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By definition of product there is a morphism (f;) : 3 — llgr A; such that m; 0 (f;) = fi.
Then we can derive:

7Z'Z'O<fi>OJ_:fZ'OJ_I7Z'Z'O$

mio(fyoT =fioT=moy.
Then (fi)o L =2 and (f;)o T =y, and A is X-linked. In the proof we have only used
the hypothesis that x is pointwise less than y. The map (f;) proves that @ <4 y.

(3) If 2 <4 y then there is a morphism f: ¥ — A such that f(L) =2 and f(T) =y.
If 2,y : B then f can be restricted to f’ : ¥ — B. By monotonicity it follows
z=f'(L) < f'(T) =y. Vice versa, suppose © <y, f: A— X, and f(z) =T, then
f can be restricted to B, and by definition of intrinsic ordering f(y) = T. a

Definition 15.5.18 The pointwise order <., on functions f,q: A — B is defined as:
fgem‘g Zﬂ Va ZA(fOQ?SBgOCIf) .
The following theorem provides the basic insight into the structure of £4.

Theorem 15.5.19 Let A be a per. Then: (1) The per Y4 is separated and S-linked.
(2) The intrinsic order on ¥4 coincides with the pointwise order.
(3) The per X4 is complete.

PROOF. We start with the construction of a lub. Let AS5°*(X4) be the collection of
functions x : N — (£4) such that x(n) <. x(n41), that is the collection of ascending

sequences with respect to the pointwise order. We define a function o : AS”t(EA) —
¥4 (looking at ¥ as 1 — 1):

o(x) =Xz : AXz: Lif (Inx(n)(z) ) then | .

It is immediately verified that o(x) is the lub of x with respect to the pointwise order.

Next, suppose f,g : A — ¥ and f <. g. We build & : ¥ — (£4) such that
h(K) = g and h(K¢) = f. This will prove that ¥ is ¥-linked and that the pointwise
and intrinsic orders coincide. Consider a family of chains ¢(n,7) : A — X defined as
follows (cf. proof theorem 15.5.7):

if nn |1

otherwise .

, g(2)
c(n,i)(z) =
e ={ 4
We observe that for all n, Ai.c(n,i): AS®(X4) and that:

. . ifneK
a(Ai.c(n,i)) = { i]f if n e K°.

Then we can define h as specified above. By proposition 15.5.14(2), we can conclude
that ¥4 is Y-linked. Finally observe that since pointwise and intrinsic order coincide,
the function ¢ proves that 34 is complete. a

Basically the same proof technique is used to prove the following result.
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Proposition 15.5.20 If A is a complete and separated per then A is Y.-linked.

ProoOF. Let 2 <4 y and consider the following family of chains:

N )y ifanla
c(n,i) = { x otherwise .

Fixed n, the ascending sequence Ai.c(n,7) is apparently innocuous, as it can take at
most two values. However for a general per we do not know how to compute the lub
of this sequence. For complete per’s we can use o4 to define:

h(n) = oa(Ai.c(n, 1)) .

Observe that h: {K, K} — A with A(K) =y and h(K°) = z. O

Next we consider a condition stronger than separation and X-linkage which is due
to [FMRS92].

Definition 15.5.21 (extensional per) A per A is extensional if there is a per B
such that [A] C [YP]. We denote with exper the full sub-category of extensional per’s.

Exercise 15.5.22 Show that the following is an equivalent definition of extensional
per. A is an exper if there is X C D such that [A] C [SP9(X)] where Diag(X) =
{(z,2) |z € X}. Hint: for A per, [¥4] C [nPies(14D],

Proposition 15.5.23 Let [A] C [¥P] be an extensional per. Then:
(1) A is separated and 3-linked.
(2) If f,g:Athen f<ag iff YVo:B(fob<xgob).

Proor. (1) By proposition 15.4.3, every per XP is separated, and separated per’s
are closed under subobject. By theorem 15.5.19, ©F is Y-linked and by proposition
15.5.17, ¥-linked per’s are closed under subobjects obtained by selecting a subset of
the quotient space.

(2) By proposition 15.5.17, f <4 g iff f <gp ¢. By theorem 15.5.19, we know that
the order on ¥ is pointwise. a

Theorem 15.5.24 The category exper is reflective in the category of separated per’s.

ProoF. We use A = ¥ as a linear notation for ¥4. We already know that every
extensional per is separated. We define a reflector L., : X per — exper as follows:

[Lex(A)] = {[Nuwud)asp)=x [ d € |A]}

This is an exper as by definition [L.,(A)] C [(A = X) = X]. The universal morphism
ea: A— Ley(A) is the one realized by A*d.A*u.ud. Intuitively it takes an element d to
the collection of its neighbourhoods A*w.ud. By construction e4 is an epi, moreover it
is also a mono if A is separated. Note that L., can also work as a reflector from per
to exper.
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Next we show that if B is extensional then eg : B — L.,(B) is an iso. Sup-
pose [B] C [C = X]. We take eg' : L.,(B) — B as the morphism realized by
A i *c.i(A*u.uc). Let us try to type, semantically, this term. First one can check that:

NiNei(Nuue) € [(B=X) = X) = (C = 3)|.

Since B C (C' = Y), we can “coerce” u from B to C' = ¥. Since L..(B) C (B =
Y) = X, we can also type the term as follows:

XA ci(Nuaue) € |Ley(B) = (C = X) . (15.1)
Finally, looking at the definition of L., (B) we can prove
A" e X ei(Nuuce) € |Lep(B) = B| .
Suppose 0 L. (B) ¢'. Then there is f € |B| such that
0(B=Y)=X\vuf(B=2X)=X§¢.
We compute:

(A X ci(Nuue))(Nvof) = Ae.(Nvof) (A uuc))
= Ne.(Nuuce) f
= Nc.fe.
From the typing 15.1 we derive:
Nc.0(XNu.uc) (C= 3) Ne.fe(C = X)) XNe.d' (Nu.uc) .

Since, M e¢.fe(C'= X) f and f € |B|, it follows A*c.0(A*u.uc) B X c.0/ (A*u.uc). To show

that egl is an iso, we compute the realizers:
(AN ci(Nuaue)) (N dwawd) f = (ML N ci( XN uue)) (X w.awf)
= Ne.(Nw.awf)(XNu.uc)
= Ac. fe.

Vice versa (A*dw.wd)(X*c.fe) = Nw.w(AX*e. fe). Finally, given ¢ € |A = B we define
¢ € |Lex(A) = L. (B)| as follows:

¢ = Ni XN wi(Na.u(ga)) .

If f=[¢lasp set Lex(f) = [9]1.0(a)= Lew(B)- O

Theorem 15.5.25 (1) The categories of extensional per’s and complete extensional
per’s are closed under arbitrary intersections.
(2) The category of complete extensional per’s (cexper) is reflective in exper.



454 CHAPTER 15. DOMAINS AND REALIZABILITY

ProoF HINT. (1) If [A;] C [2B] for i € I, then [;c; Ai] C [EUieI B"]. This shows that
exper is closed under arbitrary intersections. Note that the fixed point combinator
o defined in the proof of theorem 15.5.19 has a realizer that works uniformly on all
ascending sequence. This realizer can be used to prove that ;. A; is complete if the
A;’s are complete.

(2) Suppose [A] C [EP]. We define the reflection L.(A) as the least cexper such that:
[A] C L.(A) C [¥P].

If | f: A — B for A exper and B cexper then let L.(f) = [¢]gr.a). We use the fact
that realized functions are continuous to show that L.(f) is well-defined. O

Exercise 15.5.26 Show that the category of (complete) extensional per’s is cartesian
closed.

To summarize we have proven the following reflections when working over the pca

(w,9):
cexper C- exper Cs Xper C per Cs w-set .

From left to right: theorem 15.5.25, theorem 15.5.24, theorem 15.4.12, and proposition
15.1.9. The category of complete separated per’s can also be shown to be reflective
in Xper when appropriately formulated in the internal language of the effective topos
[Pho90], however this proof lies outside the realm of our introductive approach to
realizability.

15.6 Per’s over D

We identify a category of complete uniform per’s (cuper’s), which is a full sub-
category of the category of per’s when working over a specific D,, A-model.

Definition 15.6.1 Let D be the initial solution of the equation:
D=(D—D)+(DxD)

in the category of cpo’s and injection-projection pairs where + is the coalesced
sum.

We note that in general in; : ¢ — C 4+ C’ and in, : ¢ — C + C' form
the injection part of an injection-projection pair. We define Dy = {L} and
Dyy1 = (D, = Dy)+ (D, x D,,) with injection projection pairs (i, j,) : D, — D.

We remark that D is bifinite. Let p, = j, 010, : D — D be a projection
such that im(p,) = i,(D,). We consider the following injection-projection pairs:

(1,)=) (D = D) = D and (ix,7x) : D x D — D. As usual we define for

d,e € D:
(d,e) =1x(d,e)
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The application de has the properties required for a pca. We will use the following
properties (cf. section 3.1):

<d7 €>n+1 = <dnv €n>
dn-}-le = dn+1€n = (den)n

Exercise 15.6.2 Prove the properties above following section 3.1.

In this section D stands for the domain specified in definition 15.6.1. When-
ever we speak of a relation we intend by default a binary relation over ). For
A € perp we let A, = AN (im(p,) X im(p,)). In order to distinguish indexes
from approximants we write indexes in superscript position, so d' is the n-th
approximant of the i-th element.

Definition 15.6.3 A relation R is:

(1) pointed if (Lp, Lp) € R.

(2) complete if for all directed X C A,V X € A. ?
(3) uniform if A# 0 and Vn € w(dAe=d, Ae,).

The uniformity condition will play an important role in proving that the
associated quotient space is algebraic and in solving domain equations.

Proposition 15.6.4 The category of complete uniform per’s is cartesian closed.
PrROOF HINT. We define the terminal object as 1 = D x D. For the product let
d(A; x Ag)e iff mi(jx(d)) Aimi(jx(e)) fori=1,2.

The exponent is defined as usual:
fBYg iff Vd,e(dAe= fdB ge) .

Let us check that B# is uniform if A, B are. From LB 1, 1 B4 L follows.
Suppose f BA g and d Ae. To show f,d B g,e observe:

dAe=d,Ae, = fd, Bge, = (fd,), B(gen)n
and we know (fd,), = foy1d. O

Exercise 15.6.5 Following section 15.2 define an interpretation of system F in cu-
per’s.

Complete per’s (cper’s for short) are closed under intersections. Then we can
complete a per to a cper as follows.

2In this section “complete” has a different meaning than in the previous section.
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Definition 15.6.6 (completion) Let A be a per over D.,. The least complete
per containing A is defined as:

A=({B|B cper and B2 A} .
In the following we give an inductive characterization of A.

Definition 15.6.7 Let R be a binary relation on D. We define:

Sup(R) ={V X | X directed in R} (directed closure)
TC(R) =S| S transitive and S O R} (transitive closure) .

Proposition 15.6.8 (1) If R is symmetric (pointed) then Sup(R) and TC(R)
are symmetric (pointed).

(2) If A is a pointed per then TC(Sup(A)) is a pointed per.
Proor. Immediate. O

Definition 15.6.9 Let A be a pointed per. Define

A(0) =A
Ala+1) = TC(Sup(A(a)))
Ap) = U<, Ala)  (p limit ordinal) .

Let A be a pointed per. Then for cardinality reasons there is some 3 such
that A(8) = A. The following lemma points out the effect of the completion
process on the function space and on uniformity.

Lemma 15.6.10 (1) If A and B are pointed per’s then B4 C B2,
(2) If A is a uniform per then A is a cuper.

PROOF. (1) By induction on o we show that B4 C B(a)*). The base and limit
case are clear. Suppose f B4 ¢g. We distinguish two cases.

o Ifd=V,d and e = Vcr€', where {(d',€')}ie; is directed in A(a) then
{(fd', ge') }ier is directed in B(a) and therefore:

(fd,ge) = (\/ fd',\] g¢') € Sup(B(a)) .

1€l €1

o IfdTC(Sup(A(a)))e then we can apply the previous case to each edge of the
path connecting d to e.
(2) By induction on a we show that A(«a) is uniform. The base and limit cases
are clear. Suppose d A(a 4 1) e. Again we distinguish two cases:
o Ifd=V,;d and e = Vs ¢, where {(d’, ") }ies is directed in A(a), we show
d, Sup(A(a))e, by observing that (V;crd), = Vier(d'), and {((d'),, (€"),)}ier
is directed in A(a). Hence Sup(A(«a)) is uniform.
e Suppose d' TC(Sup(A(a)))d* because d* Sup(A( V) d* - dFt Sup(Ala)) d.
Then (d"), Sup(A(a)) (d?), - (d*"), Sup(A(a)) (d*),, as Sup( (e)) is uniform
by the previous case. Therefore (d'), TC(Sup(A(a))) (d*),. O
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Exercise 15.6.11 Show that the category of complete per’s is reflective in the category
of pointed per’s, and that the category of complete uniform per’s is reflective in the
category of uniform per’s.

The intrinsic preorder <4 on a cuper A induces a preorder on |A| as follows

Definition 15.6.12 (induced preorder) Let A be a cuper and d,e € |A|. We
define:
dSA € Zﬁr [d]A SA [G]A .

In the following we characterize the induced preorder.
Definition 15.6.13 Let A be a cuper. Define <a=TC(AU (<p N|A[*)).
Lemma 15.6.14 Let A be a cuper. Then =<4 is a uniform preorder on |A|.

PROOF. We observe that AU (<p N|A|?) is uniform and that transitive closure
preserves uniformity. O

Lemma 15.6.15 Let d € K(D) be a compact element and let A be a cuper. Then
the following set is a Scott open:

W(d)={ee D|3e(d=a€e <pe)}.

PRrROOF. Clearly W(d) is upward closed. Suppose ¢ = \/;c; e’ € W(d) for {e'}ies
directed. From d <4 ¢ <p Vier e' we derive:

Elnv.](d = dn jA e; SD (\/ ei)n = 6‘3; S ej) .
el

This follows from the uniformity of <4 and the fact that im(p,) is finite. We can
conclude e; € W(d). O

Remark 15.6.16 Let d € K(D) be a compact element and A be a cuper. Then
U(d) ={[e]a | d <4 e} € B(A). It is enough to observe W(d) N |A| = |U(d)|.

Lemma 15.6.17 Let d € K(D) be a compact element and A be a cuper. Then:
d jA (& lﬁ d SA e .

PRrOOF. By remark 15.4.7 it follows d <4 e implies d <4 e. Vice versa, suppose
d <4 e and not d <4 e. Build the Scott open W(d) as in lemma 15.6.15 and
the sub-per U(d) as in remark 15.6.16. Then [d]4 € U(d) and [e]4 ¢ U(d) which
contradicts d <4 e. O
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Theorem 15.6.18 Let A be a cuper. Then:
(1) The induced preorder is the least complete preorder containing =<4.
(2) The preorder <, is uniform.

PRrOOF. We denote with <% the least complete preorder containing =< 4.

(1) We already know that <4C<,4. Hence <5 C<y since <4 is complete. Vice
versa, suppose d <4 e. Then Vn (d, <p d <4 €). So ¥n (d, <4 ¢) and by lemma
15.6.17, Vn (d, =4 €). By completeness d =V, ., d, <5 €.

nw

(2) We know from lemma 15.6.14 that <4 is uniform and we have already
observed in lemma 15.6.10 that the completion process preserves uniformity. O

Theorem 15.6.19 Let A be a separated cuper. Then ([A], <4) is a bifinite do-
main.

Proor. Clearly ([A], <4) is a poset with least element [L] 4.

e We show that any (infinite) directed set {[d'] 4}:cs has a lub. Given J' C J we
say that J’ is cofinal with J if:

VieJIjeJ (d<sd).

Let X, ={e€ D |Vieldje€l(d <4 d and e =d’)}, in other words e € X,
if there is a subset J of I, cofinal with I, and such that Vj € J(e = d’). We

remark:

o X, Cum(p,)N|A|is finite since tm(p,) is finite. Moreover X,, is non-empty
since at least one element in im(p,) will be hit infinitely often when projecting
elements in the directed set.

o Vee X, 3¢ € X,.41 (e <p ¢€'). We show this by induction on n. If n = 0 then
e = L and every ¢ will do. If e € X,, then there is a .J, cofinal with / such that
J C 1 andVje J(d = e¢). Since im(p,) is finite there is J' C J cofinal with
J (hence with I) and an element ¢’ such that Vj € J’(de_l =¢'). Then e < ¢
since e = d! <p d,,; =€, and ¢ € X, 4y, by construction.

Hence we can build a sequence {e"},¢, such that " € X, and e" <p e"*'.

By completeness we have V/, o, e" € |A|. We claim:

\é[di]A = [\E/ e"a .

In the first place we show that Vi € I(d'" <4 V,c,€"). By completeness and
uniformity it is enough to prove:

Vi€ IVm e w(d <4 \/e”).

new
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We observe: _ 4 ‘
Vie IVm ewdyjeld <jgd and d!, =™ .

By uniformity, we have d!. <, d’ , and d?, = ™ <p \/ ¢". Finally we note:
Vnewdiele" <,ud

as Ji (e" = d', <p d'). Given [d]4 upper bound for {[d"]4}e; it is immediate to
show V¢, e" <4 d.

o Next let us prove that the quotient space is w-algebraic. We claim:

(1) If d € K(D) N |A| then [d]4 is compact in ([A], <4).

Suppose [d]a <4 Vier z', for {a'}ier directed. Consider the chain {€"},c, we
have built above. Then d <4V

n .
new €7 Hence:

Elmapv.](d: dm SA (\/ en)m = egl SA eP SA d]) .

new

(2) Vd € |A|([d]a = V,euldn]a).
We observe d,, <p d,+1 implies d,, <4 d,,+1 and moreover, if Vn € wd, <4 e then
by completeness \/, ¢, d, <4 e.

e To prove that ([A], <4) is bifinite we consider the sequence {prj” : A — A},c.
where prj™ is the function realized by the projection p,. O

Corollary 15.6.20 All morphisms in the full subcategory of separated, complete,
uniform per’s are Scott continuous.

Proor. Consider f : A — B and {[d']4}ics directed in [A]. The existence of
Vier f([d]4) is guaranteed by the monotonicity of f and theorem 15.6.19. Tt

remains to prove: ' '
FVd]a) <8\ f([d]a) -
iel iel
Suppose ¢||—f and consider the chain {€"},¢, built in theorem 15.6.19. Then we
have ¢(V,ey €") = Ve, d€”. Also, since ¥n 3i € I (" <4 d'), we have, by mono-
tonicity Vn € wi € [ (¢e" <p &d'). Hence we can conclude [V, ¢, ¢e"]p <5

\/iEI f([di]A)- =

Domain equations can be solved in the category of cuper’s, by an adaptation
of the traditional approach based on injection-projection pairs [AP90]. In the
following we follow a more direct path that exposes an interesting metric structure
on the space of cuper’s [Ama9lc].

Definition 15.6.21 Define a closeness function c¢ : cuper? — wU{oc} as follows:

maz{n | A, = B,} if A#B

%) otherwise

(A, B) = {
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The distance d : cuper? — R is defined as

2B f A4 B
d(A, B) = { 0 otherwise

The space cuper resembles spaces of infinite labelled trees [AN80]. Roughly
speaking these spaces are compact if the collection of distinct objects up to the
n-th level is finite.

Proposition 15.6.22 (1) (cuper,d) is a metric space.

(2) The space is an ultra-metric, that is d(A, C') < max{d(A, B),d(B,C)}.
(3) The space is (Cauchy) complete.

PROOF. The first point is left to the reader. For the second point observe that:
A, =B, and B,, =C,, = A, = Cy where k = min{n,m} .
For the third point, let {A'};., be a Cauchy sequence, that is:
Ye> 03n Vi, j > n.(d(A, A7) < ¢) .
We build A = lim;., A’ by stages. We note that:
Vn > 03k, Vi > k, A, is constant .

Let BY = A¥. We observe that {B'},., is a chain of cuper’s with respect to
inclusion. Let B = U, B'. We claim that B = lim;<,A’". To this end it is
enough to check:

ViVa B' = (B(a)); .
In other terms the completion operation does not add new approximating ele-
ments. This can be shown by induction on « (cf. proof lemma 15.6.10). a

An operator f over a metric space (X, d) is contractive if there is a constant
¢ such that 0 < ¢ <1 and

Va,yd(f(z), [(y)) < cd(w,y) .

A well-known result known as Banach’s theorem states that contractive operators
over a complete metric space have a unique fixed point (exercise!). It turns out
that exponent and product type constructors are contractive. It follows that the
related recursive type equations have a unique solution in cuper up to equality.
This fact is applied in exercise 15.7.5.

Proposition 15.6.23 Let d((A, B), (A", B')) = max{d(A, A"),d(B,B")}. Then:
(1) d(B*, B*) < (1/2)d((A, B), (A", B)).
(2) d(A % B, A B) < (1/2)d((A, B), (4, B))

PROOF HINT. We note that: Ay = A} and By, = B}, = (B*)sy1 = (B g1,
The factor (1/2) comes form definition 15.6.21 and the properties of Do, models.
O



15.7. INTERPRETATION OF SUBTYPING 461

15.7 Interpretation of Subtyping

We present an application of the category cuper to the development and inter-
pretation of a theory for the subtyping of recursive types. Let us start with an
intuitive explanation of what subtyping is. Various theories of subtyping have
been proposed in the literature on software engineering (see, e.g., [Car88, Lis88]).
Their principal aim is to support a certain cycle of software development where
programs evolve over time as they are restructured and new functionalities are
added. Such theories support an incremental design of software systems and es-
tablish under which conditions the programmer is allowed to reuse previously
created modules.

Such reuse may require the introduction of explicit or implicit coercions whose
effect on the semantics of the program has to be clearly understood by the pro-
grammer. A formalization of this concept in the context of typed languages can
be given in two steps:

e Introduce a relation of subtype denoted by <. If ¢ and 7 are types, the
intuitive interpretation of o < 7 (read as o is a subtype of 7) is: every o-value
can be coerced to a 7-value.

e Specifiy nature and use of such coercions.

In other terms the two basic questions in the design of a typed A-calculus with
subtypes are whether two types are in the subtype relation, and whether a term
has a type.

In the approach to be formalized next we take the view that o is a subtype
of 7 if for every term M of type o, say M : o, and for every possible choice
of a run time code d for M (henceforth we will say that d is a realizer for M),
there is a unique term N : 7 (up to semantic equivalence) that has d among its
realizers. This approach is inspired by model-theoretical considerations [BLSS]
as one can give a precise mathematical meaning to our informal statements in
the framework of per-models. For the time being let us anticipate the pragmatic
consequences of our view of subtyping and coercions:

e Coercions are uniquely determined.

e Coercions do not produce run-time code, hence there is no need for recompi-
lation.

e The specific “implementation” of a data-type becomes relevant, as subtyping
is not invariant under isomorphism. For instance the types o x ¢ — 7 and
o — (¢’ — 1) are isomorphic but they are incomparable with respect to the
subtyping relation.

Definition 15.7.1 (interpretation of subtyping) Let T be a type structure
(cf. definition 15.3.1). We write T |= o < 71 if for any n, [o]n C [7]n.

Remark 15.7.2 (1) In the semantic framework developed for type assignment
systems we have that T = o <7 iff T EAe.x 0 = 7. (2) Let A, B be per’s, if
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A C B then there ts a unique morphism ¢ : A — B n per that has the identity
(formally the combinator skk) among its realizers. We refer to this morphism
as the coercion morphism from A to B. Incidentally the vice versa also holds: if
¢: A — B is a coercion morphism then A C B.

In order to discuss the impact of this interpretation of subtyping on language
design we consider a simply typed A-calculus with recursive types, the Apc-
calculus for short. The language of types is defined as follows:

to w=t|s]|...
o u=to|L|T|o—=r7|ptv.o.

Here L and T are two constant types that denote the least and greatest type
in the subtyping relation, respectively. The type ut.o is intended to denote the
“least” solution of the equation ¢ = o(#). The language of terms is defined as
follows:

v ou=alyl...

M z=v|Xv:oM|MM]|fold,,, , M| unfold ,, M .

utv.o utv.o

Besides the usual rules for the simply typed A-calculus we have rules for folding
and unfolding recursive types:

I'EM:out.o/t] I'EM:pto
I'F fold M :pt.o  T'Funfold , .M : olut.oft]

Following our informal discussion on subtyping we want to define a formal theory
to derive when o < 7 and enrich the typing system with the following rule

'-M:0 c<r7
'=M:r

(Subd)

We introduce in figure 15.3 a formal theory for deriving subtyping judgments on
recursive types. The theory is composed of two groups of rules:

(1) The first group defines the least congruence induced by the the rules (p-L),
(fold), and (py). In the (i;) rule the condition o | ¢ is read as t is contractive
in ¢ and means that o can be rewritten by unfolding into a type of the shape
o1 — oy. For instance ps.(t — s) | ¢ but ps.t ft. The rules for type equivalence
are inspired by classical results on regular languages (see, e.g., [Sal66]). The (u)
rule should be regarded as a syntactic version of Banach’s theorem (cf. section

15.6).

(2) The second group of rules is used to derive proper inequalities. The basic
judgment has the shape A F o < 7, where A = ¢, < s9,...,t, < sp, 14, 8; are
type variables, and n > 0. The rule (—) resembles the one introduced for filter
models in chapter 3. The intuition for the premise of the rule (x) is that the
following holds: for all per’s A, B, if A C B then [¢][A/t] C [7][B/s].
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Rules for equality

(ref) —— (sym) ——
_ _ _ —

I L R

(=) ﬁ (p-L1) =L

Gold) — e () CASTIILET 00

Rules for subtyping
W FEL w Rkegracrs
) L558
W RFr<e D ArozT
(=) AFod <o AI—/T§7/" (1) At<sko<tT t¢FV(T), s¢ FV(o)
AFo—or1<0 > Al ut.o < ps.t

Figure 15.3: Subtyping recursive types

Exercise 15.7.3 Derive the following judgments:

pts 1) =pt(s o (s 1)
Wit = (E = 1) = pt((t > 1) > )
ps.(T — s) <L — (pus.(s—s)) .

Next we interpret the Au<-calculus in cuper’s.

Definition 15.7.4 The type interpretation is parametric in n : Tvar — cuper
and s defined as follows:

[L]n ={(Lp,Llp)}

[Tln =DxD

[o— Iy =[]y

[ty = Fiz(\A [ola(A/)
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x if f is contractive and f(x) =
Fiz(f)={ (Lo, Lp)} if f = id
undefined otherwise

Exercise 15.7.5 Verify that the type interpretation is always defined (cf. proposition
15.6.23).

Definition 15.7.6 We write t; < s1,...,t, < s, = o < 7 if for all type envi-
ronments n, if n(t;) S n(s;) fori=1,...,n then [o]n C [7]n.

Theorem 15.7.7 [fAtF o <7 then Ao <.

ProoOF HINT. By induction on the length of the derivation. We have already
observed that rule (py) is a syntactic version of Banach’s theorem. The only rule
that deserves an additional comment is (). If f is contractive or the identity and
C' is the least cuper then the Cauchy sequence {f"(C)},<., converges to Fiz(f).
Suppose f, g are contractive or the identity, the semantic reading of the rule goes
as follows:

VA, B(AC B= f(A) Cyg(B))
Fix(f) C Fix(g)

From the premises we can prove by induction f*(C') C ¢"(C). From this we can
draw the conclusion Fiz(f) C Fixz(g). O

Exercise 15.7.8 Prove that the following inequality holds in the cuper’s interpretation
but is not derivable in the system (with empty context) o — o < — T. It is shown
in [AC93] that the system extended with the inequality above is complete with respect
to a modified interpretation.

The term interpretation follows the interpretation of system F in the category
of per’s defined in section 15.2. The constants fold and unfold are interpreted by
the identity, as recursive equations are solved up to equality. More results on this
theory of subtyping can be found in [AC93]. Two important points that hint to
the practical relevance of the theory sketched above are:

(1) It is decidable if ¢ - o < 7.

(2) There is an algorithm that decides if a term is typable, and if this is the case
the algorithm returns the least type that can be assigned to the term.



Chapter 16

Functions and Processes

The functional view of computation finds perhaps its most serious limitation in
the analysis of concurrent systems (cf. chapter 9). The challenge is then to cope
with the problems offered by concurrent systems while retaining some of the
mathematically brilliant ideas and techniques developed in the pure functional
setting.

In this chapter we introduce a simple extension of Ccs known as m-calculus.
The m-calculus is a rather minimal calculus whose initial purpose was to represent
the notion of name or reference in a concurrent computing setting. It turns
out that the m-calculus allows for simple encodings of various functional and
concurrent models. It can then be used as a privileged tool to understand in
which sense functional computation can be embedded in a concurrent model.

Section 16.1 is dedicated to the introduction of some basic theory of the -
calculus. In section 16.2 we illustrate the expressive power of the m-calculus by
encoding into it a concurrent functional language, the A-calculus for short, that
can be regarded as the kernel of concurrent extensions of the ML programming
language such as Lcs, CML and FACILE where an integration of functional and
concurrent programming is attempted.

16.1 mw-calculus

In chapter 9 we have presented a calculus of processes, CcS, in which interaction
arises as rendez-vous synchronization on communication channels. This compu-
tation paradigm is enhanced in the m-calculus (see [MPW92], after [AZ84, EN86])
by allowing:

e Channel names as transmissible values.

e T'he generation of new channels.

Because of these essential features the development of the m-calculus theory along
the lines known for Ccs (labelled transition system and related bisimulation)
leads to a series of complications which can be hard to appreciate for a beginner.

465
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For this reason we follow a different approach. We present first the m-calculus
as a programming language. Technically this means to specify abstractly how a
m-calculus program can be evaluated and to explain how this evaluation can be
implemented. Once a reasonably clear implementation model has been sketched
we introduce a notion of observation as the capability of a process to commit to a
certain communication and we derive a notion of barbed equivalence on processes.

Barbed equivalence is a natural relation by which two 7-terms can be com-
pared [MS92]. Unfortunately it is difficult to relate two processes using this
approach, as we always have to work with arbitrary contexts. This motivates
the quest for a characterization of barbed equivalence which is better suited to
mechanical verification. Towards this end, we introduce a labelled transition sys-
tem and a related notion of w-bisimulation. A central result, whose proof we
present here, says that m-bisimulation and barbed equivalence coincide. As an
application of this characterization we show the decidability of equivalence for a
special class of finite control processes.

The Language. We suppose that there is a countable collection of channel

names that we denote with a, b, ... Processes are specified by the following gram-
mar:
n uz=alb]...

P uz=0|an.P|nn).PlvnP|(P|P)|[n=nlP|(yv.P+ - +~.P)| A7) .

e 0 is the process which is terminated and that can be garbage collected. Usually
we omit writing 0, e.g. @b stands for @b.0
e @b.P is the process that sends the channel name b on the channel ¢ and becomes

P.

e a(b).P is the process that receives a channel name, say ¢, on the channel a and
becomes P[b/c]. The formal parameter b is bound in a(b).P, in general bound
names can be renamed.

e va P is the process that creates a new name different from all the existing
ones and becomes P. The name « is bound in va P. We denote with F'V(P) the
collection of names occurring free in P.

e (P | P) is the parallel composition of two processes.

o [a = b]P is the matching construct. If the match holds then execute P else
terminate.

o v.P+ -+ ~,.Pis a guarded sum, where all alternative processes commit
on an input/output action. The prefix v is an abbreviation for an input/output
guard, i.e. v m=7n | n(n).

o We denote with A, B, ... agent identifiers. For every agent identifier there is a

unique defining equation A(ay,...,a,) = P where all free names in P are included
in {ay,...,a,} and all occurrences of an agent identifier in P are preceded by
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@.P+ P [ (a(0).Q + Q) = P | Qb/d [i=aP > P

P—Q
D[P] = D[]

P=P P =Q Q=Q
P—qQ

where D :=[]|D | P|vnD

Figure 16.1: Reduction for the m-calculus

an input/output prefix. When writing processes guarded sum has priority over
parallel composition.

Structural Equivalence. The basic computation rule in m-calculus is:
ab.P | a(c).Q — P | Q[b/c] (16.1)

Unlabelled reductions like those in rule 16.1 represent internal communications
and correspond to the 7-transitions in CcS. The reduction rule 16.1 is not suffi-
cient to represent all possible internal communications. In order to have a greater
flexibility we define a relation =, called structural equivalence, which is the small-
est congruence on processes generated by the following equations:

e Renaming: c(a).P = ¢(b).P[b/a], va@ = vbQ[b/a], for b ¢ FV(c(a).P) and
b¢ FV(va@). We denote with =, the congruence that identifies terms differing
only by the name of their bound variables.

e Parallel composition is an associative and commutative operator with 0 as
identity.

e The order of the guards in the sum is irrelevant. By convention whenever we
write v.P + () we intend that () denotes the rest of the guard, if there is any.

e Restriction commutations: va P | Q@ = va (P | Q), for a ¢ FV(Q).

e Lquation unfolding: any agent identifier can be replaced by its definition.

Remark 16.1.1 (standard form) Fuvery term without matching is structurally
equivalent to a term:

vaq I/ak(Q1||QM)

where Q; is a guard, namely Q; = Vi1 . Pia+ -+ Vi, - Pingy foriv=1,...,m and
k,m,n; >0 (conventionally take the parallel composition equal to 0 if m =0).
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Reduction. The reduction relation is presented in figure 16.1. In the first place,
the reduction rule 16.1 is generalized in order to take into account guarded sums.
Second, it is assumed that rewriting is modulo structural equivalence, and third,
reduction can be performed in certain contexts [) (note that it is not possible to
reduce under an input/output guard, a bit like in the weak A-calculus where it is
not possible to reduce under A-abstraction, see section 8.3). There is also a rule
taking care of matching. In order to understand the role of the various rules we
invite the reader to consider the following examples.

e Channel Transmission: a process sends on the channel b a channel name «
which allows interaction with a process receiving on a.

va (vb(ba | b(c).ee) | a(d).R') =T vavb R'[e/d] (16.2)

e Scope Intrusion: when receiving a channel under the scope of a restriction one
has to avoid name clashes (on « in the example).

ba | va(b(c).Q | S) — va' (Q[d'/a]la/c] | Sla'/a]) a fresh (16.3)

e Scope Extrusion: when transmitting a restricted name, the scope of restriction
has to be enlarged to the receiving process, this phenomenon is called scope
extrusion (in the example @ is the extruded name).

va(ba.P | R) | b(c).Q — va(P | R|Qla/c]) a ¢ FV(vcQ) (16.4)

Implementation. In this section we define an abstract machine which ad-
dresses two implementation problems: substitution and new name generation.
These problems are specific of the m-calculus as opposed to Ccs.

In order to implement substitution we can import the ideas already developed
for environment machines (cf. chapter 8), hence reduction is defined on closures
which are pairs of code and environment. Name generation requires a new idea.
In the m-calculus reduction rules, name generation is treated implicitly via a-
renaming and structural equivalence, in an implementation this is not admissible.

We describe an abstract machine as a term rewriting system modulo an as-
sociative and commutative operator representing parallel composition. Guarded
sum, matching, and agent definitions are omitted in the following discussion. The
machine can be extended to deal with these features without particular difficul-
ties.

o Channels are represented as strings.

e Process code syntax differs from process syntax for the insertion of a commit-
ment operator . This operator is used to represent the fact that the evaluation of
the prefix is terminated and the process is ready to commit on a communication.

C:=0]mn.C|nn).ClvnC|(C|C)|mn=C|n(n)=C.
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(0, p,0) — 1

(€1 p,0) — (C,p, 00)||(C", p, 01)

(vaC.p,0) — (C, plch(0)/a], 00)

(@.C, p,0) = (@ = C,p,0) i pla) =’ and p(b) = ¥
(a(b).C,p,0) — (d'(b) = C,p,0) if p(a)

(@ - C,p,0)||(alc) = C"p",0) = (C,p,0)|I(C", p'[b]c], &)

Figure 16.2: An environment machine for the m-calculus

e An environment p is a total function mapping channel names to channel names.
Initially the environment is the identity function. The substitution operation is
not carried out but it is recorded in the environment. The actual value of a
channel name is obtained by application of the environment function.

o A channel generator is a string in {0,1}*, we denote with 6 a generic string
and with € the empty string. We suppose that there is an injective function ch
that associates to every string 6 a channel name ch(#).

o A process descriptor is a triple (C, p, 8).

e We suppose that there is an associative and commutative operator || on process
descriptors having 1 as identity. This is the only structural equivalence on which
we rely.

e The process P is compiled into (P,id,¢). Initially all names in P are distinct
from a name ch(), for any 6.

With the conventions above, an environment machine to reduce m-terms is de-
scribed in figure 16.2 as a finite collection of term rewriting rules.

Exercise 16.1.2 Reduce (vaba.a(a).@b.0 | a(c).ed.d(c).0,id,¢).

Exercise 16.1.3 * (1) The machine in figure 16.2 solves at once the substitution and
the name generation problem. Describe a simpler machine which handles the name
generation problem only, leaving substitution as a meta-operation. (2) Formulate a
theorem that relates reduction in the w-calculus to reductions in the abstract machine

specified in (1).

There are other implementation problems that relate to concurrent languages
in general and that will not be studied here. For instance, we may note that the
machine described in figure 16.2 reduces modulo associativity and commutativity.
Algebraic manipulations are needed in order to bring in a contiguous position two
process descriptors committed on dual communications. Moreover the selection
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of the term to be reduced next is non-deterministic. In practice we need an
efficient and distributed way to perform communications. This task may include:

e The definition of a scheduler to order the jobs execution on a processor.

e The introduction of data structures to know which process wants to commu-
nicate on which channel.

e The execution of non-trivial protocols that guarantee a coherent selection of
communications, while avoiding deadlock (see, e.g., [BS83]).

Barbed Equivalence. We now turn to the issue of stating when two processes
are equivalent. We postulate that what can be observed of a process is its capa-
bility of committing (engaging) on an input/output communication on a visible
(i.e. non-restricted) channel. From this a notion of process equivalence is derived
as follows.

Definition 16.1.4 (commitment) A relation of immediate commitment P | 3
where 3 ::=n |7 is defined as follows:

Ple i P=vi(c(a)P+P|Q) c¢{c}
Ple ifP=vi(edP+P|Q) c¢{c}.

Moreover, define —> as the reflexive and transitive closure of the reduction rela-
tion —. Then a weak commitment relation P |. 3 is defined as:

PL.BifaP (P =P and P'|J).

Definition 16.1.5 (barbed (bi-)simulation) A binary relation S between pro-
cesses is a (strong) barbed simulation if PSQ) implies:

VP'(P— P = 3Q'(Q — Q' and P'SQ’)) and
VB(PLB = QL)

S is a barbed bisimulation if S and S™! are barbed simulations. The largest
barbed bisimulation is denoted with ~. By replacing everywhere — by —* and |
by |« one obtains the notion of weak barbed bisimulation. The largest weak barbed

bisimulation is denoted with ~. !

The relation ~ (or é) fails to be a congruence, in particular P ~ P’ does not
imply P | Q ~ P'| Q (already in CcS, a.b ~ a.c does not imply a.b | @ ~ a.c | @).
This motivates the introduction of the following definition.

The adjective barbed relates to a pictorial representation of the reductions and commit-
ments of a process. In this representation the commitments are the barbs and the internal
reductions are the wires connecting the barbs.
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Definition 16.1.6 (barbed equivalence) We define a relation ~ of strong barbed
equivalence and a relation = of weak barbed equivalence as follows:

P~ PYQ(P QP Q)
P~P if¥Q(P| Q&P |Q).

Exercise 16.1.7 * Which operators of the w-calculus preserve ~ and =% Hint: theo-
rem 16.1.20 can be helpful as it provides a characterization of strong barbed equivalence.

Polyadic m-calculus. We introduce some additional concepts and notations
for the m-calculus. So far we have assumed that each channel may transmit
exactly one channel name. In practice it is more handy to have a calculus where
tuples of channel names can be transmitted at once. This raises the problem of
enforcing some sort discipline on channels, as emitting and receiving processes
have to transmit and accept, respectively, a tuple of the same length. A simple
sort discipline can be defined as follows. Every channel is supposed to be labelled
by its sort. Sorts are used to constraint the arity of a channel. A channel of sort
Ch(s1,...,8,) can carry a tuple z1,..., z,, where z; has sort s;, for e =1,...,n.
For instance, if n = 0 then the channel can be used only for synchronization (as
in Ccs), and if the sort is C'h(0) then the channel can only transmit some ground
data of type o.

Simple sorts s =0 | Ch(sy,...,s,) (n>0)
The syntax for processes is extended in the obvious way:
P=7n,....,n).P|nn,...,n).P|---

Well-formed processes have to respect the sort associated to the channel names.
For instance, @(by, . ..b,).P is well formed if P is well formed, a has sort C'h(s1,. .., s,)
and b; has sort s;, for ¢ = 1,...,n. Mutatis mutandis, reduction is defined as in
figure 16.1. We call the resulting m-calculus polyadic.

Exercise 16.1.8 (1) Define a translation from the polyadic to the monadic w-calculus.
Hint translation: (¢(ay,...,a,).P) = vbeb.bay ...ba,.(P). (2) Check that T-reduction
1s adequately simulated.

Labelled Transition System. The aim is to define a labelled transition sys-
tem (Its) (cf. section 9.2) for the m-calculus which describes not only the com-
putations that a process can perform autonomously (the 7 transitions) but also
the computations that the process can perform with an appropriate cooperation
from the environment.

Definition 16.1.9 (actions) We postulate that a process can perform five kinds
of actions «:
az=71|nn|an|n|n.
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We can provide the following intuition for the meaning of each action:
e The 7 action corresponds to internal reduction as defined in figure 16.1.

e The ¢d and @d actions are complementary and they correspond, respectively,
to the input and the output on channel ¢ of a “global” channel name d.

e The ¢ and @ actions are also complementary and they correspond, respectively,
to the input and the output on channel ¢ of a “new” channel.

The notions of “global” and “new” are intended as relative to a given collection
of channels which is visible to the environment. To represent this collection we
introduce next the notion of context. It is possible to define the lts without
referring to contexts as shown later in figure 16.4. At first, we prefer to stick to
a more redundant notation which allows for an intuitive explanation of the rules.

Definition 16.1.10 (context) A context I' is a finite, possibly empty, set of
channel names. We write ¢1,...,¢, (n > 0) for the set {c1,...,¢,}, and I',c for

the set I'U {c} where ¢ ¢ I'.

To consider a process in a context we write I' = P, it is always intended that
the context contains all channel names free in P. We are now ready to define an
Its as an inference system for judgments of the shape (T'+ P) = (I" F P’) to be
read as the process P in the context I' can make an action o and become P’ in
the context I'V. The actions 7, ¢d and @d leave the context unchanged whereas
the actions ¢ and € enrich the context with a new channel.

In figure 16.3 the only “structural rule” is a-renaming. In order to keep the
system finitely branching we suppose that the collection of channel names C'h is
linearly well-ordered and we let fst be a function that returns the least element in
a non-empty set of channel names. In practice we pick the first name that does
not occur in the current context (and hence is not free in the process at hand).
The symmetric version of the rules (sync), (sync.,), and (comp) are omitted.

To some extent all that matters in the computation of the transitions are
the distinctions between channel names. In particular note that the choice of the
new names is completely arbitrary. We invite the reader to carry on the following
exercise which is useful in the proof of the following propositions.

Exercise 16.1.11 (1) Let o be an injective substitution on channel names. Relate
transitions of I' = P and o'+ o P. (2) Relate the transitions of ' = P and T" = P for
FV(P)yCcT CTI".

Definition 16.1.12 (7-bisimulation) A binary relation S on processes is a

(strong) m-simulation if whenever PSQ and I' = FV(P | Q) the following holds:
VPPI(TEPST'FP) = 3Q'(I'FQST'FQ and P'SQ’) .

The relation S is a w-bisimulation if S and S™' are w-simulations. We denote
with ~, the greatest w-bisimulation.
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Figure 16.3: A labelled transition system for the m-calculus
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Definition 16.1.13 Let Pr be the collection of processes. We define a function
F :P(Pr x Pr)— P(Prx Pr) by PF(S)Q if:

Va,P',I,I"(T = FV(P | Q) and T+ P 5 ' + P')
= 3QTFQITIFQ and P'SQ)

and symmetrically.

Exercise 16.1.14 Let ~0= Pr?, ~"Tl= F(~F) and ~= N,y ~F, for X limit ordi-
nal. Prove that (cf. proposition 9.2.8): (1) F is monotonic. (2) S is a w-bisimulation
iff S CF(S). (3) If {X;}ier is a codirected set, then F((Nicr Xi) = ier F(Xs). (4)

The greatest w-bisimulation ~, exists and coincides with ~“.

Proposition 16.1.15 Let o be an injective substitution on names. Then for any
processes P,Q), P~ Q iff oP ~, Q).

ProoF HINT. We show that the following relation is a m-bisimulation:
{(P,Q) | o injective on FV(P | Q) such that o P ~, c@}. O

Exercise 16.1.16 [In the definition of w-bisimulation we consider transitions with re-
spect to a context I' = FV (P | Q). This requirement can be relazed. Consider a sharp-
ened definition of the functional F, say Fy, where the condition “‘I' = FV (P | Q)”
is replaced by the condition “I' D FV (P | Q)”. Let ~y be the greatest fixpoint of the
Junctional Fy. Check that ~y,=~y. Hint: ~;C Fy(~r).

Exercise 16.1.17 (1) Show that all structurally equivalent processes are w-bisimilar.
(2) Which operators preserve w-bisimulation ? Hint: w-bisimulation is not a preserved
by the input prefiz, that is P ~r @ does not imply a(b).P ~. a(b).QQ. (3) Define the
notion of weak w-bisimulation (cf. definition 9.2.14).

We hint to a presentation of the labelled transition system which does not use
contexts. We suppose that the actions are redefined as follows:

az=7|nn|nn|n(n)|n(n) .

This differs from definition 16.1.9 because the new name b that is being received
or emitted is explicitly indicated in a(b),@(b) (which replace, respectively, the
actions a,@). The name b is bound in these actions. More generally we define
the following functions on actions, where fn stands for free names, bn stands for
bound names, and n for names, where n(a) = bn(a) U fn(a) and:

fn(r) =0 fn(@®)) = fr(a(d)) = {a} (@) = fn(ab) = {a,b}

bn(r) =0 bn(a(b)) = bn(a(b)) = {b} bn(ab) = bn(ab) =10 .

The labelled transition system is defined in figure 16.4, where the symmetric
version of the rules (sync), (sync.;), and (comp) are omitted. Comparing with
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Figure 16.4: A labelled transition system without contexts
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the system in figure 16.3 we note that the rules are in bijective correspondence
with those of the new system. Name clashes in the new system are avoided by
inserting suitable side conditions on the rules (v) and (comp). In a sense we trade
contexts against side conditions. The definition of bisimulation can be adapted
to the lts without contexts as follows.

Definition 16.1.18 Let Pr be the collection of processes. We define an operator
F :P(Pr x Pr) — P(Pr x Pr) as:

PF(S)Q ifVP'Va(bn(a)NFV(Q)=0 and P = P')
= Q' (Q = Q' and P' S Q') (and symmetrically)

where the transitions are computed in the lts defined in figure 16.4. A relation S
is a bisimulation if S C F(S). We define ~n=U{S | S C F(5)}.

The condition bn(a)NFV(Q) = () is used to avoid name clashes (cf. rule (comp)).
As expected, the two definitions of bisimulation turn out to be the same.

Exercise 16.1.19 * For all processes P,Q), P ~, Q iff P ~. Q.

Characterization of Barbed Equivalence. The definition of 7m-bisimulation
is technically appealing because the check of the equivalence of two processes can
be performed “locally” that is without referring to an arbitrary parallel context
as in the definition of barbed equivalence. On the other hand the definition
of m-bisimulation is quite intensional and clearly contains a certain number of
arbitrary choices: the actions to be observed, the selection of new names,. .. The
following result, first stated in [MS92], shows that strong m-bisimulation and
barbed equivalence are two presentations of the same notion, and it justifies, a
posteriori, the choice of the actions specified in definition 16.1.9 (this choice is not
obvious, for instance the “late” m-bisimulation first studied in [MPW92], which
is based on a different treatment of the input action, is strictly stronger than
barbed equivalence).

Theorem 16.1.20 Strong barbed equivalence and strong w-bistmulation coincide.

PRrROOF. We first outline the proof for a Ccs-like calculus following the notation
in section 9.2. Ccs can be seen as a m-calculus in which the transmitted names
are irrelevant. Formally, we could code a.P as a(b).P and @.P as vbab.P, where

b¢ FV(P).

e P~ (@) = P~ Q. Weobserve that:

(1) P~Q = PrQ.

(2) P~z Q = P|R~;Q]|R,forany R.

Hence, P ~, @Q implies P | R~ Q | R, for any R, that is P ~ Q.
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o P~ (@ = P ~,. Q. This direction is a bit more complicated. We define
a collection of tests R(n, L) depending on n € w and a finite set L of channel
names, and show by induction on n that:

AL(L D FV(P | Q) and (P | R(n,L)) ~(Q | R(n,L))) = P ~"Q.
If the property above holds then we can conclude the proof by observing:

PQ é‘v’R(P|R&Q|R)
=Vnecw(P|Rn L) ~Q|R(n,L)) with L=FV(P|Q)
= Vnew(P~"Q)
= P ~Y (@)
= P ~, () by exercise 16.1.14 .

We use an internal sum operator @ which is a derived n-ary operator defined as
follows:

&P, =va(aP|-|aPyla) a¢g FV(P|---|P,).

We note that P, @---@ P, = P;fori =1,...,n. We suppose that the collection
of channel names (Ch has been partitioned in two infinite well-ordered sets C'h'/
and C'h". In the following we have L Cg, C'h”. We also assume to have the
following sequences of distinct names in C'h':

{a, |n € w}
{0/ |necwand 3 e{rtU{a,a|ac Ch"}}
{b/f |n€wand B €{a,alaecCh"}}.

Commitments on these names permit to control the execution of certain parallel
contexts R(n, L) which we define by induction on n € w as follows:

R(0,L) =ap, andforn >0
R(n,L) =a,® (b, B Rn—1,L)) & B
B{e D (a.(b* D R(n—1,L))) |ae LUL} .

We suppose n > 0, FV(P | Q) € L, (P | R(n,L)) ~ (Q | R(n,L)), and
P 2 P'. We proceed by case analysis on the action « to show that Q can match
the action a. We observe that the parallel contexts R(n, L) can either perform
internal reductions (which always cause the loss of a commitment) or offer a
communication o.

a =71 Then:

(P R(n,L)) = (P | (b, & R(n —1,L))) .

To match this reduction up to barbed bisimulation we have:

(Q | R(n, L)) = (Q | (b, & R(n —1,L))) .
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We take two steps on the left hand side:
(P (5@ R = 1,1)) 5" (P R(n = 1,1)) .

Again this has to be matched by (we have to lose the b, commitment and
R(n — 1, L) cannot reduce without losing a commitment):

(Q 1B, & R(n —1,1))) 5" (@' | R(n —1,1) .
We observe @ =+ (). We can conclude by applying the inductive hypothesis.
a =@ The case o = a is symmetric. We may suppose ¢ € L.
(P | R(n,L)) 5 (P | (b, ®a.(t, & Rn—1,L)))).
To match this reduction up to barbed bisimulation we have:
(Q] R(n, L)) 5 (Q | (b, ®a.(¥, ® R(n —1,1L)))) .
We take three steps on the left hand side:
(P (b @a(b, @ Rn—1,L)))) 57 (P'| R(n—1,1)) .
Again this has to be matched by:
QI (& a @@ Rin—1,1)) 5 (Q'| R(n —1,1)) .
We observe Q 2 '. We can conclude by applying the inductive hypothesis.

o Next we generalize the definitions in order to deal with the m-calculus. We
assume to have the following sequences of distinct names in Ch':

{b,, b, | n € w}
{f|ncwand 3 € {r ad,a,ad,ala,a € Ch"}}
{P|n€wand € {ad,a,ad’,a|a,a’ € Ch"}}
{d°|n€wand B €{a|acCh'}}
{e, | n ew}.
The test R(n,L) is defined by induction on n as follows. When emitting or
receiving a name which is not in L, we work up to injective substitution to show

that P ~" Q).
R(0,L) = by ® by, andforn >0

R(n,L) =10, ®V,&
@& Rin—1,1)) &
{c & (@a' (" @ R(n—1,1)) | a,a’ € L} &
(e B va’ (@a". (7" & R(n—1,LU{d"})) |a € L} @
B{er @ a(a”).(@ @ (" = a1d, & R(n—1,1))|a,d’ € L} &
L @ ala"). (¢, @ (B{[a" = a’]EZ/ la' e L}@ e, ®R(n—1,LUu{d"}))|a€L}.
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Here we pick a” to be the first name in the well-ordered set C'h”\ L. In order to
take into account the exchange of new names between the observed process and
the test R(n, L), we have to generalize the statement as follows.

AL, L'(LD FV(P|Q), L' C Land vL' (P | R(n,L)) ~vL' (Q | R(n, L))))
= P~"Q.

One can now proceed with an analysis of the possible actions of P mimicking
what was done above in the CcCS case. o

The proof technique presented here can be extended to the weak case as stated
in the following exercise.

Exercise 16.1.21 * Show that weak barbed bisimulation coincides with the w-approzimation
of weak w-bisimulation, and that the latter coincides with mw-bistmulation on image fi-

nite labelled transition systems (cf. definition 9.2.3, proposition 9.2.8, and exercise
16.1.19).

Finite control processes. We restrict our attention to processes which are
the parallel composition of a finite number of processes defined by a finite system
of “regular” recursive equations (we also allow some channels to be restricted).
W.l.o.g. we suppose that these equations have the following standard form:

Alery . oye) =61 A1(61) + - + 0 Anlcn)

where the rhs of the equation is taken to be 0 if m = 0, and 4; is either a
standard guard or the output of a new channel, say vecde, that we abbreviate as
d(c). The parameters ¢; are drawn from either ¢y, ..., ¢, or the bound variable in
the prefix §;. Our main goal is to show that bisimulation is decidable for this class
of processes (the argument we give is based on [Dam94]). First, let us consider
some processes that can be defined in the fragment of the m-calculus described
above.

Example 16.1.22 (1) The following process models a (persistent) memory cell
(we write with in and we read with out):

Mem(a) = in(b).Mem(b) + out a.Mem(a) .

(2) The system va (G(a) | F(a)) is composed of a new name generator G(a) and
a process F(a) that forwards one of the last two names received:

(¢).F'(a,c)
ct(a)+ad.Fla) .

G(a) =a(b).G(a) F(a)
F'la,¢) =a(d).F"(a,c,d) F"(a,c,d)

a
a
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Note that if we try to compute the synchronization tree associated to, say,
the process G(a) we may end up with an infinite tree in which an infinite number
of labels occur. We need some more work to capture the regular behaviour of
the process. To fix the ideas suppose that we want to compare two processes i,
P,. The process P;, 1 = 1,2 consists of the parallel composition of n processes.
FEach one of these processes is described by a system of m equations, of the shape
A(¢) = Q. Always for the sake of simplicity, we suppose that each agent identifier
A depends on k parameters. Then the state of the process P; is described by a
vector:

Pr=vi(Aj(a) |- Aj(e)

where 1 < j, < m. The element A;, (¢), for 1 < h <n determines the equation
and the parameters being applied at the h-th component. Similarly we suppose
that the state of the process P, is described by a vector:

— —

Py = vb(Bj(di) | -+ | By, (dn)) -

The basic restriction that is satisfied by the processes F; is that recursion does not
go through parallel composition. This allows to bound the number of processes
running in parallel (in our case the bound is n) and is exploited in proving the
following result.

Proposition 16.1.23 [t can be decided if two processes having the structure of
P, and Py above are bisimilar.

PROOF. Suppose that we compare Py and P, by applying the definition of =-
bisimulation. It is clear that at any moment of the computation each process may
depend at most on nk distinct channel names. We may suppose that the free
channel names in P; and P, form an initial segment in the ordering of the channel
names (if this is not the case we can always apply an injective substitution).
Moreover we identify the process ve P with the process P whenever ¢ ¢ F'V(P).
Hence the size of the vectors of restricted channels @ and b is bound.

Next we select a set of channel names A which is the initial segment of the
ordered channel names of cardinality 2nk+1. There is a finite number of processes
of the shape Py or P, which can be written using names in A. So we can find
Pry Cpin Prsuchthat P, Py € Pry,and if ' = FV(P | PYand T+ P 5 T+ P
then P"” € Pry up to renaming and elimination of useless restrictions. We observe:

PlNPQ iff VnGw(lenPQ) iff VnEw(Pl(Nnﬁ(PmXPrl))P2)

The sequence Pry x Pry 2 (~' N(Pry x Pry)) 2 -« - converges in a finite number
of steps since Pry is finite. O
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16.2 A Concurrent Functional Language

Programming languages that combine functional and concurrent programming,
such as Les [BGGY1], CMmL [Rep91] and FaciLE [GMP89, TLP*93], are starting
to emerge and get applied. These languages are conceived for the programming
of reactive systems and distributed systems. A main motivation for using these
languages is that they offer integration of different computational paradigms in
a clean and well understood programming model that allows formal reasoning
about programs’ behaviour.

We define a simply typed language, called A, first presented in [ALT95],
and inspired by previous work on the FACILE programming language [GMP89,
TLP*93, Ama94] whose three basic ingredients are:

o A call-by-value A-calculus extended with the possibility of parallel evaluation
of expressions.

e A notion of channel and primitives to read-write channels in a synchronous
way; communications are performed as side effects of expression evaluation.

e The possibility of dynamically generating new channels during execution.

The Aj-calculus should be regarded as a bridge between programming languages
such as FACILE and CML [Rep91] and theoretical calculi such as the m-calculus.
To this end it includes abstraction and application among its basic primitives.
Benefits of having a direct treatment of abstraction and application include: (i)
A handy and well-understood functional fragment is available, this simplifies the
practice of programming. (ii) The distinction between sequential reduction and
inter-process communication makes more efficient implementations possible. (iii)
It is possible to reduce to a minimum the primitives which have to be added to
the sequential language, e.g. there is no need of pre-fixing and recursion, and
all bindings can be understood as either A-bindings or v-bindings. In a slightly
different formulation, the latter can be actually reduced to the former, we keep
both binders though to simplify the comparison with the m-calculus.

We start by fixing some notation for the Aj-calculus, ignoring typing issues
for the time being. There is a universe of expressions e, €', ... inductively gener-
ated by the following operators: A-abstraction (Az.e), application (e€’), parallel
composition (e | €'), restriction (va e), output (ele’), and input (e7).

The evaluation of an expression follows a call-by-value order, if the evaluator
arrives at an expression of the form ¢lv or ¢? (where ¢ is a channel and v is a
value) then it is stuck till a synchronization with a parallel expression trying to
perform a dual action occurs. As a programming example consider the following
functional F' that takes two functions, evaluates them in parallel on the number
3 and transmits the product of their outputs on a channel ¢ (we suppose to have
natural numbers with the relative product operation x):

=M Agvy (yl(f3) [ yi(g3) | ely? x y7)) .
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In order to implement the parallel evaluation of f3 and ¢3 a local channel y and
two processes y!(f3) and y!(¢3) are created. Upon termination of the evaluation
of, say, f3 the value is transmitted to the third process ¢!(y? x y?). When both
values are received their product is computed and sent on the channel c.

Our first task is to provide the Aj-calculus with a natural (operational) notion
of equivalence. To this end we define the relations of reduction and commitment
and build on top of them the notions of barbed bisimulation and equivalence
following what was done in section 16.1 for the m-calculus. Our second task is
that of showing that there is an adequate translation of the Aj-calculus into the
m-calculus. This serves two goals:

e The encoding of the call-by-value A-calculus and the transmission of higher-
order processes gives a substantial example of the expressive power of the m-
calculus.

o [t elucidates the semantics of the )\”—Calculus.

A Concurrent A-calculus. We formally present the Aj-calculus, define its
semantics and illustrate its expressive power by some examples.

e Types are partitioned into values types and one behaviour type.

ogu=o|(c—=0)|Ch(o)| (e —b) (value type)
b (behaviour type)
az=o0ol|b (value or behaviour type) .

e An infinite supply of variables x7,y7, ..., labelled with their type, is assumed

for any value type 0. We reserve variables f,g,... for functional types ¢ — a.
Moreover, an infinite collection of constants ¢7,d”,... is given where o is either
a ground type o or a channel type C'h(o’), for some value type o’. In particular
there is a special constant *°. We denote with z, 2/, ... variables or constants.

v u=x|y]...

e n=c v | Aw.e|ee|ele]e? | v e|0](e]e) .

o Well-typed expressions are defined in figure 16.5. All expressions are con-
sidered up to a-renaming. Parallel composition has to be understood as an
associative and commutative operator, with 0 as identity. Note that expres-
sions of type behaviour are built up starting with the constant 0, for instance
(Az : 0.0)(cM1G7) + b,

Expressions having a value type are called value expressions and they return a
result upon termination. Expressions having type b are called behaviour expres-
sions and they never return a result. In particular their semantics is determined
only by their interaction capabilities. Since we are in a call-by-value framework it
does not make sense to allow behaviours as arguments of a function. The types’
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(Asmp) ——r O 57
e« ero—a ¢€:0
(=1) Ale:0 =« (—E) ee o
| e:Ch(oc) € :0 ” e: Ch(o)
() ele’ 1 o (?) el o
e« e:b € :b
(v) 2T ¢ - o (/) T e[ b

Figure 16.5: Typing rules for the Aj-calculus

grammar is restricted accordingly in order to avoid such pathologies. It should
be remarked that the interaction capabilities of an expression are not reflected
by its type.

Next we describe a rewriting relation (up to structural equivalence) which is
supposed to represent abstractly the possible internal computations of a well-
typed Aj-expression. On top of this relation we build a notion of observation,
and notions of barbed bisimulation and equivalence.

Definition 16.2.1 A program is a closed expression of type b. Values are speci-
fied as follows: V ::=c|v | Av.e.

In the definition above, variables are values because evaluation may take place
under the v operator. In the implementation these variables can be understood
as fresh constants (cf. abstract machine for the m-calculus).

Local evaluation contexts are standard evaluation contexts for call-by-value
evaluation (cf. section 8.5). For historical reasons ! and 7 are written here in infix
and postfix notation, respectively. If one writes them in prefix notation then local
evaluation contexts are literally call-by-value evaluation contexts.

Eax=[]|Fe|(Mv.e)E | Ele|zIE| ET.

Local evaluation contexts do not allow evaluation under restriction and parallel
composition. In order to complete the description of the reduction relation we
need to introduce a notion of global evaluation context C'.

Cu=[11eO) [(C]e) .

Consider the following equations: associativity and commutativity of the parallel
composition, e | 0 = e, and the following laws concerning the the restriction
operator v,



484 CHAPTER 16. FUNCTIONS AND PROCESSES

(B)  ElAz.e)V] = Ele[V/z]] (1) E[2WV]]|E'[z?7] — E[x] | £'[V]

e— € . e=e€ e —¢€ e =€
(e2t) = o1 (=) P
Figure 16.6: Reduction rules for the Aj-calculus
(1 veel|e =, ve(ele) x¢ FV(e)
(vx) vrvye =, vyvre

(vg) Elvzel =, ve Ele] « ¢ FV(E), Ele]:b.

We define the relation = as the least equivalence relation on A-expressions that
contains the equations above and is closed under global contexts, that is e = ¢’
implies Cle] = Cle’]. It would be also sensible to ask closure under arbitrary
contexts, we do not this to simplify the following comparison with the m-calculus.

Using the notion of local evaluation context two basic reduction rules are
defined in figure 16.6. The rule () corresponds to local functional evaluation
while the rule (7) describes inter-process communication. The reduction relation
describes the internal computation of a program, therefore it is assumed that
E. E' have type b. The definition of the rewriting relation is extended to all
global contexts by the (cat) rule (figure 16.6).

The derivation tree associated to a one-step reduction of an expression has
the following structure, up to structural equivalence: (i) at most one application
of the (cxt) rule, and (ii) one application of one of the basic reduction rules (/)
and (7). We write e —,. €' if the rule applied in (ii) is r € {8, 7}. We observe that
by means of structural equivalences it is always possible to display a behaviour
expression as follows:

vy oovz, (E A | | En[A])

where n,m > 0, if m = 0 then the process can be identified with 0, and A ::=
(Av.e)V | 21V | 27, Tt is interesting to note that purely functional computations
always terminate.

Proposition 16.2.2 Let ¢ be a program. Then all its reduction sequences not
involving the communication rule (1) are finite.

Proor. We outline three basic steps. First, we observe that it is enough to
prove termination for a calculus having just one channel for every value type.
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This allows elimination of restriction. Second, we translate types as follows:
(0) = 0; (b) = 0; (¢ = ) = (o) — (a); (Ch(o)) = (o). Third, we associate
to the Aj-operators 0,7?,!,| variables with a suitable types. For instance to | we
associate a variable x| with type o — (0 — o). It is then possible to translate
|| into a simply typed A-calculus (which is known to be strongly normalizing, cf.
theorem 2.2.9). In the translation every S-reduction in A induces a S-reduction
in the translated term. From this one can conclude the termination of every
B-reduction sequence in A). O

A fixed point combinator. If we allow 7 reductions, then a program in the
Aj-calculus may fail to terminate. Indeed behaviours can be recursively defined
by means of a fixed point operator Y : ((o — b) — b) — b. This is obtained by a
simple simulation of the fixed point combinator for call-by-value (cf. section 8.2)
Yy = AMfwywy where wy = Az, f(Aw.zx). Being in a simply typed framework
one expects problems in typing self-application. The way-out is to simulate self-
application by a parallel composition of the function and the argument which
communicate on a channel of type o — b (this exploits the fact that all behaviour
expressions inhabit the same type). In the following ele’ abbreviates (Aw.0)(ele’).

Y, = Moy (wp | y!Aww,)  where  wy = (Az. f(Aw.(ax | ylz)))y? .

Using Y, one may for instance define a behaviour replicator Rep e, such that
Rep e = ¢ | Rep e, as follows: Rep e = Y,(Ax°~".(zx | €)).

Barbed equivalence. It is easy to adapt the notion of barbed bisimulation
and barbed equivalence to the Aj-calculus. Having already defined the reduction
relation it just remains to fix the relation of immediate commitment. The relation
e | [ where € is a program (cf. definition 16.2.1), 3 ::=¢| ¢, and ¢ is a constant,
is defined as follows:

elc ife=C[E[V]] elc ife=C[E[]].

As usual let —* be the reflexive and transitive closure of — and define a weak
commitment relation e |, § as e |. G if 3¢/ (e =* ¢’ and €' | ). The notions
of barbed bisimulation and barbed equivalence are then derived in a mechanic
way. A binary relation S between programs is a (weak) barbed simulation if
eSf implies: (1) Ve'(e —* € implies 3f' (f — f" and €'Sf’)), and (2) V3 (e ]«
B implies f J. 3). Sis a barbed bisimulation if S and S™! are barbed simulations.
We write e ~ f if ¢ S f for some S barbed bisimulation.

Definition 16.2.3 (congruent equivalence) Let e, €’ be well typed expressions
of the A\j-calculus. Then we write e = ¢’ if for all contexts P such that Ple] and

P[¢'] are programs, Ple] ~ P[¢].
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Remark 16.2.4 (1) By construction & is a congruence with respect to the oper-
ators of the calculus. (2) It is easy to prove that if e : a then (Ax.e)V =~ ¢e[V/z].

The following exercises relate the Aj-calculus to two previously introduced
topics: environment machines and continuations, and consider a variant of the
calculus based on asynchronous communication.

Exercise 16.2.5 * Define an abstract machine that executes A||-programs by combining
the abstract machines defined for the call-by-value A-calculus (section 8.3) and for the
m-calculus (section 16.1).

Exercise 16.2.6 * Extend the calculus with a control operator C (cf. section 8.5)
defined according to the following typing and reduction rules:

e:(c—=b)—b
Ce:o E[Ce] — e(Aa.Ez])

The intuition is that the operator C catches the local evaluation context. Define a Cps
translation from the \-calculus with control operator to the A\ -calculus.

Exercise 16.2.7 * Consider a variant of the A-calculus with an “asynchronous” out-
put operator 1,7 (when speaking on the telephone we communicate synchronously, when
sending a letter we communicate asynchronously). This calculus can be regarded as a
restriction of the A-calculus in which an output is always followed by the terminated
process. Typing and reduction are defined as follows:

e:Ch(o) € :0o
elye’ : b E[2?]] 24,V — E[V]

This calculus can be regarded as a restriction of the \y-calculus by writing e'ye’ as (Ax :
0.0)(ele’). Define a translation from the Aj-calculus into the corresponding calculus
having asynchronous output. Hint: it is convenient to suppose first that the target
calculus has the control operator defined in the previous exercise. Then the idea is
to translate an input with an asynchronous output: rather than receiving a value one
transmits the local evaluation context. Symmetrically one translates an output with an
put: rather than transmitting a value one receives the local evaluation context where

the value has to be evaluated, say (c\V) = C(Ag.(Af.(f(V) | g%))c?, (¢?) = C(Af.cluf).

Confluent reduction in the m-calculus. We introduce some additional con-
cepts and notations for the m-calculus. As for the Aj-calculus we assume a con-
stant * of sort 0. We may omit writing the process 0. As usual, @ stands for

ai,...,a, (n>0). The process (c(@).P) with free variables b stands for a recur-
sively defined process A(b) satisfying the equation A(b) = ¢(a).(P | A(b)), where
{@}y N {b} = . The operator ! is traditionally called replication. For the sake of

simplicity we also assume the following equivalences concerning the replication
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operator. The first allows for the unfolding of the replication operator and the
second entails the garbage collection of certain deadlocked processes.

() tP=P TP (1) val(z(§).P)=0 (16.5)

We will consider structurally congruent two m-terms which are in the congruent
closure of the equations 16.5. It is useful to identify certain special reductions
which enjoy an interesting confluence property.

Definition 16.2.8 Administrative reductions: We write Q —.q Q" if for some
context D with one hole, ) = Dlvu(uZ | u(Z).P)] and Q" = D[P[Z/Z]], where
u¢ FV(PU{Z}.

Beta reductions: We write Q —pera Q' if for some context D with one hole,
Q = Dlvf (F7 | ((f(2).P) | P')] and @ = Dluf (P[Z/) | (f(2).P) | P, where
f ¢ FV(P), and f cannot occur free in P' in input position, that is as f(y).P".

We note that administrative reductions always terminate. Moreover we ob-
serve the following confluence property.

Proposition 16.2.9 Suppose P — Py and P —qqpeta P2. Then either P = P,
or there is P' such that Py =44 peta P’ and Py, — P'.

PROOF HINT. By a simple analysis of the relative positions of the redexes. In
particular, we note that if two beta-reductions superpose then they both refer to
the same replicated receiving subprocess. a

Translation. We introduce a translation of the \j-calculus into the 7-calculus
and we discuss some of the basic properties of the translation. Notably, we pro-
duce an optimized translation to which the standard translation reduces by means
of administrative reductions. The basic problem is that of finding a simulation of
function transmission by means of channel transmission. The idea is that rather
than transmitting a function one transmits a pointer to a function (a channel) and
at the same time one “stores” the function by means of the replication operator.
Let us consider the following reduction sequence in A:

cdAz.e) | (Mf.(fn ] fm))e? =7 [n/z]e | [m/x]e .
Supposing that there is some translation [ | such that:
[clAz.e)] = vf (f [1(f(x).Te]))  [(Af(fn] fm))et] = e(f).(Fn | Fm) .

Then by parallel composition of the translations the following simulating reduc-
tion sequence in the m-calculus is obtained:

vf (@f [Wf(@)-TeD) | e(f).CFn | Fm) — vf ((f(x).Te]) | Fr| fr) =+
vf (U (@).[el) [ n/z]le] | Im/e][e]) = [[n/z]e | [m/z]e] .
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Definition 16.2.10 (type translation) A function [ | from A types into
sorts is defined as follows:

o] = 0 [Chio)] =
[0 = o' = Ch([,Ch([o"])) o= b] =

)
,CR()) -

Q
=3
B

In figure 16.7 a function [ | from well-typed Aj-expressions into well-sorted
m-processes is defined. It is possible to statically assign one out of three “colours”
to each m-variable involved in the translation. The colours are used to make the
functionality of a channel explicit and classify the possible reductions of translated
terms. To this end, we suppose that in the expression e to be translated all
variables of functional type ¢ — « are represented with f.g,... Variables of
channel or ground sort in the A|-term are represented by x,y,... and channels
used for “internal book keeping” in the translation are represented by u,t,v,...
Thus we suppose that m-variables are partitioned in three infinite sets: u, ¢, w,...;
fyg,...; and z,y,... Furthermore, we let r,r’,... ambiguously denote constants
(¢,d,...), variables (z,y,...), and variables (f,g,...).

The translation is parameterized over a (fresh) channel u. If € : o is a value
expression then u has sort C'h([c]) and it is used to transmit the value (or a
pointer to the value) resulting from the evaluation of the expression e. If e : b is
a behaviour expression then w is actually of no use, we conventionally assign the
sort C'h() to the channel u (we choose to parameterize the behaviour expressions
too in order to have a more uniform notation). Each rule using variables r actually
stands for two rules, one in which r is replaced by a variable z,y, ... or a constant
and another where it is replaced by a variable f, g, ... In the translation only the
variables z,vy,... can be instantiated by a constant. Note the use of polyadic
channels in the translation of A-abstraction.

As expected, reductions in the Aj-calculus are implemented by several reduc-
tions in the m-calculus. The need for a finer description of the computation in
the m-calculus relates to two aspects:

(1) In the m-calculus there is no notion of application. The implicit order of
evaluation given by the relative positions of the expressions in the Aj-calculus
has to be explicitly represented in the m-calculus. In particular the “computa-
tion” of the evaluation context is performed by means of certain administrative
reductions.

(2) In the m-calculus it is not possible to transmit functions. Instead, a pointer
to a function which is stored in the environment by means of the replication
operator is transmitted. (There is an analogy with graph reduction of functional
languages, see [Bou93] for a discussion).

Before analysing the encoding of call-by-value we hint to the encoding of call-
by-name, as defined in figure 8.6. The translation is given parametrically with
respect to a fresh name a which should be interpreted as the channel on which
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[r]u =ur
[Arelu =vf(af| [f:= )\r.ve})

where [ f:= Ar.e] =1(f(r, w).[e]w)
Feelu = vtww ([t | () | w(r)Fr, )
[ele'|lu  =wvitvw([e]t]t(x).([€'w | w(r).Trux))
[e?7]u  =wvt(elt|t(x).a(r)ar)
[veelu =valelu
[0]u =0
el u = [elu| [

Figure 16.7: Expression translation

the term will receive a pair consisting of (a pointer to) its next argument, and
the channel name on which to receive the following pair.

[x]a =Ta
[\z.M]a = a(x,b).[M]b )
[MN]Ja =vbre([M]b]|b(e,a) | (c(d).[N]d)) .

Exercise 16.2.11 * Prove that [(Az.M)N]a = [M[N/z]]a.

For more results on this translation we refer to [San92, BL.94] where a char-
acterization of the equivalence induced by the m-calculus encoding on A-terms
can be found. Related work on the representation of (higher-order) processes in

the m-calculus can be found in [Mil92, Ama93, San92, Tho93]. The following is
a challenging programming exercise.

Exercise 16.2.12 * Define a translation of the A-calculus (section 8.4) in the =-
calculus which simulates reduction.

We now turn to a detailed analysis of the 7-calculus encoding for call-by-value.
This requires the introduction of some technical definitions.

Definition 16.2.13 Given a process P in the w-calculus let §P be its normal
form with respect to administrative reductions on channels coloured u,t,w,... A
binary relation R between programs in \|-calculus and programs in the w-calculus
is defined as follows, where u is some fresh channel, V; are A-abstractions and
the substitution is iterated from left to right, as V; may depend on f; for i < j.

elVa/ful - IVi/ Al R P if
tP=tvf...vfo(felu | [fi=Vil|- | [fa:=Val) .
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The relative complexity of the definition of the relation R relates to the points
(1-2) above. The translated term may need to perform a certain number of
administrative reductions before a reduction corresponding to a reduction of the
Aj-calculus emerges. We get rid of these administrative reductions by introducing
the notion of normal form §P. A second issue concerns the substitution of a value
for a variable which in the m-calculus is simulated by the substitution of a pointer
to a value for a variable. Therefore, we have to relate, say, the term e[V/f]
with the term vf.([e] | [f := V]). It will be convenient to use the following
abbreviations:

I/f B stands for vfi...vf,
[f_):: V] stands for [fi:=Vi|| | [fo:= V4]
Vi stands for  [Vi./fu] -+ [Vi/fi] (n = 0).

In order to analyse the structure of fvf ([e]u | [f = V) we define an optimized
translation. The optimization amounts to pre-computing the initial administra-
tive steps of the translation (a similar idea was applied in section 8.5). To this
end, we define an open redex and an open evaluation context, as a redex and an
evaluation context, respectively, in which a functional variable may stand for a
value (cf. definition 16.2.1). For instance, fV is an open redex, and fE is an
open evaluation context. In this way we can speak about redexes which arise
only after a substitution is carried on.

We note that if e[V?ﬂ = F[A] then e = E'[A’], where A’, E" are open redex

and evaluation context, respectively, and A'[V/f] = A, E’[V7f] = L. This
remark is easily extended to the case where:

VI = vE (B ] - | EJAL))

In the following definitions and proofs the reader may at first skip the part in-
volving the input-output operators and concentrate on the A-calculus fragment
of the A-calculus.

Definition 16.2.14 (open context translation) The translation is defined on
open contexts I such that E # [ ]. We assume that V' is a A-abstraction.

0
<
I
s
~~
i
S
—
—_ 3
o g
.. :\
N>
o~
=
S~
—
a
~—_
&
g

([w]e)u — =wvw(W'(f).[e]w|wr).f(ruv))
(VeDu  =vf([f=V][(r).f(ru))
(flulhu — =u'(r).f(r,u)

([W]Nu = u'(z).x(r).ar

([W])le)u  =wvw (W (z).([e]w | w(r).Trux))
uPhu =/ (r).zrux

(Eu

(

(
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(Bl ]Du = rvw ((Eu)w | w(z).x(r).ar)
(Eule)u =vtvw (Bt ] t(x).[e|w | w(r).Trux)
(B Y = vt ((E[u)t | t(r).zrux)

Lemma 16.2.15 (administrative reductions) Suppose that I is an open eval-
uation context such that E # ||, and that V; are A\-abstractions which may depend
on f; forv < j. Then:

vF(TELEu | [f = V) =5y vl vd ([eld | (Bl | [f = V) .

PROOF. By induction on the structure of the evaluation context. There are 12
cases to consider, following the context translation in the definition 16.2.14 above.
We present two typical cases for illustration.

Case Fe;.
vf ([Elledlu | [f:
l/fz/tuw([E[th

|
Vfutywyu ([e]u’

1]w | = VI]) =4 (by ind. hyp.)
<E[U’]>t tf).lerlw | wlr). f(rou) [ [f:=V]) =

Case VFE. )

v (IVE]u | [f:=V]) = }

l/jiz/tlxwl/f([f =V]|tf |t(j)[E[eHL_U | w(r).f(r,_)u) [ [f=V]) —

vFvtvovf (1f = V1 | [Blellw | (). Fr,u) | [f = V1) =% (by ind. hyp.)
=V1]

Forow) | Tf:=V1]) =

I/_}il/tl/wl/fl/u (]
vivd ([f = V][ Teld | (VELT)w|[f:

O

Remark 16.2.16 (1) From the previous lemma 16.2.15 we can prove that if
e =€ then t[elu =4[ u. (2) Lemma 16.2.15 immediately extends to a general
behaviour expression e = v (F1[Aq] | -+ | En[An]) as the expression translation
distributes with respect to restriction and parallel composition.

The following translation pre-computes the administrative reductions in an
open redex and it is needed in the following proposition.

Definition 16.2.17 (open redex translation) In the following open redex trans-
lation we assume that V is a A-abstraction.

{(Ar'.e)rju =vf([f=X"el | [(r,u) _
{(ASe)V}u =vfvf (= A el [ [J = VI w)

{friu = [f(r,u)
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(Ve — ([ = VI T )

{z7}u = z(r).ar

{z!r}u = Zr.uk

{zWW}u =vf' ([f:=V]]|Zf ux)
Proposition 16.2.18 7The administrative normal form of the behaviour expres-
ston e = vi (Ey[Aq] | -+ | En[An]) can be characterized as (supposing E; # | ],
fori=1,...,m, otherwise just drop the context translation):

tlelu = v@vur . .owy ({A1tug | (Erfud)u | - | {A1  u | (B um))u) -

PROOF HINT. By remark 16.2.16 and the observation that translations of open
evaluation contexts and redexes do not admit administrative reductions. O

With the help of the optimized translation described above, we derive the fol-
lowing lemma, which relates reductions and commitments modulo the relation

R.

Lemma 16.2.19 The following assertions relate reductions and commitments:
(1) IfeRP and e — ¢’ then P — P’ and ¢'RP’.

(2) Vice versa, if eRP and P — P’ then e — ¢’ and ¢'RP’.

(3) Suppose eRP. Then el B iff tP | [,

PrROOF. (1) By analysis of the redex, following the open redex translation in
definition 16.2.17. We consider only two cases which should justify the definition
of the relation R. As a first case suppose eRP and:

e= B[\ e)VIVI] =5 E[lV/INIVI] = ¢

P =t f ([EM . V]ul|[f:=V]).
Then §P —pers P, where:

P = vfuft o ([l | (Bl | [ = V]| [f:

and observe ¢ RP’ | since ¢/ = Fle] [V/f’][V7f] and by the administrative reduction
lemma 16.2.15:

—

V1)

P =t uf ([El]u| [/ :=V][f:=V]).

As a second case suppose e RP and:
e = (B[ f] | E'eVIf] =5 (B[] | BNV = ¢ .
4P =t f ([El f]lu ] [EeNu | [f:=V]).
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Then §P —, P’, where:

P’ = v fvuyvus ([#lun | (Elulyu | [f]us | (B'us]yu | [f == V1)

and observe ¢’ RP’, since by the administrative reduction lemma 16.2.15:

4P =t f ([E[] | E'f]lu] [f:=V]) .

(2) Same analysis as in (1). (3) This follows by the definition of the relation R
and by the characterization of the administrative reduction normal form. O

Theorem 16.2.20 Let e, ¢’ be programs in A|. Then [e]u ~ [e|u iff e & el

PROOF. The previous lemma 16.2.19 allows to go back and forth between (weak)
reductions and (weak) commitments “modulo R”. Hence one can define the
following relations and show that they are barbed bisimulations.

S ={(e,e) |IP, P (e RP~ P R ¢)}
S" ={(P,P')|3e.d (PR e~ ¢RP)}.

O

Unfortunately, this result does not extend to barbed equivalence, as there are
equivalent A|-terms whose m-calculus translations can be distinguished. The re-
lationships between A-calculus and m-calculus remain to be clarified. For instance
it is not known whether there is a “natural” fully-abstract translation of the call-
by-value A-calculus into the m-calculus, or in another direction, whether there
is a “reasonable” extension of the A-calculus that would make the translation
considered here fully-abstract.
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Appendix A

Memento of Recursion Theory

In this memento, functions are always partial, unless otherwise specified. The
symbol | (1) is used for “is defined” (“is undefined”). A definition of the form
“f(z) | y iff P” has to be read “f(x) | iff P, and P implies f(z) = y”. We

abbreviate xy,...,x, into ¥. We also write, for two expressions s and ¢,

s=t iff (s] andt] and s=1t)or (sT and ¢t 7).

A.1 Partial Recursive Functions

Partial recursive, or computable functions, may be defined in a number of equiva-
lent ways. This is what Church’s thesis is about: all definitions of computability
turn out to be equivalent. Church’s thesis justifies some confidence in “semi-
formal” arguments, used to show that a given function is computable. These
arguments can be accepted only if at any moment, upon request, the author of
the argument is able to fully formalize it in one of the available axiomatizations.
The most basic way of defining computable functions is by means of comput-
ing devices of which Turing machines are the most well known. A given Turing
machine defines, for each n, a partial function f : w” — w. More mathemat-
ical presentations are by means of recursive program schemes, or by means of
combinations of basic recursive functions.

Theorem A.1.1 (Godel-Kleene) Foranyn, the set of Turing computable func-
tions from w™ to w is the set of partial recursive functions from w™ to w, where
by definition the class of partial recursive (p.r.) functions is the smallest class
containing:

o 0:w — w defined by 0(z) = 0.

o succ:w — w (the successor function).

o Projections m,; 1 w" — w defined by mpi(x1,...,0,) = x;.

and closed under the following constructions:

495
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o Composition: If f1:w™ = w,..., [, 1 w" = wand g : w" — w are p.r., then
go(fi,e ooy fu) W™ = w is p.r..

e Primitive recursion: if f:w" > w, g:w
by:

"2 s w are p.r., then so is h defined

h(Z,0) = (@)
ME,y+1) =g(Z,y,h(,y)) .

o Minimalisation: if f :w"t — w is p.r., so is g : W — w defined by g(T) =
py.(f(Z,y) =0), where py.P means: the smallest y such that P.

The source of partiality lies in minimalisation. The total functions obtained
by the combinations of Godel-Kleene, except minimalisation, are called primitive
recursive. The partial recursive functions which are total are called the recursive
functions. The set of partial recursive functions from w” to w is called PR™ (we

write PR for PR").

Lemma A.1.2 (encoding of pairs) The following functions are recursive and
provide inverse bijections between w X w and w.

(o) tw X w —w defined by: (m,n) =2"2n+1) — 1.
T :w — w where m(n) is the exponent of 2 in the prime decomposition of n + 1.

Ty 1w — w defined by: mo(n) = ((n +1)/2m) —1)/2.

We say that a function f : w xw — wis p.r. iff fo(m,m) :w — wis
p.r.. Turing machines can also be coded by natural numbers (a Turing machine
is determined by a finite control which can be described by a finite string on a
finite alphabet which in turn can be represented by a natural number). We call:

T, the Turing machine which has code n.
@™ the partial function from w™ to w defined by 7, (we write ¢, for ¢.).
W™ = dom(¢) (we write W,, for W).

If f=o¢ (W =W"), wesay that n is an index of f (W).

Lemma A.1.3 (enumeration of PR) The mapping An.¢, is a surjection of w
onto PR.

As a first consequence, there are total functions which are not recursive.

Exercise A.1.4 Show that [ defined by
f(n):{ (Om(n)ﬂ if ¢u(n) 4

otherwise

is not recursive. (But g defined by g(n) | ¢n(n) + 1 iff ¢n(n) | is p.r, see following
theorem A.1.6). Show that there exist recursive, non primitive recursive functions.

Hint: For the last part use an enumeration {0, },c., of the primitive recursive functions,
and take Ax.0,(x) + 1.
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The next theorem says that arguments of a partial recursive function can be
frozen, uniformly.

Theorem A.1.5 (s-m-n) For each m,n there is a total recursive m + 1 ary

function s
and p : ¢

for short} such that for all ¥ = x1,...,Tpm, U = Ymats--->Ymin

9) = ()

PROOF HINT. We can “prefix” to T}, instructions that input the frozen argument
z. 0

n (s
(7,

Theorem A.1.6 (universal Turing machine) There exists a Turing machine
T computing, for any n, the function ¥p : W™t — w defined by: Vi (p,y) =
&y ()

PrOOF HINT. Informally, 7y decodes its first argument p into the machine 7},
and then acts as T, on the remaining arguments. O

A.2 Recursively Enumerable Sets

The theory of computable functions can be equivalently be presented as a theory
of computable predicates.

Definition A.2.1 (decidable and semi-decidable) A subset W of w™ is called

decidable, or recursive, when its characteristic function v defined by

X(x):{o ifreWw

1 otherwise

is recursive. A subset W of w™ is called primitive recursive, when its characteristic
function is primitive recursive. A subset W of w™ is called semi-decidable, or
recursively enumerable (r.e.), when its partial characteristic function x, (x,(z) |
iff © € W) is partial recursive.

Clearly, every decidable set is semi-decidable. A central example of a recursive
set is the following.

Proposition A.2.2 (convergence in ¢ steps) Given a Turing machine T' com-
puting the partial recursive function f, the set {(Z,y,t) | f(Z) | y in t steps of T}
1S Tecursive.

PRrROOF. Given a Turing machine T computing f, the obvious informal algorithm
is: perform at most ¢ steps of T starting with input &, and check whether result
y has been reached. O
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Remark A.2.3 A more careful analysis shows that the characteristic function
of {(Z,y. 1) | f(Z) |y int steps} can be defined by means of primitive recursion
only.

There are a number of equivalent characterizations of recursive and recursively
enumerable sets.

Proposition A.2.4 The set W C w" is r.e. iff one of the following conditions
holds:

(1) W =dom(f), for some partial recursive function f.

(2) There exists a recursive set W' C w"t' such that W = {Z | Jy(Z,y) € W'}.
(3) W= @ or W =1im(h), for some recursive function h : w" — w.
(4) W

4 m(h), for some partial recursive function h : w" — w.

Proor. (1) If W = dom(f), then its partial characteristic function is 1 o f,
where 1 is constant 1.

(2) Let W be {Z | Jy(Z,y) € W'}. Then W = dom(AZ.py.((Z,y) € W’)).
Conversely, if W = dom(f), take W' = {(Z,y)|f(Z) | in y steps}.
(3) It W = dom(f) # 0, pick an element @ € W. Define:

if f(Z)] iny steps

otherwise

Q
—~
\.%l
<
S—
Il
—
ISTRRST

Then W = im(g) = im(h) (where h is the composition of g with the encoding

from w" to w"t).

(4) IfW = im(h), we have by proposition A.2.2 that {(Z,y,t) | A(Z) | yint steps}
is recursive. Thus W = dom(A\Z.uz.(z = (y,t) and h(Z) | y in ¢ steps)). O

Remark A.2.5 The encodings quoted among others in the proof of proposition
A.2.4(3) “hide” a useful technique, known as dovetailing: the informal way of
obtaining h is by trying the first step of f(1), the first step of f(2), the second
step of f(1), the first step of f(3), the second step of f(2), the third step of f(1),
the first step of f(4)...

Exercise A.2.6 Show that if W C w"™! is r.e., then {T | Jy, (T,y) € W} is r.e.
Hint: Consider a recursive W' such that W = {(Z,y)|32(Z,y, z) € W'} is r.e. .

Proposition A.2.7 W C w" is recursive iff W and its complement W* are
semi-decidable.
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Proor. If W is decidable, it is semidecidable, and W is decidable (with charac-
teristic function — o x, where x is the characteristic function of W). Conversely,

if W and W¢ are both semi-decidable, let W’ and W be recursive and such that
W =A{7|Jy(7,y) e W} W=A{7|3y(@,y) e W"}.
Let \' and y” be the characteristic functions of W’ and W”, respectively. Then
W = dom(AZ.puy.(Y o (X', X")(#,y) = 0))

where Y is any recursive function restricting to the boolean union over {0,1}.
The function AZ.py.(Y o (X', x")(Z,y) = 0)) is p.r. by construction, and moreover
is total since W U W* = w™. O

The following is a useful characterization of partial recursive functions.
Proposition A.2.8 A function [ is p.r. iff its graph {(Z,y) | f(Z) | y} is r.e.

Proor. If f is p.r., then by proposition A.2.2 {(Z,y,1) |
recursive. We conclude by proposition A.2.4 (2) that {(Z,y
since f(Z) | y iff f(Z) | y in t steps for some t.

Conversely, if {(Z,y) | f(Z) | y} is r.e., let W’ be a recursive set such that
F(@) Ly iff (Z,y,t) € W for some t. Then f can be written as

f(Z) | yint steps} is
) | f(Z) Ly} is e,

m o (AT.uz.(z = (y,t) and (T,y,t) € W'))

and thus is p.r.. O

Here is an example of a semi-decidable, non decidable predicate.

Proposition A.2.9 (1) The set K = {x | v € W, } is semi-decidable. (2) The
set {x | x & W,} is not r.e. .

PrOOF. (1) We have K = im(Az.¢.(z)) = im(¢y o (id,id)), thus K is r.e. by
proposition A.2.4(4). (2) Suppose {z | x ¢ W, } = dom(f) for some PR function.
Let n be an index of f. We have: Va (¢ ¢ W, iff x € W,,). We get a contradiction
when taking © = n. O

Exercise A.2.10 Show that {z|¢, is recursive} is not r.e.. Hint: Consider g(z) =
(bf(l,)(x) + 1, where [ is a claimed enumeration of the recursive functions.
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A.3 Rice-Shapiro Theorem

We end up this memento with an important theorem, widely used in theoretical
computer science. It gives evidence to the thesis: computable implies continuous
(cf. theorem 1.3.1 and proposition 15.5.10). A partial function € such that dom()
is finite is called finite. Clearly finite functions from w to w are computable.
Partial functions may be ordered as follows:

f<g it Va(f(z)ly)= (9(z)Ly).

Theorem A.3.1 (Rice-Shapiro) Let A be a subset of PR such that A" =
{z|¢, € A} is r.e.. Then, for any partial recursive f, f € A iff there exists
a finite function 0 < f such that 0 € A.

PRrROOF. Let T be a Turing machine computing the partial characteristic function
of K ={z |2 e W,}.
(<) Suppose f € A, and VO < f (8 ¢ A). Let g be the partial recursive function

defined by g¢(z,t) | y iff T' starting with z does not terminate in less than ¢ steps,
and f(t) | y. One has, by definition of ¢:

) fifze K
At.g(z,1) = { 0 if ze€ K, where 6 <g, f .

Thus our assumption entails z ¢ K iff M.g(z,t) € A. Let s be a recursive func-
tion, given by theorem A.1.5, such that g(z,1) = ¢,.)(¢). The above equivalence
can be rephrased as: z ¢ K iff s(z) € A”. But the predicate on the right is r.e.:
contradiction.

(=) Suppose f ¢ A and 6 € A, for some finite § < f. We argue as in the
previous case, defining now g by

glz,t) Ly iff (0(t)] orze K)and f(t) ]y .

|

Corollary A.3.2 (Rice) If BC PR, B# 0 and B # PR, then {z | ¢, € B} is

undecidable.

PROOF. Let A be as in the statement of Rice-Shapiro theorem, and let L be the
totally undefined function. If L € A, then, by the theorem, A must be the whole
of PR.

Now suppose that {z | ¢, € B} is decidable. Then B and B¢ both satisfy the
conditions of the Rice-Shapiro theorem. Consider the totally undefined function
1. We have: L € Bor L € B°. We deduce that either B = PR or B® = PR:

contradiction. O



Appendix B

Memento of Category Theory

Category theory has been tightly connected to abstract mathematics since the
first paper on cohomology by Eilenberg and Mac Lane [EM45] which establishes
its basic notions. This appendix is a pro-memoria for a few elementary definitions
and results in this branch of mathematics. We refer to [ML71, AL91] for adequate
introductions and wider perspectives.

In the mathematical practice, category theory is helpful in formalizing a prob-
lem, as it is a good habit to ask in which category we are working in, if a certain
transformation is a functor, if a given subcategory is reflective,. .. Using category
theoretical terminology, one can often express a result in a more modular and
abstract way. A list of “prescriptions” for the use of category theory in computer
science can be found in [Gog91].

Categorical logicis a branch of category theory that arises from the observation
due to Lawvere that logical connectives can be suitably expressed by means of
universal properties. In this way one represents the models of, say, intuitionistic
propositional logic, as categories with certain closure properties where sentences
are interpreted as objects and proofs as morphisms (cf. chapter 4).

The tools developed in categorical logic begin to play a central role in the
study of programming languages. A link between these two apparently distant
topics is suggested by:

e The role of (typed) A-calculi in the work of Landin, McCarthy, Strachey, and

Scott on the foundations of programming languages.

e The Curry-Howard correspondence between systems of natural deduction and
typed A-calculi.

e The categorical semantics of typed A-calculi along the lines traced by Lambek
and Scott.

The basic idea in this study is to describe in the categorical language the “models”
of a given programming languages. For instance, in the case of the simply typed

A-calculus the models correspond to the cartesian closed categories (cf. chapter
4).

501



502 APPENDIX B. MEMENTO OF CATEGORY THEORY

This approach has been fairly successful in describing data types by means of
universal properties. At present it is unclear if such program will be successful
on a larger variety of programming languages features. It is however a recognized
fact that ideas from categorical logic play a central role in the study of functional
languages. Moreover promising attempts to describe categorically other features
of programming languages such as modules, continuations, local variables.. .. are
actively pursued.

B.1 Basic Definitions

A category may be regarded as a directed labelled graph endowed with a partial
operation of composition of edges which is associative and has an identity.

Definition B.1.1 (category) A category C is a sextuple (Ob, M or,dom, cod,id, comp)
where Ob is the class of objects, Mor is the class of morphisms and:

dom : Mor — Ob cod : Mor — Ob
id . Ob — Mor comp : Comp — Mor

where Comp = {(f,g9) € Mor x Mor | dom(f) = cod(g)}. Moreover:

idof=foid=f (identity)
fo(goh)=(fog)oh (associativity)

where [ o g is a shorthand for comp(f,g), we write f o g only if (f,g9) € Comp,
and we omit to write the object to which id is applied in (identity).

Let C be a category, a,b € Ob, then
Cla,b] ={f € Mor | dom(f) = a and cod(f) = b}

is the homset from a to b. We also write f: @ — b for f € Cla,b], and a € C for
a € Ob. When confusion may arise we decorate the components Ob, Mor, ... of
a category with its name, hence writing Obc, Morc, ... A category C is small if
Morc is a set, and it is locally small if for any a,b € C, Cla,b] is a set.

Example B.1.2 (basic categories) We just specify objects and morphisms. The
operation of composition is naturally defined. The verification of the identity and
associativity laws is immediate:

o Sets and functions, Set.

o Sets and partial functions, pSet.

o Sets and binary relations.

o Fvery pre-order (P, <) induces a category P with {P[a,b] = 1 if a < b and
tPla,b] = 0 otherwise.
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o Any set with just an identity morphism for each object (this is the discrete
category).

e Fvery monoid induces a category with one object and its elements as mor-
phisms.

o Posets (or pre-orders) and monotonic functions.

o Groups and homomorphisms.

o Topological spaces and continuous functions, Top.

o Directed unlabelled graphs and transformations that preserve domain and codomain
of edges.

Definition B.1.3 (dual category) Let C be a category. We define the dual

category C°P as follows:

Obgcer = Obc  C[a,b] = CIb,

1d°? = id foPg=gof.
Remark B.1.4 (dual property) Given a property P for a category C and rel-
ative theorems it often makes sense to consider a dual property P° to which
correspond dual theorems. This idea can be formalized using the notion of dual
category as follows: given a property P for a category C we say that C has
property P°P if C°P has property P.
Example B.1.5 (categories built out of categories) (1) A subcategory is
any sub-graph of a given category closed under composition and tdentity.
(2) If C and D are categories the product category C x D is defined by:

Obcyp = Obc x Obp, (C x D)[(a,b),(a’, V)] = Cla,d’] x D[b, V] .

(3) If C is a category and a € C, the slice category C | a is defined as:
C\La:UbECC[bva]; (Cia)[fvg] :{h|goh:f}.
Definition B.1.6 (terminal object) An object a in a category C is terminal
if vbe C3lf : b — a. We denote a terminal object with 1 and with !, the unique
morphism from b to 1.
Definition B.1.7 (properties of morphisms) Let C be a category.
o A morphism f:a —bis amono if Vh,k(foh=fok=h=Fk).
o A morphism f is epi if it is mono in C?, i.e. Vh,k(ho f=ko f=h=k).
o A morphism f:a — b is asplit mono if there is a morphism g : b — a (called
split epi) such that go f = id.
o A morphism f:a — b is aniso if there is an inverse morphism g : b — a such

that go f =1d and fog =1d. We write a = b if there is an iso between a and b.

Exercise B.1.8 Prove the following properties: (1) Each object has a unique identity
morphism, (2) The inverse of an iso is unique, (3) If go f = id then g is an epi and f
is a mono, (4) f epi and split mono implies f iso, (5) f mono and epi does not imply
f iso, (6) The terminal object is uniquely determined up to isomorphism.
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B.2 Limits

The notions of cone and limit of a diagram are presented. The main result
explains how to build limits of arbitrary diagrams by combining limits of special
diagrams, namely products and equalizers.

Definition B.2.1 (diagram) Let C be a category and [ = (Oby, Mory) a graph.
A diagram in C over I is a graph morphism D : [ — C.

We often represent a diagram D as a pair ({d;}icos;, { futueMor; )-

Definition B.2.2 (category of cones) Let C be a category and D : [ — C be
a diagram. We define the category of cones ConescD as follows:

ConescD = {(c,{hi}icos,) | Vu € Mory (fy :di — d; = h; = fuoh)}
ConesCD[(C, {hi}ieogj]), (d, {ki}ieogjl)] = {g tc—d | Vi € Ob; (hz =k o0 g)} .

Definition B.2.3 (limit) Let C be a category and D : [ — C be a diagram. D
has a limit if the category ConescD has a terminal object.

By the properties of terminal objects it follows that limits are determined up
to isomorphism in ConescD. Hence we may improperly speak of a limit as an
object of the category ConescD. We denote this object by limcD. Also we say
that the category C has [-limits if all diagrams indexed over [ have limits.

Example B.2.4 (special limits) We specialize the definition of limit to some
recurring diagrams:

o [f I =10 then the limit is a terminal object.

o IfIis a discrete graph (no morphisms) then a diagram over I in C is just a
family of objects {a;}icos,. In this case a limit is also called a product and it is
determined by a couple (¢,{m; : ¢ = a;}icon,) such that for any cone (d,{fi: ¢ —
a;ticow,) there exists a unique z : d — ¢ such that ¥i € Ob;(f; = mioz). We
write ¢ as Wicop,a;, and z as (f;), which s an abbreviation for (f;)icos,.

o Equalizers are limits of diagrams over a graph I with two nodes, say x,y,
and two edges from x to y. If the image of the diagram is a pair of morphisms
frg:a— b then an equalizer (or limit) is a pair (c,e : ¢ — a) with properties (i)
foe = goe, and (i) if (¢, ¢’ : ¢ — a) and foe' = goe' then Az : ¢ — c¢(eoz = ¢).
o Pullbacks are limits of diagrams over a graph I with three nodes x,y,z, one
edge from x to z, and one edge from y to z. If the image of the diagram is a
pair of morphisms f : a — d, g : b — d then a pullback (or limit) is a pair
(¢,{h:¢c— a,k:c— b}) with properties (i) foh = gok, and (i7) if (¢, {h":
d—a,k':d = b})and foh' = gok' then3'z: ¢ — ¢(hoz=h" and koz = k).
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The notions of cocone, initial object, and colimit are dual to the notions of
cone, terminal object, and limit, respectively. We spell out the definition of
coproduct which is often needed.

Definition B.2.5 (coproduct) The colimit of a family of objects {ai}icos, is
called coproduct. It is determined by a couple (¢, {inj; : a; — c}icos,) such that
for any cocone (d,{f; : @i = d}icon,) there exists a unique z : ¢ — d such that
Vi € Oby (fi = zoing;). We write ¢ as Sieon,ai, and z as [filicos,, or simply [fi].

Exercise B.2.6 Show that a category with terminal object and pullbacks has binary
products and equalizers.

Theorem B.2.7 (existence of I-limits) Let C be a category and I be a graph,
then C has I-limits if (1) C has equalizers, (2) C has all products indexed over
Oby and Mory. In particular a category with equalizers and finite products has
all finite limits.

Proo¥r. Let D : I — C be a diagram. We define:
P = HiEObJD(i) Q= HuEMOMCOd(D(U)) .

Next we define f,g: P — (), and e : [, — P as follows:

e Let p and ¢ denote the projections of P and (@), respectively.

e fis the unique morphism such that D(u) 0 pionu) = quo f, for any u € Mor;.
e g is the unique morphism such that p.,w) = . 0 g, for any u € Mory.

e ¢ is the equalizer of f and g¢.

We claim that (L,{p; o e}icop,) is a limit of the diagram D. The proof of this
fact takes several steps.

(1) (L,{pioc}ticor;) € ConescD. We have to show D(u) 0 paom(u)© € = Peod(u) © €
for any u € Mor;. We observe:

D(u)opdom(u)oe ZQUofoe
=¢,0g0¢
:pcod(u)oe-

(2) Let (F,{l;}icob,) € ConescD. Then there is a uniquely determined mor-
phism (l;) : FF' ' — P such that p; o () = [;, for any ¢ € Ob;. We claim
fo{l;) =go(l;). This follows from the observation that for any u € Mory:

quofo <lz> = D(u) © Pdom(u) © <l2>
= D(u) 0 lgomu)
= lcod(u)
= Pcod(u) © <l2>
= quogo(l.
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(3) Hence there is a unique z : F' — L such that eo z = ([;). We verify that
z: (F {li}icov,) = (L,{pioeticos,) is in ConescD by checking p; oeoz = [;, for
any ¢ € Oby. This follows by:

pioeoz=p;oll;)=1.

(4) Finally suppose 2’ : (F,{l;}icos,;) — (L,{pi o €}icos,) in ConescD. Then
Z(Fy (L) = (Lye) as p;oeoz’ =1, for any ¢ € Ob; implies eo 2/ = (I;). Hence
z=1z. 0

Exercise B.2.8 Study the existence of (co-)limits in the categories introduced in ex-
ample B.1.2.

B.3 Functors and Natural Transformations

A functor is a morphism between categories and a natural transformation is a
morphism between functors. The main result presented here is that there is a full

and faithful functor from any category C to the category of set-valued functors
over C.

Definition B.3.1 (functor) Let C, D be categories, a functor F': C — D is a
morphism between the underlying graphs that preserves identity and composition,

that is:
Fop : Obc — Obp Fraror - More — Morp

FMor(ida) = Z.dFOb(a) FMor(f 0 g) = FMor(f) 0 FMor(g)
where if f:a — b then Faro (f) : Fos(a) — Fou(b).

In the following we omit the indices Ob and Mor in a functor. By a contravariant
functor F': C —+ D we mean a functor F/': C? — D.

Exercise B.3.2 Show that small categories and functors form a category.

Definition B.3.3 (hom-functor) Let C be a locally small category. We define
the hom-functor C[_, | : C? x C — Set as follows:

CL. J(a.b) = Cla,8] CL.J(f,g) = Mh.gohof .

Given an object ¢ in the category C we denote with C[_ ¢] : C? — Set and
Cle, ] : C — Set the contravariant and covariant functors over C obtained by
restricting the hom-functor to the first and second component, respectively.

Exercise B.3.4 Suppose F' : C — D is a functor, D : I — C is a diagram and
(a,{l;}icon,) € ConescD. Show that (Fa,{Fl;};cob,) € Conesp(F o D).
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Definition B.3.5 (limit preservation) Suppose F': C — D is a functor, and
D : 1 — Cis a diagram. We say that F' preserves the limits of the diagram D if:

(a,{li}icon,) € limecD = (Fa,{Fl;}icos,) € limp(FoD) .

Proposition B.3.6 Let C be a locally small category and ¢ be an object in C.
Then the covariant hom-functor Clc,_] : C — Set preserves limits.

Proor. Let D = ({di}icobss {futuermor,) be a diagram and (a,{l;}icob,) €
limcD. Then (Cle,al, { h.l; 0 h}icop,) € Conesget(Cle, -] o D). We suppose
(X,{9giticon,) € Conesget(Cle, -] o D), that is:

Vue MoriVe e X (fu:di —d; = (fuogi(z)=g;(x))).

Then Vo € X (¢,{gi(%)}icon,) € ConesgerD. Hence there is a unique h(z) :
¢ — a such that g;(x) = [; o h(x), for any ¢ € Ob;. We can then build a unique
z : X — Cc,a] such that [; 0z = ¢;, for any ¢ € Ob;. This z is defined by
z(x) = h(x). O

Definition B.3.7 (natural transformation) Let F,G : C — D be functors.
A natural transformation 7 : F — G is a family {7, : Fa — Ga}anbC such that
forany f:a — b, myol'f = Gfor,. A natural isomorphism T is a natural
transformation such that T, is an isomorphism, for any a.

Exercise B.3.8 Given C,D categories show that the functors from C to D, and their
natural transformations form a category. We denote this new category with DC. It can
be shown that D€ is actually an exponent in the sense of cartesian closed categories
(see section B.7).

Definition B.3.9 (category of pre-sheaves) Given a category C the category
of pre-sheaves over C is the category Set©” of contravariant set-valued functors
and natural transformations.

Another important operation involving natural transformations is the composi-
tion with a functor.

Proposition B.3.10 If G : B — C, F,F' : C — C' and 6 : F' — F', then
0G : FoG — F'oG is natural, where 6G is defined by set theoretical composition,
i.e. (0G), = dga. Likewise, if H: C' — B, F,JI":C — C' and é : F — I,
then H6 : H o F' — H o I is natural, where (Hd), = H(d,).

The composition of natural transformations and functors extends to a notion
of horizontal composition of natural transformations (in contrast to the vertical
one given by the “o”).
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Proposition B.3.11 If F,F' . C - C, G,G': C' = C", 6: F = F',¢.: G —
G, then
(el") o (G6) = (G'§)o(eF):GoF = G o F'.

We write €6 for the common value of both sides of this equation.

Exercise B.3.12 Show the following so called interchange law (originally stated by
Godement), for all 8,8, ¢, € of appropriate types (€ 0 €)(8' 0 d) = (¢/d') o (€d).

Definition B.3.13 (full and faithful functor) A functor F': C — D is full
if Va,bVh: Fa — Fb3f :a — b(Ff =h), and faithful if it is injective on each
hom-set Cla,b].

Theorem B.3.14 (Yoneda) For any category C there is a full and faithful
functor Y : C — Set®” from C into the related category of pre-sheaves, called
Yoneda embedding, and defined as follows:

Y(e) = C[., (] Y(f)=A.foh.

PROOF HINT. The key to the proof that Y is full resides in the following lemma
where we take F' as hy = C[_, d]. 0

Lemma B.3.15 (Yoneda’s lemma) For any functor F' : C? — Set and any
object ¢ € C, the following isomorphism holds in Set, where h. = C[_,¢| and
Nat[h., I'] are the natural transformations from h. to I':

Fe= Nat[h,, F] .

PrROOF. We define ¢ : F¢ — Nat[h., F'] with inverse j : Nat[h., '] — Fec as
follows:

(x) =M d—c(F)(z) j(r)=7(:d.) .
First we verify that ¢(x) is a natural transformation as:
(F ) ((i(2)a) (1) = (FL)(FD(2) = F(lo f)(z) = (i(x))(lo f) .

Next we verify that j is the inverse of i:

J(i(2)) = i(2).(id,) = (Fid.)(z) = (id)(z) = =
W(J(r) =AM A d = c.(FI)(r.(id.)) = MM d — erg(l) =7

as by applying the naturality of 7 to [ : d — ¢ one gets (FI)(7.(id.)) = 74({). O
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B.4 Universal Morphisms and Adjunctions

A universal morphism is a rather simple abstraction of a frequent mathematical
phenomenon.

Example B.4.1 (1) Given a signature ¥ consider the category of Y-algebras
and morphisms. If A is a Y-algebra denote with |A| its carrier (which is a set).
There is a well known construction which assoctates to any set X the free Y-
algebra X(X) and which is characterized by the following property:

Ju: X — [E(X)|VAVSf: X = |A| I 5(X) = A(ffou=f).

(2) Consider the category of metric spaces and continuous morphisms and the
full subcategory of complete metric spaces. The Cauchy completion associates to
any metric space (X,d) a complete metric space (X.,d.) which is characterized
by:

Ju: (X,d) — (X.,d)V(Y,d) complete Vf:(X,d) — (Y.d)
Af(Xeyd.) = (Y, d) (ffou=f).

Definition B.4.2 (universal morphism) Let F': C — D be a functor and d
an object in D. Then the couple (cq,u : d — Feg) is universal from d to F' (and
we also write (cq,u) : d — F) if:

VeVf:od— Fedlf' ieqg—c(Fflou=f).

Exercise B.4.3 (1) Show that if (cq,u) :d — F and (¢!,u') : d — F then c¢q = cg.
(2) Ezxplicit the dual notion of co-universal. (3) Verify that the previous examples B.J.1
fit the definition of universal morphism.

The notion of adjunction is a fundamental one, and it has several equivalent char-
acterizations. In particular, an adjunction arises whenever there is a “uniform”
way of determining a universal morphism (cf. proposition B.4.6(3) and theorem

B.4.8).

Definition B.4.4 (adjunction) An adjunction between two categories C,D is
a triple (L, R,7), where L : D — C, and R : C — D are functors and 7 :
C[L_, ] — D[, R] is a natural isomorphism. We say that L is the left adjoint,
R is the right adjoint, and we denote this situation by L 4 R.

Exercise B.4.5 With reference to example B.4.1, define the “free algebra” and “Cauchy
completion” functors. Verify that they are left adjoints to the respective forgetful func-
tors.



510 APPENDIX B. MEMENTO OF CATEGORY THEORY

In the following we develop some properties of adjunctions in the special case
in which C and D are poset categories and therefore the functors L and R are
monotonic functions. Let us first observe that the triple (L, R, 7) is an adjunction
iff

Ve, d(Ld < ¢ iff d < Re) .
A pair of monotonic functions satisfying this property is also known as Galois
connection.

Proposition B.4.6 Let C, D be poset categories. Then:
(1) FEvery component of an adjunction determines the other.

(2) The following conditions are equivalent for R : C — D, and L : D — C: (a)
Ve, d(Ld < e iff d < Re), and (b) Lo R <idc, idp < Ro L.

(3) The pair (cq,d < Feg) is universal from d to F': C — D f:
Ve(d < Fe=e¢qg<c). (B.1)

IfVd(cq,d < Feg):d — F then F has a left adjoint L where L(d) = ¢,.

(4) Viceversa, if L4 R, R:C— D, and L : D — C then Vd(Ld,d < (Ro L)d)
is universal from d to R, and symmetrically Ve (Re, (Lo R)c < ¢) is co-universal
from L to c.

PRrROOF. (1) We note that if L 4 R and L 4 R then d < Re iff Ld<e¢ iff d <
R'c. For d = Rc we get Re < Re iff Re < R'c. Hence Re < R'c, and symmetri-
cally R'¢ < Re.

(2) Concerning the equivalence of the statements: (a) = (b) L(Re) < c¢ iff Re <
Re. (b) = (a) Ld < ¢ implies d < R(Ld) < Re, and d < Re implies Ld <
L(Rc) <e.

(3) Condition B.1 follows from definition B.4.2. If d < F¢; then, by condition
B.1, ¢; < ¢, that is Ld < ¢. By hypothesis Vd(d < F(Ld)). Hence, Ld < ¢
implies d < F(Ld) < Fe.

(4) Direct application of the characterizations (2-3). 0

Exercise B.4.7 Generalize point (1) of proposition B.}.6 to arbitrary categories: if
L AR and I 4 R’ then R and R’ are naturally isomorphic.

The following theorem connects adjunctions with universal morphisms and gen-
eralizes points (2-4) of proposition B.4.6.

Theorem B.4.8 An adjunction (L, R,T) determines:

(1) A natural transformation n : «dp — Ro L, called unit, such that for each
object d € D, (Ld,ng) is universal from d to R, for each f : Ld — ¢, 7(f) =
R(f)ony:d— Re.
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(2) A natural transformation € : L o R — ide, called counit, such that for each
object ¢ € C, (Re,¢.) is co-universal from L to ¢, and for each g : d — Re,
7 g) =¢c.0L(g): Ld — c.

(3) Moreover the following equations hold:
(Re)o(nR)=1dr (eL)o(Ln)=1dr .

Exercise B.4.9 Show that an adjunction L - R is completely determined by (i) func-
tors L : D — C and R : C — D, (ii) natural transformations ¢ : L o R — 1id,
n:id — Ro L such that (eL) o (Ln) = idy and (Re) o (nR) = idp.

Exercise B.4.10 Let C be a category. Show:

(1) C has a terminal object iff the unique functor!: C — 1 has a right adjoint.

(2) C has a binary products iff the diagonal functor A : C — C x C has a right
adjoint, where A(a) = (a,a) and A(f) = ([, f)-

(3) Given a graph I consider the category [I — C] of graphs and natural transforma-
tions (observe that the definition of natural transformation does not require I to be a
category). Define a generalized diagonal functor Ay : C — [I — C] and show that C
has limits of I-indexed diagrams iff the functor A1 has a right adjoint.

(4) Show that the left adjoint of the inclusion functor from complete metric spaces to
metric spaces builds the Cauchy completion. Analogously show that the left adjoint to
the forgetful functor from X-algebras to Set builds the free-algebra.

The definition of adjunction hides some redundancy, the following characteriza-
tions show different ways of optimizing it. An adjunction L 4 R is determined
by (i) a functor L : D — C, (ii) a function R : Obc — Obp, and one of the
following conditions:

(1) Bijections 74, : D[Ld,¢] — Cld, Re| for all ¢,d, such that for all f, ¢ of
appropriate types: 7(f)og = 7(f o L(g)). Hint: R is uniquely extended to a
functor by setting Rh = 7(h o 771(id)).

(2) Functions 7. : D[Ld, ¢] — C[d, Rc| for all ¢, d, and morphismse. : L(Rc) — ¢
(e for short) for all ¢, such that for all f, g of appropriate types e o L(7(f)) = f,
g = 7(co Lg). Hint: 7 is proved bijective by setting 77%(g) = ¢ o Lg. The
naturality is also a consequence.

(3) Morphisms ¢. : L(Re) — ¢, for all ¢, such that for all ¢,d, f € C[Ld,¢],
there exists a unique morphism, written 7(f), satisfying e o L(7(f)) = f. Hint:
The naturality of the e follows. Another way of saying this is that (Rc,e.) are
co-universal from L to e.

B.5 Adjoints and Limits

Given a functor F', the existence of a left (right) adjoint implies the preservation
of limits (colimits). First consider the situation in Poset.
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Proposition B.5.1 Let C,D be poset categories. If there is an adjunction L
R, R:C—D,and L :D — C then R preserves glb’s (and L lub’s).

Proor. We suppose X C C, and IAX. Also we assume Ve € X (d < Re).
Then Ve € X (Ld < ¢). Hence Ld < A X, that implies d < R(A X). O

The following theorem generalizes the previous proposition.

Theorem B.5.2 [f the functor R : C — D has a left adjoint then R preserves
limits (and L colimits).

Vice versa one may wonder if the existence of limits helps in the construction of
an adjunction. Consider again the situation in Poset.

Proposition B.5.3 Let C,D be poset categories. Suppose there is R : C — D
and C has all glb’s. Then R has a left adjoint iff R preserves glb’s.

PROOF. (=) This follows by B.5.1. (<) Define L(d) = Ac{c¢’ | d < Rc'}. Then
d < Re implies L(d) = ANc{c¢ | d < R’} < ¢. On the other hand, if L(d) < ¢
then d < Ac{Rd | d < R} = R(Ac{c | d < Rd}) = R(L(d)) < R(c). O

There are several results which generalize the previous proposition. We present
just one of them. Given a functor R : C — D, where C is small and has all limits
the following Solution Set Condition is enough to establish the existence of a left
adjoint:

Vd € D3{(¢;,w;: d = Rei)hier (1 set),

Ve e CVf:d— R/Aie [f :¢c; = ¢

f=Rf ow,; .

This can be understood as a weakening of the universal condition in the definition
B.4.2 of a universal morphism. Given an object d € D we can find a set of
objects and morphisms that commute (not in a unique way) with every morphism

f:d— RC.

Exercise B.5.4 Show that if R has a left adjoint then the solution set condition is
always satisfied (cf. [BW85]).

Theorem B.5.5 (Freyd) Let C be a category with all limits. Then a functor
R :C — D has a left adjoint iff R preserves all limits and satisfies the Solution
Set Condition.
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B.6 Equivalences and Reflections

The notion of functor isomorphism is often too strong to express the idea that two
categories enjoy the “same properties” (e.g. existence of limits). The following
weaker notion of equivalence is more useful.

Definition B.6.1 (equivalence of categories) A functor F': C — D is an
equivalence of categories if there is a functor G : D — C such that F oG = idp,
and G o F' = 1dg, via natural isomorphisms.

Theorem B.6.2 The following properties of a functor F': C — D are equiva-
lent:

(1) F is an equivalence of calegories.
(2) Fis part of an adjoint (F, G, n, €) such that n and € are natural isomorphisms.
(3) F is full and faithful and ¥Vd € D3c € C(d = Fe).

Exercise B.6.3 Give examples of equivalent but not isomorphic pre-orders.

Exercise B.6.4 Show that any adjunction cuts down to an equivalence between the full
subcategory whose objects are those at which the counity and the unity, respectively, are
150.

Exercise B.6.5 (1) Let L 4 R be an adjunction where L : D — C, R : C — D. If
C', D’ are full subcategories of C,D, respectively, Ya € D' La € C’, and Vb € C' Rb €
D', then the adjunction I, + R restricts to an adjunction between C' and D’. The same
holds of equivalences. (2) If L 4 R is an equivalence between two categories C, D, if
D’ is a full subcategory of D closed under isomorphic objects, then the equivalence cuts
down to an equivalence between C' and D’ where C' is the full subcategory of C whose
collection of objects is {a | Ra € D'}, which is equal to {a | 3b € D' a = Lb}.

Exercise B.6.6 Suppose that L 4 R is an adjunction with counity ¢ such that ¢q is a
mono for all d. Show the following equivalences: (1) € is iso at d iff d is isomorphic to
Le for some c. (2) 1 is iso at ¢ iff ¢ is isomorphic to Rd for some d . Show the same
properties under the assumption that n. is ept, for all c.

Reflection is a condition weaker than equivalence. The following proposition
illustrates the idea in the poset case.

Proposition B.6.7 (poset reflection) Let C,D be poset categories. Suppose
there is an adjunction L 4 R, R: C — D, L : D — C, where R is an inclusion.
Then for any X C C,

EI/\X = EI/\X and /\X:/\X.
D C C D
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ProoOF. We set ¢ = L(Ap X), and show ¢ = A¢ X = Ap X. For any = € X,
Ap X < z implies, by the adjunction hypothesis, ¢ = L(Ap X) < x. Hence
¢ < Ap X. On the other hand, suppose ¢’ € C is a lower bound for X, then
¢ < Ap X, and therefore L’ < e. It is enough to observe that L¢’ = ¢’. By the
adjuction condition, ¢ < ¢ implies Lc’ < ¢, and Ld < L implies ¢ < Ld. O

Definition B.6.8 If C is a subcategory of D we denote with Incl : C — D the
inclusion functor. We say that C is a reflective subcategory of D if there is L
such that L 4 Incl. L is also called the reflector functor.

The point (4) of the following theorem generalizes the previous example.

Theorem B.6.9 For an adjunction (L, R,n,¢) the following holds:

(1) R is faithful iff every component ¢. : L(Re) — ¢ is an epi.

(2) R is full iff every component ¢.: L(Rc¢) — ¢ is a split mono (i.e. it has a left
inverse).

(3) Hence R is full and faithful iff €. : L(Re) — ¢ is an iso.

(4) If R: C — D is the inclusion functor then for any diagram D : 1 — C:

dlimpD = dlimcD and imcD = limpD .

Exercise B.6.10 Show that the full sub-category of Hausdorff topological spaces is
reflective in the category of topological spaces and continuous morphisms, and that
the full subcategory of posets is reflective in the category of preorders and monotonic
morphisms. On the other hand show that the ideal completion of a poset to a directed
complete poset does not provide a left adjoint to the inclusion of directed complete posets
into the category of posets and monotonic morphisms.

B.7 Cartesian Closed Categories

Cartesian closure formalizes the idea of closure of a category under function space.
Chapter 4 provides some intuition for the genesis of the notion, several equivalent
definitions, e.g. 4.2.5, and examples. We recall that a CCC is a category with
finite products and such that the functor - x A: C — C has a right adjoint, for
any object A. In the following, we present small categories and presheaves as

examples of CCC’s.

Example B.7.1 The category of small categories and functors is cartesian closed.
The exponent object DC is given by the category of functors and natural trans-
formations. Then we define:

ev(F,A)=FA ev(d,f)=Gfods=dpoFf (6:F—G,f: A= B)
AMF)AB = F(A,B) AF)fg=F(f.9)
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Example B.7.2 (presheaves) Our next example of a CCC is SetC”, for any
category C. The cartesian structure is built pointwise, but this does not work
for exponents (try to take (F = G)A = Set[FA,GA], how does one define
(F = G) on morphisms?). The solution is to use Yoneda lemma B.3.15. For
F.G: C? — Set we define:

(F = G) =X e.Nat[C[_, ] x F,G] .

Exercise B.7.3 If C is a preorder, we can recover a pointwise definition of ' = G.
Define Cq4 as the full subcategory of C with objects those B such that B < A. Given
F: C% — Set, define [, : (C14)° — Set by restriction. Then show (F = G)A =
Set[F]A7 G]A]

Exercise B.7.4 Let C be a CCC which has an initial object 0. Then show that for any
A: (i) 0x A 20, (i1) C[A,0] # 0 implies A 2 0 (thus C[A, 0] has at most one element).
If furthermore C has finite limits, show that, for any A, the unique morphism from 0
to A is mono. Hints: C[0 x A, B] 2 C[0, BA] and consider in particular B = 0 x A.
Consider also °P o wy. Suppose f: A — 0. Then consider w3 0 (f,id).

Exercise B.7.5 Let C be a CCC, and 0 be an object such that the natural transfor-
mation p @ Az.x — Az.(x = 0) = 0 defined by pn = A(ev o (my, 7)) is iso. Show
that 0 is initial and that C is a preorder (this is an important negative fact: there is
no nontrivial categorical semantics of classical logic, thinking of 0 as absurdity and of
(z = 0) = 0 as double negation). Hints: (i) 0= 021, indeed 1 = (1 = 0) = 0, and
(1= A) = A, for any A. (ii) for any A:

[0,(A=0)=0] =C[0x (A=0),0]
[A=0,0=0] ==C[A=0,1]

(i11) for any A, B: C[A,B]= C[A,(B=0)=0]= C[A X (B=0),0].

B.8 Monads

The notion of monad (or triple) is an important category-theoretical notion,
we refer to [BW85, MLT71] for more information and to chapter 8 for several
applications of this notion in computer science.

Definition B.8.1 (monad) A monad over a category C is a triple (I',n,u)
where T': C — C is a functor, n :idc — T, p: T? — 1" are natural transforma-
tions and the following equations hold:

paonra =1tdra paoTns=1dra paopra =paoTpa .

Exercise B.8.2 Show that if C is a posel then a monad can be characterized as a
closure, i.e. a monotonic function T : C — C, such that td <T =T oT.
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Definition B.8.3 (category of 1'-algebras) Given a monad (1',n,u) al'-algebra
is a morphism o : T'd — d satisfying the following conditions:

(1,) «aong =1idy (1,) aola=aopu,.
The category Algr has T-algebras as objects and
Algrla:Td— d,3:Td - d]={f:d—=d |Bolf=foa}.

Exercise B.8.4 With reference to example B.J.1 and exercise B.4.5, show that Y-
algebras are exactly the algebras for the monad associated with the adjunction Ty -
Forget, where Ty, is the “free algebra” functor and Forget is the forgetful functor (cf.
exercise B.4.5).

Exercise B.8.5 Consider the powerset functor P : Set — Set with n(z) = {2} and
w(X)=UX. (1) Show that these data define a monad. (2) Show that the category of
complete lattices and functions preserving arbitrary glb’s is isomorphic to the category
of algebras for this monad. Hint: show that a complete lattice can be presented as a
set X equipped with an operation )\ : PX — X such that N{z} =z and N{\NX; | j €
J} = ANU; X;) for any indeved family of subsets X ).

Definition B.8.6 (Kleisli category) Given a monad (T,n,p) over the cate-
gory D, the Kleisli category Kr is defined as:
Ky =D Ky[d,d] =D[d,Td']
idg=ng:d—Td fog=pgmoTfog forg:d—d,f:d —d in Kg.
Theorem B.8.7 (1) Every adjunction (L, R,n,¢) gives rise to a monad:
T(L4R)=(RoL,n Rel) .

(2) Given a monad (1,n,€) over the category D, consider the category of T'-
algebras Alg,. We can build an adjunction (LT, RT nT cl) as follows:

LT(d)y=pq:T*d—Td L'(f:d—d)="T(f)
(a:Td—d) = Rf(g:a—=p8)=g
' =n a:Td—d)=a.

Moreover the monad induced by this adjunction is again (T, n,¢€).
(3) Given a monad (T,n,¢€) over the category D, consider the Kleisli category
K then we can build an adjunction (LE7, RET n57 &1 as follows:

LI{T<d) == d LI{T(f . d — dl) = MNq' © f

REr(d)y=Td RET(f:d—Td)=psoTf

=1 e =idry .

Moreover the monad induced by this adjunction is again (T, n,¢€).

Given a monad 7' the Kleisli adjunction and the T-algebra adjunction can be
shown to be initial and final, respectively, in a suitable category of adjunctions
generating the monad T'.
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rank, 108

recursive function, 496
recursive set, 497
recursively enumerable set, 497
reducibility candidate, 297
reduction (A-calculus), 484
reduction (Ay-calculus), 210
reduction (7w-calculus), 467
reduction depth, 44
reflective subcategory, 514
reflexive, 64

reflexive object, 118
representable functions, 295
residual, 41

response, 397

retraction, 125

right-strict, 27

root, 140

saturated object, 183
Scott domain, 26

Scott open, 21

Scott open (in per), 448
Scott topology, 21
Scott-open filter, 243
semi-colon translation, 221
semi-decidable set, 497
semi-lattice, 225

semi-lattice (join preordered), 226
semi-lattice (meet preordered), 226

separated Chu space, 371
separated objects, 443
separated sum, 29
sequential algorithm, 386
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sequential data structure (sds), 396
sequential function (Kahn-Plotkin), 383
sequential function (Vuillemin), 164
sequentiality index, 383
Sieber-sequential relation, 115
simple types, 46

simply typed A-calculus, 90
simply-typed terms, 46

size, 44

slice category, 170

slice condition, 374

small category, 502

smash product, 28

sober space, 245

spatial locale, 245

specialisation preorder, 20

split mono, 503

stable, 305

stable (cds), 381

stable bifinite domain, 318
stable cds, 381

stable event structure, 312
stable projection, 318

standard, 43

standard model (PcF), 150
state (event structure), 312
state (of a cds), 381

state coherence, 353

step function, 25

Stone space, 255

strategy, 397

strict, 27

strict atomic coherence, 352
strongly sequential function, 383
strongly normalisable, 43
strongly stable, 353

substitution (A-calculus), 39
subtyping recursive types, 463
symmetric algorithm, 407
symmetric monoidal category, 344
system F, 292

system LF, 287

tensor product, 343

tensor unit, 343

terminal object, 503

trace, 305

translation in Afp-calculus, 285
translation in m-calculus, 489
type assignment system, 439
type structure, 437

unit, 510

universal morphism, 509
value (cds), 380

weak A-calculus, 206
web, 336

well-founded (cds), 381
well-founed cds, 381

Yoneda embedding, 508
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