m2(w) £ 0 or m3(w) #£ 0 or fmi(w) =1) .

Under the assumption fw > 1,we have, say:

(m1(w) # @ or ma(w) # B or fma(w) =1) = (m(w) # 0 or my(w) # 0)
hence the strict coherence of the product consists of the w’s such that

(m1(w) # 0 or ma(w) # () and
(m1(w) # 0 or m3(w) # () and
(m2(w) # 0 or m3(w) # 0)

or (generalising from 3 to n)
Ji,j<n i#jand (m(w) # 0 and m;(w) £ 0)

which by proposition 13.1.3 and by definition is the linear coherence on £. O

We have now all the ingredients to show where strong stability comes from.

Theorem 13.3.16 Suppose that Ey, ..., E,, FE are flat hypercoherences. A func-
tion f: D(Ey) x ... x D(E,) = D(FE) is sequential iff it is strongly stable from
(Ey x...x E,,T'p) to E.

PROOF. By proposition 13.3.15, (Ey X ... x E,,I'1) is the product Fy x ... x FE,
in HCoh;. Hence, by proposition 13.3.12:

AeC(F)eVYie{l,...,n} m(A)€C(E;)

13.3. HYPERCOHERENCES AND STRONG STABILITY 357

where Cr,(F) is the state coherence associated with I'y. If A = {xy,..., 21} and
xj = (x1j,...,2) for all j <k, then we can rephrase this as

{z1,...,0x} €C(F) e Vied{l,....on} (Fj<kaj=1L)or (xg=...=xp # 1)

On the other hand, by theorem 6.5.4, f is sequential iff it is invariant under the
relations Sy defined by

(1,00 Tpp1) € Sppr & (Fi<k zj=L)or(x1=...=app # L).

The conclusion then follows from the following easy observations:

® (Zi1,...,Tik41)) € Skg1 may be rephrased as (z,...,2%) € C(D) and
Ai<j<k Tij < Tigeer), hence Ajcjcp ;7 < apqr and

(1’1,. .. ,l’k.H) € Sl?—l-l A= (1’1,. . .,l’k) € C((Dl X ... X Dn)L)

e f(NA)=Af(A) can be rephrased as Va © > AA = f(x) > A f(A). O

Lemma 13.3.17 In E (E' = E", the following equivalences hold (and thus
may alternatively serve as definition of atomic coherence):

(1) wel” & (r(w)el = (w)el”) and (r(w) € T = 7'(w) € T")
(2) wel”™ & 7w(w) ¢l ora'(w) eI’

PROOF. The equivalence (1) is just a rephrasing of the equivalence given in
definition 13.3.9. By Boolean manipulations, we get successively:

right hand side of (1)

o { (m(w) € T and (m(w) € I'* or 7'(w) € ")) or
(r'(w) € I'" and (w(w) € I'*) or 7'(w) € "))

& 7w(w) gl or n'(w) € I or (n'(w) € I and w(w) & ') .
Now we suppose that fw > 1. Then either fmr(w) > 1 or f7’(w) > 1. If 7' (w) > 1,

then 7'(w) € I” is the same as n'(w) € I"*. Similarly, if ¢7'(w) > 1, then
m(w) & I'* is the same as m(w) ¢ I', Hence, under the assumption fw > 1:

(r'(w) € I" and 7(w) € ') = (w(w) € T or n'(w) € T')

and the right hand side of (1) boils down to the right hand side of (2), which
completes the proof. a

As in the stable case, the equivalence (2) of lemma 13.3.17 directly suggests
a definition of tensor product and of linear negation.

358 CHAPTER 13. TOWARDS LINEAR LOGIC

Definition 13.3.18 (tensor — hypercoherences) Let (E,I') and (FE',1") be
hypercoherences. Their tensor product I} @ E' is the hypercoherence whose web

is £ x E', and whose atomic coherence consists of the non-empty finite w’s such
that m(w) € I' and n'(w) € T

Definition 13.3.19 (linear negation — hypercoherences) Let (E,1') be a hy-
percoherence. The linear negation EL of E is the hypercoherence whose web is
E, and whose atomic coherence is P, (E)\I'*. Or, alternatively, v € T*(E*) iff

Proposition 13.3.20 The category HCoh; is x-autonomous. Its unit is the
unique hypercoherence whose web is the singleton {x}.

PrROOF. The proof is a straightforward adaptation of the proof of theorem
13.2.15. We even have ‘(E ® E’L)L‘ = HCoh,[F, ']. 0

Definition 13.3.21 (exponential — hypercoherences) Let (F,T') be a hyper-
coherence. The exponential 'E is the hypercoherence whose events are the finite
states of £ and whose atomic coherence consists of the the A’s such that

VuCh E (uaA=uel).

Proposition 13.3.22 The operation ! extends to a functor ! : HCoh — HCoh;
which is left adjoint to the inclusion functor C: HCoh; — HCoh defined as
follows:

C(E,T)=(E,T) C(¢)= fun()
where

Jun(o)(x) ={e' | Te (e,€') € ¢ and e € z}.

PROOF. We exhibit inverse bijections between D(!E (E’) and HCoh[F, E'].

Given a strongly stable function f, we define

trace() = {(z,¢) | € € () and (Vy < & ¢ &).
Conversely, given ¢ € D(!F (E'), we define

Jun(é)(x) =4 | Ty (y,€') € ¢ and y C z}.

This definition of fun extends that given in the statement, up to the identification
of events e with singletons {e}. Therefore, the subsequent proof also establishes
that C is well-defined. That trace and fun are inverses is proved exactly as in
theorem 12.3.6. We prove that trace and fun are well-defined:

o trace(f) is a state: Let wo CF, trace(f), and suppose that m(wo) € I'(!E) =
C(FE). By definition of trace, 7'(wo) < f(m(wp)). Hence n'(wy) € I'. Suppose

13.3. HYPERCOHERENCES AND STRONG STABILITY 359

moreover that 7'(wg) = {€’}. Then € € A f(n(wo)) = f(A7(wo)). Let z <
A 7(wo) be such that (z,€’) € trace(f). Then, by minimality, z is equal to each
of the elements of 7(wy).

e fun(¢) is strongly stable: First of all, we have to check that f(z) € D(FE’), for
any (finite) » € D(FE). Let vy Cf, f(x). Let wy = {(2,¢') € ¢ |z Cwand ¢’ €
v1}. By definition, wy is finite and non-empty. Hence w; € I'(F (E’). We have

m(wy) € I'(1F) since m(wy) is bounded. Hence vy = 7'(wy) € 1. Next we prove

that fun(¢) is strongly stable. Let A € C(F), and let vy < fun(A). Let
wy = {(z,€') € ¢ | (2 Cx for some z € A and € € vy)}

and let x € A. Since vy<fun(A), there exists € € vy such that €' € fun(x). Hence
there exists z € m(wz) such that z C x, by definition of fun and w,. It follows that
m(wy) <. A. Hence w(wy) € C(F) by lemma 13.3.7. This entails vy = 7’(w,) € V.
Hence fun(A) € C(E’). We show moreover that A fun(o)(A) < fun(o)(A\A). Let
e € Nfun(@)(A), i.e. {€'} < fun(p)(A). Then, instantiating above vy as vy = {e’}
(and the corresponding ws), we have fm(ws) = 1, since §7'(wy) = §{e'} = 1. Let
m(wy) = {x}. Then & < A by definition of wy, hence €' € fun(x) C fun(o)(A A).
O

Proposition 13.3.23 1. The category HCoh; is equivalent to the category of hy-
percoherences and linear and strongly stable functions. Notice that this is slightly
redundant, since the preservation of bounded glb’s, which is part of our definition
of linear function (cf. definition 13.1.6) is a consequence of strong stability.

2. The full subcategory of HCoh; whose objects are the hereditary hypercoherences
is equivalent to the category of qualitative domains and linear functions.

PROOF. (1) This is proved as in the stable case (cf. proposition 13.1.7).

(2) We have already observed (remark 13.3.3) that at the level of objects qual-
itative domains are the same as hereditary hypercoherences. We claim that if

(E,T) is hereditary, then
AeC(E) & (e A)or (Aisbounded).

The direction < holds in any hypercoherence, by lemma 13.3.7. Suppose con-
versely that A € C(F), 0 ¢ A, and A is not bounded , i.e. |JA is not a state.
Then there exists u C [J A which is not in the atomic coherence I'. Let v be such
that v C v and v < A (such a v exists, since) ¢ A). We reach a contradiction as

follows:
v € ' by definition of the state coherence

u € I' by hereditarity .

Suppose that (E,I') and (F’,1”) are hereditary hypercoherences. We show that
f: D(F) = D(FE') is linear and strongly stable iff it is linear. We only have to
check that “linear implies strongly stable”. If f is linear and A € C(F), there are
two cases, by the claim:

360 CHAPTER 13. TOWARDS LINEAR LOGIC

e () € A: Then, by linearity, § € f(A) (hence f(A) € C(E")), and

FINA) = F(0) =0 = A f(A).

e A is bounded: Then f(A) is bounded, and f(AA) = A f(A) by stability.
O

Proposition 13.3.24 The category HCoh,;, together with the comonad induced
by the adjunction of proposition 13.3.22, is a x-autonomous category.

PROOF. We are left to check the natural isomorphisms. The isomorphism 1 & [
is immediate as with coherence spaces. We check I(E x E') = (1E) @ (IE") (notice
that we did not prove that HCoh is cartesian closed: this will rather follow as a
corollary, cf. proposition 13.2.16). We have

(Ex E)| = K(D(E x E'))
K(D(E) x D(E"))
K(D(E)) x K(D(E"))
NE| x 1]

(L) @ (LE)]

e

and

Acl((EXxE)) & AcC(ExE)
& (A[g€ C(F) and A[g€ C(E') (by proposition 13.3.12)
& (Alg, Alm) e T((IE)® (1E")) .

a

13.4 Bistructures *

Berry [Ber79] combined the stable approach and the continuous approach by defining
bidomains, which maintain extensionality and stability together, and thus offer an
order-extensional account of stability (cf. sections 6.3 and 6.4). His work was then
revisited by Winskel, resulting in a theory of stable event structures [Win80]. The
account offered here, based on [CPWO96] is informed by linear logic (which was not
available at the time of [Ber79, Win80]. We introduce a !'x-autonomous category of
event bistructures, where the definition of composition is proved correct by means of
an interaction between two order relations over events.

We build up on coherence spaces (cf. section 13.1). Let E and E’ be two coherence
spaces. Recall that the structure F' — E’ has as events the pairs (z, €’) of a finite state
of ¥ and an event of E’, that these events, when put together to form a higher-order
state ¢, describe the minimal points of the function represented by ¢, and that the
inclusion of states naturally corresponds to the stable ordering. In F — FE’, there
arises a natural order between events, which is inspired by contravariance:

(z1,€)) <F (2,€)) & (z C 2y and €] = ¢).

13.4. BISTRUCTURES * 361

The superscript © will be explained later. The order <” allows us to describe the
pointwise order between stable functions, at the level of traces.

Definition 13.4.1 Let E and E' be two coherence spaces. We define a partial order
ConDE—=FE)byoLTpV(x,e)eop ' Ca (2!, €) €, or, equivalently:

pC Y aVe o e (" <P e and € € o).

Proposition 13.4.2 Let E and E' be coherence spaces, and f,g : D(F) =5 D(F').
Then the following equivalence holds: f <., g < trace(f) C trace(g).

We shall see (lemma 13.4.12) that ¢ C ¢ can be factored as ¢ C! y C 1, where x
is the part of v used in the check of ¢ C + (notice that, given (z,¢’) the 2’ is unique).

Next we want to force stable functionals to be order extensional, that is, we want
to retain only the functionals H such that V¢,v (¢ C ¢ = H(¢) < H(v)) (where
we freely confuse functions with their traces), which, by the definition of CL, can be
rephrased as

Vo, ($CF & = H(¢) < H(¢)).

Therefore we ask for
Ve e H Vel (e <Be" =3l el "<l el
where the order < is defined by
(¢1,€61) <7 (9,¢) & (¢ EF ¢1 and ¢) = ¢€).

Definition 13.4.3 (bistructure) A bistructure (E, =, < <®) (or E for short) is

!

given by a set I of events, by a reflexive and symmetric binary relation = on F, called
coherence relation, and by partial orders < and <%, satisfying the following azioms.

(Bl) Vei,ea € E (e1 [V ea = €1 = eg)

where eq |7 ey means Je € E (e <Ley and e <L e2), and where ey = ey means
—(e1 Z e3) or ey = ey (cf. section 13.1).

(B2) Yei,es € E (€1 Moy = e O €3)
where 1 is upward compatibility with respect to <%.
(B3) Vel,ea € E (e1<ey= (Fec E e <Fe<ley))
where <= (<I'u <Fy*,
(B4) The relation <= (>* U <F)* is a partial order.
(B5) Ve e E {e € F'| ¢ < e} is finite.
Remark 13.4.4 In the presence of axiom (B5), which is the bistructure version of

aziom I, axiom (B}) is equivalent to requiring the non-existence of infinite sequences
{€n}n<w such that for all n e,41 < €,, where e < ¢’ means e < €' and e # ¢'.

362 CHAPTER 13. TOWARDS LINEAR LOGIC

The axioms of bistructures are strong enough to imply the uniqueness of the decom-
position of <= (§L U §R)*, and that < is a partial order.

Lemma 13.4.5 Let E be a bistructure. For all e;,eq € F, the following properties

hold:
(er 1P ey and ey tH ey) = e = ey
e1 < ey = Fle (eg <Fe<Fey).

Proor. (1) If e; |¥ ey and e; 1 €y, then e; = ey and e; _ ey, which implies e; = e,
by definition of .

(2) Suppose that e; <¥ e <f ey and e; <F ¢/ <F ey, Then e [F ey and e; 17 ey,
therefore e; = ez by (1). O

Lemma 13.4.6 The relation <= (<" U <F)* of definition 13.4.3 is a partial order.

Proor. We only have to prove that < is antisymmetric. Suppose ¢ < €' < e, and
let ¢, ¢ be such that e <l ¢/ <f ¢/ and € <! ¢ <F e. We factor e < ¢: for some €”,
e <l " <B ¢ Since e <l e’ <Fe we get

¢’ =e bylemma 13.4.5
¢ =e¢ by the antisymmetry of <F .

We then have ¢’ <l'e =e < ¢ <F ¢/, and

¢ =¢ by lemma 13.4.5
e = ¢ by the antisymmetry of <P .

We next define states of bistructures.

Definition 13.4.7 Let F = (F, =, <", <F) be a bistructure. A state of F is a subset
x of F satisfying:

Vep,ea €z (e1 _ e3) (consistency)
Vecaz Ver <Fe Jey (61 <V ey and eg € z) (extensionality) .

We write (D(E),C,CR) for the collection of states of F, equipped with two orders T
and T, which are called the stable order and the extensional order, respectively, and
which are defined as follows:

Cf is the set-theoretic inclusion

tCyeVecz Jegcy (e<le).

Observe that axiom (B1) enforces the uniqueness of ey in the extensionality condition
of states, and of ey in the definition of . We also define a third relation CF between
states by

vClyeaCyand (Yy € D(E) (2 Ty and yi E7y) = y1 = y).

13.4. BISTRUCTURES * 363

We shall next examine some properties of the three relations Cf, C, and CF.

Lemma 13.4.8 Let I be a bistructure, and let x € D(E). If e is in the < downward
closure of z, then it is in the <* downward closure of x.

PRroOF. Let e; € x be such that e < eq:

Jeg e <ley <Fl ey (by factorisation)
Jes €7 e3 <Fe3 (by extensionality) .

Then e < e5 fits. a
Lemma 13.4.9 Let CF and C be as in definition 13.4.7. Then, for all states z,y:
(zCyandyCla)=z=y.

Proor. Let e € z, and let e; € y be such that e <L ¢ Then, since a fortiori ey € x
and e |* e, we conclude that e = ¢1 € y. a

Definition 13.4.10 Let F be a bistructure, and let x € D(F). We write <, for the
reflexive and transitive closure of the following relation <! between events of x:

e1 <ley & (en,ea€x andTe eg >V e <Fey).
The following is a key lemma.

Lemma 13.4.11 Let F be a bistructure, let x,y € D(FE) and e; € E such that 1y
and e; € x Ny. Then the following implication holds, for any e € z (in particular,

€e1€y):
€1 Sgp €2 = €1 =y €.

ProoF. It is clearly enough to show this for the one step relation <L. Let thus e

be such that e; > e < ¢, By extensionality of y, and since e; € y, there exists

e} € y such that e < ¢/. But (B1) and the consistency of y force €| = e, hence
_

€1 = €1 2y €3. O

Lemma 13.4.12 Let CF T, and CV be as in definition 13.4.7. The following proper-
ties hold.

1. Cis (CF u), and satisfies (B3).

2. For all states z,y: © CF y = (Vecey Jeg e z,e1 €y e <y €1 >L €o).

3. CV is a partial order.

ProoF. (1) Let # C y. The subset {e; € y |Jeg € x eo <V €1} represents the part of
y actually used to check x C y. But we have to close this subset to make it extensional.
Define thus

yy={ecy|Jeg€ax,e; €y ejyelzLeo}.

which is clearly consistent, as a subset of y. If e € y; and e; <% ¢, since y is extensional,
there exists ey € y such that e; <P eq, and ey € y; by construction. Thus y; is a state.

364 CHAPTER 13. TOWARDS LINEAR LOGIC

We show z C” y;. Suppose that C y} CF y;, and let e € y;. Let by construction
eo € x and e; € y be such that e <, e; >% ¢q. Since z C yj, eg <* ¢} for some € € yj.
On one hand we have e; |” €| by construction, on the other hand e¢; _ ¢ follows
from ey € y1, €} € y}, and y| CF y;. Hence e; = €/, which implies e € y} by lemma
13.4.11. Hence y; CF ¢!, which completes the proof of z C” y;. The decomposition
x CF y; CF y shows that C is contained in (EL U ER)*. The converse inclusion is

obvious.
(2) follows obviously from the proof of (1).

(3) The reflexivity and the antisymmetry follow from (CF) C (C). Let CF ' TP,
and let e € y. By (2), there exist eg = ¢’ € ¥’ and €], € @ such that e <, ¢’ and €’ <, €,
or in full:

e =eq <l e >R€2 <L€22+1I€ ej+1 €y forall 0 <5 <4
eh <lel >Pel ... < €hirpq =€ ehip1 €y forall 0 <j<idl.

Since y' C y and €} € y', there exists € such that 61 <L ¢! and € € y. Since
e, <P 6’1 <L e, there exists e/ such that) < e/ <P e/, Since y is extensional, there

exists e € y such that 2/ <" e4. In order to Contlnue thls lifting of the ei’s relative to
y' to a sequence of e/'’s relatlve to y, we have to make sure that e §L

ehy <l el ¢y for some e €y since y' Cy

" __ // L L _m "
e3 = e3 since e}, <" el e, <P e, and €5, e} €y .

Continuing in this way, we get
=y <l el el = =< e 2 ey ey =e

with eg;41 € y for all 0 <7 <7 and e’Q’j+1 € y for all 0 < j <4, which completes the
proof of z CF y. a

We explore some of the finiteness and completeness properties of these two orders.

Lemma 13.4.13 Let E be a bistructure, let e € x € D(FE). Then there exists a finite
state [e], such that e € [e], C¥ 2 and (Vy € D(E) (e € yCF 2) = ([e]. T y)).

ProOF. Similar to that of lemma 13.4.12. We just exhibit the definition of [e],:
el ={e €a|e =<, e}
The finiteness of [e], follows from axiom (B5). o

Proposition 13.4.14 Let IV be a bistructure. The following properties hold.

1. All T and CF directed lub’s exist in (D(F),C,CF).
2. The T and CTF lub’s of a TF directed set coincide.
3. A state is T compact iff it is T compact iff it is finite.

13.4. BISTRUCTURES * 365

Proor. (1) Let A be C directed. We show:
z=A{e€ UA | eis <¥ maximal in UA} is the C lub of A.

We first check that z is a state. If eq,es € z, then e; € 61, e3 € § for some 61,8, € A.
Let 4 € A be such that §;,6o C é. Then by definition of z and C, it follows that
1,63 € 8. Therefore e; T e5. If e € z and e; <F ¢, let § € A be such that e € 4.
By extensionality of &, there exists e, € § such that e; <! e,. By definition of z and
by (B4) and (B5) (cf. remark 13.4.4), we can find e3 € z such that e; < e3. Hence
z is a state. It is obvious from the definition of z that § © 2z holds for any 4 € A,
and that if z; is an C upper bound of A then z C 2. The CF bounded lub’s exist: if
X C D(F) and if z is an CF upper bound of X, then |J X is consistent as a subset of
x and extensional as a union of extensional sets of events.

(2) Let A be CF directed. We prove that UFA = UA = [JA (where UF and U are
relative to CF and C, respectively). We have to show that any e € |J A is <! maximal.
Suppose there exists e; € |JA such that e < e;. Then a fortiori e [” e, and since by
CR directedness eq, ey € § for some § € A, we get e = e;.

(3) We decompose the proof into three implications:

e 1 is finite = zis C compact: Let {ey,...,e,} C UA. There exist €},...,¢e/, €
UA such that e; < €l for all 5. Let ;,...5, € A such that €' € &; for all 4, and
let § € A be such that & C & for all 4. Then by the < maximality of ¢/, ..., e/
we get e} € § for all <. Hence {ey,...,e,} C 4.

e zis T compact = zis CF compact: If 2 °F UFA, then a fortiori 2 T UA,
therefore C 6 for some § € A. We show that actually 2 CF § holds. Let e € z,
and let e; € § such that e <¥ ¢;. Then we get e = e; from e, eq € [JA.

e zis CF compact = z is finite: We claim that, for any 2, {y | y finite and y CF
2} is Cf directed and has z as lub. The directedness is obvious. We have to
check that z CF {y | y finite and y CF 2}, that is, for all e € z, there exists a
finite y such that y CF » and e € y. The state [¢], (cf. lemma 13.4.13) does the
job. a

We define a monoidal closed category of bistructures.

Definition 13.4.15 (linear exponent — bistructures) Let F and E' be two bistruc-
tures. The linear exponent bistructure F (F' is defined as follows:

events are pairs (e,e’') where e € F and € € F,
(e1,€)) = (e2,€h) < €1 _ ez and €] = €,
(e1,€h) <P (e,€) = e <P ey and e <V ¢,
(e1,€h) <F (e,e) = e <l ey and e <P €.

As for coherence spaces , the coherence in the linear exponent can be defined by either
of the following equivalences (cf. lemma 13.1.5):

(e1,€)) T (e2,€h) & (e1 Zea= (e Z € and (e
(e1,€)) T (e2,€5) & (e1 Zea =€) T €h) and (e

£ e # 6h)

1
! ! ~—
1 = ey =e T eq).

366 CHAPTER 13. TOWARDS LINEAR LOGIC

The definition of linear exponent suggests what the linear negation should be, and
what the connective g should be. We shall define these connectives rightaway, and
prove that they are correctly defined. The correctness of the definition of F (£’ will
then follow.

Definition 13.4.16 (linear negation — bistructures) Let (F, _, <, <F) be a bistruc-

ture. The linear negation E* is defined by

YN

Proposition 13.4.17 E* is a well-defined bistructure.

PrOOF. We put subscripts that make clear to which bistructures we refer. We have
€1 iéL €2 < €1 TE €2 = €1 CE €2 <= €1 XEL €2
and similarly for (B2). The satisfaction of (B3) to (B5) follows from
(Spru<pi=>"u>x") and (U< =<fuxh).
O

Definition 13.4.18 (par — bistructures) Let E and E’ be two bistructures. The
bistructure F o E' is defined as follows:

events are pairs (e,€') where e € E and €’ € E',
(e1,€)) = (e2,€) = €1 = ey and €] = €,
(e1,€)) <l (e,e') & ey <Feand ey <P ¢,
(e1,€)) <P (e,e) & e; <F e and el <Fe.

IANIA

Proposition 13.4.19 F p E' is a well-defined bistructure.
PrOOF. (B1) Let (ey,e}) | (e,¢'). We have e; = e from e; | e and €] = ¢ from
el Jle.

(B2) Let (e1,€)) 17 (e,€'), and suppose (e1,€}) = (e,€’). As in the previous case,
we have e; _ e and ¢} Z €', which, combined with the definition of (e, €]) = (e,¢€'),
gives e = e and €] = €.

The other axioms follow from the componentwise definition of the orders. O

Proposition 13.4.20 Let E, E', and E" be bistructures, let ¢ € D(F (E') and
Y € D(E' (E"). The graph composition 1o ¢ of ¢ and v is a state of E (E".

PRrROOF. Let (e, €y), (e2,€5) € o ¢, and let €|, e, € F’ be such that
(ere)) €9 () €4 (ezer) € (en,€3) € ¥,

Suppose €1 _ e3. Since (e, €}), (e, €5) € ¢ we have ¢} T €. Since (e}, €!), (e}, €) €
¥, we have e _ €f. Similarly, e el implies e; = e5. Thus 1 o ¢ is consistent.

1 ~—

1 ~—
1 —

13.4. BISTRUCTURES * 367

We now check that o ¢ is extensional. Let (e, e”) € 1o ¢, and (eq, €?) <F (e, €”).
Thus e <" e; and €/ <P ", and there exists ¢’ such that (e,e’) € ¢ and (¢, €”) € .
By extensionality of ¢, and since (e, e’) <F (e, ¢€'), there exists (eq, €)) € ¢ such that

y Yy 3 1 = 3 3 2, €9

e1,€) <L (eg, €l), that is, e5 < ey and ¢ <L ¢/. By extensionality of v, and since
(9 s -2/ 9 2 y y 9
(eh, ey < (€, €"), there exists (e, e) € 1 such that ef <F ¢} and €/ < 4. By
extensionality of ¢, and since (eq,€4) <P (e3,€}), there exists (e4,€)) € & such that
eq <f ey and eh <L €)y. In this way we build sequences such that

€ SL €1 ZR €2 ZR €4 ZR T (676/)7 (6276/2)7 (647621)7 €D
e’ §];%e’2 ZRLeg §LLeﬁ1 >HR
el >hvell <Pl <P (€' e"), (eh,el), ... €.

By axiom (B4), the sequence {e/ },<. becomes stationary. Let ¢ be such that e}, =
€941~ Then we have:

(€2i,€h;41) €Yo P since by construction (ey;, €3;) € ¢ and (eh; ,€5;,,) € ¥
(e1,€}) < (ezi,€4;,,) since by construction e; > ey; and e} <l ef); .

Thus we have all the ingredients to define a linear category of bistructures.

Definition 13.4.21 We define the category BS; as follows: objects are bistructures,
and for any E, E', we set

BS[E,E') = D(E (E).

Composition is relation composition, and the identities are the identity relations: idg =

{(e;e) [e € B}

Remark 13.4.22 The morphisms of BS;, unlike in the case of coherence spaces, do
not enjoy a simple abstract characterisation as “linear and extensional functions”. Re-
call that linearity amounts to requiring all minimal points to be prime. In coherence
spaces, events are in one to one correspondence with the prime states, which are sin-
gletons {e}. In the present framework, {e} has no reason to be extensional in general,
and there may be several ways to extend {e} into a minimal state. These considera-
tions should explain why we have chosen to concentrate on a concrete description of
the morphisms of BS;.

Next we define a tensor product. Its definition is dictated by (and its correctness
follows from) the equation (F @ F')* = B+ o F'L.

Definition 13.4.23 (tensor — bistructures) Let F and E' be two bistructures. The
bistructure F o F' is defined as follows:

events are pairs (e,e’') where e € F and € € F,
(6176/1) Z (6276/2) el e and 6/1 Z 6/27
(e1,€)) <P (e,€') = ey <l e and €] <V ¢,
(e1,€h) <F (e,e) @ ey <Feand e <Fe.

368 CHAPTER 13. TOWARDS LINEAR LOGIC

The operation @ is extended to a functor as follows. Let ¢ € D(Fy (F}) and
Y € D(Ey (EY), and set

PP = {((61762)7 (6/176/2)) | (6176/1) € ¢ and (6276/2) € ¢}

Theorem 13.4.24 The category BS; is x-autonomous. The unit is defined by I =
({x},id, id, id).

PrOOF. The proofis a straightforward extension of the proof that Coh; is x-autonomous
(theorem 13.2.15). We have, say:

((e1,€)),€)) §§®E,(E,, ((e2,€h),€8) o e <Bejand) <F ¢} and € <B, el

& (er (e e)) B (ea (e el).

Remark 13.4.25 Like in the coherence model, we have I+ = 1.

We now define a related cartesian closed category of order-extensional stable maps.

Definition 13.4.26 We define the category BS as follows: objects are bistructures;
and for any E.E', BS[E, E'| consists of the functions from D(E) to D(E') which are
C8 stable and T monotonic.

We did not require C continuity in definition 13.4.26, because it is an implied property.

Lemma 13.4.27 Let F and E' be bistructures. If f : D(E) — D(E') is C¥ continuous
and T monotonic, then it is also C continuous.

ProoF. Let {e,...,e,} C f(x). There exist €/,...,¢e,, € f(z) such that e; <! ¢! for
all . By Cf continuity, there exists a finite z; CF 2 such that ¢},..., ¢! € f(z1),
hence {e1,...,e,} C f(21). a

Definition 13.4.28 (product — bistructures) Let E and E’ be two bistructures.
The bistructure F x F' is defined as follows:

events are either e.l where e € F or €¢'.2 where ¢ € F',
(e1.1) Z (e2.7) & i =7 and e; _ eg,

(e1.3) <F (eg.j) & i =7 and e; <V ey,

(e1.0) <P (e9.) & i=j and e; <F ey,

Proposition 13.4.29 The category BS; is cartesian. The terminal object is 1 =
(0,0,0,0).

We now relate the categories BS; and BS through an adjunction that corresponds
to the fundamental decomposition £ — F' = (1F) (E’. We define an “inclusion”
functor C: BS; — BS as follows.

13.4. BISTRUCTURES * 369

Definition 13.4.30 We set
C(E)=E C(@)@) ={3cer (ee) € p).
Proposition 13.4.31 The data of definition 13.4.30 define a functor from BS; to BS.

ProOF HINT. To check that C (¢) is C monotonic, we use a technique similar to the one
used in the proof of proposition 13.4.20 (application is a special case of composition). O

The following connective ! allows us to go the other way around, from BS to BS;.

Definition 13.4.32 (exponential — bistructures) Let ' be a bistructure. The bistruc-
ture ' is defined as follows:

the events are the finite states of F,
21 Z wy & ay M2,

<t s T,

<F s CR.

Proposition 13.4.33 F is a well-defined bistructure.

Proor. Obviously, Cf is a partial order. By lemma 13.4.12, C” is a partial order and
(B3) holds. And (B2) holds a fortiori, by definition of .

(B1) By the definition of Z,, we can rephrase (B1) as
(21 V¥ 2y and 2y P T2) = 1 = T3

Let 25 CF 21,29, and let e € 21. Let ey € 25 and ey € 21 be such that e =z €1 >Loe,.
Exploiting z3 C 25 and x4 TR xq, we get e € x4, and e € x4 then follows by lemma
13.4.11. This completes the proof of ;1 CTF z5. The converse inclusion is proved
symmetrically, exploiting zs CL a2y and 23 C 24.

(B4) We show that (> U <F)* is antisymmetric. Since CF and 3% are both partial
orders, we can consider a sequence zo C® 2, 2 2y -+ 2!,

rg=axy=a;=---=2al_, =x,. The proof goes through two claims.

_, 3% 2, = 2¢ and prove that

Claim 1. X =(),_;.., #; is a state.

X is clearly consistent as a subset of, say, 9. Let e € X and e¢; <f e. Since
e € x;, there exists ei € z; such that ey <P ei, for all 7 > 1. Since z; C 2!_,, there
exists €} € z!_, such that el <P i forall i > 1. But from e; <% efi, e; <V ei_l and
xi_q CH z'_, we conclude el = ei_l, therefore ei_l >L ei. On the other hand, from
e <P 6(1), e <P et and xg = x,, we obtain 6(1) = €. Since <lisa partial order, we get

0 _ — ot — — on 0
e} =---=¢€y=---=e7], hence €] € X.

370 CHAPTER 13. TOWARDS LINEAR LOGIC

Claim 2. 2/, CF X.

Let g € 2j. By lemma 13.4.12, we can find e, € z{ and e; € x; such that
€0 jxé €4 >L ¢;. We continue in this way and find

€] € z!, e3 € x5 such that e;) e >ley, .,

el €axl_| e, € x, = xgsuch that e, e el >le,.
We continue round the clock, generating e,4; € &4, €2n45 € i, .. ., €hnti € ;. Since x;
is finite, there exist &y, ko for which ey, = €g,n € 0. By the antisymmetry of < (in
FE), we obtain

€kin = €kntl1 = "= e(kl—l—l)n == €n-

Therefore ey, , € X, since eg,n4i € ; for all 2. Our next goal is to carry this back to
€o, and show ey € X. Suppose that we have proved e,, € X. We have

since e, el €a! _ ande, |Fe |
€m—1 Sx €., since by assumption e, € X .

Hence €,,_1 € X. Finally, we arrive at e¢g € X.

We can now prove (B4). From xo CF 2/ CF X we get 29 = 2, = X. From
zh 3% 2y and @) = X CF 21 we get 2, = x; by remark 13.4.9, and, progressively,
To=ax(,=x1 == _ =z, as desired.

(B5) Let 2 be a finite state. Let T ={e | Jeg € z e < eg}. This set is finite. It follows
from lemma 13.4.12 that any y such that y (QL U ER)* x is a subset of Z, from which
(B5) follows.]

Lemma 13.4.34 Let F and E' be bistructures. A function f: D(E) — D(E') is CF
continuous iff, for any €', x, ¢ € f(x) implies €' € f(y) for some finite y CF .

Proor. If f is continuous and ¢’ € f(z), then [¢'];;) TF f(2) (cf. lemma 13.4.13),
and by continuity there exists a finite z; such that [e'](,) CR f(z1), hence a fortiori
e’ € f(x1). Conversely, let {e1,...,e,} CF f(z). Then let x1,...,z, be finite and such
that e; € f(z;) for all ¢. Then (J z; is finite, and {eq,...,e,} CF f(U,—;.., ®;). O

1=1---m

Theorem 13.4.35 The operation | extends to a functor ! : BS — BS; which is left
adjoint to C.

PrOOF. The correspondences between states of !F (' and the stable and order-
extensional functions are as follows:

[= trace(f) = {(z,e
¢ = fun(9)(z) = {¢|

We show that trace(f) is a state. It is a set of events of !F (E’ by lemma 13.4.34.
Let (z1,€}), (zq9,€y) € trace(f) with z; T a9, i.e. a2y tF 25, Let 2 be such that

z1,29 <z, Then €| T €, since e}, es € f(z). Suppose moreover ¢} = e5. Then
x1 = g, by stability. This completes the proof of consistency. Let (x,€’) € trace(f) and

Nle € f(z)and (yCF zand € € f(y) = y=2)}
Ay Chz (y,¢) € ¢} .

13.5. CHU SPACES AND CONTINUITY 371

(z1,€}) <F (z,¢'). We look for (z,€}) € trace(f) such that (z1,e}) < (z2,¢€}). From
¢’ € f(x) we get that €' is in the < downward closure of f(2;) by C monotonicity. Since
e/ <P e e isin the <P downward closure of f(z1) by lemma 13.4.8, that is, ¢}, € f(z;)
for some €}, >! €/. Therefore, by the definition of the trace, (23, €}) € trace(f) for some
29 CF 2. This pair fits, and this completes the proof of extensionality.

In the other direction, the T stability of fun(¢) is obvious from the definition
of fun and the consistency of ¢. We check that fun(¢) is C monotonic. Let y C z,
and let € € fun(¢)(y). Let x; CF y be such that (z1,€’) € ¢. Let x5 be such that
zy CF 2y CF 2. Since (z4,€') CF (21,€), by extensionality there exists (v3,€5) € &
such that (zq,¢') CF (23,€4). We have ¢/ <P €}, and e} € f(2) since €4 € f(x3) and
T3 ER Z. O

The required isomorphisms relating additives and multiplicatives are as follows:
e !1 =]: The only state of 1 is @), which corresponds to the unique event % of I.

e |(Ax B) = (14) ® (!B): By the definition of product, z is a state of F x F’ iff
r1 ={e€ F|(el) € 2} and 29 = {e € I | (e.2) € z} are states of F, I’ and
x = x1 U xg. This establishes a bijective correspondence x +» (21, 22) between

the events of !(A x B) and those of (14) @ (!B).

Altogether, we have constructed a !x-autonomous category of bistructures.

13.5 Chu Spaces and Continuity

The Chu construction (see [abPC79, Bar91b]) allows to construct a x-autonomous cat-
egory out of a monoidal category with finite limits. Here we present the construction
over the category of sets, which is enough for our purposes. By imposing some order-
theoretic axioms, we arrive at the notion of casuistry. Roughly speaking, a casuistry
is a depo together with a choice of an appropriate collection of Scott opens. A linear
morphism between two casuistries is a function whose inverse image maps chosen opens
back to chosen opens. For any continuous function f, the inverse image f~1(U) of a
chosen open U is open, but is not necessarily a chosen open. An exponential construc-
tion allows to fill the gap between the morphisms of casuistries and the continuous
functions. The material of this section is based on [Lam94].

Definition 13.5.1 (Chu space) Let K be a set. A Chu space over K (Chu space for
short) is a triple A = (Ay, A%, {_,_)) where A, and A* are sets and {_,_)) is a function
from A, x A* to K, called agreement function. A morphism f : A — B of Chu spaces
is a pair (fi, f*) of functions, where f, : A, — B, and f*: B* — A*, satisfying, for
all x € A, B € B*:

() (ful), B) = (=, [*(B))-
The mapping {_,-) can be equivalently presented as a function | : A, — (A* — K) or
a function r : A* — (A, — K). Ifl is injective, we say that A is left-separated, and
symmetrically, if v is injective, we say that A is right-separated. A separated Chu space

372 CHAPTER 13. TOWARDS LINEAR LOGIC

is a Chu space which is both left and right-separated. We write Chu for the category
of Chu spaces, and Chuy for the full subcategory of separated Chu spaces.

There are two obvious forgetful functors , and * (covariant and contravariant, re-
spectively) from Chu to the category of sets:

A* = A* (f*7 f*)* = f*
Ar= A (f) =1

Lemma 13.5.2 The following are equivalent formulations of ():

(o) () =1(z) o f
Gr) r(f(B)) = r(B)o f .

Lemma 13.5.3 Fuvery right-separated Chu space is isomorphic to a Chu space A where
A* is a set of functions from A, to K, and where {x, f) = f(x). If moreover K =
{L, T}, every right-separated Chu space is isomorphic to a Chu space A, where A* is
a set of subsets of Ay, and where agreement is membership. Such a Chu space is called
right-strict. Left-strict separated Chu spaces are defined similarly.

Example 13.5.4 FEvery topological space (X, Q) is a right-strict Chu space. It is left-
separated exactly when it is To (cf. section 1.2). Moreover, the morphisms between
topological spaces viewed as Chu spaces are exactly the continuous functions (see lemma
13.5.5), so that topological spaces and continuous functions may be considered a full
subcategory of Chuy.

Lemma 13.5.5 A morphism of right-separated Chu spaces A and B is equivalently
defined as a function f, : A, — B, such that

VBe B 3ae A" r(B)o f =r(a).
If moreover A and B are right-strict, this condition boils down to
V3 e B f7HB) € A%,

Proor. Let (fs, f*) be amorphism. Then f, satisfies the condition of the statement by
(r,). Conversely, the injectivity of r guarantees the uniqueness of a, hence the formula

of the statement defines a function f*: B* — A*. a

Lemma 13.5.6 Let A and B be Chu spaces, and suppose that A is right-separated
and that B is left-separated. Then a morphism from A to B is equivalently defined as
a function h : A, x B* — K whose curryings factor through lg and r4.

Proor. Let (fi, f*) be a morphism. Then the required h is defined by:

h(z, B) = {f(x), B) = (z, [7(B))

and the factorisations are given by (%;) and (3,.), respectively. Conversely, the two
factorisations determine two functions f, : A, — B, and f*: B* — A* and (}) holds
by construction. a

13.5. CHU SPACES AND CONTINUITY 373

Definition 13.5.7 (tensor — Chu spaces) Let A and A’ be two Chu spaces. Their
tensor product A @ A’ is defined as follows:

o (AR A", =A, x Al

o (A @ A" consists of the pairs of functions (f,g), with f: A, — A™ and ¢ :
Al — A*, which satisfy {(z,g(z’)) = (', f(2)), for all x € A, 2" € AL.

o ((w,2'),(f,9)) = (x,9(2))) = (', f(2)).

Definition 13.5.8 (linear negation — Chu spaces) The linear negation of a Chu
space is defined as follows (where 7 is as in definition 13.2.3):

(A*v A*v (—7 —>A)J_ = (A*v A*v (—7 —> © 7)'

Proposition 13.5.9 1. The category Chu is x-autonomous. The tensor product is
as given in definition 13.5.7, the unit is I = ({*x}, K, %) and the dualising object is
1 =(K,{x},7).

2. There exists a natural bijection Chu[l, A] = A,.

Proor. For the symmetric monoidal structure, we just check that A ® I = A. The ,
component of A ® [is A, x {x}, which is A, up to natural bijection. An element of
the * component of A ® I can be considered as a pair of a function f: A, — K and an
element o € A*. Looking at the condition linking f and «, we see that it boils down
to the definition of f as Az.(z,a).

By a similar reasoning, we get (2). To establish the closed structure, we rely on
proposition 13.2.8. The dualising functor is given by definition 13.5.8. The required
isomorphisms A+t 2 A are actually identities. We verify the bijections:

Chu[l, (A ® B1)*] = ChulA, B].

Let f: A — B:
fe(A® BJ‘)* by the definition of @

fc (A@B*)L by the definition of * .

We conclude by using (2). To see that Chu is x-autonomous, we proceed essentially
as in proposition 13.2.15: the canonical morphism from A to (A (L) (L is the
identity modulo identifications similar to those used above for proving A @ I =2 A. O

Lemma 13.5.10 (slice condition) The tensor product of two right-separated Chu
spaces A and A’ is right-separated, and can be reformulated as follows:

o (ADA'), = A, x AL

o (A ® A" consists of the functions h : A, x A, — K whose curryings factor
through A* and A'™, that is such that, for some [and g:

A(h)y=rof Aj(hovy)=rogyg.

374 CHAPTER 13. TOWARDS LINEAR LOGIC

o {(z,9),h) = h(z,y).

If moreover A and A’ are right-strict, then the reformulation says that (A @ A’)*
consists of the subsets U of A, X B, satisfying the following condition, called slice
condition:

(Vaee A, {2/ | (z,2)eU}e A™) and (Vye A, {z|(z,2") e U} € A").

Proo¥r. By definition of + and by proposition 13.5.9, an element of (A @ B)* can

be described as a morphism of Chu[A,B=]. The conclusion then follows from lemma
13.5.6.]

Unlike right-separation, left separation has to be forced upon the tensor product
structure.

Lemma 13.5.11 With every Chu space A we associate a left-separated Chu space A,
as follows:

o (A)r= A"
o (A)) = A,/ =, where = is the equivalence relation defined by

TRy & Va € A" (21,a) = (23, 0).

o {[z],a) = {(z,a).

If moreover A is right-separated, then A; is separated. There is a symmetric construc-
tion A, which forces right separation.

Proposition 13.5.12 The statement of proposition 13.5.9 holds true replacing Chu
by Chuy and redefining the tensor product as A @5 B = (A @ B);. (We shall omit the
subscript in @, if no ambiguity can arise.)

PrOOF. The proof is by a straightforward adaptation of the proof of proposition 13.5.9.
Notice that f : A — B reads as f € (A @; B)* since (A @, BY)*=(A@BYH)*. O

Our last step consists in adding directed lub’s, more precisely directed unions. Fron
now on, we assume that K = {1, T}, and confuse freely a function h into K with the
set it is the characteristic function of.

Definition 13.5.13 (casuistry) A casuistry is a separated Chu space A such that
both A, and A* are decpo’s under the induced orders defined by

v <z’ e l(z) Cla)

(and symmetrically for A*), and moreover [(\/ A) = UI(A) for any directed A, and
similarly for r. We call Cas the full subcategory of Chu, whose objects are casuistries.

13.5. CHU SPACES AND CONTINUITY 375

Exercise 13.5.14 Given a right-strict Chu space A, we say that v € A, is empty
if VU € A* z ¢ U. Consider now two casuistries A and B. Show that, for any
[xv y] € (A @s B)*-'

[2,y] = {(z,9)} if neither x nor y are empty
T the empty element of (A @s B), otherwise .

Lemma 13.5.15 A topological space (X,Q2) viewed as a Chu space is a casuistry iff
its topology is Ty, its specialisation order is a depo, and every open is Scott open.

PRrOOF. A topology is a fortiori closed under directed unions. Thus the requirement

concerns X. Notice that [(\/ A) = JI(A) reads as

VUEQ \/AeU«& (36€A del).

O
Lemma 13.5.16 All morphisms between casuistries preserve directed lub’s.
Proor. It is enough to check I[(f(VA)) CUI(f(A)). We have
L(fVA) = {U]f(VA) e U}
= {UlVAaefU)}
and we conclude by exploiting that f~!(U) is Scott open. O

Proposition 13.5.17 The category Cas is x-autonomous, and all the constructions
are the restrictions of the constructions on Chu,. Lub’s in (A @, B), are coordinate-
wise.

ProoOF. Let A and B be casuistries. We sketch the proof that A @ B is a casuistry.
Consider a directed subset A of (A®@;B)* = (A®B)*. The reason why |J A satisfies the
slice conditions (cf. lemma 13.5.10) is that a slice of a directed union is a directed union
of slices. Consider now a directed subset A of (A @, B),. Without loss of generality,
we can assume that the empty element is not in A, hence (cf. exercise 13.5.14) that
A CA, x B,. We claim:

l(\/ T(A),\/T’(A)) = UZ(A).
In the direction D, one first establishes pointwise monotonicity:
(z1 <29 and yy < y2) = l(z1,y1) C (22, Y2).
If (z1,11) € U, then 1 € {z | (z,y1) € U}. Hence
x9 € {z | (z,y1) € U} since {z | (z,y1) € U} is open and z; < x5.

We have obtained (z3,71) € U, from which we obtain (22,y2) € U by a similar reason-
ing, now using the slice {y | (22,y) € U}. The direction C is proved similarly, making
use of the fact that the slices are Scott open by definition of casuistries. a

376 CHAPTER 13. TOWARDS LINEAR LOGIC

Proposition 13.5.18 The categories Chu, Chu,, and Cas are cartesian. The ter-
minal object is ({x},0) (with vacuous {_,_)). The product in Chu is given by

(A XA, =A, x A,
(A X ANYy* = A+ A

,) {z,a) ifae A7
((x,w),oe)_{ (',0) ifae A™.

In Chuy, and Cas, right separation has to be forced, and the product X (or X if no
ambiguity can arise) is given by

Axs A= (A x A,

If A and A" are right-strict, then we can reformulate their product (in Chug, and Cas)
as follows:

(A XA, =A, x A
(AXANVY ={UxA|UecAFTU{AxU |U € A*}.

The order induced on A, x Al is the pointwise ordering.

Proor. We only show that 1 is terminal, and that the induced order on prod-
ucts is pointwise. By the vacuity of 1*, being a morphism into 1 amounts to be-
ing a function to !y = {*}. Suppose that (z,2') < (y,7y’), and that z € U. Then
(z,2") € Ux A" € (A x A’)*. Hence (y,y') € U x A, ie. y € A. Similarly we get
2’ < 1’. The converse direction is proved similarly. a

Finally, we define an adjunction between the category of casuistries and the category
of dcpo’s.

Proposition 13.5.19 Consider the two following functors C: Depo — Cas and ! :
Cas — Dcpo, defined as follows:

- (D,S) = (DvTS(D)ve) - (f
!(X*vX*v (—7 —>) = (X*7 S) '(f) =

where Ts(D) denotes Scott topology (cf. definition 1.2.1), and where < in the second
line is the induced ordering (cf. definition 13.5.13). Then CH!. Moreover, the induced
comonad C o, written simply !, satisfies the isomorphisms of definition 13.2.12, i.e.
casuistries together with ! form a 'x-autonomous category, whose Kleisli category is
equivalent to the category Dcpo.

f

|l

Proor. To establish the adjunction, we have to prove that, given (D, <) and (X, X*, €
), afunction f: D — X, is a Chu morphism from (D, 75(D), €) to (X,, X*, €)iffitis a
directed lub preserving function from (D, <) to (X, <). If fis a Chu morphism, then
it preserves directed lub’s with respect to the induced orders by lemma 13.5.16. But
(cf. lemma 1.2.3) the induced, or specialised, order of a Scott topology is the original
order, i.e. lo C=id. Hence f preserves the lub’s with respect to the order < of D. If f

13.5. CHU SPACES AND CONTINUITY 377

preserves directed lub’s, then it is continuous with respect to the Scott topologies, and
a fortiori it is a Chu morphism from (D, ¢(D), €) to (X4, X*, €), since X* C 75(X,)
by proposition 13.5.15.

We already observed that !o C= id, hence a fortiori ! is surjective on objects. As a
consequence (cf. remark 13.2.14), the Kleisli category is equivalent to Dcpo, and thus
is cartesian closed, which in turn entails the isomorphisms (A x B) = ('A) @ ('B),
by proposition 13.2.17. We are left to show !1 = . Recall that I, formulated as a
right-strict Chu space, is ({x}, {0, {*}}). We have

I, = (1), and [I™is the Scott topology over {x}.
a

Remark 13.5.20 We have expressed the comonad for the stable model and for the
hypercoherence model via an adjunction of the form ! 4 C, while we just presented a
continuous model via an adjunction of the form C 4. One should not take that too
seriously. In each situation, we have called C the obvious inclusion at hand. But both
the stable C and the continuous ! are faithful functors: in particular, morphisms in
Cas can be considered as special Scott-continuous functions (those mapping (chosen)
opens to chosen opens).

A more liberal ! (leading to a larger Kleisli category), also taken from [Lam94], is
described in exercise 13.5.21.

Exercise 13.5.21 Call a topological space (X, Q) anti-separated if {z | (x,2) € U} €
Q, for any subset U of X x X satisfying the slice condition (cf. lemma 13.5.10). Show
that Dcpo is a full subcategory of the category ACas of anti-separated topological
spaces which moreover viewed as Chu spaces are casuistries. Show that Cas together
with the following definition of | yields a 'x-autonomous category whose Kleisli category
is equivalent to ACas:

'A = the smallest anti-separated topology on A, containing A*.

Hints: (1) The anti-separation condition says that the diagonal function \z.(x,z) is
continuous from X (viewed as a separated Chu space) to X @ X. (2) Follow the guide-
lines of remark 13.2.21. (2) In order to prove U !, give an inductive definition of
"(A)".

378 CHAPTER 13. TOWARDS LINEAR LOGIC

Chapter 14

Sequentiality

This chapter is devoted to the semantics of sequentiality. At first-order, the
notion of sequential function is well-understood, as summarized in theorem 6.5.4.
At higher orders, the situation is not as simple. Building on theorem 13.3.16,
Ehrhard and Bucciarelli have developped a model of strongly stable functions,
which we have described in section 13.3. But in the strongly stable model an
explicit reference to a concept of sequentiality is lost at higher orders. Here
there is an intrinsic difficulty: there does not exist a cartesian closed category
of sequential functions (see theorem 14.1.16). Berry suggested that replacing
functions by morphisms of a more concrete nature, retaining informations on
the order in which the input is explored in order to produce a given part of the
output, could be a way to develop a theory of higher-order sequentiality. This
intuition gave birth to the model of sequential algorithms of Berry and Curien,
which is described in this chapter.

In section 14.1 we introduce Kahn and Plotkin’s (filiform and stable) concrete
data structures and sequential functions between concrete data structures. This
definition generalizes Vuillemin’s definition 6.5.1. A concrete data structure con-
sists of cells that can be filled with a value, much like a PASCAL record field can
be given a value. A concrete data structure generates a cpo of states, which are
of sets of pairs (cell,value), also called events (cf. section 12.3). Cells generalize
the notion of argument position that plays a central role in Vuillemin’s definition
of sequential function. Kahn-Plotkin’s definition of sequential function is based
on cells, and reads roughly as follows: for a given input x and output cell ¢, if ¢/
is filled in f(y) for some y > x, then there exists a cell ¢, depending on x and ¢’
only, such ¢ is filled in any such y. In other words, it is necessary to compute the
value of ¢ in order to fill ¢!. Such a cell ¢ is called a sequentiality index at (x,).
The category of sequential functions on concrete data structures is cartesian, but
not cartesian closed.

In section 14.2, we define sequential algorithms on concrete data structures.
They can be presented in different ways. We first define an exponent concrete
data structure, whose states are called sequential algorithms. The notion of ab-

379

380 CHAPTER 14. SEQUENTIALITY

stract algorithm provides a more intuitive presentation. An abstract algorithm
is a partial function that maps a pair of a (finite) input state # and an output
cell ¢ to either an output value v’ (if (¢/,v") € f(«) or to an input cell ¢, where ¢
is a sequentiality index at (x,¢’). Hence sequential algorithms involve an explicit
choice of sequentiality indexes. Many functions admit more than one sequen-
tiality index for a given pair (x,¢). For example, adding two numbers requires
computing these two numbers. In the model of sequential algorithms, there exist
two addition algorithms, one which computes the first argument then the second
before adding them, while the other scans its input in the converse order. We
show that sequential algorithms form a category. Due to the concrete nature of
the morphisms, it takes some time until we can recognize the structure of a cate-
gory. A third presentation of sequential algorithms as functions between domains
containing error values is given in section 14.4.

In section 14.3, we present a linear decomposition of the category of sequen-
tial algorithms. We define symmetric algorithms, which are pairs of sequential
functions, mapping input values to output values, and output exploration trees
to input exploration trees, respectively. It is convenient to work with sequential
data structures, which are a more symmetric reformulation of (filiform and stable)
concrete data structures. Sequential data structures and symmetric algorithms
are the objects and morphisms of a symmetric monoidal closed category called
AFFALGO, which is related to the category of seauential algorithms through
an adjunction. The category AFFALGO is also cartesian. Moreover the unit is
terminal. Due to this last property, our decomposition is actually an affine de-
composition (cf. remark 13.2.23). The category of symmetric algorithms is a full
subcategory of a category of games considered by Lamarche [Lam92b]. Related
categories are studied in [Bla72, Bla92, AJ92].

In section 14.4 we investigate an extension of PCF with a control operator
catch (cf. section 8.5), and show that the model of sequential algorithms is fully
abstract for this extension.

14.1 Sequential Functions

First we define the concrete data structures (cds’s). We give some examples
of cds’s, and define the product of two cds’s. We then define Kahn-Plotkin
sequential functions [KP93], which generalise the first-order sequential functions
of definition 6.5.1. The category of cds’s and sequential functions is cartesian but
not cartesian closed.

Definition 14.1.1 A concrete data structure (orcds) M = (C,V, E,F) is given
by three sets C', V', and E of cells, of values, and of events, such that

ECCxV and VeeC FJveV (ev)eFE

14.1. SEQUENTIAL FUNCTIONS 3381

and a relation & between finite parts of E and elements of C, called enabling
relation. We write simply ey, ..., e, ¢ for {e1,...,e,} F c. A cell ¢ such that
F ¢ is called initial. Proofs of cells ¢ are sets of events defined recursively as
follows: If ¢ is initial, then it has an empty proof. If (¢1,v1),...,(cn,v,) F ¢, and
if p1y. .. pn are proofs of ¢1,. .. ¢y, then py U{(c1,v1)} - Up, U{(cn,vn)} is a
proof of c. A state is a subset x of K such that:

1. (c,v1),(c,v2) € & = vy = vy,
2. if (¢,v) € x, then = contains a proof of ¢ .

The conditions (1) and (2) are called consistency and safety, respectively. The
set of states of a eds M, ordered by set inclusion, is a partial order denoted
by (D(M), <) (or (D(M),C)). If D is isomorphic to D(M), we say that M
generates D. We assume moreover that our cds’s are well-founded, stable, and
filiform, by which we mean:

o Well-founded: The reflexive closure of the relation << defined on C' by
¢1 << c iff some enabling of ¢ contains an event (¢q,v)

is well founded, that is, there is no infinite sequence {c,},>0 such that
s Cpp < ¢ < -0 0.

o Stable: For any state x and any cell ¢ enabled in x, if X F ¢, X' F ¢, and
X, X'Cux, then X = X',

o Filiform: All the enablings contain at most one event.

Remark 14.1.2 Well-foundedness allows us to reformulate the safety condition
as a local condition:

2°. If (¢,v) € x, then = contains an enabling {ey,... e,} of c.

Remark 14.1.3 Almost all the constructions of sections 14.1 and 14.2 go through
for well-founded and stable cds’s that are not necessarily well-founded. But it sim-
plifies notation to work with filiform cds’s. In particular, in a filiform cds, a proof
of a cell boils down to a sequence (c1,v1),...,(Cn,v,) such that (¢;,v;) b ciyq for
all v. Filiform cds’s are in any case enough for our purposes. We shall make it
explicit when “stable”, or “filiform” are essential.

Definition 14.1.4 Let x be a set of events of a cds. A cell ¢ is called:
filled (with v) in @ iff (c,v) €

enabled in z iff x contains an enabling of ¢
accessible from x iff it is enabled, but not filled in x .

382 CHAPTER 14. SEQUENTIALITY

We denote by F(x), E(x), and A(x) the sets of cells which are filled, enabled,
and accessible in or from x (“F”, “E” and “A” as “Filled”, “Enabled” and “Ac-

cessible”), respectively. We write:

<.y ifc€ Alz),c€ F(y) and x <y
<.y ife<.yandx <y (cf definition 12.3.8).

Proposition 14.1.5 1. Let M be a cds. The partial order (D(M), <) is a Scolt
domain whose compact elements are the finite states. Upper-bounded lub’s are set
unions.

2. If M is stable, then (D(M), <) is a dI-domain. For any upper-bounded set X
of states of M, the set intersection (X is a state of M, and hence is the glb of
X in D(M).

PrOOF. We only check the last part of the statement. Let z be an upper bound
of X, and ¢ € F(NX). By stability, ¢ has the same proof in all the elements of
X, namely the proof of ¢ in z. a

Example 14.1.6 1. Flat cpo’s. The flat cpo X1 is generated by the following
cds, which we denote by X, to avoid useless inflation of notation:

X, =1L X {7} x X {F7}).

2. The following cds LAMBDA = (C,V, E &) generates the (possibly infinite)
terms of the untyped A-calculus with constants, including Q (cf. definition 2.3.1)
(the typed case is similar):

C=10,1,2} V=A{}Uu{z, a|z € Var}UCons E=CxV
Fe (u, e)F w0 (u,) Ful,u2
where Var is the set of variables and Cons is the set of constants. For example,

the term t = (Ax.y)x is represented by {(¢,-), (1, x)),(10,y),(2,2)}. Here cells
are occurrences, cf. definition 2.1./.

Products of cds’s are obtained by putting the component structures side by
side, and by renaming the cells in each cds to avoid confusion.

Definition 14.1.7 Let M and M’ be two cds’s. We define the product M x M’ =
(C,V,E,F) of M and M’ by:

C=A{el|ceCqUu{d2]|deCnm}

V - VM U VM/

B = {(c.1,0) | (6,0) € Farh U {(.2,0/) | (¢0) € Bw)

(c1.1,v1) F el & (er,v1) F e (and similarly for M) .

Clearly, M x M’ generates D(M) x D(M’) (the ordered set product).

14.1. SEQUENTIAL FUNCTIONS 383

Definition 14.1.8 (sequential function (Kahn-Plotkin)) Let M and M’ be
two eds’s. A continuous function f: D(M) — D(M') is called sequential at x if
for any ¢ € A(f(x)) one of the following properties hold:

(1) Yy>a ¢ F(fly))

(2) FeeAlx) Vy>u (f(v) <o fly) = = <cy)
A cell ¢ satisfying condition (2) is called a sequentiality index of f at (x,¢'). The
index is called strict if (1) does not hold. If (1) holds, then any cell ¢ in A(x)
is a (vacuous) sequentiality index. The function f is called sequential from M
to M if it is sequential at all points. We denote by M —,., M’ the set of these
functions. A sequential function is called strongly sequential if, for any cell ¢
and any state x where it has a strict index, this index is unique.

Examples of sequential functions are given in lemma 14.1.9 and in exercises
14.1.12, 14.1.14, and 2.4.4. The concrete data structures and the sequential
functions form a cartesian category.

Lemma 14.1.9 1. The identity functions, the first and second projection func-
tions, and the constant functions are strongly sequential; the composition and the
pairing of two sequential functions is sequential.

2. If M and M’ are cds’s and f: D(M) — D(M’) is an order-isomorphism,

then f is sequential.

The sequential functions are stable, but not conversely. The counter-example
given in the proof of the next proposition is due to Kleene and Berry, indepen-
dently.

Proposition 14.1.10 Let M and M’ be two cds’s. The following properties hold.
1. Sequential functions from M to M’ are stable.

2. If g is sequential, if f is continuous, and if f <4 g, then f is sequential, and
for any x and ¢ € A(f(x)), if [has a strict index at x, then ¢ € A(g(x)), and

any index of g at x for ¢ is also an index of [at x for .

3. There exist stable functions that are not sequential.

Proor. (1) If z Ty and g(x Ay) < g(x) A g(y), then g(x Ay) <o g(x) A gly),
for some ¢’. Let ¢ be a sequentiality index at (z A y,¢). Then # Ay <. @ and
Ay <.y. Let v and w be such that (¢,v) € x and (¢,w) € y. By proposition
14.1.5, 1 y implies v = w, which in turn implies ¢ € F(x A y) by stability. This
contradicts ¢ € A(x A y). Hence g is stable.

(2) Let f be such that f < ¢, and let ¢ € A(f(x)). If ¢ € F(g(x)), then

(
¢ € A(f(y)) for any y = x, since F(f(x)) = F(f(y)) N F(g(x)). If ¢ € A(g(x)),
r <yand f(x) <o fy), then a fortiori g(z) <o ¢g(y), and © <. y, where ¢ is a

384 CHAPTER 14. SEQUENTIALITY

(strict) index of ¢ at (z,c’). Hence f is sequential, and ¢ is a strict index of f at
(x,c).
(3) Let BK be the following stable function from (B,)? to O:

T ifae=ttand y =ff
T ifex=ff and z = t¢

BK (,y) = T ify=ttand z = ff
1 otherwise .
One checks easily that BK has no index at L for 7. a

Exercise 14.1.11 Show that the restriction of any stable function to a principal ideal
J x is sequential.

Exercise 14.1.12 Let M and M’ be two cds’s and let (¢,1) be a stable injection-
projection pair from D(M) to D(M') (¢f. definition 12.4.2). Show that ¢ and 1 are
strongly sequential.

Exercise 14.1.13 1. We say that a cds M = (C,V, E,) is included in a cds M' =
(C" V' ENHY (and we write M C M) if

CCC' VTV ECE FCH.

Show that (id, Aa'.z’ N E) is a stable injection-projection pair from D(M) to D(M’).

2. Conversely, given D, D', each generated by some cds, and a stable injection-projection
pair (¢,) from D to D', show that there exist two cds’s M and M’ such that

DEDM) D'2DM) MCM .

Exercise 14.1.14 Define a cds BOHM of Bohm trees, and show that theorem 2.4.3
reads as: BT is sequential from LAMBDA to BOHM.

The following exercise justifies the terminology of stable cds.

Exercise 14.1.15 Let M be a cds. (1) Show that the functions ¢ : D(M) — D(O)
defined by c(x) = T iff c € F(z) are linear (cf. definition 13.1.6). (2) Show that M is
stable iff the functions ¢ are stable. (3) Show that if M is stable and filiform, then it
is sequential, by which we mean that the functions ¢ are sequential.

We now show that the category of cds’s and sequential functions is not carte-
sian closed.

Theorem 14.1.16 The category SEQ of cds’s and sequential functions is not
cartesian closed.

14.1. SEQUENTIAL FUNCTIONS 385

PROOF. The following simple proof is due to Ehrhard [Ehr96]. (The original
proof [Cur86] was similar to the proof of proposition 5.2.17). First we observe
that if a category C has enough points, (cf. definition enough-points-CCC),
then the products, projections and pairings are the set-theoretical ones. Also,
we can take C[A, B] as the underlying set of the exponent A — B, and the
application and currying are the set-theoretical ones (due to the bijection between

C[l,A — B] and C[A, B]). We assume that SEQ is cartesian closed. The proof

by contradiction goes through successive claims.

1. For any M and M/, the function Ay.L : M — M’ is the minimum of D(M —
M’). To establish Ay.L < f (f fixed and arbitrary), consider g : O x D(M) —
D(M'), defined by:

1 ifx=_1
gle,y) = { fy) ife# L.

The function ¢ is sequential, and therefore is a morphism of Seq. Hence we can
consider A(g), which is a fortiori monotonic:

Ay.L = A(g)(L) < A(g)(T) = f.
2. For any M, there exists an (initial) cell ¢ in M — O such that
Ve DM — O) (f#My.L=ce F(f)).

Indeed, the set-theoretical application, being the evaluation morphism, is sequen-
tial. It is non-strict in its second argument (ev(f, L) = f(L) # L for, say, any
constant function different from Ay.L). Hence ev has a sequentiality index of the
form e.l at ((L,L),?). Let then f € D(M — O) be such that f # Ay.L, i.e.,
1€ F(ev(f,z)) = F(f(2)) for some z. By sequentiality we get ¢ € F'(f).

3. Finally, consider the following form k of the conditional function from O% x B
to O:

1 ifz=_1
h((z,y),z) =% a ifz=1tt
y ifz=[f.
Then we have
AR (L, L)y=Xz.L AR)T,L)# A z.L A(h)(L,T)# Az.L
from which we derive:

cd F(A(h)(L, 1)) by claim 1
c€ F(A(R)(T,L))and ¢ € F(A(h)(L, T)) by claim 2.

But this contradicts the sequentiality of A(h). O

386 CHAPTER 14. SEQUENTIALITY

14.2 Sequential Algorithms

A sequential function having at a given point more than one sequentiality index
may be computed in different ways according to the order in which these indices
are explored. For example the addition function on w; X w,; has 7.1 and 7.2 as
sequentiality indices at L. The left addition computes 7.1, then 7.2, whereas the
right addition does the same computations in the inverse order. The sequential
algorithms formalise these ideas. For all cds’s M and M’, we define an exponent
cds M — M’, whose states are called the sequential algorithms from M to M.
We give an abstract characterisation of a sequential algorithm by a function
describing both its input-output behaviour and its computation strategy. The
characterisation serves to define the composition of sequential algorithms.

Definition 14.2.1 (exponent cds) [f M and M’ are two cds’s, the cds M —
M’ is defined as follows:

o If x is a finite state of M, and if ¢ is a cell of M, then xc is a cell of
M — M.

o The values and the events are of two types, called “valof” and “output”,
respectively:

— Ifcis a cell of M, then valof ¢ is a value of M — M, and (xc, valof ¢)
is an event of M — M’ iff ¢ is accessible from x;

— if v' is a value of M, then output v’ is a value of M — M’', and
(xc, output v') is an event of M — M’ iff (', v) is an event of M.

o The enablings are also of two types:

(yc, valof ¢) F ac iff y=<.x (“valof”)
/

(x1c), output v)) F ad iff x=wx1 and (¢,vy) < (Foutput”) .

A state of M — M’ is called a sequential algorithm, or simply an algorithm. If
a and x are states of M — M’ and M, respectively, we write

asz = {(c,v") | Jy < x (yc, output v') € a}.
The function Ax.(asxz) is called the input-output function computed by a.

Example 14.2.2 1. The left addition algorithm ADD;:w, Xw, — w, consists
of the following events:

(07, valof 7.1)
({(?.1,4)}?, valof 7.2) (i €w)
H{(2.1,9),(2.2,5)}7, output i + j) (i,7 € w) .

14.2. SEQUENTIAL ALGORITHMS 387

ORg = (07, valof 7.1)
({(?.1,4)}?, valof 7.2) (1 € B)
({(7.1,9),(2.2,5)}7, output OR(1,7)) (1,7 € B)
OR,, = (07, valof 7.2)
({(2.2,9)}?, valof 7.1) (1 € B)
({(7.2,4),(2.1,5)}7, output OR(3,7)) (i, € B)
OR;, = (07, valof 7.1)
{21, 1)}7, output tt)
{1,)71, valof 7.2)
(71,0, (7.2,5)}7, output j) (5 € B)
OR, 7, valof 1.2)

= (0
({(7.2,tt)}?, output tt)
({(2.2, F)}?, valof 7.1)
({(?'27ﬁ)7 (?'17j)}?7 OUtpUtj) (] S B)

Figure 14.1: The four disjunction algorithms

The right addition algorithm ADD., is defined similarly.

2. There are four different disjunction algorithms from B, x B, to B,. The
two algorithms (ORy and OR,,.) compute the disjunction function that is strict
in both its arguments; They are similar to ADD; and ADD,. The two algorithms
OR; and OR, compute the left and right addition functions that are strict in
one of their arqguments only, respectively. The four algorithms are described in
figure 14.1. In this figure, OR is the usual interpretation of disjunction over

B = {1},
Lemma 14.2.3 Let M and M’ be two cds’s. If M’ is well founded (filiform),
then M — M is well founded (filiform).

PROOF. We observe that if ©¢/ << yd’, then @ < y (with y finite) or ¢ < d’ O

The stability condition is essential to ensure that Az.(asz) is a function from
D(M) to D(M’). The following example shows that this is not true in general.

388 CHAPTER 14. SEQUENTIALITY

Let

M = ({c} {v} {(e,0)},F)
with F ¢

M = ({c, ¢y 5} {12}, {(¢},j) [1 <i <3 and 1 <j <2}, F)
with F¢f Fd (1) Fd (d,1)Fd

where M’ is not stable, since ¢4 has two enablings in {(¢},1),(c,1)}. We choose
a and x as follows:

a = {(Ley,output 1),(Lcy, valof ¢), ({(c,v)}cy, output 1),
(Les, output 1), ({(c,v)}c5, output 2)}
r = {ev}.
Then a and z are states of M — M’ and M, respectively, but aez is not a

state of M, since it contains both (¢}, 1) and (¢, 2).
The following is a key technical proposition.

Proposition 14.2.4 Let M and M’ be cds’s, and let a be a state of M — M.
The following properties hold:

1o If (xd u), (zd,w) €a and x 1 z, then © < z or z < x; if ¥ < z, there exists a
chain
T = 1Yo '<c0 Y1 Yn—1 '<cn_1 Yn = 2

such that Vi < n (y;c,valof ¢;) € a. If u and w are of type “output”, then x = z.
2. The set asx is a state of M/, for all x € D(M).

3. For all xc € F(a), x¢' has only one enabling in a; hence M — M’ is stable.
4. The function Ax.(asx) is stable.

PROOF. We prove (1), (2) and (3) together, by induction on ¢’. At each induction
step we prove (1), (2') and (3), where (2') is the following property:

2". The set (asx)o = {(d',v") | Jy <z (yd', output v') € a and d' <t '} is a
state, for all @ € D(M).

Property (2) is indeed a consequence of (1) and (2'): by (2'), the set asx is safe,
and, by (1), it is consistent.

(2') Let = be a state of M, and let (d',v") € (asx)s. Then, by definition,
dy < yd € F(a). By analyzing a proof of yd’' in a, we check easily that d' is
enabled in (asx).. Suppose (d',vy), (d',vh) € (asx)os. Then

Jy1,y2 < @ (yud', output v)), (y2d', output v5) € a

whence we derive y; = y, by induction hypothesis (1), and v} = v} by consistency
of a. Hence (asz)- is a state.

14.2. SEQUENTIAL ALGORITHMS 389

(1) We first remark that the last assertion of (1) follows from the others, since if
x # z, then the existence of a chain between = and y as described in the statement
entails that u or w is of type “valof”. Let s and ¢ be two proofs of ¢’ and zc' in
a, respectively: here is the detail of s until the first enabling of type “output” is
met:

(xc',u), (zp_1c, valof cr_v), ..., (x1c, valof ¢1), (w0, uo), (xoc, output v').
The following properties hold, by definition of the enablings of M — M’:
o If £ =0, then ug = w.
If £ >0, then Jeg ug = valof ¢o, and Vi < k x; <., 241 (we write & = xy).

o (v k(.

Similar properties hold in ¢, replacing x, zq, ..., zx, ', ug, co, . . ., k1, ¢, vt by

220y ey Zms W0, oy o o diq, ¢ 0
First we prove that @9 = z. Let y be such that @,z < y. The set (asy)., which
is a state by induction hypothesis (2’), contains (¢!, v") and (¢, v"?), which are
two enablings of ¢/. We have:

At =c?* (since M’ is stable),

2o = zo (by the induction hypothesis (1)).

Property (1) clearly holds if m = 0 or k = 0. Hence we may suppose k,m # 0
and k < m (by symmetry). We show by induction on ¢ that «; = z; if i < k.
Using the induction hypothesis we may rewrite x,_y <. _, ¥; as zj—1 <a4,_, ¥
(note that ¢;_y = d;—1 by consistency of a). As we also have z,_y <4,_, z and
x; T 2, we derive o; = z;. If B < m, the chain @ = 23 <4, 2441 < -+ <4,,_, # has

the property stated in (1). If kK = m, then & = z.

(3) We exploit the proof of (1): if we start with the assumption that = z, then
the part of the proof s which we have displayed coincides with the corresponding
part of the proof ¢; in particular, x¢’ has the same enabling in both proofs. Hence
xc’ has only one enabling in «.

(4) Finally, we prove that Ax.(asx) is stable. We first check continuity. Let X be
directed, let (¢/,v") € as(\V X), and let & <V X be such that (xc, output v') € a.
Since x is finite, 3y € X « < y. Hence (¢/,v’) € asy. As for the stability, let
Ty, and let ¢ € F(asx) N F(asy). Then, by (1) there exists z < x,y and v’
such that (z¢, output v') € a; hence (¢, v') € as(x N y). O

—1

Now we present an abstract characterisation of sequential algorithms. Intu-
itively, if a sequential algorithm @ contains (¢, u), an information on the compu-
tation of a at x is given: if u = output v’, then asx contains (¢, v’); if u = valof ¢,

390 CHAPTER 14. SEQUENTIALITY

then the contents of ¢ must be computed in order to fill ¢ (we show in proposition
14.2.9 that the function computed by « is indeed sequential). These informations
remain true at y > x, supposing in the second case that ¢ is still not filled in y.
As yc' is not filled in @, the “indications” given by a are not limited to cells filled
in a. For example ADD; “indicates” valof 7.1 at {(7.2,0)} as well as at L. The
following definition and proposition formalise these ideas.

Definition 14.2.5 (abstract algorithm) Let M and M’ be cds’s. An abstract
algorithm from M to M’ is a partial function f : Cv_wm — VMM satisfying
the following axioms, for any states x and cells ¢':

(A1) If f(xcd) = u, then (zd,u) € EnM_Mr-
(A2) If f(zd) =u, v <y and (yd,u) € Evomy, then f(yd) = u.

(A3) Let foy = {(c,v") | f(yd) = output v'}. Then
Fye) L= (¢ € E(foy) and (= < y and & € B(foz) = f(=') 1))

We write f(xcd) = w if [is not defined at x’. When writing f(xc) = u, we
suppose u # w. An easy consequence of (A3) is that fez is a state. We denote by
(AM, M), <) the set of abstract algorithms from M to M’ ordered as follows:

F<r dff (flad)=u= f'(ac) =u).

It will be convenient (when defining the composition of algorithms) to extend
an abstract algorithm f to a partial function from D(M) x C’ to Vpp_mr. We
keep the same name f for the extended function:

N flycd) = u for some finite y < a and
flac) = u iff { either (u = valof ¢ and ¢ € A(x)), or u = output v’ .
Exercise 14.2.6 Show that an abstract algorithm between two cds’s M and M’ may
be axiomatised as a partial function from D(M) x C' to Vii_ywy which satisfies the
following axiom in addition to the axioms (A1), (A2), and (A3):

(A0) If f(ac) = u, then f(yc') = u, for some finite y < z.

The abstract algorithms may be viewed as pairs (Az.(fex),7) where ¢, which
may be called a computation strategy, is the function defined by “restricting” f
to its control aspects, that is, i(x¢’) = ¢ iff f(ac') = valof c.

Exercise 14.2.7 Show that an abstract algorithm from a cds M to a cds M’ may
equivalently be defined as a pair of a sequential function [from M to M’, and of a
computation strategy i for it, which is a partial function i : D(M) x C' = C that
satisfies the following axioms:

14.2. SEQUENTIAL ALGORITHMS 391

b~

Ifi(ac) = ¢, then ¢ € A(z) and ¢ € A(f(2)).

2. Ifi(zd) = ¢, then i(yc') = ¢ for some finite y < x.

3. Ifd € A(f(x)) and ¢ € F(f(y)) for some y > x, then i(xc’) is defined and
is a sequentiality index for f at (z,c).

4. Ifi(zd)=c,if e <y and c € A(y), then i(yc) = c.

5. Ifi(zcd) =cand y < z is such that ¢ € A(f(y)), then i(yc’) is defined.

The next theorem relates the abstract algorithms with the states of the ex-
ponent cds’s.

Proposition 14.2.8 Let M and M’ be cds’s. Let a be a state of M — M. Let
at : Cyvisve — VMo be given by

at(zd)=w iff Jy <=z (yd,u) € a and (xc,u) € En_m-
Let f € AM,M'). We set

7 =Aled u) | flzc) =w and (y <z = [(yd) # u)}.
The following properties hold:
1. For all a € D(IM — M), a% is an abstract algorithm from M to M'.
2. Forall f € AM,M'), f~ is a state of M — M’.

3. (-)F is an isomorphism from (D(M — M'), <) onto (A(M, M), <), and has
(0)~ as inverse; if f, f' € AM, M) and f < f', then (Ax.(fex)) <g (Ax.(fex)).

PROOF. (1) Let a be a state of M — M. Clearly, a* satisfies (A1) and (A2) by
definition. Suppose a®(yc’) = u; then 3z <y (2, u) € a. Let s be a proof of zc’
in a, with the notation of the proof of proposition 14.2.4. Since (¢!, v"') € az,
we have ¢ € E(asz). Clearly, asz = atex < a™ey (if (2, output v') is an event
of M — M, so is (yc, output v')); hence ¢ € E(atey). Suppose z < y and
€ E(atez). As atez = aez T asx, ¢ has the same enabling in asz and asz. So,
by definition of asz:
Jz0 < z (20", output v'") € a.

By proposition 14.2.4, we get zy = =z, whence we derive g < z. Let ¢ be
maximum such that z; < z. We prove a®(2¢) = at(z;c'), hence a fortiori
at(zcd') # w (we have a™(z;¢') # w, since z;¢/ € F(a)). The case where i = k
and u is of type “output” is trivial, since then, as above, (z¢/,u) is an event
of M — M'. We prove that (z¢,valof ¢;) is an event, that is, ¢; € A(z) (if
i = k and wu is of type “valof” we write u = valof ¢;). First, ¢; € E(z), since
¢; € A(x;) C E(x;) C E(z). Suppose ¢; € F(z). We distinguish two cases:

o 1 < k: Then z;41 < z, since z; <., x;41 and z;41 T 2. This contradicts the
maximality of 7.

392 CHAPTER 14. SEQUENTIALITY

e i = ki Then a*(ycd) = valof ¢ implies (yc, valof ¢;) € En_ymr, which
implies ¢, € A(y). This contradicts ¢ € F(z) C F(y).

(2) Let f be an abstract algorithm from M to M'. We prove that f~ is a state
of M — M. It is consistent by definition, since (zc/,u) € f~ = f(ac') = u. We
prove by induction on ¢ that

NG =A{lyd' ,w) € [~ | d' <" ¢}

is safe, which will imply the safety of f~. If (¢c’,u) € f~, then by (A3) fex
contains an enabling (¢*,v"") of ¢. Let zg < x be minimal such that f(zoc) =
output v, that is, (zoc™, output v'') € f~. We construct a chain

o _<Co T <+ Tpq _<Ck—1 T =X

as follows. Suppose that we have built the chain up to 7z, with x; < . Then we
define ¢; by f(x;¢') = valof ¢; (f(x:ic') # w by (A3), and is not of type “output”
by minimality of). Then z; <., x, since f(xc') = f(x;c¢') would again contradict
the minimality of z; we choose x;1; characterised by x; <., z;11 < x. We show
by induction:

Vi< k (x;,valof ¢;) € f~

which together with the induction hypothesis will establish the safety of f~\¢'.
Suppose that there exists z < x; such that f(z¢) = valof ¢;. By (A3) again, f~
would contain (z9c’?, output v'*) such that (¢*,v?) F ¢. By induction, we may
suppose that a = f~\c* U f~\ ¢ is safe; it is actually a state (consistency follows
from ¢ C f7). Hence asx is a state by proposition 14.2.4, whence we derive
! = ¢ by stability, and, zo = zo by proposition 14.2.4, which implies zq < z.
Let j be maximum < 7 such that x; < z. Then j < ¢, hence f(z¢') = valof ¢;
by maximality of j, contradicting f(z¢') = f(a;c), since ¢; € F(x;). This shows
(x;c',valof ¢;) € f~, and ends the proof of (2).

(3) Let a,a’ € M — M'. Clearly (a*)™ C a. Reciprocally, if (zc’,u), (2, w) € a
and = < z, we have u # w, since u is valof ¢ for some ¢ € F(z). It follows easily
that @ C (a™)”. If @ < @', then at < a'f is an immediate consequence of the
definition of (1)*. Let f, f' € A(M,M’). One checks easily f C (f7)* by (Al),
and (f7)t C f by (A2). Let f < f’. We first prove the last assertion of (3). If
z,y € D(M) and y < x, we have to prove (fex) A (f'sy) C fey, that is, for any "

(f(zd") = output v" and f'(yc') = output v') = f(yc') = output v'.

We proceed by induction on ¢’. Since f < f’, we only have to prove f(yc') # w,
and hence to show ¢ € F(fey). As foxr < flex and fley < flex, ¢ has the same
enabling (¢, v") in fex and f’sy . Hence f(xc) = f'(yc") = output v'*, whence
we derive by induction f(yc') = output v"*, proving ¢’ € E(fsy).

14.2. SEQUENTIAL ALGORITHMS 393

Finally, we prove f~ < f'=. Suppose (xc/,u) € f=. Then f'(xc) = f(ad) =
u. Suppose f'(yc') = u for some y < x. Then ¢ € E(f'sy). As we also have
¢ € E(fer), we obtain ¢ € FE(fey) by what has just been proved. Hence
flyd) # w, implying f(yc') = f'(yc’) = w and contradicting the minimality
of z. O

We now relate abstract algorithms to sequential functions.
Proposition 14.2.9 Let M and M’ be cds’s. If a,a’ € D(M — M), we write
a=en d iff (Vo€ DM) asx = d'sx).

The partial orders (D(M — M)/ =, < [/ =ct) and (M —4, M/, <) are
isomorphic; in particular, for any a € D(M — M), Ax.(asx) is sequential.

PROOF. First we prove that if « € D(M — M’), then Az.(asx) is sequential.
If ¢ € A(asx) and if there exist y > a and v’ such that (¢/,v’) € asy, then
at(ycd) = output v', and by (A3) at(zc’) = u # w. Specifically, u has the form
valof ¢, since ¢ € A(asx), and ¢ € F(y) by (A2), and ¢ € A(x) by (Al). Hence

Az.(asx) is sequential and has ¢ as index at « for ¢. By proposition 14.2.8:
Va<a € DM — M) (Ax.(asx) = atex) <y (Az.(d'sx) = a'Tex).

So we only have to prove, for all g,¢' € M —,., M’ such that ¢ <,; ¢"
Ja,a’ € DIM = M') (g = (Az.(asx)),¢ = (Az.(d'sz)) and a <).

We build ¢ and & progressively. For any cell ¢/, we define the sets (X7

g/7c/)n20 and
a function Vj . as follows, by induction on n:

o X0 ={zemlg.,d)|Iz>2 € F(g(2)}

where m.(¢, ') is the set of the minimal z’s such that ¢ € F(¢'(x)) (the

elements of X& , are finitely many and incompatible).

C

e Forall z € X, .:

— Vyol(x) = valof ¢ if ¢ € A(¢'(x)) and if ¢ is an arbitrarily chosen
sequentiality index of ¢’ at (z,c);

— V() = output o' if (¢, v") € ¢'(x).
o X7} is the smallest set such that, for all 2 € X}, .,y € D(M):

(Vyr () = valof c,x <.y,(Fz>y ¢ € F(¢(2))) =y e XTI

[
g7c

394 CHAPTER 14. SEQUENTIALITY

N X7 =10 (n # m) follows

The definition of V, . is unambiguous, since X7,
easily from

,C

Vae,o'e X)), a# 2 = 2.

So Vo is well defined. Let Xy o = U{X} ., | n > 0}. We define likewise X ./,
V, o such that X, . contains X, .+ and V. is the restriction of Vs o to X, (this
may be done by proposition 14.1.10). Let

Cl/ = U{($C/7 ‘/g’,c’(x)) | T E Xg’,c’7cl c C/}

We define likewise a. By construction, a and a’ are consistent, and a < a’. We
check that ' is safe. This is clear by construction for an event (xc’,Vy ()
where x € X7, , and n > 0. If n = 0, then by construction 2 € m.(¢',¢'), hence
2 is minimal such that &’ € F(d(x)) for some d' << ¢’. Then safety follows
from the fact that by construction X . contains all minimal points z such that
d' € ¢'(z), forall d € C'. Finally, it is evident by construction that (¢/,v’) € ¢'(x)
iff (¢/,v") € a’sx. The same arguments can be applied to «. a

Exercise 14.2.10 Let M and M’ be cds’s. Show that a function f: D(M) — D(M’')
is sequential if and only if it is continuous and sequential at any compact point. Hint:
Use proposition 14.2.9.

Exercise 14.2.11 Let M and M’ be cds’s, and let f be a strongly sequential function.
Show that there exists a minimum algorithm a such that f = Az.(aszx).

Exercise 14.2.12 Let M and M’ be two (well-founded and stable) sequential cds’s.
Show that M x M and M — M’ are sequential (cf. exercise 14.1.15).

We next define the composition of sequential algorithms, using their abstract
characterisation. We first discuss the composition of sequential algorithms infor-
mally. If « and «’ are algorithms from M to M’ and from M’ to M”, respectively,
then the input-output function of @’ o @ should be the composition of the input-
output functions of @ and «’, that is, for any state x of M:

(@' 0 a)ex = a's(asx).

How can this equation help in the characterisation of the events of a’ 0 «? By
definition of the operator « we obtain

dz <z (2", output v") € ' oa & F2' < awr (2", output v") € o'

This equivalence allows us to describe events that are “almost” in a’ o a. Using
the notation of proposition 14.2.8, we get

(' o a)T(xc") = output v" iff ' ((asx)c”) = oulput v".

14.2. SEQUENTIAL ALGORITHMS 395

The equation does not characterise events belonging to a’ o a, but events where
(a'0a)* is defined. Hence it seems natural to define the composition of sequential
algorithms using their abstract characterisation.

What about the computation strategy of @’ o a? The definition of sequential
functions suggests an output-directed computation: “in order to compute ¢, the
index ¢ has to be computed”. Hence it is natural to compose these strategies: if
a’ indicates valof ¢ at asx for ¢, and if a indicates valof ¢ at x for ¢, then a’ o«
indicates valof ¢ at x for ¢”, which is summarised by the following equivalence:

1+ "o /
, o) a'"((asx)d") = valof ¢ and
(a' 0o a)T(xc") = valof ¢ iff { o+ (2c) = valof c .
The next proposition shows that these equivalences indeed define an abstract
algorithm.

Proposition 14.2.13 Let M, M’ and M" be cds’s, and let a and a’ be two states
of M = M’ and M’' — M", respectively. The function [: Cyviswvr = VMoM»
defined as follows, is an abstract algorithm from M to M":

output v" if 't ((asx)") = output v"

f(xC”) - ""((aox)c”) _

= valof ¢ and

valof ¢ if { a*(xc) = valof ¢ .

PROOF. (Al),(A2) If f(ac”) = output v" and = < y, then (xc”, output v"') is an
event, since it follows from the definition of a’t that (¢”,v"”) € Eppn, and

ast < avy = a't((awy)d”) = output v" = f(yc").

If f(zd") = valof ¢, v < y and ¢ € A(y), then o't ((asz)c”) = valof ¢ and
at(xzc) = valof ¢; hence ¢ € A(x), since (zc, valof ¢) is an event. Also, ¢ € A(y)
implies a®(yc') = valof ¢. In particular, ¢ € F(asy), hence ¢’ € A(asy) by (A3)
applied to a™. Then we obtain a'*((asy)c") = valof ¢ by (A2) applied to a'",
which yields f(yc”) = valof c.

(A3) If f(yc") # w, then a't((asy)c”) # w. Hence ¢’ € E(fsy), since it is
easily checked that fey = da’s(asy) . Moreover if z < y and ¢’ € F(f+z), then
asz < asy and " € E(a'+(asz)), whence we derive a'*((asz)c”) # w by (A3)
applied to a't. If a'*((asz)c”) = output v", then f(zc") = output v” by definition.
If @'t ((asz)c”) = valof ¢, then ¢ € A(asz) C FE(asz). We show a*(yd) # w.

There are two cases:
1. ¢ € F(asy): Then a™(yc') # w by definition of asy.

2. ¢ € A(asy): Then a'*((asy)c”) = valof ¢ by (A2) applied to a'*, which
forces a™(yc') = valof ¢, for some ¢, since f(yc') # w.

396 CHAPTER 14. SEQUENTIALITY

In both cases, a*(yc') # w, hence a™(z¢') # w by (A3) applied to a*; moreover
at(zc) is of type “valof”, since the contrary would imply ¢ € F(asz). Hence

J(ze) # . 0

We remark that the definition of f in proposition 14.2.13 makes sense, since we
have seen that an abstract algorithm can be extended to (a subset of) D(M) x C'.

Theorem 14.2.14 (Cds’s and sequential algorithms form a category called ALGO.
Let a, o', and f be as in proposition 1/.2.13. We define the composition a’ o a of
a' and a by the following equation:

aoa=f".

For any cds M there exists a unique algorithm id such that Ax.(idsx) is the
identity function. It is characterised by:

id* (xc) = output v iff (c,v) €x
id* (xc) = valof ¢ iff ce Ax).

In particular, the input-output function of @’ o ¢ is the composition of the
input-output functions of a and a'.

14.3 Algorithms as Strategies

We first define sequential data structures, which enhance the implicit symmetry
between events and enablings in a filiform cds. Then we define the affine expo-
nent S (S’ of two sequential data structures S and S’. The states of S (S
are called affine algorithms. Like sequential algorithms, affine algorithms can
be equivalently presented abstractly. The abstract affine algorithms are called
symmetric algorithms. A symmetric algorithm is a pair (f,¢) of a function f
from input strategies to output strategies, and of a partial function ¢ from out-
put counter-strategies to input counter-strategies. The composition of two affine
algorithms can be defined either abstractly (proposition 14.3.34) or concretely
(proposition 14.3.38). The concrete description serves to establish the monoidal
closed structure of the category of affine algorithms, while the abstract charac-
terisation serves to define a functor eds from the category of sequential data
structures and affine algorithms to the category of concrete data structures and
sequential algorithms. Finally, we show that cds has a left adjoint, which together
with the affine exponent yields a decomposition of the exponent of ALGO.

Definition 14.3.1 A sequential data structure (sds for short) S = (C,V, P) is
given by two sets C and V' of cells and values, which are assumed disjoint, and
by a collection P of non-empty words p of the form

C1U1 " CpUy OT QU1 ** " Cp1Up 16y

14.3. ALGORITHMS AS STRATEGIES 397

where n > 0 and where ¢; € C and v; € V' for allv. Thus any p € P is alternating
and starts with a cell. Moreover, it is assumed that P is closed under non-empty
prefizes. We call the elements of P positions of S. We call move any element of
M =CUV. We use m to denote a move. A position ending with a value is called
a response, and a position ending with a cell is called a query. We use p (or s,
ort), q, and r, to range over positions, queries, and responses, respectively. We
denote by () and R the sets of queries and responses, respectively.

A strategy of S is a subset x of R that is closed under response prefizes and
binary non-empty glb’s:

r,ry €T, T AreFE e = THAry €T

where € denotes the empty word. A counter-strategy is a non-empty subset of ()
that is closed under query prefives and under binary glb’s. We use x,y,... and
a,3,... to range over strategies and counter-strategies, respectively.

Both sets of strategies and of counter-strategies are ordered by inclusion. They
are denoted by D(S) and D*(S), respectively. Notice that D(S) has always a
minimum element (the empty strategy, written § or L), while D*(S) has no
minimum element in general. If a partial order is isomorphic to some D(S), it
is called an sds domain generated by S.

Among the strategies are the sets of response prefixes of a response r. By
abuse of notation we still call r the resulting strategy. It is easy to see that those
r’s are exactly the prime elements of D(S) (cf.definition 10.1.5).

Definition 14.3.2 Let x be a strategy:

o Ifqu € x for some v, we write ¢ € F(x) (q is filled in).
o [fr € x and g =rc for some ¢, we say that q is enabled in x.
o Ifqisenabled but q & F(x), we write g € A(x) (q is accessible from x).

Likewise we define r € F(a),r € A(a) for a response r and a counter-strategy c.

Sds’s and (filiform) cds’s are essentially the same notion, as shown in propo-
sition 14.3.3, lemma 14.3.5, and exercise 14.3.7.

Proposition 14.3.3 Let S = (C,V, P) be an sds, and let Q) and R be the asso-
ciated sets of queries and responses. Let eds(S) = (Q, R, F,F), with

E={(¢,qu)|qve P} Fe ifeeCnNP (q,qu)t que if que € P.
Then ¢ds(S) is a filiform cds and D(eds(S)) is isomorphic to D(S).
PROOF. With a strategy = of S, we associate eds(x) = {(q,qv) | gqv € x}, which
is consistent and safe by the definition of a strategy. More precisely, consistency

follows from the closure under glb’s, and safety follows from the closure under
prefixes. This transformation is clearly bijective. a

398 CHAPTER 14. SEQUENTIALITY

Proposition 14.3.4 If S is an sds, then D(S) is a dI-domain, whose compact
elements are the finite strategies. D*(S) enjoys the same properties (except for
the existence of a minimum element). Upper bounded lub’s and glb’s are set-
theoretic unions and intersections.

PROOF. The proof is similar to the proof of proposition 14.1.5. (The first part
of the statement is a consequence of propositions 14.1.5 and 14.3.3.) O

Lemma 14.3.5 Let M be a well-founded, stable, and filiform cds. For any cell
¢, any two distinct proofs t; and ty of ¢, there exists a common prefir s, a cell d,
and two distinet values vy and vy such that s, (d,v1) is a prefix of t1 and s, (d,vz)

is a prefix of tq.
PrOOF. We proceed by induction on ¢. We observe:

t, Uty 1s safe by construction
ty Uty is not a state by stability
no cell is repeated along 1, nor along ¢, by well-foundedness .

These observations entail that (d,w) € t; and (d,ws) € 5 for some cell d <7 ¢
and for some distinct w; and wy. If the proofs of d in ¢; and ¢, are distinct, the
conclusion follows by applying induction to d. If the proofs are the same, then
the conclusion follows rightaway. O

Remark 14.3.6 Conversely, the property stated in lemma 14.3.5 implies that M
is stable, hence we could have used it to define the notion of stable (filiform) cds.

Exercise 14.3.7 Let M = (C,V,E,F) be a well-founded, stable, and filiform cds.
Show that sds(M) = (C, V, P), where

P = {cvr---cpvneng | (c1,v1), ..., (€nyvn) is a proof of ¢} U
{rev|rce€ P and (c,v) € E}.

is an sds such that D(sds(M)) and D(M) are isomorphic. Hint: use lemma 14.3.5.
Example 14.3.8 1. Flat cpo’s. In the setting of sds’s:

X, =({"1L X, {1 u{tv|veX}).
2. The following generates B (see definition 14.3.43 for the general case):

(2.1, 2.2}, {et, 7Y, {2.1,2.2) U {(2.0)tt, (LD, (2.2)8, (1.2)).

3. An sds generating the partial terms over a signature, say, ¥ = {a°, f1, ¢*},
where the superscripts indicate the arities, is given as follows: C = {¢, 1,2},
V =X, and P consists of the positions respecting the arities: the positions ending

14.3. ALGORITHMS AS STRATEGIES 399

with a are maximal, the positions ending with f can only be followed by 1, and
the positions ending with g can be followed by 1 or 2. All the positions start
with € (which serves only to that purpose). For example, the strategy representing
gla, f(a)) is

{eg,eqla, eg2f,eq2fla}.

Here is a counter-strategy:
{e,efl ef1f1,ef1g2, egl}.

In example 14.3.8 (3), a counter-strategy can be read as an exploration tree, or a
pattern. The root is investigated first; if the function symbol found at the root is
g, then its left son is investigated next; otherwise, if the function symbol found at
the root is f, then its son is investigated next, and the investigation goes further
if the symbol found at node 1 is either f or g.

A more geometric reading of the definitions of sds, strategy and counter-
strategy is the following:

e An sds is a labelled forest, where the ancestor relation alternates cells and
values, and where the roots are labelled by cells.

o A strategy is a sub-forest which is allowed to branch only at values.

e A counter-strategy o is a non-empty sub-tree (if it contained ¢; and ¢y as
positions of length 1, they should contain their glb, which is ¢, contradicting
a C P) which is allowed to branch only at cells.

The pairs cell — value, query — response, and strategy — counter-strategy
give to sds’s a flavour of symmetry. These pairs are related to other important
dualities in programming: input — output, constructor — destructor (cf. example
14.3.8 (3)). It is thus tempting to consider the counter-strategies of an sds S as
the strategies of a dual structure St whose cells are the values of S and whose
values are the cells of S. However, the structure obtained in this way is not an
sds anymore, since positions now start with a value. We refer to [Lam92a] for
an elaboration of a theory of sds’s with polarities, where both S and St can live
(see also exercises 14.3.23 and 14.3.40).

We now offer a reading of sds’s as games. An sds can be considered as a game
between two persons, the opponent and the player. The values are the player’s
moves, and the cells are the opponent’s moves. A player’s strategy consists in
having ready answers for (some of) the opponent’s moves. Counter-strategies are
opponent’s strategies. The following proposition makes the analogy more precise.

Definition 14.3.9 (play) Let S be an sds, x be a strategy and « be a counter-
strategy of S, one of which is finite. We define x| o, called a play, as the set of
positions p which are such that all the response prefives of p are in x and all the
query prefives of p are in «.

400 CHAPTER 14. SEQUENTIALITY

Proposition 14.3.10 Given x and o as in definition 14.3.9, the play v | o is
non-empty and totally ordered, and can be confused with its maximum element,
which is uniquely characterised as follows:

x| o is the unique element of x N A(er) if x| v is a response
x| v is the unique element of o N A(x) if x| o is a query.

PROOF. A counter-strategy is non-empty by definition, and contains a (unique)
query ¢ of length 1, which is also in z | o by definition of a play. Suppose that
p1,p2 € « | . We show that p; and p, are comparable, by contradiction. Thus
suppose p; A pg < p; and p; A py < ps. Let gy be the largest query prefix of py,
let 7y be the largest prefix of p; which is a response or €, and let ¢ and ry be
defined similarly. We show:

PApr=q NG =11 Ara.

The inequality ¢1 A ga < p1 A py follows by the monotonicity of A. For the
other direction, we remark that by the maximality of ¢;, p1 A p2 < p; implies
p1 A pe < qq; and, similarly, we deduce p; A py < o, which completes the proof
of p1 A ps < 1 A q2. The equality p; A po = r1 A ry is proved similarly. But by
definition of a strategy and of a counter-strategy, ¢; A g2 is a query, and ry A rg is
either a response or €. The equalities just proven imply that p; Aps is of both odd
and even length: contradiction. Thus |« is totally ordered. It has a maximum
element, since the finiteness of = or o implies the finiteness of | .

To prove the rest of the statement, we first observe that N A(a) C 2| o and
aNA(z) C z|a, by definition of | . We next show that 2 N A(a) and o N A(x)
have at most one element. If p;,ps € @ N A(«), then by the first part of the
statement p; and py are comparable, say p; < ps. But if p2 € A(«) and p; < pe,
then p; € F(a), contradicting the assumption p; € A(«). Hence p; = py. The
proof is similar for a N A(x). Finally, if | o viewed as a position is a response,
then x| € 2, # | o is enabled in «, and the maximality of « | o implies that z | a
is not filled in . Hence x | o € 2 N A(a), ie., 2 N A(a) = {z | a}. 0

Definition 14.3.11 (winning) Let x and o be as in definition 14.3.9. If x | o
is a response, we say that x wins against o, and we denote this predicate by x<a.
If x| o is a query, we say that o wins against x, and we write x>o, thus > is the
negation of <. To stress who is the winner, we write:

{ :1;<l| o when © wins
:1;|ozz .
x |[> o when a wins .

The position « | o formalises the interplay between the player with strategy
x and the opponent with strategy a. If x| a is a response, then the player wins
since he made the last move, and if = | o is a query, then the opponent wins.
Here is a game-theoretic reading of | a. At the beginning the opponent makes

14.3. ALGORITHMS AS STRATEGIES 401

a move c: his strategy determines that move uniquely. Then either the player is
unable to move (x contains no position of the form cv), or his strategy determines
a unique move. The play goes on until one of = or o does not have the provision
to answer its opponent’s move. As an example, if x and « are the strategy and
counter-strategy of example 14.3.8 (3), then z | @ = egla, and the player wins.
We show a few technical lemmas.

Lemma 14.3.12 Let S be an sds, x be a strateqy and « be a counter-strateqy of
S. The following properties hold:

1. If <o, then (x < a)<o.
2. If x<a and x <y, then y<a and x <|a =y 4| a.
3. If aba and y < z, then yba.

Similar implications hold with the assumptions xba, (xboa and o < (3), and
(x>a and 3 < «), respectively.

PROOF. The properties (1) and (2) follow obviously from the characterisation of
x <| « as the unique element of x N A(ar). Property (3) is a consequence of (2) by
contraposition. O

Lemma 14.3.13 Let S be an sds, x be a strateqy and g be a query of S. The
following implications hold:

1. q€ F(z)= zq,

2. q€ Alz) = adyq,

3. (g€ F(x),y < 2,ydq) = q € F(y).

Stmilar implications hold with a counter-strategy and a response of S.

PRrROOF. If ¢ € F(x), then gqv € & for some v, hence qv € x N A(q), which means
x<q. 1f ¢ € A(x), then ¢ € ¢ N A(x), which means xb>q. If ¢ € F(x),y < 2, and
ydq, let g1v; be the unique element of y N A(q). In particular, ¢1 < ¢. Suppose
¢1 < q: then quv1 A qv = @1, since quv1 £ g. On the other hand, the glb of ¢v4
and quv, cannot be a query, by definition of a strategy: contradiction. a

The converse of lemma 14.3.13 (1) is not true: we may have z <| ¢ = ¢1v; and
q = q1ve, with vy # vs.

Lemma 14.3.14 Let S = (C,V, P) be an sds, x be a strategy and let ¢ € A(x).
The following properties hold:

1. For anyr € x, g Ar is € or is a response, and thus, for any qv € P, x U {quv}
18 a strategy.

2. If n # q and 1 € A(x), then g1 A q is a strict prefiz of g1 and q and is € or a
response

Similar properties hold with a counter-strateqy o and a response r such that r €

Ala)

402 CHAPTER 14. SEQUENTIALITY

PrROOF. We prove only (1). Let ¢ = rie. We claim that ¢ A r < r;. Suppose
gNr £ ry. Then g Ar = g since g \r < g = rie. Hence ¢ < r, contradicting
q € A(z). The claim in turn implies ¢ A7 = r; Ar. The conclusion follows, since
by definition of a strategy ry A r is € or is a response. O

Lemma 14.3.15 Let S be an sds, and let @ € D(S) and ¢ € F(z). Then
r—qg={r€x|q£r} isa strategy.

PROOF. Since {r € R | ¢ £ r} is closed under response prefixes, so is z — ¢q. O

Lemma 14.3.16 [f ri,ry € R and ry A ry is € or is a response, then {r € R |
r<wry orr<ry} is a strategy, and is ry V ry.

PROOF. {r € R|r < ryorr <ry} is obviously closed under response prefixes.
Pick 73,74 in this set. If they are both prefixes of, say, r;, then they are compa-
rable, hence, say, r3 A r4 = r3 is a response. Thus we may suppose, say, r3 < rq,
rs L re, rq4 < 1o, and ry £ ri. This entails r3 > ry A ry and ry > 71 A rg, and
therefore rs A ry = r1 A ry. O

Exercise 14.3.17 Let S and S’ be sds’s. Show that a continuous function f: D(S) —
D(S'") is sequential iff, for any pair (z,a') € K(D(S)) x K(DX(S")) such that f(z)>o’
and f(2)<a’ for some z > x, there exists a € K(D1(S)), called generalised sequentiality
index (index for short) of f at (z,a’), such that x>a and for anyy > z, f(y)<da’ implies
y<a.

We next define the affine exponent of two sds’s, which will serve to define the
morphisms of a category of affine algorithms.

Definition 14.3.18 Given sets A, B C A, for any word w € A*, we define w[p
as follows:
. . w[B me € A\B
clp=¢ wmlp= { (w[s)m ifmeB.

Definition 14.3.19 (affine exponent — sds) Given two sds’s S = (C,V, P)
and 8" = (C", V', P"), we define S (8" = (C", V", P") as follows. The sets C"

and V" are disjoint unions:

C" = {request | € C'YU{isv|v eV}
V" = Houtput v’ | v' € V'} U {wvalof ¢|c€ C}.

P" consists of the alternating positions s starting with a request ¢, and which are

such that
s[gr€ P (s[g=¢€ or s[g€ P), and

s has no prefix of the form s(valof ¢)(request).

We often omit the tags request, valof,is, output, as we have just done in the
notation s[g= s[cuv (and similarly for s[s:).

14.3. ALGORITHMS AS STRATEGIES 403

We call affine sequential algorithms (or affine algorithms) from S to S’ the
strategies of S (S'. The identity sequential algorithm id € D(S (S') is defined
as follows:
id = {copycat(r) | r is a response of S}

where copycat is defined as follows:

copycat(e) = ¢
copycat(rc) = copycat(r)(request c)(valof ¢)
copycat(qv) = copycat(q)(isv)(output v) .

The word copycat used in the description of the identity algorithm has been
proposed by Abramsky, and corresponds to a game-theoretic understanding: the
player always repeats the last move of the opponent.

Remark 14.3.20 The definition also implies that P’ contains no position of the
form sv'v. Suppose it does: then since (sv'v)[s€ P, s contains a prefiz sic such
that (sv'v)[s= ((s1¢)[s)v. Let m be the move following sic in sv’. Then

m &V since (sv'v)[g= ((s1¢)]s)v,
m & C" by the definition of S (S .

The constraint “no se¢’” can be formulated more informally as follows. Think-
ing of valof ¢ as a call to a subroutine, the principal routine cannot proceed further
until it receives a result v from the subroutine.

Example 14.3.21 1. It should be clear that the following is an affine algorithm
which computes the boolean negation function:

{(request ?)(valof 7),
(request 7)(valof 7)(is tt)(output ff),
(request 7)(valof 7)(is [f)(output tt)} .
2. On the other hand, the left disjunction function cannot be computed by an

affine algorithm. Indeed, attempting to write an sds version of the algorithm OR,
of example 14.2.2 would result in

{(request 1)(valof 7.1),
(request 7)(valof 7.1)(is tt)
(request 7)(valof 7.1)(is ff) ,

(request 7)(valof 7.1)(is ff)(valof 7.2)(is tt)(output tt),
(request 7)(valof 7.1)(is ff)(valof 7.2)(is ff)(output)} .

which is not a subset of the set of positions of (BL)? (B1, because the projec-
tions on (B1)? of the last two sequences of moves are not positions of (B).

oulput tt),
valof 7.2)
)

P

3. Fvery constant function gives rise to an affine algorithm, whose responses
have the form (request ¢)(output vy)...(request c,)(output vl).

404 CHAPTER 14. SEQUENTIALITY

ZSUI .« .

request ¢} - -
request ¢ valof c{ isv; valof d{ isw output v’

request ¢, -

ZSUTL .« .

Figure 14.2: A generic affine algorithm

Remark 14.3.22 Fzrample 14.3.21 suggests the difference between affine and
general sequential algorithms. Both kinds of algorithms ask successive queries
to their input, and proceed only when they get responses to these queries. An
affine algorithm is moreover required to ask these queries monotonically: each
new query must be an extension of the previous one. The “unit” of resource con-
sumption (cf. remark 13.1.8) is thus a sequence of queries/responses that can be
arbitrarily large, as long as it builds a position of the input sds. The disjunction
algorithms are not affine, because they may have to ask successively the queries
7.1 and 7.2, which are not related by the prefix ordering.

A generic affine algorithm, as represented in figure 14.2, can be viewed as
a “combination” of the following (generic) output strategy and input counter-
strategy (or exploration tree):

input counter-strategy output strategy

Ul DRI
c/
1
c{ v;d{ w o'
/
cm
Un---

An alternative presentation of the affine exponent, due to Lamarche [Lam92b]
is given in exercise 14.3.23.

14.3. ALGORITHMS AS STRATEGIES 405

Exercise 14.3.23 This exercise is based on a small variant of the presentation of an
sds, whose advantage is to give a tree structure rather than a forest structure to the
sds and to strategies. In this variant, an sds is a structure (C,V U {e}, P) where o is
a distinguished element that does not belong to V' (nor C'), and where all positions of
P start with e (this being the only place where o can occur). In this setting, strategies
have to be non-empty. We say that a move m € C'U (V U {e}) has:

polarity ¢ if me VU {e}
polarity o if me C .

(1) Establish a precise correspondence between sds’s and the present variants of sds’s.
(2) Based on these variants, construct the affine exponent of two sds’s (C,V U {e}, P)
and (C", V' U {e}, P') along the following lines.

(a) The moves of the affine exponent are pairs (m,m’) of moves m € C' UV and
m' € C"UV' whose polarities are not in the combination (o, e).

(b) The moves (m,m') of polarity o and those of polarity e are as indicated by the
following table:

m m' (m,m)

[] [] []

[] o o

o e undefined
o o []

(¢) One moves only on one side at a time: if (m,m’) is a move, it is followed by a
move of the form (n,m') or (m,n').

We next state a key technical property.

Lemma 14.3.24 Let ¢: S — S’ be an affine algorithm between two sds’s S and
S’. The following properties hold.

1. The function As.(s|s,s[s/) is an order-isomorphism from ¢ to its image,
ordered componentwise by the prefix ordering.

2. If two elements s; and sy of ¢ are such that (s1[s) A (s2[s) is either € oris a
response, and if si|s: and sy[s: are comparable, then s; and sy are comparable.

3. If two elements s; and sy of ¢ are such that (si1]s:) A (s2]s/) is a query, and
if s1ls and s3]s are comparable, then sy and sy are comparable.

PROOF. (2)(or (3)) = (1) It is obvious that As.(s[s, s[g/) is monotonic. Suppose
that s1[s< s[g, s1]s/< s[gr, and s; £ s. Then s < s; by the second part of the
statement, and by monotonicity s[s< s1]s and s[s/< s1[s,. Hence s1[g= s[s,
s1lsr= s[sr, and s = s; follows, since s < s; would imply either s[g< s1[g or
s[gr< s1]sg-

(2) Let t = sy A s3, which is € or is a response, since ¢ is a strategy. Suppose
that ¢ < s; and ¢t < s3. If ¢ has the form ty¢, then ¢ < sy and ¢ < sy imply

406 CHAPTER 14. SEQUENTIALITY

that tvy < s; and tvy < sy for some vy and vy, which must be different since
t = s1 A st but then (s1]g) A(s2]g) is a query, contradicting the assumption. If ¢
is € or has the form t;v’, then ¢ < s; and ¢ < sy imply that t¢] < s; and t¢, < s,
for some ¢} and ¢, which must be different since t = sy A s3: this contradicts
the assumption that s;[s: and sy[s/ are comparable. Hence t = s; or t = s, i.e.,
51 < 83 or 83 < s9. The proof of (3) is similar. a

Remark 14.3.25 Any pair (s[s,s|s/) in the image of ¢ under the mapping
As.(s[s,s[s:) is either a pair of responses or a pair of queries. It is a pair of
responses iff s ends with a value v'; it is a pair of queries iff s ends with a cell c.

There exists a more abstract description of affine algorithms, which we shall
come to after some preliminaries.

Definition 14.3.26 (affine function) Let S and S’ be two sds’s. We call a
function f : D(S) — D(S') affine when it is stable and satisfies the following

condition:

e f(x)= (Frex v e f(r)).

Equivalently, an affine function can be defined as a stable function preserving
lub’s of pairs of compatible elements. The definition applies also to (partial)
functions ¢ : D+(S') — D*(S).

If a fonction f : D(S) — D(S’) is affine, then it is natural to adopt the
following definition of trace:

trace(f) = {(r,r") | r' < f(r)and (Vro <r v £ f(r0))} € (RU{e}) x R
(and likewise for g : D(S') = D*+(S)).

Lemma 14.3.27 The composition of two affine functions is affine, and its trace
is the relation composition of the traces of f and g.

PROOF. This is a straightforward variant of (the dI-domain version of) proposi-
tion 13.1.9 (cf. exercise 13.1.10). O

Proposition 14.3.28 Any affine function [between two sds’s is strongly se-
quential.

PROOF. Let ¢ € A(f(x)) be such that ' = ¢'v' € f(2) for some v' and z > z.
Let r be the unique response such that (r,r’) € trace(f) and r € z. Let ¢ be
the unique query such that ¢ < r and ¢ € A(x). Now consider z; > x such
that ¢’ € F(f(z1)), and define | = ¢'v},r1, 1 similarly. By lemma 14.3.14 (2), if
¢ # q, then ¢1 A g is a strict prefix of ¢; and ¢, and is € or a response. But then
g < rand g <ryimply ¢4 Aq=riAr. Therefore ry T r by lemma 14.3.16, which
implies v} T r’ by definition of a trace. Therefore vj = v', hence r; = ', which
implies 1 = r by stability, and ¢; = ¢ by construction. Thus ¢ is a sequentiality

14.3. ALGORITHMS AS STRATEGIES 407

index of f at (x,¢’). Suppose now that ¢; is another sequentiality index of f at
(x,q'). Let z be as above, and consider z — g and z — ¢; (cf. lemma 14.3.15).
By affinity, f(z) = f(2 —q) V f(z — q1), therefore, say, ¢’ € F'(f(z — q)), which
contradicts the fact that ¢ is a sequentiality index. a

The converse is not true: there are strongly sequential functions that are not
affine: the left and the right disjunction functions are examples.
Now we are ready to give an abstract description of affine algorithms.

Definition 14.3.29 (symmetric algorithm) Let S and S’ be two sds’s. A
symmetric algorithm from S to S’ is a pair

(f:D(S) = D(8'),g: D*(S') = D(S))

of a function and a partial function that are both continuous and satisfy the
following axioms:

x<g(a’) and
m(f,z,a) =2z<|g(a)
flz)>a’ and
m(g, o', x) = f(z)|>o .

(L) (x € D(S),a’ € K(DH(S"), f(z)<a’) = {
(R) (o' € DX(S"),2 € K(D(S)),z>g(c’) = {

where m(f,x,a') is the minimum y < @ such that f(y)<a’ (m(g, o, x) is defined
similarly). We set as a convention, for any x and any o such that g(o') is
undefined:

z<g(a’) and x 4| g(a') = 0.

Thus the conclusion of (L) is simply m(f,z,a') =0 when g(a') is undefined. In
contrast, when we write x>g(c’) in (R), we assume that g(o') is defined. (This
convention is consistent with the setting of exercise 14.3.23.) The collection of
symmetric algorithms is ordered componentwise by the pointwise ordering:

(f1,91) < (fa,02) iff (Vz fi(z) < fo(x)) and (Va gi(a) = gi(a) < g2(a))).

These axioms enable us, knowing f and g, to reconstruct the traces of f and g.
They also imply that f and g are affine (and sequential). Moreover, g allows to
compute the sequentiality indices of f, and conversely.

Proposition 14.3.30 Let [and g be as in the previous definition. Then [and
g are affine and satisfy the following two arioms:

(LS) If x € D(S), o/ € K(D*X(S),f(2)>a’ and f(y)<a’ for some y > z, then
a>g(a’), and x |>g(a') is a sequentiality index of [al (z,a').

(RS) If o' € DX(S'), x € K(D(S)), 2<g(a’) and z>g(B') for some ' > o, then
f(x)<d!, and f(x)<| o' is a sequentiality index of g at (o, x).

408 CHAPTER 14. SEQUENTIALITY

PROOF. We first show that f is affine. Suppose ¢'v' € f(z). Then f(z)dq’. By
(L), 2<g9(¢’') and f(r)<q’, where r = x| g(q'). Let ¢jv}] = f(r)<| ¢, and suppose
¢y < ¢'. On one hand ¢yv] € A(¢') implies ¢jv; £ ¢'. On the other hand:

qvy € f(z) since gjvy € f(r) and r < x
divy < ¢ since ¢V, quv) € f(2).

Hence ¢; = ¢', and moreover v; = v’ since ¢'v',qjv] € f(x). We have proved

f(r) <] ¢ = ¢'v', and a fortiori ¢'v" € f(r).

We now prove that Axiom (L) implies property (LS). Suppose @ € D(S) and
o € K(DX(S"), f(x)>a’ and f(y)<a’ for some y > x. By (L), we have f(r)<c’,
where r; = y <| g(o'), which implies r; € x since f(z)>a’. Let r be the largest
response prefix of ry contained in z, and let r¢ be such that re < r;. We claim
that « | g(o') = re. From ry € A(g(a’)) and re¢ < ry, we get rc € g(a'). We
have r € x by construction, thus re¢ is enabled in z. If rc is filled in z, it must
be filled with the same value v in z and rq, contradicting the maximality of r.
Hence rc € g(o’) N A(x), which proves the claim. The proof of (LS) is completed
by observing that re < ri,r1 <y imply rec € F(y). a

A familiar feature of stability is not apparent in definition 14.3.29: the order
is not defined as Berry’s stable ordering. But the stable ordering is a derived

property.

Exercise 14.3.31 Show that if (fi,q1) < (f2,92) (cf. definition 14.3.29), then f; <y

fo and g1 <4 g2. Hint: apply (LS) to (fi,91), (R) to (f2,92), and (LS) to (f2,92).

We show the equivalence between the two presentations of affine algorithms,
as strategies, and as pairs (f, g).

Theorem 14.3.32 Let S and S’ be two sds’s. Given ¢ € D(S ((S'), we define

a pair (f,g) of a function and a partial function as follows:

flz) = {r'|r =s[g and s[g€ x for some s € ¢}
g() = {q|qg=sls and s[g€ o for some s € ¢}.

By convention, if for some o' the right-hand side of the definition of g is empty,
we interpret this definitional equality as saying that g(o') is undefined.

Conversely, given a symmetric algorithm (f,g) from S to S’, we construct an
affine algorithm ¢ € D(S (S') as follows. We build the positions s of ¢ by
induction on the length of s:

o Ifs € &, if s|s and s[g are responses, and if ¢ = (s[g/)c for some ¢,
then:

scce g if (s[s)c € g(¢)
s’ € ¢ if gv' € f(s]s) .

14.3. ALGORITHMS AS STRATEGIES 409

o I[fs €, ifs|s and s|s are queries, and if r = (s[g)v for some v, then:

sve € ¢ ifre € g(ss
svv' € ¢ if (s[g)v" € f(r).

(The cases in the definition of ¢ are mutually exclusive, by (L).)

These two transformations define order-isomorphisms between D(S (S'),
ordered by inclusion, and the set of symmetric algorithms from S to S', ordered
pointwise componentwise.

PROOF. We check only that (f, g) satisfies (L). If z € D(S), o/ € K(D*(S’)) and
f(z)<e, let ¢'v" = f(x) <| o/, and let s € ¢ be such that ¢'v" = s[s/ and s[g€ z.
Then s ends with v’ (cf. remark 14.3.25). We claim:

L. s[s=z <|g(a')
i, sls=m(f,x,d).

(¢) Since s[g€ x, we are left to show s[g€ A(g(a’)). Since ¢'v' = f(x) <] o/, we
have ¢'v" € A(d'), hence ¢’ € o. We first show that s[g is enabled in g(a'). Let
s[s= quv, and let s; be the least prefix of s such that s;[g= ¢. We claim that
s1[g/€ o'. By the definition of sy, and since s ends with v’, s; is a strict prefix of
s and s1[g/< s[g. Hence s1[g/< ¢/, which implies the claim. Since s1[g= ¢, the
claim implies ¢ € g(a') by definition of g, and that s[g= qv is enabled in g(a').
Suppose now that s[g is filled in g(a’). Then there exist ¢ and sy € ¢ such that
(s[s)c = s2[s and sy[g/€ . By lemma 14.3.14 (1) and by lemma 14.3.24 (3),
s and sy are comparable. But, since(s[g)c = s3[g, we cannot have s < s, and
since s3[g/€ o and s[g/€ A(a’), we cannot have s < sy: contradiction.

(1) By definition of f, we have s[g/€ f(s[g), hence f(s[g)<da’. Suppose now
that y < 2 and f(y)<a’. By lemma 14.3.12 (2), f(y) 4| o/ = f(x) <] o/, thus
qv" € f(y). Let s3 € ¢ be such that ¢'v' = s3]s and s3[s€ y. By lemma 14.3.24
(2), s and s5 are comparable. Since s ends with v’ and since s3[g/= s[gs, s3 can-
not be a proper prefix of s. Thus s < s3, and this entails s[g€ y since s[g< s3[g
and s3[g€ y. a

The definition of f (the function computed by ¢) in theorem 14.3.32 is so
compact that it may hide the underlying operational semantics. The application
of ¢ to a strategy x of S involves an interplay between ¢ and x that is very
similar to the situation described in definition 14.3.9. We have already suggested
that an affine algorithm “contains” input counter-strategies. Let ¢ be the generic
algorithm of figure 14.2, and let = be the following input strategy, represented

410 CHAPTER 14. SEQUENTIALITY

suggestively as a forest:
d w
Cv; .

dy -

cl...

The matching of ¢ against x results in the “play” cvidw.
We turn to the composition of affine algorithms.

Definition 14.3.33 Let S, S’' and S” be sds’s, and let (f,g) and (f',g') be sym-
metric algorithms from S to S’ and from S’ to S”. We define their composition

(f",g") from S to S” as follows:
f//:flof and g//:gog/‘

Proposition 14.3.34 The pair (f",¢") in definition 14.5.33 indeed defines a
symmetric algorithm.

PrROOF. We only check axiom (L). Suppose f'(f(x))<e”. By (L) applied to
('), we have ()i () and m(f', f(z), ") = f()<] ¢(a”). By (L) applied
to (f,), from f(2)<g' (") we get 2<g(g' (")) and m(f,z, ¢'(a")) = x| g(g'(a")).
We have to prove m(f'o f,z,a") = x| g(¢'(a")). We set r = x| g(¢'(a")). Since
m(f,z,¢'(a"")) = r, we have f(r)<g'(¢”). We claim that f'(f(r))<a”. Suppose
the contrary, that is, f'(f(r))>a”. Then, by (LS) applied to (f',¢') at (f(r),a”),
we have f(r)>¢'(a”), which contradicts our previous deduction that f(r)<g’(o”).
Hence the claim holds. We are left to prove that, for any y < z such that
F'(fly))<a”, then r < y. Since m(f,z,¢'(¢/)) = r, this second claim can be
rephrased as f(y)<g'(a”). We set r' = f(x) < ¢'(«”). Since f(y) < f(z) and
since m(f', f(x),a") =1, we have ' < f(y) by the first claim. But r'<¢'(a”) by
definition of v and by lemma 14.3.12 (1), and the conclusion follows by lemma
14.3.12 (2). O

Definition 14.3.35 The category AFFALGO is defined as follows. Its objects
are the sequential data stuctures and its morphisms are the affine algorithms. If
o€ DS (S and ¢ € DS (S"), if (f,g) and (f',¢') are the symmetric
algorithms associated with ¢ and ¢', respectively, then ¢’ o is the affine algorithm
¢ associated with (f' o f,go4d’).

We interchangeably look at morphisms as affine algorithms or as symmetric
algorithms. In particular, there are two descriptions of the identity morphism.

Exercise 14.3.36 Show that (id, id) is the symmetric algorithm corresponding to the
strategy id described in definition 14.3.19.

14.3. ALGORITHMS AS STRATEGIES 411

Alternatively, composition can be defined operationally. This idea goes back
to [BC85]. The form presented here is, mutatis mutandis, due to Abramsky
[AJ92].

Lemma 14.3.37 Let ¢ and (f,g) be as in the statement of theorem 14.3.32.
Then we have the following equalities, where r,r’ range over responses and q,q'
range over queries:

(1) trace(f)=A{(r,v") | r = s|s and v’ = s[g/ for some s € ¢}
(2) trace(q) =1{(¢',q) | ¢ = s[s: and q = s|s for some s € ¢} .

Proor. (1) If r = s[g and ¢'v' = 1" = s[g/, for some s € ¢, then a fortiori
s[g< r, thus ' € f(r). Suppose that v € f(rq) for some ry < r. Let 51 € ¢
be such that " = s1[g and s1[g< r1. Then (s1]g,s1[s/) < (s[s,s[s/), which
by lemma 14.3.24 implies s; < s. But by the definition of S (S, ' = s[g

implies that s ends with v/, and hence s1[g/< s[s/, contradicting ' = s;1[g.
Thus (r,r’") € trace(f). Reciprocally, if (r,r") € trace(f), then let s € ¢ be such
that v’ = s[g and s[g< r. Then, by minimality of r, we must have s[g=r. The
proof of (2) is similar. O

Proposition 14.3.38 LetS = (C,V,P),S' = (C", V', P") andS" = (C", V", P")
be three sds’s. Let ¢ € D(S (S'), ¢/ € D(S' (S"). Then

qb/ (@] qb = {S [SUS”| s € E(S, S/7 S//), S(SUS/E Qb, and S[S/US//E qb/}
where L(S,8',S") denotes the set of words in (CUV UC"UV'UC"UV")* such

that two consecutive symbols are not such that one is in C' UV and the other is

in C"U V",

PROOF HINT. One verifies easily that this defines a strategy of S ('S”. Then,
by lemma 14.3.37, and by the injectivity of As.(s[s,s[g/) (lemma 14.3.24), it is
enough to check

{(s[s,s]sn) | s € L(S,S,S"),s[sus€ ¢, and s[gugn€ ¢} =
{(p,p") | p = s1[s, s1[s:= s2[ss, and p"” = s3]gn, for some s1 € P, 59 € ¢'}.

Obviously, the left-hand side is included in the right-hand side, taking s; = s[gus:
and sy = s[gusr. For the other direction we construct s from s; and sy by re-
placing every v’ in sy by the corresponding portion c’civy -+ - ¢,v,0" of s;. By
construction s € L(S,S’,S"). O

This alternative definition of composition is convenient to establish the sym-
metric monoidal structure of the category AFFALGO.

Definition 14.3.39 (tensor — sds) Let S = (C,V, P) and 8" = (C'", V', P’") be
two sds’s. We define the sds S @ S = (C", V" P") as follows. The sets C" and

V" are disjoint unions:

412 CHAPTER 14. SEQUENTIALITY

C" = {el|ceClUu{d2|d e’}
V' = {vdl|veViu{v2|[v eV},

P" consists of the alternating non-empty positions s which are such that:

s[gs€ PU{e} and s[g€ P'U{e}, and

s has no prefir of the form scv’ .

Let S1,S,,S7, S, be sds’s, and let ¢y € D(Sy (S]) and oo € D(Sy (1 S,). We
define o1 @ ¢y € D((S1®@Ss) ((S1®S))) as follows. It consists of the positions
of (S1®@8S2) ((S] @ 8Y) whose projections on S; US| and on Sy U S,y are in ¢4
and in ¢q, respectively.

As for definition 14.3.19, the second constraint in definition 14.3.39 implies
that P” contains no position of the form sc'v.

Exercise 14.3.40 Construct the tensor product along the same lines as in exercise
14.3.23, using the following table of polarities (which is obtained through the encoding
of S®S" as (S S'H)1):

m' (m,m)
® ®

O O

® O

O

undefined

oo e e 3

Proposition 14.3.41 The data of definition 14.3.39 indeed define a functor
which, together with the empty sds (0,0,0) as unit, turns AFFALGO into a

symmetric monoidal category.

PROOF. The coherent isomorphisms are based on the bijective correspondences
wich associate, say, a move m.1 in S®(S’'®S”) to the move m.1.1in (S®S")®@S".
O

Proposition 14.3.42 The category AFFALGO is symmetric monoidal closed.

PROOF. Loosely, ((S®@ S’) (S”) and S ((S’ (S”) coincide (up to tags).
Given ¢ € D(S; (S) and ¢» € D(S ((S’ (S”)), in order to turn a position s
whose projection on Sy U (S’ ((S”) is in ¢ 0 ¢ into a position whose projection
on (S; @ S’)US” is in the corresponding composed morphism from S; ® S’ to S”,

we replace every portion v’ of s by ¢/cv'v’ (cf. the description of id). O

The category AFFALGO is also cartesian.

Definition 14.3.43 (product — sds) Let S = (C,V,P) and S' = (C", V', P')
be two sds’s. We define S x S" = (C", V", P") as follows:

o C" and V" are as in definition 14.3.39.

14.3. ALGORITHMS AS STRATEGIES 413

o P/ ={pl|pe Prtu{p2]|p € P} where p.l is a shorthand for the
position formed by tagging all the moves of p with 1, and similarly for p'.

Proposition 14.3.44 The category AFFALGO is cartesian. The binary prod-
ucts are as specified in definition 14.3.43, and the terminal object is the empty

sds (0,0,0).

PROOF. It is easily seen that D(S x S’) is the set-theoretical product of D(S)
and D(S'), and that D*(S x S’) is the disjoint union of D*(S) and D*(S').
The first projection is the symmetric algorithm (7, inl) where 7 and inl are the
set-theoretical projection and injection, respectively. Similarly, the second pro-
jection is (7', inr). If (f,g): S — S’ and (f',¢') : 8" = S”, then (([f,9),(f",¢")) is
defined as ((f, f'),[g,¢']), where (_,_) and [, _] denote the set-theoretical pairing
and copairing. O

Thus, in AFFALGO, the empty sds is both the unit of the tensor and a
terminal object. It is this property which makes AFFALGO a model of affine
logic (cf. remark 13.2.23).

Finally, we relate the two categories ALGO and AFFALGO by an adjunc-

tion.

Proposition 14.3.45 The mapping cds from sds’s to cds’s defined in proposi-
tion 14.3.3 extends to a functor cds : AFFALGO — ALGO as follows. Let S
and S’ be two sds’s, and let (f,q) be a symmetric algorithm from S to S'. We
define an abstract algorithm cds(f,g) : cds(S) — eds(S’) as follows:

catoted={ L TR

where we freely confuse x € D(S) with the associated state cds(x) € D(cds(S)).
(As in theorem 14.3.32, the cases in the definition of eds(f,g) are mutually
exclusive.)

PROOF. We only prove eds(f o f,g0¢') = eds(f',¢')ocds(f,g). Given z and

q", there are three cases:
e ¢"v" € f'(f(x)): Then, obviously:
cds(f'o f,g0d) (xq") = output ¢"v" = (eds(f',¢') o eds(f, g))(xq").

o :1;[>g(g()): Then f(x)>¢'(¢") by (R). It follows that eds(f’,¢')(f(z)q¢") =
valof q, where ¢' = f(z) |>¢'(¢"). We claim that z>g(¢’). Suppose not:
since ¢ < ¢'(¢") and a2>g(¢'(¢")), this would entail f(x)<¢’ by (RS), which

414 CHAPTER 14. SEQUENTIALITY

is a contradiction since the contrary holds by definition of ¢. Then, by the
claim, eds(f, g)(xq') = valof q, where ¢ = x |>g(q'). It follows that

cds(f" o f,g09)(xq") = valof ¢ = (cds(f’,g') o cds(f, g))(xq")
since z [>g(¢') = = [>g(¢'(¢")) by lemma 14.3.12.

e cds(f'of,gog’)(xq") = w. In particular ¢"v" & f'(f(«)), hence (eds(f’,¢')o
cds(f,g))(xq"”) could only be defined if we had

f(@)>g'(¢") and a>g(f(2) |>¢'(")).

But then we would have 2>¢(¢'(¢”)), contradicting the assumption. O
We now show that the functor cds has a left adjoint.

Definition 14.3.46 (exponential — sds) Let M = (C,V, E &) be a (filiform)
cds. The following recursive clauses define a set Py of alternating words over

CuVv:
re € P if c € A(state(r))

rev € P ifre € Proand state(rev) € D(M)

where state is the following function mapping responses (or €) of Pr to states of
M:
state(e) =0 state(rev) = state(r) U {(c,v)}.
The sds (C,V, P) is called M. We define an abstract algorithm n: M — eds(IM)
by
| walof ¢ if state(r) C x and ¢ € A(x)
n(x(re)) = { output (rev) if state(r)U {(c,v)} C x.

(Hence nex = {r | state(r) C x}.)

Remark 14.3.47 The reader should compare the definitions of sds(M) (exercise
14.3.7) and of M. In sds(M), positions are made from the proofs of the cells of
M, in IM, they encode (safety respecting) enumerations of the events contained
in the finite states of M. Back to example 1/.3.21, it should be now clear that,
say, OR; can be considered as an affine algorithm from ((B1)?) to B.

Theorem 14.3.48 The transformation | described in definition 14.3.46 extends
to a functor ! : ALGO — AFFALGO which is left adjoint to cds, with n as
unity. Moreover, the co-Kleisli category associated to the comonad ! o cds :
AFFALGO — AFFALGO s equivalent to ALGO. We shall freely abbreviate

! ocds as .

PROOF HINT. Let a € D(M — cds(S’)). We associate a response of IM (S
with each event (x¢/,u) of a as follows:

14.3. ALGORITHMS AS STRATEGIES 415

o If x¢’ is enabled in a by (z1¢/, valof ¢1) (with @ = a3 U{(e1,v1)} for some vy),
and if s¢y is the response associated with (z1¢/, valof ¢1), then the response
associated with (z¢,u) is

scivre if u = wvalof ¢
serorv’if u = output (¢'v') .

o If ©¢' is enabled in a by (¢, output (¢jvy)) (with ¢ = ¢jvic for some
), and if sv| is the response associated with (z¢, output (¢jv})), then the
response associated with (z¢, u) is

[N : _
svic'e if uw = wvalof ¢

svidv’ if w = output (¢'v') .

We denote with ((a) the set of responses associated to the events of @ in this way.
We omit the tedious verification of the two equations:

cds(C(a)on=a ((cds(d)on) = 6
Roughly, the mapping (makes the proofs of cells explicit, while eds “undoes”
the job of (by “filtering” input states against the positions of ¢. The second part
of the statement follows from the fact that any object M of ALGO is isomorphic

to an object of the form cds(S) (specifically, to eds(sds(M)), cf. exercise 14.3.7).
O

Theorem 14.3.49 The category ALGO is cartesian closed. There are natural
isomorphisms in AFFALGO between (1S) @ (1S") and I(S x §').

PROOF. The first part of the statement is a consequence of the second part, by
proposition 13.2.16. For the second part, notice:

o A cell of I(S x §') is of the form, say, (¢1.1)(vy.1)- - (¢,.1) where cjvg--- ¢,
is a query of S, while the corresponding cell of (IS) @ (1S") is (cyv1 -+ - ¢,).1.

e A position (1S)®@ (!S’) encodes a shuffling of safety respecting enumerations
of a strategy = of S and of a strategy ' of S, which is the same as the
encoding of a safety respecting enumeration of (z,2’). a

Exercise 14.3.50 Let S = (C,V, P) be an sds, and consider the sds:

ST = (VUu{o|.}C {op| p e P}).

Show that this operation extends to a functor from AFFALGO to AFFALGO®? which
s adjoint to itself.
We end the section with some remarks and comparisons, and by stating two

open problems.

o A more abstract setting for sequential algorithms, into which our theory can be

embedded, has been developped by Bucciarelli and Ehrhard [BE93]. The basic

416 CHAPTER 14. SEQUENTIALITY

idea is to abstract from a cell ¢ by axiomatizing it as a predicate “c is filled”
(cf. exercise 14.1.15). Bucciarelli and Ehrhard define sequential structures of the
form (X, X*) where X, plays the role of D(M), and where X is a set of linear
functions from X, to O. Their morphisms are defined in the style of exercise

14.2.7.

o Sequential algorithms bear a striking similarity with the oracles that Kleene has
developed in his late works on the semantics of higher-order recursion theory. In
a series of papers [Kle78, Kle80, Kle82, Kle85], he developed up to rank 3 a theory
of unimonotonous functions, which are closely related to sequential algorithms
(see [Buc93] for a precise correspondence). He lacked synthetic tools to develop
a theory at all ranks.

o Berry-Curien’s sequential algorithms, as well as Ehrhard’s hypercoherences
(cf. section 13.3), yield standard models of PCF. Indeed, it is easily checked that
ALGO and HCoh are cpo-enriched CCC’s, and we know from theorem 6.5.4
that the standard interpretations of all first-order constants of PCF are sequential
and strongly stable. Ehrhard [Ehr96] has proved that the hypercoherence model
of PCF is actually the extensional collapse of the model of sequential algorithms
(cf. exercise 4.5.6). This quite difficult result relies on the following steps:

1. For any hypercoherence (E,I'), any A € C(F) and any n > fA, there exists
G € C(w') and a strongly stable function ¢ : w} — E such that ¢(G) = A.

2. Every compact element y of the model at any type 7 is 2- PCF-definable,

which means that there exists a term xy : oy,...,2, : 0, & M : T,
with oy,...,0, of rank at most 2 (cf. definition 4.5.10), such that y =
[M](x1,...,2,) for some @1, ..., 2,.

3. The 2-Pcr-definability allows to prove the surjectivity (hence the function-
ality, cf. section 4.5) of the logical relation between the model of sequen-
tial algorithms and the hypercoherence model generated by the identity at
ground types.

Exercise 14.3.51 (the semantics as an interpreter) * Show that the interpreta-
tion function of PcF in ALGO is actually computed by a sequential algorithm (repre-
senting PCF terms through a cds, like LAMBDA, cf. example 14.1.6).

We mention the following two pen problems.

1. Denoting simply by [] the “natural” algorithm that computes the semantic
function [[] (cf. exercise 14.3.51) and denoting likewise by BT the minimum
algorithm computing BT, does the equality (of algorithms) [] = [Jo BT
hold? In other words, does the semantic evaluation respect the indications
of sequentiality provided by the syntax itself?

14.4. FULL ABSTRACTION FOR PCF + CATCH * 417

2. If @ and a' are two definable algorithms such that a« < o', can we find N
and N’ such that N < N’ (in the sense of definition 2.3.1), a = [N], and
a’ = [N']? In other words, does the order on algorithms reflect the syntactic
ordering?

14.4 Full Abstraction for PCF + caer *

In this section we extend the language PcF with an operation catch, which is inspired
from the constructions “catch” and “throw” found in several dialects of LISP. The
model of sequential algorithms is fully abstract for this extension of PcF, called Spcr.
This stands in sharp contrast with the situation of this model with respect to PcF (cf.
section 6.5). The material of this section is adapted from [CF92, CCF94].

Observing sequential algorithms. Before we come to the proper subject of this
section, we present a third characterisation of sequential algorithms, in addition to the
descriptions as states and as abstract algorithms. Although sequential algorithms are
not functions in the ordinary sense, it would be useful to be able to compare two
algorithms by applying them to (extended) inputs. The explicit consideration of an
error element allows this.

Definition 14.4.1 (observable state) We assume once and for all that there exists
a reserved, non-empty set Err of error values, which is disjoint from any set V of values
of any cds M = (C,V, E,t). We stress this by calling an element of V' a proper value.
Unless stated otherwise explicitly, we assume that Frr is a singleton, and we write
Err = {e}.

Given a cds M = (C,V, E,F), we call observable state of M a set of pairs (¢, w),
where either (c,w) € E or w € Err, satisfying the conditions that define a state of
a cds. The set of observable states of M is denoted Do(M). Note that states are a
fortiori observable states: this may be stressed by calling the states of M error free.
With each observable state x, we associate an error-free state x_. defined by

r_.=xNE.

This definition implies that enablings are not allowed to contain error values, be-
cause the enabling relation is part of the structure of a cds, which we did not change.
In the tree representation of an observable state, error values can occur only at the
leaves. As an example, the cds w) has (up to isomorphism) wy U Err as its set of
extended states. Next we explain how sequential algorithms act on observable states.

Definition 14.4.2 Let M and M’ be two cds’s. Every sequential algorithm a : M —
M’ determines an observable input-output function from Do (M) to Do (M), defined
by
asx = {(c,output v') | Jy < a (yc, output v') € a} U
{(cye) | Jy <z (yc,valof ¢) € a and (c,e) € x} .

418 CHAPTER 14. SEQUENTIALITY

On error free states, this definition agrees with the definition of aex given in def-
inition 14.2.1. The second component of the union is only “active” when the input
contains error values, and “implements” a propagation of these values to the output.

Lemma 14.4.3 The function Az.(asz) : Do(M) — Do(M') of definition 14.4.2 is
well defined and continuous.

Proor. Continuity obviously follows from the definition. We have to show that aez is
(i) consistent, and (ii) safe. We claim that once ¢ is fixed, then there is at most one y
which ensures that ¢’ is filled in asz. Property (i) immediately follows from the claim.
We prove the claim by contradiction. There are three cases:

1. (y1d, output vy), (y2c', output v4) € a. Then y; = y; by proposition 14.2.4, con-
tradicting the assumption.

2. (y1d, output v}) € a, (y2c/,valof c3) € a and (cg,e) € x. By proposition 14.2.4,
Y2 < y1, and moreover co must be filled in y;, and hence in z, with a proper
value, since ys is error free. This contradicts the consistency of z, since we also
assumed (c1,e) € x.

3. (y1d,valof ¢1) € a, (c1,e) € x and (y2c/, valof c3) € a, (c3,e) € x. Then, say,
Y1 < Y2, and the reasoning is the same as in case 2.

Next we show safety. From the above analysis, it follows that aez is the dis-
joint union of {(c,output v') | Iy < a (yd,output v') € a} and {(c;e) | Ty <
z (yc',valof ¢) € a and (c,e) € z}. The first of these sets is as(2_.), which is a state
by proposition 14.2.4. If ¢ is filled in the second set, then by definition (yc’, valof ¢) € a
for some y, which entails ¢ € A(aey) and ¢’ € E(asz). a

The following proposition shows what the consideration of errors is useful for.

Proposition 14.4.4 Let M and M’ be two cds’s. If asx < a’sx for all 2 € Do(M),
then a < a'.

ProoF. The proof is by contradiction. Let y¢’ be a minimal cell of M — M’ such that
yc' is filled in @, and is either not filled, or filled with a different value in a’. We shall
call witness an observable z such that a.z € @’.z. There are two cases:

1. If (yc, output v') € a, then (¢/,v') € asy. If (¢, output v') € a'sy, then y is a
witness. If (¢, output v') € a’sy, then, since y is error free, there exists z < y
such that (z¢/, output v') € o'.

2. If (yd, valof ¢) € a, then (', e) € as(yU{(c,e)}). If (;e) & d's(yU{(c,e)}),
then y U{(c,e)} is a witness. If (¢, e) € a’«(yU{(c,e)}), then, by definition of
the observable input-output function:

dz<yU{(c,e)} (2¢,valof ¢1) € a’) and (cy,e) € yU{(c,e)}.

Then z < y, since z is error free and z < yU {(c, e)}. Also, (¢1,e) € yU{(c,e)}
implies ¢; = ¢, since y is error free.

14.4. FULL ABSTRACTION FOR PCF + CATCH * 419

Both cases 1 and 2 reduce to the situation where (yc’,u) € a and (z¢/,u) € o', for
some z < y and for some u. This forces z < y, since by assumption (yc’,u) ¢ o'
Also, (z¢’,u) € a, by the minimality assumption. But the conjunction of (yc’,u) € a,
(z¢/,u) € a, and y < z is excluded by proposition 14.2.4, which forces u = valof ¢ and
y <. z for some ¢, and precludes (z¢/, valof ¢) to be an event. a

We gather more material in exercises 14.4.6, 14.4.7, and 14.4.8.

Exercise 14.4.5 Let M be a cds Leta € Do(M — w). Show the following properties,
for any cell 7 € E(a):

(1) asx={(?,n)} < (27, output n) € a
(2) (asz =L and as(z U{(c,e)}) ={(7,e)}) & (z?,valof c) € a
(3) asx={(7,e)} & (27,e)€a.

%

Generalise these properties fora € Do(M; — --- — M,
are variations of proposition 14.2.4.

wy). Hint: these properties

Exercise 14.4.6 Let M and M’ be two cds’s. The observable input-output function
of an observable algorithm, that is, of an observable state of M — M, is defined as
follows:
asx = {(c,output v') | Jy < a (yc, output v') € a} U
{(dye)|Jy <z (yd,e)€a} U
{(c,e) | Ty < a (yd,valof ¢) € a and (c,e) € z} .

(Here we do not assume that Err is a signleton, and e is used to denote a generic
element of Err.) Show that the statement of proposition 14.4.4 fails for observable
algoithms if Err = {e}, and holds if Frr contains at least two elements. Hint: Consider
a={(0?,valof 7)} and o’ = {(0?,e)}, between, say, two flat domains.

Exercise 14.4.7 Let M and M’ be two cds’s. (1) Show that there exists an order-
isomorphism between D(M — M) and the pointwise ordered set of functions h from
Do (M) to Do(M') which are:

e error-sensitive: For any x and ¢ such that ¢ € A(h(z)) and ¢ € F(h(z)) for
some z > x, there exists ¢ € A(z), called sequentiality index, such that

Vy>a (h(z) <o hly) = x<.y)
Vee Err hz U{(c,e)})=h(z)U{(d,e)};

o error-reflecting: For any ¢, e and y, if (¢, e) € h(y), then h has a sequentiality
index ¢ at (x,c) for some & <y, and (c,e) € y.

(2) Show that sequentiality indexes of error-sensitive functions are unique (for fized x
and). (3) Show that this isomorphism extends to an isomorphism from Do (M —
M) to the set of pointwise ordered error-sensitive functions from Do (M) to Do(M').
Hints: use proposition 14.4.4; for the surjectivity of the mapping from a to Az.(asz),
proceed as in the proof of proposition 14.2.9.

420 CHAPTER 14. SEQUENTIALITY

'EM:o
I'F catch(M) I'Fe::

Figure 14.3: The additional constants of SPCF and of SPCF(FErr)

Exercise 14.4.8 Show that the category whose objects are cds’s and whose arrows are
observable algorithms (cf. exercise 14.4.6) is cartesian closed. Hint: use the charac-
terisation given in exercise 14.4.7.

We come now to the proper subject of this section. We extend PcF with a family
of unary operators catch at each PcF type 0. The resulting extended language is called
Spcr. Just as in the semantics, it may be convenient to introduce explicit errors in
the syntax. We thus occasionally work with Spcr(FErr), which is SPCF plus constants
e € Err of basic type, which are interpreted using error values with the same name.
The typing rules for the constants of SPcF and of SPCF(Err) are summarized in figure
14.3. As for PcF, a program is a closed term of basic type, and €2 is an additional
constant such that [Q] = L, at each basic type.

As for PcF, we use the same name for the operator catch and for its interpretation
in the category ALGO, i.e., we write

[l catch(M) : ¢] = catch® o [I' - M : 7]

where the right-hand side catch is given in figure 14.4. In this figure, and in the rest
of this section, we shall adopt the following conventions:

e 17 denotes the initial cell L...L1? of (the interpretation of) any type.

e We freely switch between curryied and uncurryied algorithms (for example, in
the third line of figure 14.4, (L7).7is a cell of 64 X -+ X 7,).

The algorithm catch asks its unique argument about the value of its initial cell
(“what do you do if you know nothing about your argument”?). If this cell is filled
with output n, i.e., if the argument is the constant n, then catch outputs m + n. If
instead the argument asks about the initial cell of its ¢th argument, then catch outputs
t— 1.

Operational semantics. We next describe the operational semantics of SPcF. It
is convenient to use evaluation contexts (cf. section 8.5). They have a unique hole,
where “the next reduction takes place”. They are declared as follows:

Ex=[]|fE|EM | catch(A\Z.F)

where f € {succ, pred, zero?, cond} and where ¥ abbreviates z; ...z, (the intended

subscripts may vary). In particular, n may be 0, i.e., catch(F) is an evaluation context.
We denote by E[M] the result of filling the hole of £ with M.

14.4. FULL ABSTRACTION FOR PCF + CATCH * 421

catch(T17 om0 = (12 valof 17),
({(L?, output n)}?, output m + n), (n € w)
(

(L2, valof (L7).4)}?, output i —1} (1 <1< m)

Figure 14.4: Interpretation of catch in ALGO

M — M
E[M]w— E[M']

catch(Azy ...z, Flz)]) — i—1 (i <m,z; free in Flz;])
catch(Azq...2,.0) — m+n
catch(f) - 0 (f € {succ, pred, zero?, cond})

Figure 14.5: Operational semantics for SPCF

The rules are given at two levels: there are axioms of the form M — M’, and
evaluation steps of the form E[M]~— E[M']. The axioms are those for PcF plus three
axioms for catch. The evaluation rule and the additional axioms are given in figure
14.5. The catch rules deserve some explanation. The constant catch is a so-called
control operator. If the argument of catch is strict in its ¢th argument, then the value
¢ — 1 is returned. It the argument f of catch is a constant function, then catch returns
that constant (plus the arity of f, since the outputs 0,...,m—1 have a special meaning
in this context). The reader may check that catch(add;) —* 0 and catch(add,) —* 1,
where add; and add, are the PcF terms denoting the left and right addition algorithms
(cf. exercise 6.3.3).

We extend the operational semantics to SPcr(Err) (cf. figure 14.3) by adding a
second evaluation rule:

Ele] — e.

Exercise 14.4.9 Show that the following properties hold:
o If £, E' are evaluation contexts, then E[E'] is an evaluation context.
o IfMw— M'+#e, then E[M]— E[M']; if M — e, then E[M] — e.
Exercise 14.4.10 (Soundness) Show that if M — M', then [M] = [M'].

Exercise 14.4.11 * Show the following properties.

422 CHAPTER 14. SEQUENTIALITY

(1) If MQ---Q —* e, then catch(M) —* e.
(2) If catch(M) —* e , then MQ---Q —" e.
(3) If MQ - --Q —* n, where M is of type 61 — -+ -0, — 1, then catch(M) —* n+m.

(4) If MQ1 -+ Qp —" e (m > 1), where all Q; ’s are Q , except Q; = Aj.e , and if
MQ .- -Q " e does not hold, then catch(M) —*i— 1.

Exercise 14.4.12 (adequacy) * (1) Let M be a Spc¥(Err) program. Show that the
following equivalences hold:

Ml=n & Mw~"n
[Mj=e & M~"e.

(2) Let M be a SPCF program. Show that the following equivalence holds:
M]j=n < M—"n.

Hints: for (1), adapt the proof of theorem 6.3.6, and use exercise 14.4.11; for (2), use
(1) and the observation that if M is an SPCF term and M —* n in SPC¥(Err), then
M —~* n in SPCF.

Full abstraction. We first prove, by a semantic argument, that SPCF is a sequential
language (cf. section 6.4).

Proposition 14.4.13 If C is a SPCF program context with several holes, if
[FCQ,....Q]]=L and IMy,....M, [FC[My,....,M,]] # L
then there exists an i, called sequentiality index, such that:

FCINY, ey Niet, Q Nigry .o NaJ] = L

W Npve o Nioy Noatro Ny, 4 L veeer ity 38 Nty oy

! b {[[I—C[Nl,...,Ni_l,e,NiH,...,Nn]]]:{(?,e)}.
(Here, My, ..., M,, Ny,..., N, are ranging over closed SPCF terms.)

ProoF. Let a = [F Axy---2,.Clzy,...,2,]]. We have, by the validity of 3, for all
closed My, ..., M,:

[F C[My,.... My]] = as[r My]e. .. [F M,].

We have:
Eth...,Mn [["C[Mh,Mn]]]#J_ = a#@
[FClQ,...,Q]= L = An ((L?, output n) € a) .

Hence (L?, valof (1?).i) € a for some i, and the conclusion follows by the definition of
the composition of sequential algorithms. a

14.4. FULL ABSTRACTION FOR PCF + CATCH * 423

We recall the (semantic formulation of the) full abstraction property, which we want
to prove for ALGO with respect to SPCF:

VM,N (VO [CIM]] < [F CN]]) = [M] < [N]

where C' ranges over program contexts. We have been used to link full abstraction and
definability, cf. section 6.4. However, proposition 6.4.6 applies to an order-extensional
model. By proposition 14.4.4, this is fine for SPcF(Err) (see exercise 14.4.17), but not
for Spcr. Fortunately, we can use contexts other than the applicative ones to show full
abstraction for SPcF from definability.

Lemma 14.4.14 Let M be a cds, and let z,y € D(M). If x £ y, then there exists a
finite sequential algorithm a : M — w, such that aex L asy.

ProoF. Let ¢ be a minimal cell such that (¢,v) € F(z) and either ¢ ¢ F(z) or ¢ is
filled in y with a different value. Let (co, vo), ..., (¢, vn) be the proof of ¢ in . Define

2o=0,...,20, = 251 U{(Cno1, Un-1)}, Tny1 = z, U {(c,v) }.

Then we set

a = {(207?, valof o), ..., (x,7, valof ¢,), (xn417, output 1)}.
We have (7,1) € aexz and (?7,1) € asy, hence aez £ asy. O

Theorem 14.4.15 (definability for Spcr) Let 7 be a PCF type. Any finite state d
of the cds M7 interpreting 7 in ALGO is definable.

Proor. Let B € K(D(M™7777%)). We take k = ¢ without loss of generality. Let
p=Bo<-<B"'<s,B"<---<B°=8B

be a chain from () to B, where 57 is an abbreviation for by ...b37. We shall associate
with B* aterm 2y : 7y, ..., 25 : 7 B P® ¢, as well as an injection ¢* from A(B*)NF(B)
into the set of occurrences of 2 in P®. The construction is by a lexicographic induction
on (rank(t),4B) (cf. definition 4.5.10).

(Base case) P?=Q.
The only initial cell of M7 ig | 7. and we associate with it the unique occur-
rence of Q in P? .

(Induction case) Let P~ = C[Q], where C'is the context corresponding to 6?7 (that
is, u = i°71(b°7), where u is the unique occurrence of the unique hole [] of (). We
distinguish the following cases:

1. (b7, output n) € B. Then we set P* = C[n)].

424

CHAPTER 14. SEQUENTIALITY

2. (b7, valof ¢.i) € B, for some ¢ € A(b?). Any cell in (A(B*T1) N F(B))\ A(B*)

has the form by ...b;_1bb;41 .. .07, where b = b;U{(c,u)} for some u, and is thus
determined by this u. Let ;, = oy — --- — 0 — ¢t and ¢ = ay -- - ;7. The set
U? of the u’s can be decomposed as follows:

{output ny, ..., output ng} U
{wvalof ¢11.1, ..., valof ¢14,.1}U---U

v = . .
{valof ¢j1.3, ..., valof cjq, .} U---U
{walof ¢1.1, ..., valof ¢1,.1} .
We further analyze the type o; = p1 = -+ = p, — k. Let us consider an

auxiliary type O'; =p1— = pp—= K== K, of p+ ¢; arguments. Cells

(and observable states) can be injected from M?i to MY in the following way:
acell d =2z ...27 becomes d = z;...2,L...17, and an observable state a

becomes & = {(d, u) | (d,u) € a}. We set

a; =a; U{(¢;1,valof 7.(p+1))}U...U {(C/]q\]7 valof 7.(p+ q;))}.

In particular, if ¢; = 0, then) = a;. Since rank(o}) = rank(o;) < rank(r)), we
can apply induction and get terms M7, ..., M/ defining af, ..., a]. We set, for all
J<t

M; =Xz .. .zp.M](zl e 2pYi1 Y,
where y;1,...,¥j,, are fresh and distinct variable names. Finally we define (using
the syntax of section 6.4):

R = case catch(S) [F]

where
S = A yraiMy ... My (g5 stands for yj1 -+ yjq,) -

and where F is the partial function that places an Q at branches matching the
elements of U®. More precisely:

Q ifr<q+--+aq

Q ifr=q+-+aqg+mn
Flry=q:

Q ifr=q 4+ -+ q+ng

undefined otherwise
To keep notation readable, we shall write

“valof ¢;m,.77 instead of ¢ +---+ g1 +m —1
“output m,,” instead of g1 + -+ g1 + 1y .

We set Pot1 = C[R].

The proof goes via two successive claims. The definition of ¢* for o > 0 will be

given in the proof of the second claim.

14.4. FULL ABSTRACTION FOR PCF + CATCH * 425

Claim 1. Let ¢ = ay-- @7, n, (m < qo), and ¢j,, (m < ¢j) be as above, and let
dy,...,dy be observable states such that ¢ € F/(d;). The following properties hold.

(1) (¢, output ny,) € d; < (L2, output ny,) € [S]e(dy, ..., dy)
(2) (¢, valof ¢jm.j) € di < (L7, valof 7.p+m) € [S]e(dy, ..., dy)
(3) (c.0) € d & (17,0 € [Sh(dr, - di)

For all observable states dy, ..., dg, €11, ...€1,, we have, by definition of S:
[ST(dr, oy di)odios o = din([MLJo)e - -([Mi]o50):

Thus we are led to examine the [A;]+€;’s. For all observable states 2y, ..., z,, we have,
by definition of M;, M}, and a’:

Loz vz = [Mies oz
= allozlo---ozpoé}
_ {(7,e)} if 3m < gq; (cjm < Zand e, ={(?,¢)})

ajezye-- -z, otherwise
where ¢;,, < Z'is a shorthand for
Cim = Z1m =+ Zpm ! and (21 < 21,00, Zpm < 2p).

—

We single out two consequences of this computation. First, setting €; = L, we get
[M;]sL = a;, hence

(1) [STe(d, ... dp)oLlo---oL = dieay -~ -oay .
Second, if €;,, = {(?,e)} and ;1 = --- = €i(m—1) = €j(m+41) = " €jg, = L, then
(1) [M;]e€; = a; U{(cjm,)}
We now prove property (1) of the claim.

(L?, output nm)
< [S]e(dy, ..., dg)e
<= dioal ceeeqy = {(
< (c,output n,,) €

S [[S]] (dl, .. .,dk)
Le-vol ={(?,n)}
7(% m)} (by (1))

(by exercise 14.4.5 (1)) .

Properties (2) and (3) are proved much in the same way, making use of (1), () and
exercise 14.4.5 (2), and of exercise 14.4.5 (3), respectively.

Claim 2. For any by ...0? € A(B*)N F(B) (abbreviated as b?), for any observable
states dy,...,dg, and for any x¢ : 7, ...,2p : T E N ¢

[[NTeldy, ... dy) i by < dy for all i < k
[[C[N]]]°(d17...7dk) - {Ba°d1°"'°dk otherwise

426 CHAPTER 14. SEQUENTIALITY

where (' is the context associated with b7.

We first show that the statement follows from claim 2. More precisely, we prove:
[Axy...2x.PY] = B°.
By proposition 14.4.4 it is enough to show, for all observable dy, ..., di:
[C[Q]e(dy,...,dx) = B%dys---edj.
If b; < d; for all 7, then

[C[Qe(dy,...,d)] = Le(dy,...,d;) (by the claim)
= 1
= B%dye---edy (by exercise 14.4.5, since b? € A(B?)) .

Otherwise, the conclusion is given by claim 2 directly.

We now prove claim 2. We write P*~! = ([Q], where C is the context associated

with 5?7, and P* = C[R]. Consider b? € A(B*)NF(B) (hence, in particular, b? # 5°?).
There are two cases:
(I) b? € A(B*7'). Then we set i*(b?) = i®~(b?). We write P*~' = D[Q][Q4];, where
D is a context with two holes [| and []; occurring each once and corresponding to
b7 and l;?, respectively. Let now dy, ..., dy be observable states. We distinguish three
cases.

(A) Vi <k b; <d;. By induction we have, for all N:
(1) [CIQ][N]1]e(dy, ..., dr) = [N]e(dq, ..., dy).

In particular, [C[Q][m]1](dy,...,dr) = {(?,m)} (m arbitrary). By induction,
we can also suppose that d; = [Q;] for some Q;, for all i. Let D = C[@/f]
Then [D[Q][m]i] = {(?,m)} by what we just noticed. It follows that [] is not a
sequentiality index. Hence the sequentiality index, which exists by proposition
14.4.13,is []1. In particular:

(2) [C[R][Q1]+(d1, ..., dr) = L.
We have to prove [C[R]|[N|i]s(d1,...,dr) = [N]e(dy,...,d;), for all N. We

distinguish two cases.

(a) [N]e(dy,...,dr) # L: Then the conclusion follows from (1) by monotonic-
ity.
(b) [N]e(dy,...,dr) = L: Then the conclusion boils down to (2).

(B) (35 b; £ d;) and (Vi <k bf <d;). By induction, we have, for all L:
(3) [CLLIQ]e(dq, ..., dg) = [L]s(dy, ..., dg).
and our goal is to prove [C[R][N]1]e(d1,...,dr) = BYedys---edy, for all N. We

distinguish three cases.

14.4. FULL ABSTRACTION FOR PCF + CATCH * 427

(a) (b°7, output n) € B*. Then B%sdys---sdy = {(?,n)}, by the definition of s.
On the other hand, R = {(?,n)} by construction, and the conclusion then
follows from (3) by monotonicity.

(b) (b7, valof ¢.i) € B* and (c,e) € d;. Then B%sdye---ody = {(?,€)}. On
the other hand, by claim 1, we have [catch(S)]s(dy,...,dr) = {(?,e)},
hence [R]+(dy,...,dy) = {(?,e)} The conclusion follows again from (3) by
monotonicity.

(c) (b7, valof ¢.i) € B* and (c,e) € d;. Then B®sdys---sdy = L. On the other

hand, since all the branches of R are Q’s, we have
[R]s(dy,...,di) # L = [catch(S)]s(dy, ..., dr) = {(7,e)}.
Hence, by claim (1) and from the assumption (¢, e) ¢ d;, we get
(4) [R]e(dy,...,dg) = L.

Reasoning as with (1) above, we conclude from (3) that [] is the sequen-
tiality index. Hence, for all V:

(5) [CIQIN1]e(d1,...,dr) = L.
The conclusion then follows from (4) and (5).
(C) (37 b; £d;) and (41 b3, £ dj). By induction we have, for all N and L:

(6) [[C[Q][N]l]]O(dl,,dk) = B%dje---ody
(6)1 [CLL][Q]1]e(dy, ... ,dr) = Bedye---ody .

There are two cases:

(a) B¥edye---ody # L. Then the conclusion follows from (6) by monotonicity.

(b) B%edye---edy, # L. Then since (6), (6); hold in particular for N = {(?,e)},
L = {(?,e)}, respectively, we conclude that neither [] nor []; can be
sequentiality indexes. Hence the conclusion [C[R][N]]s(dy,...,dr) = L

follows, as otherwise there would exist a sequentiality index, by proposition
14.4.13.

(II) b? ¢ A(B°~1). This can only happen if b°7? is filled with some valof c.i in B, and
if b has the following form:

by = b2 if j # i
b

i =08 U{(c,u)} for some u .

By construction, this u is associated with one of the branches of R, which we represent
by means of a context R = C,[Q]. Then we define ¢*(b?) as the occurrence of | | in
C[C,]. We distinguish the same cases as for (I).

428 CHAPTER 14. SEQUENTIALITY

(A) Vi <k b <d;. Our goal is to show [C[C,[N]]]e(d1,...,dr) = [N]+(dy,...,dg).
Since we have a fortiori b < d; for all ¢, we have by induction:
(1) [CICUN]e(dr, - .., di) = [CulN]]o(d1, ..., dy).
On the other hand, we have [catch(S5)]+(d1,...,dr) = “u” by claim 1, since
(c,u) € d;. By the definition of (), this implies (for all N):
(8) [Cu[N]]e(dy,...,dx) =[N]e(dy,...,dg).
Then the conclusion follows from (7) and (8).

(B) (35 b; £ d;) and (Vi < k by < d;). It follows from these assumptions that
b ¢ d;, and that (c,u) ¢ d;. We still have (7) by induction. Our goal is to show
[CICUNe(dry .- dr) = (Be~Y U {(b°?, valof c.i)})sdys - -ody, for all N. By

definition of «, we have:

1 otherwise .

(9) (B LU {(b°7, valof ¢.i)})edye- - -ody, = { {(?,e)} if(c,e) € d;

On the other hand, by the definition of Cy, we can have [C,[N]]e(dy,...,dg) # L
only if either of the two following properties hold.

(a) [catch(S)]e(d1,...,dr) = “u”. This case is impossible by claim 1, since
(c,u) & d;.
(b) [eatch(S)]s(dy,...,dr) ={(?,e)}. By claim (1), this happens exactly when
(c,e) € d;, and then [Cy[N]]+(dy,...,dr) = {(?,e)}
The conclusion follows from this case analysis and from (9).

(C) (37 b; £d;) and (Fj1 b7, £ dj,). We have, for all L:

(10) [C[L]]e(dy,...,dy) = B> tedje---edy (by induction)
= B%dje---edy (since b, £ d;,) .

1

Then the conclusion follows by instantiating (10) to L = C,[N]. o

Theorem 14.4.16 (full abstraction for Spcr) The model of sequential algorithms
s fully abstract for SPCF.

Proor. Let M and N be such that [M] £ [N]. We can assume M, N closed since
currying is monotonic. By lemma 14.4.14 and by theorem 14.4.15, there exists an
algorithm a defined by a closed term F such that

[F FM] = (as[F M]) £ (as[F N]) = [+ FN].
The context C'= F[| witnesses M £, N. O

Exercise 14.4.17 Adapt the proof of theorem 14.4.15 to show that the model of ob-
servable algorithms (cf. exercise 14.4.8) is fully abstract for Spcr(Err).

Chapter 15

Domains and Realizability

Kleene [Kle45] first introduced a realizability interpretation of Heyting arith-
metic (HA) as a tool for proving its consistency. This interpretation provides a
standard link between constructive mathematics (as formalized in HA) and clas-
sical recursion theory. Moreover, it has the merit of giving a solid mathematical
content to Brouwer-Heyting-Kolmogorov explanation of constructive proofs (see,
e.g., [TvD88]).

Let us consider Peano arithmetic formalized in an intuitionistic first order
logic with equality and a signature with symbols 0 for zero, and s for successor.
Let A be the intended interpretation of the signature over the structure of natural
numbers. We write N |= ¢t = s if the formula ¢ = s is valid in N. We define a
realizability binary relation |~ C w x Form between numbers and formulae, by
induction on the formulae, as follows:

nl—t=s HNEt=s

nl—¢ A if min|—¢ and man|— (1)
nll=¢ Vi if (mn =0 and mn|—¢) or (mn = 1 and man|—v)

n|l~¢ — ¢ if for each m (ml|—¢ implies {n}m||—) (2)
n|—vx.¢ if for each m ({n}m | and {n}m|—o¢[m/z]) (3)

n|=3z.¢ if mon|-@[min/z]

where: (1) my, 72, are the first and second projections with respect to an injective
coding {_,) : w?* = w. (2) {n}m is the n-th Turing machine applied to the
input m. (3) m is a numeral in the system HA corresponding to the natural
number m. We note that the formula 1 is never realized. ¢ | denotes the
fact that the expression t is defined. Kleene’s equality = is defined as ¢t = s
iff (t & s |)and (¢ l= t = s). In the standard equality the arguments are
supposed defined ¢t = s implies ¢ | and s |. Whenever ts | it is the case that
tl and s |.

Let us turn towards potential applications of this interpretation. To any
formula ¢ in HA we can associate the set [¢] of its realizers [¢] = {n | n|¢}.

It is easy to prove a soundness theorem saying that any provable formula in HA

429

430 CHAPTER 15. DOMAINS AND REALIZABILITY

has a non empty collection of realizers (i.e. it is realizable). The consistency of
HA is an immediate corollary. More interestingly, realizability can be used to
check the consistency of various extensions of Heyting arithmetic. For instance
let us consider the formalization in HA of two popular axiom schemata known

as Church Thesis (CT) and Markov Principle (MP). In the following ¢ is a

primitive recursive predicate, i.e. a formula without unbounded quantifications.

e (CT) Yn.d'm.o(n,m) — Fk.¥n.Im.(d(n, Um) A Tknm)

Where U is a function and T' is a predicate (called Kleene predicate) such that
k(n) = U(pm Tknm) (p is the minimalization operator, cf. appendix A). In-
tuitively, Um is the final result of a computation m, and Tknm holds iff the
program k with input n produces a terminating computation m. Church thesis
states that any single-valued relation over the natural numbers that is definable
in HA is computable by some recursive function. The reason being that from
any (constructive) proof of a II9 sentence, Vn.3!m.¢(n,m), we can (effectively)
extract an algorithm that given n finds the m such that ¢(n, m).

o (MP) (Yn.(¢p(n)V —¢(n)) A ==In.¢(n)) — In.g(n)

The intuition behind (MP) is the following: if we have a decidable predicate
(Vn.(¢(n) V —¢(n)) and an oracle that tells us that such predicate is non-empty
(m=3dn.¢(n)) then we can effectively find an element satisfying the predicate
simply by enumerating the candidates and checking the predicate on them.

(CT) and (MP) are not provable in HA but they can be consistently added to it.
This fact, which is not obvious, can be proved by showing that (CT') and (MP)

are realized in Kleene interpretation.

Having provided some historical and technical perspective on realizability we
can outline the main theme of this chapter. Our goal is to generalize Kleene in-
terpretation in two respects: (1) We want to model Type Theories (not just HA).
(2) We want to interpret Proofs/Programs and not just Propositions/Types. In
order to obtain some results in this direction we will concentrate on a special
class of “realizability models”. Two basic features of these models are:

(1) Types can be regarded as constructive sets.
(2) There is a distinction between a typed value and its untyped realizers.

The first feature relates to a general programme known as synthetic domain the-
ory (see [Hyl90]) that advocates the construction of a mathematical framework
in which data types can be regarded as sets. A number of examples show that
classical set theory is not well-suited to this purpose, think of models for recur-
sive functions definitions, untyped A-calculus, and polymorphism. On the other
hand some promising results have been obtained when working in a universe of
constructive sets. In particular realizability has been the part of constructive
mathematics that has been more successful in implementing this plan. Histori-
cally this programme was first pushed by Scott and his students McCarty and
Rosolini [McC84, Ros86], whose work relates in particular to the effective topos

431

[Hyl82] (but see also [Mul81] for another approach). Related results can be found
in [Ama89, AP90, FMRS92, Pho90]. In a realizability universe the size of func-
tion spaces, and dependent and second order products can be surprisingly small.
A typical result is the validity of a Uniformity Principle which plays an important
role in the interpretation of second order quantification as intersection (more on
this in section 15.2).

The second feature relates to the way “constructivity” is built into the re-
alizability model. We rely on a partial combinatory algebra (pca) which is an
untyped applicative structure satisfying weaker requirements than a A-model.
We build over a pca, say D, a set-theoretical universe where every set, say X,
is equipped with a realizability relation |-, € D x X. If d||~, then d can be
regarded as a realizer of . Morphisms between the “sets” (X, |~y) and (Y, |—y)
are set-theoretical functions between X and Y that can be actually realized in
the underlying pca in a sense that we will make clear later. In the program-
ming practice there is a distinction between the explicitly typed program which
is offered to the type-checker, and its untyped run time representation which is
actually executed. Intuitively the typed-terms Az : nat.x and Ax : bool.x may
well have the same run-time representation, say Ax.z. This aspect is ignored by
the domain-theoretical interpretation we have considered so far. In this interpre-
tation Ax : nat.x and Az : bool.x live in different universes. Realizers can also
be regarded as untyped “implementations” of typed programs. Models based on
realizability offer a two-levels view of computation: one at a typed and another
at an untyped level. This aspect will be exploited to provide an interpretation of
type-assignment (section 15.3) and subtyping systems (section 15.7).

The technical contents of the chapter is organised as follows. In section 15.1
we build a category of D-sets over a pca D. These are sets equipped with a
realizability relation (as described above) and provide a nice generalization of
Kleene realizability.

In section 15.2 we interpret system F (cf. chapter 11) in the category of partial
equivalence relations (per) which is a particularly well behaved subcategory of the
category of D-sets.

In section 15.3 we exploit the two-levels structure of realizability models to
interpret type-assignment systems which are formal systems where types are as-
signed to untyped terms (cf. section 3.5). We prove a completeness theorem by
relying on a standard term model construction.

In section 15.4 we study the notion of partiality in the category of partial
equivalence relations and obtain in this way a pCCC of per’s. We exploit the
dominance ¥ of the pCCC to define an “intrinsic” preorder on the points of a
per. The full subcategory of the per’s for which this preorder is a partial order
(i.e. antisymmetric) forms a reflective subcategory of the category of per’s. We
refer to these per’s as separated per’s or Y-per’s for short.

In section 15.5 we work with Kleene’s pca (w,+) and we introduce a subcat-

432 CHAPTER 15. DOMAINS AND REALIZABILITY

egory of complete separated per’s which have lub’s of (effectively given) chains.
In this framework we prove a generalization of Myhill-Shepherdson theorem (cf.
chapter 1) asserting that all realized functions are Scott-continuous.

In section 15.6 we concentrate on a D., A-model and identify in this framework
a full subcategory of complete, uniform per’s, where we can solve recursive domain
equations up to equality.

In section 15.7 we introduce a theory of subtyping for recursive types and
present a sound interpretation in the category of complete uniform per’s.

15.1 A Universe of Realizable Sets

In Kleene interpretation the basic realizability structure is given by the collection
of natural numbers with an operation of partial application of a number, seen as
a program, to another number, seen as an input. A convenient generalization of
this notion is that of partial combinatory algebra (cf. [Bet88]).

Definition 15.1.1 (partial combinatory algebra) A partial combinatory al-
gebra (pea) is a structure D = (D, k,s,+) where k,s € D, «: D x D — D, and
kxy = x, sxy |, and sxyz = xz(yz).

In the following, the application tss is abbreviated as ts. Whenever ¢s | it is
the case that t | and s |. In pca’s it is possible to simulate A-abstraction. Let
D be a pca and let ¢ be a closed term over the pca enriched with a constant d
for every element d € D. Clearly every term either denotes an element in D or
is undefined. Given a term ¢ we define inductively on the structure of ¢, a new
term A*d.t in which the element d is “abstracted”:

Xd.d = skk
Ad.t =kt (d does not occur in t)
Nd.ts = s(A*d.t)(Ad.s) .

It is easy to verify that for any d € D, (A*d.t)d = 1.

Example 15.1.2 (1) An important example of pca is Kleene’s (w,+) where w is
the set of natural numbers and nem is the n-th Turing machine applied to the
input m. (2) Another canonical example of pca is that of a non-trivial domain D
that is a retract of its partial function space, (D — D) < D, in the category of
directed complete partial orders and partial continuous morphisms.

Given a pca we have to decide how to interpret formulas and proofs, and
more generally types and programs. In Kleene interpretation, formulas are inter-
preted as subsets of natural numbers, on the other hand no mention is made of
morphisms, hence no obvious interpretation of proofs is available.

15.1. A UNIVERSE OF REALIZABLE SETS 433

The first attempt could consist in interpreting types as subsets of the realiz-
ability structure. But in order to have a model of type theory we need at least
a CCC, so which are the morphisms? It is clear that, to build an interesting
structure, morphisms have to be somehow realized. 1t appears that some struc-
ture is missing to get a CCC, for this reason we seek a finer description of types.
Rather than identifying types with a collection of realizers we consider a type as
a partial equivalence relation (per) over the collection of realizers. There is now
an obvious notion of morphism that makes the category into a CCC.

Supposing A, B, ... binary relations over a set D we write d A e as an abbre-
viation for (d,e) € A and we set:

[dla={eeD|dAe} [Al={[ds|dAd} |A|l={deD]|dAd}.

Definition 15.1.3 (partial equivalence relations) Let D be a pca. The cat-
egory of per’s over D (perp) is defined as follows:

perp ={A|AC D x D and A is symmetric and transitive}
perp[A.B] ={f:[A]l—[B]|3doe DVde D(dAd= ¢d € f([d]a))} -

If ¢ is a realizer for the morphism f: A — B, i.e. Yd € D(dAd = ¢d €
f([d]4)), we may denote f with [¢]4_p (consistently with the definition of expo-
nent in pery, given in the following proposition).

Theorem 15.1.4 (pery, is a CCC) The category, perp, of partial equivalence
relations over a pca D is cartesian closed.

ProOOF. Mimicking what is done in the A-calculus, we can define pairing as

(dy,dy) = X p.(pdy)dy, and projections as md = dk and myd = d(k(skk)).

e Terminal object. We set 1 = D x D. For any d € D the “constant function”
M*e.d realizes the unique morphism from a per A into 1.

e Product. We define for the product per:
dAx Be i midAmeand myd Bmye .

It is immediate to verify that pairing and projections in the pca realize the pairing
and projections morphisms of the category.

o Exponent. We define for the exponent per:
hBAk iff Yd,e(dAe= hdBke).

Morphisms can be regarded as equivalence classes. The evaluation is realized by
Ad.(myd)(m2d), the natural isomorphism A is realized by A*¢.A*c. *a.¢(a,c). O

The following exercises should motivate the shift from subsets of D to per’s.

434 CHAPTER 15. DOMAINS AND REALIZABILITY

Exercise 15.1.5 One can identify the subsets of the realizability structure with those
per’s that have at most one equivalence relation. Show that the full subcategory com-
posed of these per’s is cartesian closed, but each object is either initial or terminal.

Exercise 15.1.6 Consider a category of per’s over the pea D, say C, in which, as
above, per’s have at most one equivalence relation but where morphisms are defined as

follows: C[A,B] = {¢ € D |Vd € D(d € |A| = ¢d € |B|)}. Show that C is not

cartesian closed.
Exercise 15.1.7 Show that perp has all finite limits and colimits.

Given a pca D we introduce the category of D-sets in which we can pin-
point a full reflective sub-category of modest sets, say Mp, that is equivalent
to perp. The category of D-sets intuitively justifies our claim of working in a
“constructive” universe of sets. Formally one can show that D-sets form a full
subcategory of the effective topos [Hyl82]. !

Definition 15.1.8 A D-set is a pair (X, ||~) where X is a set and |-, € DxX
is an onto realizability relation that is Ve € X 3d € Dd||-yx. A morphism of
D-sets, say f: (X,|-x) = (Y,|-y), is a function f: X =Y, such that:

36 € DVd,2 (d|-yo = ddl-y () .

A D-set (X, ||—y) is modest if the relation ||~ is single valued, that is d||—yx
and d||—yy implies v = y. We denote with D-set the category of D-sets and with
My, the full subcategory of modest sets.

Proposition 15.1.9 (1) The categories Mp and pery, are equivalent.
(2) The category Mp is a reflective subcategory of D-set.

PROOF. (1) To the modest set (X, |~) we associate the per P(X, ||—y) defined
as:

dP(X,|y)e iff Jz € X (d]-yz and e|-) .
(2) The basic observation is that if f : (X,|~y) — (Y, |-y) where (Y, |-,) is

modest then:
=y and dll-yy = [f(z) = f(y) .
If f is realized by ¢ then ¢d||—y f(z) and ¢d||— f(y), which forces f(z) = f(y).

Let us now describe how to associate a modest set (Y, |—) to a D-set (X, ||-).
First we define a relation R over X as:

xRy iff 3d € D (d|~yz and d||—yy) .

LA topos is an intuitionistic generalization of set theory formalized in the language of category
theory.

15.2. INTERPRETATION OF SYSTEM F 435

[«]p
[Ax.P]p

[PC]

p(z)
Ad.[Plpld/x]

([PIp)(IQ1p)

Figure 15.1: Interpretation of A-terms in a pca

Let RT denote the equivalence relation obtained by the transitive closure of R.
We consider the quotient set Y = [X]g+ equipped with the relation ||—, defined
as follows:

dl=y[z]p+ iff Fz € [z]p+ d||-y 2 .
The pair (Y, ||—) is the modest set we looked for. O

15.2 Interpretation of System F

We define an interpretation of system F (cf. chapter 11) in the category of per’s.
Since perp, is a CCC we already know how to interpret the simply typed fragment
of system F. On the other hand the interpretation of the clauses (V) and (Vg)
is more problematic. In order to show that the interpretation is well defined we
introduce an auxiliary interpretation of the underlying untyped A-terms which
allows to express a certain uniformity of the main interpretation with respect to
type abstraction and type application.

Definition 15.2.1 (type interpretation) Let Tvar be the set of type variables.
Given a type environment, say n : Tvar — perp, the interpretation of a type is
a per defined by induction as follows:

[tln = ()
[o = rln =[xyl
[Vtoln = NaeperplolnlA/t] .

Let Var denote the set of term variables and p : Var — D be an environment.
In figure 15.1 we define the interpretation of an untyped A-term in the pca D.

Theorem 15.2.2 Suppose I' = M : o, where I' = zy : 04,...,2, : 0,, then for
any type assignment n, and for any d;, e; such that d; [c]ne;, fori=1,...,n, we
have:

([er(M) : o1d/7) ([o]n) (Ter(M) : o[&/7]) -

436 CHAPTER 15. DOMAINS AND REALIZABILITY

PROOF. This is a simple induction on the length of the typing judgment, and can
be regarded as yet another variation on the fundamental lemma of logical rela-
tions 4.5.3. (Asmp) is satisfied by hypothesis. The interpretations for (—;) and
(— &) just use the realizers of the natural transformation A and of the evaluation
morphism. The crucial point is (V) where we use the side condition ¢t ¢ F'V;(I').

(V) follows by the interpretation of second order quantification as intersection.
a.

The basic idea is to interpret a typed term as the equivalence class in the ap-
propriate per of the interpretation of the erased term. Given I' = x4 : 0y, ..., 2, :
o, and n type environment let

[Cln = (- (1 x [ou]n) x -+ x [ou]n) -

The interpretation of a term I' = M : o should be a morphism f : [I']n — [o]n.
Equivalently, we can determine this morphism by taking the equivalence class of
a realizer ¢ in the exponent per ([o]7)I'V. The existence of the realizer ¢ follows
by theorem 15.2.2. Hence we have the following definition.

Definition 15.2.3 (typed term interpretation) Given a type environment n
the interpretation of a judgment I' = M : o in system F is defined as follows:

[T M : o]y = [Nd.[er(M)][mnd/&) i
where 7, ;(d) = ma(mi(-- - m1(d))), with 7y iterated (n — i) times.

Exercise 15.2.4 (1) Show that two terms with the same type and with identical era-
sures receive the same interpretation in per models. (2) Verify that fn-convertible terms
are equated in per models.

The interpretation in perj, can be extended to handle dependent types. In
the following we outline some results in this direction.

Definition 15.2.5 Given a D-set (X, |~y) and a function F': X — D-set we
define the D-set ((ILx F], ||—qp) as follows (cf. section 11.1):

o [lixF|={fellxl |3 € Dd|l-nrf}

o ¢llppf if Vo € XVd € D(d|-xz = ¢d|—p f(z))

If we look at modest sets as the collection of types then a function F': X —
Mp can be regarded as a dependent type. It is easy to prove the following
exercise.

Exercise 15.2.6 [n the hypotheses of definition 15.2.5, if F : X — Mp then the D-set
((Mx F), [-np) is modest. Hint: check that |-y is single valued using the fact that
the realizability relations associated to modest sets are single valued.

15.3. INTERPRETATION OF TYPE ASSIGNMENT 437

The construction defined above can be shown to be a categorical product in
a suitable framework.

Exercise 15.2.7 * Define an interpretation of the system LF (cf. chapter 11) in the
category of D-sets.

In figure 15.1 we have interpreted second order universal quantification as
intersection. Actually, this interpretation is compatible with the idea that a
universal quantification is interpreted as a product. We hint to this fact and
refer to [LM92] for a more extended discussion. Since Mp is not a small category
we consider transformations F': per, — Mp. Moreover we regard the collection
of per’s as a D-set, say per , by equipping it with the full realizability relation
per, = (perp, D x perp).

Proposition 15.2.8 Given a function F': per , — Mp, we have:

(Mper P,) = () P(F

A per

Where if (X,|—y) is a modest set then P(X,||—y) is the corresponding per, as
defined in proposition 15.1.9.

PROOF HINT. The isomorphism from the product to the intersection is realized
by A*¢.¢dg, for some dy € D, and its inverse is realized by A*d.\d'.d. O

15.3 Interpretation of Type Assignment

We consider the problem of building complete formal systems for assigning types
to untyped A-terms [CF58, BCD83, Hin83]. In chapter 4 we have referred to
this approach as typing a la Curry and we have pointed out its relevance in the
definition of algorithms that reconstruct automatically the type information that
is not explicitly available in the program.

We develop a type assignment system that is parametric with respect to: (1)
a A-theory &€, and (2) a collection of typing hypotheses B on variables and closed
A-terms. To interpret type assignment we introduce type structures which are a
slight generalization of per models.

Definition 15.3.1 A type frame T is made up of three components:
(1) A A3-model (D,+).
(2) A collection T C perp closed under exponentiation:

X,Y €T implies YX €T .
(3) A collection [T — T C Set[T,T] closed under intersection:

F e[l —T) implies (| F(A)eT .
A€eT

438 CHAPTER 15. DOMAINS AND REALIZABILITY

Condition (1) is natural since we consider systems to assign types to A-terms
and not to combinators. Conditions (2) and (3) are obvious generalizations of
properties satisfied by the per model. The type interpretation defined in 15.2.1
generalizes immediately to an arbitrary type frame.

Definition 15.3.2 The types of system I' are interpreted in a type frame T para-
metrically with respect to a type environment n: Tvar — T as follows:

[1n = 1(1)
e U [U
[Vt.oln = NaerlolnlA/t] .
A type frame is a type structure whenever the interpretation of intersection is

correct, that is for any o, NA € T [on[A/t] € [T — T| (cf. definition of A\-model
in chapter 3).

Definition 15.3.3 A type structure has no empty types if VA € T (A £ ().
Exercise 15.3.4 Glive an example of type structure without empty types.

A type free A-term is interpreted in the AB-model (D,s) according to the
definition 3.2.2. We recall that the interpretation is parametric in an environment

p.

Definition 15.3.5 (basis) A basis B is a set {P; : 0,};c; where P; is either a
closed untyped A-term or a variable, and all variables are distinct.

Let us fix an untyped A-theory, say &, (cf. chapter 4). We define a system
to assign types to untyped A-terms assuming a basis B and modulo a A-theory
E. For instance, we may be interested in a system to type terms under a basis
B = {Xz.x : t — s} and modulo the (n) rule. The basis B asserts that every
term having type ¢ has also type s and the rule (n) forces extensionality.

Definition 15.3.6 (type assignment system) Given a A-theory € we define
in figure 15.2 a type assignment system whose judgments are of the form B P :
o, where B is a basis, P is an untyped A-term, and o is a type of system F.

Definition 15.3.7 (interpretation) Let T be a type structure over the A-model
D and let Th(D) be the A-theory induced by D (cf. chapter 4). We write T = E
if € CTh(D). Given a type structure T such that T = € we write:

BErP:o ifVp:Var — D,n: Tvar - T(p,nEB = p,nE=P:0)
b P iflPlpe o
p.n=A{Pi:oitier ifYiel(p,nEPi:oi).

When the type structure is fized we omit writing T .

15.3. INTERPRETATION OF TYPE ASSIGNMENT 439

(Asmp)
(Eq)
(weak)

(rmuv)

P:0ceB

BFP:o

BrEP :0 P=cP

BEP:o
BFP:0 BUB' well-formed

BUB' FP:o
BU{z:o}FP:7 x ¢ FV(P)

BFP:T
BU{z:o}FP:r7

BFXeP:o—rT
BFXe.Pr:o—71 ¢ FV(P)

BFEP:o—71
BFP:oco—w17 BFQ:0o

BEPQ:T
BEP:o t¢ FV(B)

BEP:Vto
BEP:Vto

BF P :o[r/t]

Figure 15.2: Type assignment system for second order types

440 CHAPTER 15. DOMAINS AND REALIZABILITY

Proposition 15.3.8 (soundness) Let T be a type structure without empty types
such that T EE. If BE P:o (modulo £) then B =1 P : 0.

PROOF. The statement is not obvious because of the (—) rule. For the sake of
simplicity we suppose o, 7 closed. Then we have:

ziofEa:T iff |[o]]| < [[~]]
Elax:oc—7 iff o] C[7r].

For this reason we have to generalize our statement. We define:

ATy P
=T —=o0

ATy AT Ay Ay P
Ol =% r =30 =T =" =Ty = 0O

where n,m > 0, {x; : 01,...,2, : 0,} € B, y; & dom(B), for j = 1,...,
With these conventions we show by induction on the length of the derivation:
BFP:o = BEMNMNMP:057T—o0. O

m.

Remark 15.3.9 For a type structure with empty types the rule (rmv) is not
sound as from an hypothesis which is never realized we can derive everything.
For instance we have {x : Vi.t} Eper Az.x @ Vit and Hpede.x @ Vi, If we
eliminate the rule (rmv) then the type assignment system is sound for arbitrary
type structures.

The type assignment system in figure 15.2 is sound and complete to derive all
judgments which are valid in type structures without empty types. This result
can be extended to arbitrary type structures [Mit88]. In this case one introduces
additional rules to reason about types’ emptyness. For instance, one may enrich
the basis with assertions empty(o) which hold if ¢’s interpretation is empty and
then add the following typing rules.

BU{x:o}FM:7 BU{empty(o)}F M : 7
{z o, empty(o)} = M : 7 BrEM:T

Exercise 15.3.10 Check the soundness of the typing rules above.

Theorem 15.3.11 (completeness) Let £ be a A-theory and B be a basis. It is
possible to build a type structure without empty types Te g over the term A3-model
induced by the A-theory £ so that:

BtP:o iff BEr,P:o.

PROOF. The proof can be decomposed in two parts: (1) The proof that we can
conservatively adjoin to the basis B a countable collection of type assignments
x; : 0, where o is any type, i € w, and a; is a fresh variable. (2) The construction

15.3. INTERPRETATION OF TYPE ASSIGNMENT 441

of a type structure starting from a basis B’ containing countably many type
assignments x; : .

Proof of (1). Let # be an injective substitution from (type) variables to (type)
variables such that Var\cod(8) and Twvar\cod() are infinite. We observe that:

BEP:o iff (BFP:o)

where the substitution is distributed componentwise. Given (i) a basis B, (ii) an
enumeration of the types {o;}ic,, where each type occurs countably many times,
(iii) an injective substitution # as above, and (iv) a sequence {x;};e., of distinct
variables such that {x;}c, N cod(0) = (), we define:

B ' ={0(P:0)|P:0ce BtU{x;:0:}icw -

The following facts can be easily verified:

e Given a type structure without empty types T such that T | &,
BErP:o ifft BEFO(P:o).

Hint: Since types are non-empty we can canonically extend any p,n such that
p,n = B to p',n' such that p'.n' E B'.

o If B O(P :o)then BF P :o. Hint: Use first compactness (if there is
a proof, there is a proof that uses a finite part of the basis) to get a derivation
with respect to a finite basis, then use (rmv) to eliminate the remaining adjoined
variables.

Proof of (2). Given a basis B’ as above, we define a type structure 7¢ g without
empty types as follows:

(1) Let D be the term AB-model induced by the A-theory £ (cf. chapter 4). Let

[P] denote a generic element in D, that is the equivalence class of P modulo £.
(2) We consider the collection of per’s T'= {(o) | o type} defined as follows:

[Pl{(ca)[Q] if BBFP:cand B'FQ:0o.
(3) As for the type functionals we consider the “definable” ones:
[T =T ={F:T—=T|3o,t F((1)) = (o[r/t])} .

Next we verify that this is a type structure without empty types.
e The type structure is without empty types because z; : Vi.t € B’.

e Closure under exponentiation amounts to verify:

[Pl(e = n)[Q] it V[P, [Q([P](e)[Q] = [PPUNIQQT]) .

442 CHAPTER 15. DOMAINS AND REALIZABILITY

Hint: The direction (<) follows from the following deduction where x is a variable
adjoined to the basis B.

B'ra:0c = BFPx:7
= B'FXe.Pr:o— 71 by (=)
= B'FP:o—1 by(=]).

e (llosure under intersection follows from:

[P](Vt.o)[@Q] iff for all 7 ([Pl{c]r/t])][Q])

If B P:othen B =7, P :o,bysoundness. Viceversasuppose B 7. , P : 0.
Then B’ =7, , 0(P : o). Pick up the environment p,, 7, defined as:

polx) =[] no(t) = (t) .

One can check p,,n, E B’. From this we know p,,n, = 0(P : o) which is the
same as B’ F 6(P : o). Hence we can extract a proof of BF P : 0. a

15.4 Partiality and Separation in per

In the following we concentrate on the problem of giving a per interpretation of
type theories including recursion on terms and types. As usual we are naturally
led towards a notion of complete partially ordered set. At the same time we
want to stay faithful to our goal of regarding data types as particular sets of
our realizability universe. Hence we look for a collection of “sets” on which it is
possible to find an intrinsic order that is preserved by all set-theoretical functions.
The method will be that of restricting the attention to full subcategories of perp,.
Hence, as in the classical approach described in chapter 1 we restrict our attention
to certain sets endowed with structure, however, as opposed to that approach,
we consider all “set-theoretic” functions and not just the continuous ones. The
fact that functions are continuous is a theorem and not an hypothesis.

In chapter 8 we have introduced some basic notions about partial cartesian
closed categories (pCCC) and their properties. We recall that every pCCC has an
object ¥, called dominance, that classifies the admissible subobjects. In a pCCC
the morphisms from an object a to the dominance ¥ play the role of convergence
tests. These tests induce a preorder <, on the points of an object. The idea
of ordering points by tests bears a striking analogy with the one encountered in
operational semantics of ordering terms by observations. Following [Ros86] we
focus on the full subcategory of separated objects, which are composed of those
objects for which <, is antisymmetric.

By convention, we write x : @ to indicate that x is a point of a, that is a
morphism = : 1 — a. Since we will be dealing with CCC’s and pCCC’s we

15.4. PARTIALITY AND SEPARATION IN PER 443

confuse points in the objects ¢ — b and @« — b with morphisms in Cla,b] and
pCla, b, respectively. For instance, f : @ — b can be seen both as a morphism
from @ to b and as a point in @ — b. We introduce a convergence predicate, say
}, as follows: if z :a, p=[m, f]:a — b, withm:d— a, f:d— bthen:

pox{ iff Fh:1—=d(moh=u2).

We write p:a — band p:a — (b), interchangeably. When z is a point, we shall
often abbreviate p o & with pzx.

Definition 15.4.1 (intrinsic preorder) Let (C, M) be a pCCC with dominance
Y, and a be an object of C. We define a preorder <,, called intrinsic preorder,
on the points of a as:

r<,y iff Vp:a—X(poal impliespoyl).

The intuition is that z is less then y in a, if every convergence test p:a — X
that succeeds on x also succeeds on y. In the following we also write pox < poy

for (pox = poy)and pox =Zpoyfor (pox & poyl).

Definition 15.4.2 (category of X-objects) Given a pCCC (C, M) with dom-
inance Y we denote with XC the full subcategory of C whose objects enjoy the
property that the intrinsic preorder is anti-symmetric. An object a such that <,
is a partial order is called a Y-object or, equivalently, a separated object.

Proposition 15.4.3 Let (C, M) be a pCCC with dominance ¥.. Then:

(1) Morphisms preserve the intrinsic preorder.

(2) Y-objects are closed under subobjects.

(3) Moreover, if (C, M) has enough points and a is an object then X% is a -
object.

PrRoOOF. (1) Let f : a — b and z,y : a. Suppose x <, y, then given any
p: b — X we have by hypothesis po fox <po foy, since po f:a — . Hence
fox <, foy:b.

(2) Let m :a — bbe amono and b be a ¥-object. If x and y are two distinct
points in @ then m o x and m o y are two distinct points in b. Hence, since b is
a Y-object, they are separable by a morphism p : b — Y. Then the morphism
p o m separates the points = and y.

(3) If f,g: X% and f # g then, by the enough point assumption, there is a = : a
such that =(fox = goa). Take Ah : X% hoa: ¥* — ¥ as separator for f and
g. O

Partiality is explicitly given in a pca D, and by generalizing basic facts of
recursion theory (i.e. r.e. sets are exactly the domains of computable functions)
it also provides a notion of semi-computable predicate on D. We elaborate this
point in the following.

444 CHAPTER 15. DOMAINS AND REALIZABILITY

Definition 15.4.4 Let D be a pca, for any d € D let dom(d) = {e € D | de |}.
Then we define a collection of semi-computable predicates on D as follows:

S(D) = {dom(d) | d € D} .

The collection of predicates ¥(D) induces a refinement preorder on D defined
as (this is the untyped intrinsic preorder):

d<pe iff VWeX(D)(deW =eecW).
We observe that the operation of application preserves this preorder:
Ve € D(dSD d/:>€d§D ed’) .

Moreover, if the pca is not total then ¥ (D) can be seen as a basis for a topology as:
(1) @, D € X(D), taking respectively the always divergent and always convergent
morphism. (2) If W, W’ € ¥(D) then WNW' = dom(Xd.(\x. *y.c)(ed)(e'd)) €
Y(D), where ¢ € D.

We show that given any per, say A, ¥(D) induces a collection, say ¥(A),
of semi-computable predicates on A. From this structure it is easy to obtain a
family Mp of admissible monos on perp that turns the category into a pCCC.

Definition 15.4.5 Let A € pery,. Then we define:
Y(A)={B eperp | [B] C[A] and IW € X(D)(|A|NW =|B]|)} .

In other words B belongs to ¥(A) if the equivalence classes in B form a subset
of those in A and there is a set W C (D) that separates [B] from the other
equivalence classes in [A].

Proposition 15.4.6 Let D be a non-total pca. Then X(A) enjoys closure prop-
erties analogous to X(D): (1) 0, A € X(A), and (2) If B,B'" € X(A) then
B" € ¥(A), where B" is the per corresponding to the partial partition [B] N [B'].

PROOF HINT. By applying the related properties of ¥(D). O

Remark 15.4.7 We observe that if d <p d', A € perp, and d,d" € |A]| then
a fortiori [d]a <4 [d']a. Suppose B € Y(A) and [d]la € [B], then there is a
W € X(D) such that |[A|N'W = |B|. But by hypothesis d' € W and therefore
[d'|a € [B]. This fact corresponds to the intuition that if two elements cannot be
separated in the type free universe of the realizability structure D then a fortiori
they cannot be separated in the typed structure of per’s.

Definition 15.4.8 Define Mp as the following family of monos:

m:A = Ae Mp(A) iff A" € X(A) and m is the inclusion morphism .

15.4. PARTIALITY AND SEPARATION IN PER 445

Note that the morphism m is realized by the identity. It is easy to check
that this collection of monos is indeed admissible. The conditions for identity
and composition are clear. Let us consider the case for the pullbacks. Assume
f:A— Band m: C — B with ¢ realizer of f and |B| N dom(vy) = |C]. To
construct the pullback consider W' = dom(A*d.1p(éd)) and the related admissible
subobject of A. We leave to the reader the proof of the following propositions.

Proposition 15.4.9 The category (perp, Mp) of per’s and partial morphisms
is equivalent to the category pperp defined as follows:

Obpperp, = Obperp
pperplA, Bl ={f:[A]—=[B]|3¢ € DVd
dAd = ((¢d & f([dla) 4) and (6d 4= od € F([da)} -

Proposition 15.4.10 The category (perp, Mp) is a pCCC. The partial expo-
nent is defined as:

S peap(A,B)g iff Vd.e(dAe= fd =5 ge)

where =g is Kleene equality relativized to B, namely t =g s iff (t |& s |) and
(t }=tBs).

We remark that the category perp has enough points. The terminal object
is any per with one equivalence class, say 1 = D x D. The dominance is ¥ =
1 =1={L,T}, where L ={d € D |Ve(de })}, and T ={d € D | Ve(de |)}.

We can then specialize definition 15.4.2 as follows.

Definition 15.4.11 The category Xpery is the full subcategory of perp whose
objects are ¥-objects.

Proposition 15.4.3 can be used to establish some elementary facts about
Yperp.

Theorem 15.4.12 The category Yperp is a full reflective subcategory of perp.

PROOF. The simple idea for obtaining a ¥per Ly, (A) from the per A is to collapse
equivalence classes that cannot be separated by ¥(A). Given a per A and the
intrinsic preorder <4 we define an equivalence relation, ~4, on [A] as:

[d]A ~ A [G]A iff d,e - |A| and [d]A SA [G]A and [G]A SA [d]A .
Let the reflector Ly : per — Yper be as follows:

4 le]a for A € per

dLx(A)e iff [d]a ~
= f([d]4) for f:A— B.

Ls(f)([d]rs(a))

446 CHAPTER 15. DOMAINS AND REALIZABILITY

One can easily verify that: (1) Ly(A) is a Yper. Actually it is the least Yper
containing A (as a relation). (2) d Lx(A)e implies f([d]4) = f([€]a), as B is
separated. (3) Every morphism from a per A to a YXper B can be uniquely
extended to a morphism from Lg(A) to B. From these facts it is easy to exhibit
the natural isomorphism of the adjunction. a

The following corollary summarizes our progress. We have managed to build
a full sub-category of per’s that has the same closure properties of perp, and
moreover has an intrinsic notion of partial order that will turn out to be useful
in the interpretation of recursion.

Corollary 15.4.13 The category Yperp is cartesian closed and it has all limits
and colimits of perp,.

PROOF. The existence of limits and colimits is guaranteed by the reflection. Let
us check that Ypery is closed under the usual definition of exponent in pery,.
Suppose B € Yperp and f,g: A — B. Suppose that f and ¢ are distinct, then
there is a point x : A such that fx,gx are distinct and, by hypothesis, separable
by means of k: B — Y. Then the morphism A : A — B.k(hx) separates f and
g. O

15.5 Complete per’s

We are interested in finding an analogous of the notion of w-completeness in a
realizability framework. In the first place we need an object N that can play
the role of the natural numbers. More precisely a natural number object (nno)

is a diagram 1 2% N = N that is initial among all diagrams of the shape:

1% AL A Tn this section we work over Kleene’s pca (w,+) and we define as
nno:

N={{n}|new}.
In particular we shall make use of the fact that for K = {n | nn |} and O =

{K,K°}, {K°} ¢ ¥(0).

We will concentrate on (N-)complete Xper’s, that is Yper’s such that any
ascending sequence on them, that is definable as a morphism in the category, has
a lub with respect to the intrinsic order.

When restricting the attention to complete Yper it is possible to prove a vari-
ant of Myhill-Shepherdson’s theorem (see chapter 1) asserting that all morphisms
preserve lub’s of chains. This will arise as a corollary of the fact that for any per
A the elements of ¥(A) are Scott opens.

A corollary of this result is that the full subcategory of complete, separated
per’s can be seen as a sort of pre-O-category in that the morphisms are partially

15.5. COMPLETE PER’S 447

ordered, there are lub’s of definable chains, and the operation of composition
preserves this structure.

When stating the completeness condition for a Xper A we will only be inter-
ested in the existence of the lub’s of the chains, y : N — A, that are definable as
morphisms from the nno N to A.

Definition 15.5.1 We write x : AS(A) (AS for ascending sequence) if
X:N—=Aand¥n:N(xn<sx(n+1)).

Remark 15.5.2 Observe that whenever we select a subset of the equivalence
classes of a (separated) per we can naturally consider it as a (separated) per.

For example AS(A) is a subset of [N — A] and U € ¥(A) is a subset of [A].

According to a constructive reading the existence of the lub of every ascending
sequence implies the existence of a method to find this lub given a realizer for
the sequence. Indeed as soon as we consider the problem of the closure of the
collection of N-complete objects with respect to the function space constructor it
becomes important to have a realizer that uniformly, for every ascending sequence
of a given type, computes the lub (we refer to [Pho90] for more information on
the closure properties of this category). This motivates the following definition.

Definition 15.5.3 A separated per A is complete if ¥y : AS(A) IV, x, where
the existence of lub has to be interpreted constructively, that is:

Joa: AS(A) = AVx : AS(A) (ea(x) =V X) -

Since the morphism o4, if it exists, is uniquely determined we will simply
indicate with A rather than with (A, 04) a complete separated per.

Remark 15.5.4 The category of complete separated per’s is non-trivial as every
separated object A in which all elements are incomparable is complete (one can
define o4 = Ay : AS(A).x(0), where 0 is the zero of the nno, as every ascending
sequence is constant).

Remark 15.5.5 The definition of completeness highlights the difference between
a classical set-theoretical definition (say in a system like ZF') and a constructive
one. When working in a realizability universe it is a good habit to read defi-
nitions and theorems constructively. This approach will not be pursued in this
introductory chapter, the problem being that a rigorous exposition requires some
background on the internal logic of the effective topos, basically a higher order in-
tuitionistic type theory that includes principles like the countable axiom of choice
(AC,), the computability of all the morphisms on natural numbers (Church The-
sis), the Uniformity Principle, and Markov Principle (see [Hyl82]).

448 CHAPTER 15. DOMAINS AND REALIZABILITY

Definition 15.5.6 Let A be a per. A subset U of [A] is a Scolt open (cf. defini-
tion 1.2.1) and we write U € 7(A) iff

(1)Ve,y: Az :U and e <py=y:U), and

(2)¥x:AS(A) (AVax:U=3n: N(xn:U)).

Note that this definition makes sense in any preorder. It is immediate to check
that 7(A) defines a topology over [A].

Theorem 15.5.7 If A is a separated, complete per and U € X(A) then U €
T(A).

PROOF. The first condition of upward closure follows by the definition of intrinsic
order. Take x : U and suppose x <4 y. Then y : U as:

<y iff VUeX(A)(z:U=y:U).

The proof of the second condition takes advantage of the specific recursion-
theoretical character of the pca (w,), indeed the following argument is a keyvault
of the theory.

Consider the set K = {n | nn |} and the per O = {K, K°}. We observe
{K} € ¥(0) and {K°} ¢ ¥(O). The predicate nn | i means that the computa-
tion nn of the n-th machine applied to the input n will stop in at most 7 steps.
This is a decidable predicate.

Now let us proceed by contradiction assuming there is x : AS(A) such that:

3\ x:Uand Vn: N =(xyn:U) .
A

The crucial idea is to build a function & : O — A mapping K to xn, for some n,
and K° to \V4 x. By the pullback condition we derive the contradiction:

hU(U) = {K°} € %(0) .

For any n we define an ascending sequence Ai.¢(n,i) : N — A. In the following
pk < i.nn | k is the least element k& < ¢ such that nn | k.

NNEY if =(nn | 1)
c(n,i) = { x(puk <inn | k) otherwise .

We observe that for any given n if n € K then Ai.¢(n,?) coincides with the
ascending sequence x up to the first & such that nn | k£ and then becomes
definitely constant; on the other hand if n € K¢ then Ai.c¢(n,) coincides with
X- We note that Xi.c(n,i): AS(A). Using the existence of a morphism o4 that
uniformly realizes the lub of ascending sequences we define a morphismh : O — A
such that:

h([nlo) = oa(Xi.c(n,1)) .
We have just observed h([n]o) = V4 x if n € K¢ and h([n]o) € {xn | n: N}

otherwise, from this we can obtain the desired contradiction. a

15.5. COMPLETE PER’S 449

Remark 15.5.8 For the logically inclined reader we mention that this proof by
contradiction can be turned into a constructive proof via Markov Principle.

Definition 15.5.9 Let A, B be separated per’s. We say that f: A — B preserves
chains if

Vy: AS(A EI\/X A= (EI\/foX B and f(\/ x) \/fOX
A

Proposition 15.5.10 Suppose A, B are complete separated per’s. Then any
morphism f: A — B preserves chains and it is Scott continuous.

ProOF. (1) Consider y : AS(A) and assume 3V, x : A. In order to show
AVg fox = f(V4x) we prove that for any upper bound y : B of fox: AS(B)
we have f(V4 x) < y. We recall that:

f(\/X) <gy iff VUGZ(B)(f(\/X):Uéy:U).

Now U € X(B) implies, by the pullback condition of admissible domains, f~*(U) €
Y(A), that is by theorem 15.5.7, f~Y(U) € 7(A). Since f(V4x) : U, we have
Vax: f7HU), that implies by the definition of open set In : N (yn : f~HU)).
Therefore dn : N (f(xn) : U), and this implies y : U.

(2) We take U € 7(B) and we consider f~'(U). This is upward closed by the
fact that f is monotonic. Moreover, let y : AS(A) and suppose IV, y : f~H(U).
Then by hypothesis f(V4x) = Vg fox: U. Therefore In : N(f(xn) : U) i.e.

s D). 0

Extensional per’s. * So far the theory has been developed in a rather synthetic
and abstract way. To use the theory in practice it is often useful (if not necessary) to
have a concrete presentation of the denotational model. For instance we would like to
characterize the order on function spaces, to compute lub’s explicitly,. .. In the following
we introduce a category of extensional per’s for which we can provide answers to these
questions (an even more concrete category based on a different pca will be presented
in the next section). The initial idea is to look at per’s of the shape Y4, First we need
to develop a few notions.

Definition 15.5.11 (X-linked) A per A is X-linked if for all x,y € [A],
r<uay =3If: X A(fL=zand fT=y).

We note that if f1 = 2z and fT = y then 2 <4 y, by monotonicity. We shall prove
in proposition 15.5.20 that all complete separated per’s are 3-linked), but there are
separated per’s which are not ¥-linked. The proof of this fact relies on a rather deep
recursion-theoretical result.

450 CHAPTER 15. DOMAINS AND REALIZABILITY

Definition 15.5.12 Let X,Y C w be sets. We say that X is many-reducible to Y and
write X <,, Y if there is a total recursive function f such that:

reX iff fla)eY .
The following proposition is due to Post (a proof can be found in [Soa87]).

Proposition 15.5.13 Any r.e. set X is many reducible to the set K = {n | nn }}.
There is an r.e., non-recursive set to which K cannot be many-reduced.

Proposition 15.5.14 (1) If X is a r.e. non-recursive set then A = {X, X°} is a
separated per where X¢ <4 X.

(2) The dominance ¥ is isomorphic to the separated per { K, K°}.

(3) There is an r.e. set such that {X, X°} is not X-linked.

Proor. (1) If a partial morphism from {X, X°} to the terminal object converges on
X¢ and diverges on X then it contradicts the hypothesis that X is not recursive.

(2) We recall that ¥ = {L, T} where L = {n | Vmnm [} and T = {n | Ymnm |}.
From ¥ to {K¢ K} consider the morphism realized by the identity. In the other
direction consider the map realized by *n.*m.nn.

(3) First we observe for X,Y C w:
X <, Y iff 3h:{X, X} —{Y,Y°} monosuch that A(X)=Y .

Then pick up a r.e., non-recursive set X to which K cannot be many-reduced. The
separated per {X, X} is not Y-linked. O

Hence, we can build two separated per’s having the same order as Sierpinski space
that are not isomorphic!

Exercise 15.5.15 Show that there is a set X C w such that {X, X°} is not separated.

Definition 15.5.16 Let A = Il;c1A; be a product in per with projections {m;}ic;. We
say that A is ordered pointwise if

v <ugy iff Viel(mox <y moy).

Proposition 15.5.17 (1) The dominance ¥ is X-linked.

(2) Let A =1l;c1A; be a product of ¥-linked per’s with projections {m;};c;. Then A is
ordered pointwise and X-linked.

(3) If A is ¥-linked and [B] C [A] then B is Y-linked and the order on B is the

restriction of the order on A.

Proor. (1) Take the identity function.

(2) Consider z,y : llgrA; such that Vi € I (m; 02 <4, m;0y) (2 is pointwise smaller
than y). By hypothesis:

Vieldf,: ¥ — A (fiol=mozand ffoT =moy).

