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Chapter 1

Sequents

This chapter presents the language and sequent calculus of second-order linear
logic and the basic properties of this sequent calculus. The core of the chapter
uses the two-sided system with negation as a proper connective; the one-sided
system, often used as the definition of linear logic, is presented later and used
for describing the cut elimination procedure.

1.1 Formulas

The formulas of Linear Logic are defined by Table 1.1. Capital Latin letters
A, B, C will range over the set of formulas. Atomic formulas, written «, 3, -,
are predicates of the form p(¢1,...,t,), where the t; are terms from some first-
order language. The predicate symbol p may be either a predicate constant or a
second-order variable, we call n the arity of p. By convention we will write first-
order variables as x,y, z, second-order variables as X,Y, Z, and £ for a variable
of arbitrary order.

Each line of Table 1.1 (except the first one) corresponds to a particular class
of connectives, and each class consists in a pair of connectives. Those in the left
column are called positive and those in the right column are called negative (see

Positive Negative Class
a atom A+ negation
A® B tensor AR B par multiplicatives
1 one 1 bottom multiplicative units
A® B plus A& B with additives
0 Zero T top additive units
1A of course 7A why not exponentials
J€.A  there exists VE.A  for all quantifiers

Table 1.1: Formulas of Linear Logic.
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Section 1.6 for practical impacts of the notion of polarity). The atoms have no
predefined polarity and negation changes the polarity of the negated formula.
The tensor and with connectives have conjunctive flavour while par and plus
have disjunctive flavour. Indeed mapping ® and & to A and % and @ to V
turns linear provable formulas into valid classical formulas. The exponential
connectives are called modalities, and traditionally read of course A (or bang
A) for |A and why not A for ?7A. Quantifiers may apply to first- or second-order
variables.

The linear implication and the linear equivalence are presented as defined
multiplicative connectives, by A — B := At B and A oo B := (A*®B)®(A%
B1), respectively. In order to underline the symmetries acting on Linear Logic
formulas, we consider the implication and equivalence as defined connectives,
similarly to the decomposition A — B = =A V B in classical logic. Notice that
A — B and A oo B are defined by the multiplicative connectives, in fact their
additive versions are not suitable, for example the disjunction A+ @ A is not
provable for all formula A.

Free and bound variables and first-order substitution A[t/z]| are defined in
the standard way. Formulas are always considered up to renaming of bound
names. If A isa formula, X is a second-order variable of arity n and Bz, .. ., ;]
is a formula with variables among x;, then the formula A[B/X] is A where every
atom X (t1,...,t,) isreplaced by Blt1/x1,...,tn/zy]. Forexample, (Vy.X (y))[Vz.p(z, 2)/X] =
Yy.Vz.p(y, 2).

1.2 Sequents and proofs

A sequent is an expression I' - A where I and A are finite sequences of formulas.
For a sequence I' = Ay, ..., A,, the notation $T, for § € {?,!}, represents the
sequence $A1,...,$A,, and similarly I'" represents the sequence Af,..., A+.
Proofs are labelled trees with nodes labelled with inference rules and edges
labelled by sequents'. Table 1.2 gives a picture of the LL inference rules together
with the labelling of the incident edges. These latter are oriented top-down: the
sequents at the top of an inference rule are called premises and the one at the
bottom is called conclusion. The arity of a rule is the number of its premises,
for example the axiom has arity 0, the cut 2 and the two rules introducing the
negation have arity 1. The occurrences of a formula that are explicit in the
picture of an inference rule in Table 1.2 are called active, the other occurrences
being passive. The passive occurrences provide the context of the rule. For the
rules introducing a new occurrence of a connective, the occurrence of formula
containing this connective is called the principal occurrence of the rule. A
principal occurrence is unique in a rule and always occurs in the concusion. For
example in the right introduction of the tensor rule, the explicit occurrences of
A and B are active in the premises and the explicit occurrence of A® B is active
in the conclusion (it is moreover the principal occurrence), while all occurrences

In a formal definition, the root of the tree is a node with no label (or a with a special
conclusion label). The associated edge is called the conclusion of the proof.
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of the formulas in the sequences I', T, A and A’ are passive (they constitute the
context).

Observe that the rules (3}) and (37) (resp. (V) and (V%)) differ only by
the order of the quantified variable: we may write (31,) (resp. (Vg)) for either
rule. Similarly the rules (3%) and (3%) (resp. (V1) and (V%)) differ only by the
order of the quantified variable and the substitution performed in the premise:
again, we may write (3g) (resp. (Vr)) for either rule, when the order is either
irrelevant or clear from the context.

The left (resp. right) introduction rule for the ! (resp. ?7) modality is called
dereliction, and the right (resp. left) introduction rule for the of course (resp.
why not) modality is called promotion. Notice that the promotion rules require
that all passive formulas have a suitable exponential modality.

Applying the right (resp. left) introduction rule for the ! or V (resp. ? or
J) connective thus requires constraints on the context. These rules are called
contextual.

Notation 1.2.1. We shall write 7 : I' = A to signify that 7 is a proof with
conclusion I' - A.

In a proof considered as a tree, the leaves are given by applications of the
rules (az), (1g), (Lz) and (Tg). By allowing arbitrary sequents as (non-
justified) leaves, one gets the notion of open proof (or partial proof). These
special leaves are called holes (with the idea that plugging a proof with appro-
priate concluson in each of the holes of an open proof gives you a proof). A
open proof with holesT'y H Aq, ..., ', H A,, and conclusion I' F A is also called
a derivation of ' A fromI'y H Aq, ..., T, F A,,.

Definition 1.2.2 (Provability, admissibility, derivability). A sequent is provable
if there exists a proof with this sequent as a conclusion. A formula is provable
if the singleton sequent (- A) of this formula is provable. An inference rule:

is admissible (drawn with a dashed line) from a set of rules S if the provability
of all its premises (using ) implies the provability of its conclusion (using S).
The inference rule:

mEA ... T,FA,
'tA
is said derivable (drawn with a double line) from a set of rules S if there exists
a derivation of I' H A from the premises I'1 - Ay, ..., I'), B A, using only the
rules in S.

Notice that the derivability of an inference rule implies its admissibility, but
the converse does not hold. For example the cut rule is admissible from the
other rules of Figure 1.2, as we will prove in the next section, but it is not
derivable.
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Identity and negation group
TFAA T/,AFA THAA T AFA
(az) cut) —————— (nL) ——— (ng)
AFA | R SVANAN LAY EA kAL A

Multiplicative group

I A, BFA A I'FAA T'FBA
—  (® — (1 & — (1
F,A®BI—A( 2 T1FA (1e) I.T'FA®B,A A ®r) = (r)
IAFA T,BFA I'FABA r'eA
p — () — (L) ———— Br) =—— (Ln)
I, AR BFA,A - TFAXB,A TF LA
Additive group
[AFA F,BFA(@) 0p) THALA (@)
I A®BFA YTora Y TrA @A T
[ A FA I'FAA TFBA
—— (&) (&r) ———=—— (Tr)
TA & A F A TFA&B,A TFT,A

Quantifier group

In the rules (3}) (resp. (%)) and (V}) (resp. (V%)),
the variable z (resp. X) must not occur free in I' nor in A.

LAFA 1 LAFA ) IFAlt/z], A 'k A[B/X],A )
—~ 1) (3L IR v G
3z AFA axX.ArA T'F3z. A A '-3xX.A A
LAt/ A I'VAB/X]F A 'kAA 'kEAA
0 L) v (V1) (V&) (Vh)
LV AFA WVXAFA 'Eve.A A I'FVX.AA

Exponential group
IAFA T A 7A I'EAA T AE?A
'L 'r ("r) =< ("r)
TJIAEA T 1A 7A T'E7AA TN 7AETA
Structural rules
I',A B TyFA 'k A, A B, Ay
— = (exy eTR)
I'y,B,A Ty A I'EA{,B, A A,
TFA (wr) A (wp) I‘,!A,!AI—A( ) I‘I—?A,?A,A( )
— (w — (w — (c — (c
TAFA - 2 Troaa % "TiAra % "rre2aa O F

Table 1.2: Inference rules for two-sided Linear Logic sequent calculus
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Ezample 1.2.3. The inference rule F—f i -~ is admissible but not derivable.

Note the fundamental fact that the exchange structural rule is free on every
formula, while the left (resp. right) contraction and weakening require the active
formulas to be an of course (resp. why not) modality. This is a specificity of
linear logic with respect to classical logic: if weakening and contraction were
allowed for arbitrary formulas, then the multiplicatives and additives would
collapse, in the sense that one group would become derivable from the other
group and the free structural rules (Exercise 1.2.4).

Ezercise 1.2.4. Prove that each rule in the additive (resp. multiplicative) group
in Table 1.2 is derivable from the multiplicative (resp. additive) group and the
structural rules free on every formulas, i.e.:
kA (whree) THA I''AAFA I'HAAA
L

free free free
T.AFA rraa ) Tara @) praa )

1.3 Basic properties

1.3.1 Multiset-based sequent rules

Notice that all the active occurrences in the rules of Table 1.2 are formulas
next to the sequent symbol I, except for the exchange rules. Indeed, these
latter ones allow for relieving this constraint, making admissible rules firing on
formulas wherever in a sequent, as the following exercise proves.

Ezercise 1.3.1. Given a natural number n, let us denote by P, the set of all

permutations over n. Given a list of formulas ' = Ay, ..., A, and a permutation
o € Pp, we write I' - o for the action of o over I, i.e. the list A (1),..., As(n)-

1. Prove the derivability of the following generalized exchange rule for every

permutations o and p:
'-A

' oEA-p

2. Prove that the derivability of every rule in Table 1.2 is invariant under the
action of any permutation over the sequents appearing in the rule. For
example, prove that for every permutations o,c’,d”, p, o', p"” of suitable
domain, the rule:

(T,A)-oFA-p ([T,B)-0c'EA"-p
(O,IV,A® B) -0 F (A A - p”

is derivable from the rule (%;) and the exchange rule.

This exercise shows that one can consider sequences of formulas up to the
permutations of their elements as soon as only provability matters. This means
considering sequents as made of finite multisets instead of finite sequences of
formulas. We will adopt this convention henceforth, keeping the use of the
exchange rule implicit, whenever we focus on provability.
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1.3.2 Expansion of identities

The axiom rule in Table 1.2 is defined for any formula. However regarding
the expressiveness of the system, it is enough to restrict it to atomic formulas.
Indeed, Table 1.3 defines a cut-free proof n(A) : A+ A for every formula A in
which all occurrences of the (az) rule have atomic formulas in conclusion. This
proof requires almost no structural rule (just one exchange rule in the case of
negation). We call n(A) the extensional expansion of A, or the n-expansion of
A, as it corresponds with the n-expansion rule in A-calculus. It is also called
the identity expansion of A: the definition of n(A) reflects the decomposition
of the identity morphism in categorical models, to be described in Section 5.6.
The definition of n(A) is also crucial in the notion of syntactic isomorphism.

1.3.3 Linear equivalences

Two formulas A and B are (linearly) equivalent, written A 4 B, if both im-
plications A — B and B —o A are provable (i.e. if A oo B is provable).
Equivalently, A 4+ B if both A+ B and B F A are provable. Thanks to the cut
rule, this is also equivalent to asking that for all T' and A: T'+ A, A is provable
if and only if I' - B, A is provable.

Remark 1.3.2. By definition, we have A 4 B if and only if A+ —- B*.

Two related notions are isomorphism (stronger than equivalence) and equiprov-
ability (weaker than equivalence): - A < F B.

Ezxample 1.3.3. For any formulas A and B, A® B and A & B are equiprovable.
However neither L @ L - 1 & L nor L & L - 1 ® L are provable.

Exercise 1.3.4 (Beffara’s formula). Prove that A®(AL2 A) is linearly equivalent
to A.

1.3.3.1 De Morgan laws

Negation is involutive:

A+ (AH)E
Duality between connectives:
(A® B)* 4+ A+ » B+ (A® B)* 4 At @ B+
1t 41 1t H-1
(A® B)* 4 At & B+ (A& B)* 4+ At @ B+
ot 4T TR0
(1At 42041 (74)F 4 1(AY)

(3. At - ve. (At (Ve AL 4 3e.(A1)
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n(A):ArA n(B):BFB

n(A® B) = A,BFA®B
——— (®1)
A®BFA®B

n(A): AFA n(B):BFB 2
n(A% B) = AR B A, B
e (3R)
AB®BFA®B
n(A): AF A n(B): B+ B
— (& —_— (&
WAeB) = a1 458 " Brass (a(a ’;2)
AGBFA®B g

n(A): AF A ) n(B): BFB )
n(A&B) =" A&BF A - AYBFB ,, 2

A&BF A&B

(&r)

n(Ad): AF A n(A): AF A )

) ="1ar 4 ()!L) A =" ArA -, ')R
AF1A " PAF74

n(Ad): AF A n(A): AF A
n(E¢A) = AF A ®) n(VEA) = VEAR A

FAF3EA ) VEAFVEA T

L

Table 1.3: n-expansion
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1.3.3.2 Fundamental equivalences
Associativity, commutativity, neutrality:
AR (BRC)4+ (A®B)®C A B4 B® A A1 A
A7?(B7S’C’)4F(A7S’B)7S’C’ AX¥BA-B%® A A LA
@BaC)Ht+ (AdB)aC A®B4+ B A A0 A
A&(B&C)—H—(A&B)&C A& B4 B& A A&TH A
Idempotence of additives:
A A A AL A A
Distributivity of multiplicatives over additives:
A(BaC)4+ (A B)® (AR C) A®0-4-0
AR (B&C)4H (AR B) & (AR C) AT AT
Defining property of exponentials:
(A& B)+1A®!B ITH-1
(A®B)4-?AR?B 70 - L
Monoidal structure of exponentials:
IA®!1A 414 141
TARTAHETA 7104 L
Idempotence of exponentials:
NA 1A 77A4-7A
Other properties of exponentials:
1717A 4174 7141
NNAH-71A N4 L

These properties of exponentials lead to the lattice of iterated exponential
modalities (see Figure 1.1 and Exercise 1.3.5).

Ezercise 1.3.5. An iterated exponential modality is a (possibly empty) sequence
of exponential modalities (for example the empty one e, !! or ?!I1?). Given two
iterated exponential modalities p and v, we say that p < v if for any A, pA+ v A
is provable. If y is an iterated exponential modality, its dual =+ is obtained by
turning each ! into a 7 and each ? into a !.

1. Prove that < defines a preorder on iterated exponential modalities.

2. Prove that < is not a total preorder.
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17

171

Figure 1.1: The lattice of iterated exponential modalities

3. Given three iterated exponential modalities i, 11 and v, prove that v; < vy
implies pvy < uvs.

4. Given two iterated exponential modalities p and v prove that p < v implies

vt <pt.

5. Using the properties about exponentials given before this exercise, prove
that the equivalence relation induced by < has at most 7 equivalence
classes.

6. Prove the order relations pictured on Figure 1.1 hold.

7. Prove that ? L&, 7 L7217, 71 L 17 and 17 £ 7\

8. Conclude that Figure 1.1 exactly describes the preorder relation on iter-

ated exponential modalities.

Commutation of quantifiers (¢ does not occur in A):

I A FIA HK(AGB) K AGIKB H(A®B)4 A®3IC.B A A
VENY.A -V VEA VE(A& B) - VEA&YED YC.(ASB) 4 ARY(.B VA A

1.3.3.3 Definability

The units and the additive connectives can be defined using second-order quan-
tification and exponentials, indeed the following equivalences hold:

0 - VX.X
14 VX.(X — X)
A® B YX.((A —o X) —o (B — X) —o X)

The constants T and L and the connective & can be defined by duality (see
Remark 1.3.2).

1.3.4 Deduction lemma

As already mentioned in Section 1.3.3, there are many ways of relating the
provability of two formulas in linear logic. The goal of a deduction lemma is to



18 CHAPTER 1. SEQUENTS

relate the possibility of deriving + B from F A and the provability of A + B,
but things are a bit subtle in linear logic.

Lemma 1.3.6 (Weakening). IfT'F A is derivable fromT'1 = Aq, ..., T F A,
then 'A,T' = A is derivable from 1A, T1 = Ay, ..., 1A T, b A, as soon as A is
a closed formula.

Proof. By induction on the derivation of I' = A. Typical key cases are:

e (az) rule:
(az) 5rp (@
ax
— = =
BFB !A7B|_B(?UL)
e (®p) rule:
IATFB,A AT +C,A
'B,A T'FCA (®r)
(®Rr) — AJJA T, TV B C,A A
I,T'FB®C,A,A (cr)
AT, B C,A,A
e () rule:
T+ B,?A AT+ B,?A
—— (Ig — ———— (Ig
T +1B,7A AT F1B,7A
o (Vg) rule:
I'FB,A AT+ B,A
— xR o (VR)
[ FvEB,A AT FVEB,A

This is correct because A is closed and thus £ is not free in ! A.
O

In the previous lemma, it is crucial that we use a prefixing ! to cross (!r)
and (?p) rules. Similarly the closure assumption on A allows to cross (Vg) and
(31) rules.

Ezercise 1.3.7. Prove the rule of example 1.2.3 is not derivable.

Lemma 1.3.8 (Deduction). Assuming A is a closed formula, there is a deriva-
tion of ' A from possibly many assumptions = A if and only if 'A, T+ A is
provable.

Proof. In the first direction, we apply Lemma 1.3.6 to get a derivation of 1A, T" F
A from assumptions !A F A. We then turn it into a proof of !A,T" - A by
replacing these assumptions with:
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Conversely, we can build the derivation:

-4 ('r)
1A IAATEA
TFA

(cut)

O

As already mentioned above for the weakening lemma, the introduction of
the ! connective in the deduction lemma is crucial since A F !A is not provable

in general while we have:
FA

FH1A

('r)

1.3.5 Omne-sided sequent calculus

Notice that Table 1.2 is symmetric, similarly to the sequent calculus LK for
classical logic: for every left introduction rule, there is a right introduction rule
for the dual connective that has the exact same structure.

Moreover, because of the involutivity of negation proved in Section 1.3.3,
the hypothesis and the thesis in a sequent can be exchanged by negation.

Exercise 1.3.9. A sequent I' - A is provable iff - 't A is provable iff A+ - T'+
is provable iff I', AL |- is provable.

Similarly to what happens in LK, these remarks allow to define a one-sided
sequent calculus, proving the same formulas as the calculus in Table 1.2, while
enjoying the following features:

e sequents have the form F T';

e negation is not a connective but a syntactically defined operation on for-
mulas given by the De Morgan laws (see Section 1.3.3);

e the rules are essentially the same as those of the two-sided version, except
that the left hand side of sequents is kept empty.

The construction is as follows. We consider DM-normal (for De Morgan-
normal) formulas, which are the formulas obtained by using the constructs of
Table 1.1, except that we restrict linear negation to be applied to atoms only:
in the remaining of that section we reserve letters F,G,... such DM-normal
formulas. Note that, for each occurrence of an atom « in a DM-normal formula
F:

e cither this occurrence is under the scope of exactly one linear negation,
necessarily inside a subformula at of F, and we call this subformula a
negated atom;

e or this occurrence is not under the scope of a linear negation, and we call
this occurrence a positive atom.
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lalpy =« lollpm = ot
|A* | par = [|A]lpa 1A lpm == |Alpa
[1lpy =1 I1]pm = L
|Llpam =L |lLllpm =1
|A® Blpm = |Alpm ® |Blpm [A® Bllpm = [|Allom B || Bl[pwm
|A® Blpym = |Alpm X |Blpum [A% Blpm = [|Allpm @ || Bllom
|Tlpym =T ITllom =0
|0[prr =0 [0]lpm =T
|A® Blpm = |Alpm @ |Blpm A& Blpm = [|Allpm & || Bl[pwm
|A& Blpm = |Alpm & |Blpm [A& Blpm = [|Allpm @ | Bllom
I'Alpa = Alpm ['Allom = ?[|Allpm
I7Alpm = ?|Alpm 17Allpom = !|Allpm
V¢ Alpm = VE.[Alpm V€. Allpm = 3E.[|Allpm
|3 Alpa =3¢ Alpumr 1I2¢.Allpm = V€| Allpm

Table 1.4: Computing a DM-normal formula from a standard LL formula.

Given any formula A of linear logic we associate with it two DM-normal
formulas |A|py and ||A||pm inductively as in Table 1.4: informally, |A|pas is
obtained from A by pushing negations down to the atoms, using De Morgan
laws, while || A||py is nothing but |AL|pay.

Exercise 1.3.10. Check that, for every formula A, A =~ |A|py; and A+ -
[ Allpm-

We define the dual formula F* of a DM-normal formula F' inductively as
follows:

af = at (at)" =«
1% =1 17 =1
(A® B)* = A*® B* (A® B)" = A* ® B*
T =0 0" =T
(A@ B)" = A* & B* (A& B)" = A* ¢ B*
(14)" =74 (P4)* = 1A
(VE.A)" == 3. A” (FE.A)" == VEA”

It should be clear from the definitions that:

e for each DM-normal formula F, we have F** = F and F* = |Ft|py =
1 ][oas

o for each formula A, we have |Al5,, = || Allpm and [|A]|5y = |14lpam-
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Ezample 1.3.11. Let A be the formula (VX.?(X@XH)BNXLB X))+ (101))+,
we have:
Alpy = (VX2(X @ XH) RNUXEB X))@ (L& L)
Al = (VX2(X @ X BU(XEB X)) (1@ 1)|pur
=AXIXIB X)X X)) FAe1)

Ezercise 1.3.12 (De Morgan normalization). Let us consider the following rewrit-
ing system on formulas:

ANt = A

(
1t = 1 1t =1

(A® B)Y* — A+ » B+ (A% B)* — At @ B+
Tt >0 0t > T

(A@ B)* - At & B+ (A& B)* — At ¢ B*+

(14)+ — 74+ (74)t =14+
(Ve A)F — Fe. At (3. At - ve At

1. Prove the strong normalization and the confluence of this system.
2. Prove that |A|pas is the normal form of A for this system.

As in the general case, free and bound variables and first-order substitution
are defined as usual, and DM-normal formulas are always considered up to
renaming of bound names. If F' is a DM-normal formula, X is a second-order
variable of arity n and G[z1,...,%,] is a DM-normal formula with variables
among x;, then the formula F[G/X] is F where every positive atom X (t1,...,t,)
is replaced by G[ti/x1,...,tn/2s], and every negated atom X (ti,...,t,)" is
replaced by (G[t1/21,. .., tn/xn])*.

The rules of the one-sided sequent calculus are presented in Table 1.5, where
every formula occurring in each sequent is assumed to be DM-normal. Note that
there is no rule for negation, as this is now an involutive operator on formulas
rather than a connective.

Theorem 1.3.13. A two-sided sequent I' b A is provable (resp. provable with-
out (cut)) by rules of Table 1.2 if and only if the sequent - ||T||pm, |Alpar is
provable (resp. provable without (cut)) by the rules of Table 1.5.

Proof (Sketch). The if-direction is a consequence of Exercise 1.3.9 and the fact
that the rules of Table 1.5 are specific instances of the right rules of Table 1.2,
but for the axiom and the cut rules, which can be easily proved admissible from
Table 1.2.

The only-if-direction can be proven by structural induction on a proof of
' A. O
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Identity group

FET +FFLA
e s

Multiplicative group

FET FG,A - F,G,T LT

S s ) T (®
FF®G,T,A @)Fl()kF@QF()FLI

Additive group

- F;,T FET FG,T

Tt (@ & T
FE@&I( ) FF&G,T ()PTI()

Quantifier group
In the rule (V') (resp. (V?)), the variable x (resp. X) must not occur free in T.
- Flt/z],T - F[B/X],T - FT - F,T
@y SOELD @y PRy DR
F 3z F. T F3X.FT F Ve F,T FVX.ET

Exponential group
FFT FFT
! )
HIF T F?F T

Structural group

FT,F,G,A LT F?F,7F, T

(ex) w
FT.G.F.A 7R T 7R T

(¢)

Table 1.5: Inference rules for the one-sided Linear Logic sequent calculus
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The one-sided calculus is often used when studying proofs because it is much
lighter (less than half the number of rules) than the two-sided form while keeping
the same expressiveness. In the next sections, we will establish the key properties
of this sequent calculus — including the admissibility of the (cut) rule, the
subformula property, etc. — for the one-sided version: their generalization to
the two-sided version is straightforward. Moreover, proof nets, to be introduced
in Chapter 2, can be seen as a quotient of one-sided sequent calculus proofs
under some commutations of rules.

Beyond that point, unless we explicitly consider a two-sided calculus, we
will generally identify any formula A with its DM-normal form |A|pas, and no
longer distinguish between F* and F* (as already done on Table 1.5).

1.4 Some fragments of interest

In general, a fragment of a logical system S is a logical system obtained by
restricting the language of S, and by restricting the rules of S accordingly.

The most well known fragments are obtained by combining/removing in
different ways the classes of formula constructors present in the language of
linear logic formulas (see Table 1.1):

e atoms;

multiplicative connectives and their units;

additive connectives and their units;
e exponential modalities;
e quantifiers.

The fragments of LL obtained in this way are denoted by prefixing LL with
letters corresponding to the classes of connectives being considered: M for mul-
tiplicative connectives, A for additive connectives, and E for exponential connec-
tives. Additional subscripts specify what atoms and /or quantifiers are included:
0 when we include units and propositional variables; 1 when we include gen-
eral predicates and first-order quantification; 2 when we include second-order
quantification on propositional variables; and these can be combined, so that
the subscript 02 indicates that we consider units, propositional variables, and
quantification on the latter. We moreover consider two further restrictions of
the propositional case, denoted by specific subscripts: © when units are the only
atoms; v when propositional variables are the only atoms; and in both cases we
exclude any form of quantification.

For instance, in the multiplicative case, we obtain the following fragments
of the language of formulas:

e MLL, with constructors: 1, 1, ®, %;

e MLL, with constructors: X, X+, ®, %;
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MLL,y with constructors: 1, L, X, X+, ®, %;

MLL; with constructors: p(ty,...,tn), p(ti,...,tn)", ®, %, Vo, 3z —
where p ranges over predicate symbols;

MLLo; with constructors: 1, L, p(t1,...,tn), p(t1,...,tn)*, ®, %, Vo, 3z
— where p ranges over predicate symbols;

MLLs with constructors: X, X+, ®, &, VX, 3X;
MLLgy with constructors: 1, L, X, X+, @, ¥, VX, 3X;

MLLys with constructors: p(ty,...,tn), p(t1,...,tn)*, ®, %, Vo, Iz, VX,
34X — where p ranges over predicate symbols and second order variables;

MLLg12 with constructors: 1, L, p(t1,...,tn), p(t1,...,tn)*, @, B, Va,
Jx, VX, 3X — where p ranges over predicate symbols and second order
variables.

Having fixed the classes of connectives, atoms and quantifiers to be consid-

ered, the induced fragment consists of the rules of Table 1.5 (or Table 1.2 in
the two-sided version, in which case one must also allow linear negation as a
connective), minus those that mention missing constructors.

Fragments of interest include:

e MLL,: formulas are built from propositional variables (and their duals)

using only ® and % connectives; and the only rules are (az), (cut), (®),
(%) and (ex). This forms the minimal core of linear logic, and generally
serves as a playground where everything works perfectly. For instance, we
will first present proof nets in that setting: see Section 2.1

LLy: formulas are built from propositional variables (and their duals) using
multiplicative and additive connectives and units, as well as exponential
modalities; and the rules are those of Table 1.5 minus the quantifier group.
This is the fragment for which we will provide a full proof of the admissi-
bility of (cut), in Section 1.5.

MELLy: formulas are built from propositional variables (and their duals)
using multiplicative connectives and units, as well as exponential modali-
ties; and the rules are those of Table 1.5 minus the additive and quantifier
groups. This is the fragment for which proof nets are more generally
introduced and studied; it is moreover the target of translations of the
A-calculus.

LLgs: all constructors are allowed except for predicates of non-zero arity
and first-order quantification. This is often considered as the full version
of linear logic, as first-order terms and quantification are generally left
aside.
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e MELL,: formulas are built from propositional variables (and their duals)
using multiplicative connectives, as well as exponential modalities and
second-order quantifiers; and the rules are those of Table 1.5 minus the
additive group and the rules for first-order quantifiers and multiplicative
and additive units. This is in fact as expressive as LLys,

Other fragments are built by keeping connectives from all classes while con-
training the way they can be combined.

e Intuitionistic formulas are output formulas (noted o) and input formulas
(noted ¢):

o = a |o®o|tTBo|l|odo|lo&ko|0|T|lo|VEo]|3K.0
n= ot [ Befo@u| L& | e@e | T]O |70 3| VEL

Note that | ® 771 is not an intuitionistic formula, while T is both input
and output. If o (resp. ¢) is an output (resp. input) formula then o (resp.
) is an input (resp. output) formula. See Section 1.7.2.1 for more details
about this fragment and its link with Intuitionistic Linear Logic (ILL).

e Polarized formulas are positive formulas (noted P) and negative formulas
(noted N):

P = a |PP|1|P®P|O0]|IN|3IP
N = o' |N®N|L|N&N|T|?P|VEN

Note that positive and negative formulas are disjoints classes of formulas
and that 71 ® T is not a polarized formula. If P (resp. N) is a positive
(resp. negative) formula then P+ (resp. N1) is a negative (resp. positive)
formula.

1.5 Cut elimination and consequences

The admissibility of the cut rule is a corner property of Linear Logic (as for
many other sequent calculi). It leads in particular to the sub-formula property
and then to consistency.

Theorem 1.5.1 (Cut admissibility). For every sequent I' = A, there is a proof
of I' B A if and only if there is a proof of I' = A that does not use the cut rule.

In order to prove this admissibility property, we are going to provide an
explicit cut elimination procedure which progressively reduces cuts in a proof
(which may contain many) until the proof becomes cut-free.

1.5.1 A proof for propositional linear logic

This section presents a proof of the cut elimination property for the sequent
calculus of propositional linear logic, that is linear logic without the second-
order nor first-order quantifiers. The method used here consists in defining an
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appropriate reduction relation over proofs and prove its weak normalization, to
cut-free proofs, by a simple induction over proofs with an appropriate termina-
tion measure. While the technique can be easily extended to first-order (and its
extension does not bear any specificities due to linear logic itself), it does not
extend to second-order logic: although the induction steps are the same, the
termination argument requires more powerful tools.

In orer to motivate the main ingredient of the proof, we shall first consider
few examples of proofs with cuts and how to simplify them:

FT1,A  +FT9,B ®) - A AN BY =)
FTy, I, A® B A At BY (cut)
cu
FI,To, A
FTy,B A AL B
(cut)
— "Pl,A }_FQ,A,AJ—
®/% (cut)
T, A
here one cut generates two cuts but they act on strictly smaller formulas.
FT,A B,C =)
FT A% B,C A CH
(cut)
FT A% B,A
FT,A,B,C FACH
(cut)
— FT,A B, A
comm(%) [ S — (75’)
FT A% B,A

here the cut still acts on the same formula but its left premise comes from a
strictly smaller proof.

FT,24,74

—— (C

FT. 74 F A, 1AL
- T,7A (cut)
FT, 24,74 F 24, 1AL
(cut)
FT,7A,7A At
i FT.7A7A (cut)
FT,7A

here one cut generates two cuts acting on the same formula, the top-most one
acts on smaller proofs but there is no such guarantee for the bottom one (this
is the main source of difficulty in the proof to come).

Definition 1.5.2 (Cut Rank). Let 7 : F T be a proof and r an occurrence of
a cut inference of .

The cut rank of r, rk(r) is the complexity of its cut-formula, that is the
number of connectives of the cut formula.

The proof rank of 7, rk(m) is the supremum of its cut ranks.
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(az)

T - FC,F "CL,C (cut)?ﬂl: FC,F

-C,T

Figure 1.2: Axiom case.

Definition 1.5.3 (Level of a cut). Let 7 : F T be a proof and r an occurrence
of a cut inference of w. The level of r, Ivl(r), is the size of the proof tree rooted
in 7.

The following definition introduces a generalized cut which is a derivable
rule in LL thanks to the cut rule and the structural rules of weakening and con-
traction. In a sequent - I', A™ A means - T, A,--- , A, A with n occurrences
of A.

Definition 1.5.4 (Structural cut). The following inference is called structural
Fo® T ot A

FT,A
the formula it labels is a ?-formula.

cut

(scut) if an index among k,! differs from 1 only if

As a consequence of the definition of structural cut, it is not possible that

both k and [ differ from 1. Moreover if - C®*) T' (and the same for - C’J-(l), A)
FC®. T
is the premise of a structural cut then: ———— is derivable (if kK = 1 it is
FC,T
immediate, otherwise C' starts with a 7 and we can use a (w) rule for k = 0 and
k—1 (¢) rules for k > 1).

In the following, we consider LL sequent calculus extended with the struc-
tural cut inference, the proof of which being called structural proofs. We will
prove LL cut-elimination by defining a weakly-normalizing reduction, —¢, on
those structural derivation trees, such that normal forms are (structural) cut-
free proofs.

1.5.1.1 Rank-decreasing reductions

Before actually defining the cut reduction, let us first consider a sufficient con-
dition for (structural) cut-elimination.

In the following, all relations we shall consider will be assumed to have the
property that if two proofs are in relation, they have the same conclusion.

Definition 1.5.5 (Contextual reduction). A binary relation R on proof trees is
contextual if for every proofs mg, 71, 7, such that mg R, the proof 7] obtained
by replacing a subtree of 7, equal to mg with 7 is such that 7, R 7.

Definition 1.5.6 (Rank-decreasing reduction). Let ~ be a contextual reduc-
tion on structural proofs. ~~ is said to be rank-decreasing if for any proof 7 of the
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T - FFl,B T & FFQ,C 3 ! l_AvBchL ( )
FI, T, B®C FA,BM?CL( )
cu
FTy, T, A
T "FQ,C T3 "A7BL,C'L
(cut™)
— T - }_Fl,B "FQ,A,BL
®/% (cut?)
FTy,T9, A
T - T
— (1 — (L
l—l() FI, L ()—>7T1:|—F
(cut) 1/1L
FT
Figure 1.3: Multiplicative key cases.
. ) m: FACE me: FACE
Lgngf @) e &) _ kDG m: ACE L i
FT cu )
, 01D 02 A, 01 2 (cut®) &/& FT.A
FT,A
Figure 1.4: Additive key case.
. o A, Bt
% | ﬁ ?) 4)771: l_?F7B T - l_A,BL ( tB)
cu
S - (cut®) /7 FIr, A
FIT A
R A
771.|—.I‘,B! M mA Mt EA
F T, !B FA, 7B — = (w)
(cut) /2 FT,A
FIT, A
T - |_7F,B | T2 ! FAa?BJ—7?BL )
! c
Fr !B F A, 7B+
(cut®)
FT, A
m: F,B (
m: F.B o0, B 7 my: EA?BL 7B
R Rt (cut?)
— LB T, A, 7B
17 (cut?)
FrT T, A
p— C
FIT A

Figure 1.5: Exponential key cases.
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m: FT A B,C 3)
FI,A% B, C m FA,CH
FT A% B, A
m: FT,AB,C m: FACH
— FT,A B, A
comm(®) Bl e kbl €,
FT,A%¥ B, A
m: FAT,C me: FBT,C (&)
FA&B,T,C m: A Ct
FA& BT, A

T - "A,F7C T3 - "A,C‘L

(cut®)

(cut®)

(cut®)

T & "B,F,C T3 : }_A,CL
(cut?)
— AT, A FB.T,A
comm(&) (&)
FA& B, T, A
()

FT,I,C FA,CH -
T (cut) ’ FT,T,A
FT,I,A comm(T)

(cut™)

(T)

m o A ?C | oyt F?2A,CH
F1A4,70,2C F2?AICt
H1A, 7T, ?7A

O

(cut®)

mo i F2A,Ct 0

T A, 2C F2A, 10t
comm() F AT 7A (cut?)

1A, 7T, ?2A

m: FAT,C @)
F?AT,C 7 my: FACH
F?A,T, A
m: FAT,C 7m: FACH
— FAT, A

cemm(®) Frara

(cut®)

(cut®)

T F?A2AT.C
F2AT,C Y bAC
F2AT,A

m: F?2A?AT,C my: EACH
s F2A7AT, A

comm(c) _—
—oara

(cut®)

(cut?)

T B, C
— (w) . n
F?AT,C m: FAC
F?A T, A
T FD,0 my: A CH
FT,A

—
comm(w) _— (u})
F?A T A

(cut®)

(cut®)

Figure 1.6: Commutation cases.
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T FCE® T oy FCL(l),A

FT,A
there exists 7’ such that m~* 7" and rk(7’) < rk(m).

form

(scut) such that rk(m), rk(m2) < rk(m),

Rank-decreasing reductions satisfy the following:

Theorem 1.5.7. If ~~ is rank-decreasing, then for any sequent I' and for any
proof w: T, there exists a cut-free proof ™ of + T such that m~~*x'.

Proof. We prove the theorem by induction on the following measure (ordered
lexicographically):

(0,0) if 7 is scut-free
w(m) =< (r,n) otherwise, with r = rk(7) and n
the number of cuts of rank r in 7.

Indeed, if w(w) = (0,0), 7 is cut-free by definition. Otherwise, let (r,n) =
w(m). 7 contains n structural cuts of rank . Consider an uppermost occurrence
of such a cut of maximal rank and call 7’ the subproof rooted in this cut.
By the rank-decreasing property, there exists a proof «”/ such that 7’ ~* 7"
and rk(7”) < rk(n’). Indeed, the premises of 7’ have strictly smaller ranks by
maximallity of the cut inference concluding /. Therefore, by contextual closure
of ~», there is 7 such that 7~ 7.

Either n > 1 and therefore w(7) = (r,n—1) or n = 1 and w(7) = (7, 7) with
7 < r. In both cases w(T) <jex w(m) and we can apply the induction hypothesis
to 7: there exists a scut-free proof 7* such that 7 ~»* 7* and we can conclude:

T~ X~

1.5.1.2 Definition of —

It is therefore sufficient to exhibit a rank-decreasing reduction to deduce cut-
elimination: we shall now construct such a reduction.

In order to obtain ——, we shall consider some cases of scut inference and
collect them to the reduction relation, analyzing as we proceed their impact on
the rank and level of the scuts involved in this transformations. Once this is
done, —, will be defined as the contextual /compatible closure of the previous
notion of reduction.

The cases we analyze will be essentially of three types: (i) one of the premises
is an axiom inference, this is called an aziom key case, (ii) the cut formula is
principal in a logical (or structural) rule in both premises of the cut, this is
called a key logical case, (ii) or there is at least one premise in which the cut
formula is not principal, this is called a commutative case.

Axiom key cases When a proof has the following shape:

(az)

m: FCH. T RO C
(scut)

FT.C
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e k=1 (ax)
. FOT FOtC .
T |_FC, (scut)?ﬂ'l. }_C,F
e k=0
— (a) r
m: kI FIBL?B N - (w)
FT.78 (seut) "o’ - 7B,T
o k>1
———— (az) . g
m: bW Pt TV FBT A1)
FT.7B (seut) o’ =95 T

Figure 1.7: Axiom key cases.

When one of the premises of the cut is an axiom, say 7o (the other case is
treated symmetrically and will also be added in —), we distinguish two

main cases:

e if k =1, then we reduce 7 and m; have the same conclusion and one
reduces 7 to 7.

e if £ # 1, then necessarily, C' is a ?-formula, 7B, for which structural
rules of weakening and contraction are available. Using the structural
rules, one reduces 7 to m; extended with a weakening if £k = 0 and
with the adequate number of contractions if & > 1.

The corresponding relation, — is defined in Figure 1.7.
ax

Logical key cases:

Multiplicative key case: In the case of mutiplicative cut formulas, ®
vs. % inferences, proof 7 has the following shape (in particular we
have k =1 =1 in the structural cut):

m: FT,B w1y, C T3 B A, BL CH

®
FT,I'9,B®C ( FAB-®Ct

FI, Do, A

()

(scut)

We add the reduction depicted in Figure 1.3, denoted as 7)?, where
®

each of the bottommost cut occurrences has been labelled and we
notice that rk(8), rk(y) < rk(a), VI(v) < II(a) = IWI(B) + 1.
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Similarly, the nullary case of the multiplicative constants is:

(1) m: BT (1)
F1 FT, L —m: T
T (scut) 1/1L

Additive key case: In the case of additive cut formulas, @ vs. & infer-
ences, proof 7 has the following shape (in particular we have k =1 =1
in the structural cut):

o FT,C; T FACE  mi FACH )
FILCL@ Oy (®:) A, Cf & Cy
(scut®)

T, A

We consider the reduction depicted in Figure 1.4, denoted as 7&,
52

where each of the bottommost cut occurrences has been labelled and
we notice that rk(8) < rk(a) and IWI(8) < Ivl(a). The symmetrical
&7 is naturally considered too.

)

Remark that there is no key case for the additive constant as 0 has
no introduction rule.

Exponential key case: In the case of exponential cut formulas, 7 vs. !
inferences, proof 7 has one of the following shapes (with I > 0):

e Promotion versus dereliction:

ro: F A, B 23LY

m: F,B |
T
- 7T, A

(scut)

e Promotion versus weakening:
mopmp  mibAE
IR i | w
- T, B O A, 7Bty
T A (scut)

e Promotion versus contraction:

(142)
. 9 o @ [ A,?BL
m: FM,B 0 (c)

Feras ) EaArptttY
TErA (scut)

We add the reduction depicted in Figure 1.8, denoted 7, where

each of the bottommost cut occurrences has been labelled and we
notice the following relations about the ranks and levels of cuts:
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e Promotion versus dereliction (I = 0):

e : FA BL
m: P B T TP o m:F,B m: FA BL

T, ! ) FA,?Bt — scutP
~T,1B A A, (scut®) /7 FT, A ( )

e Promotion versus dereliction (I > 1):

m: F,B 0
. LT.B mp: b A, BL 780 " B m: kA, BL LY
LI | :
}_ ?F’ 'B () - A7?Bl(l+1) 7 T - [ 7F7B = ?F7A7BL (SCUtB)
A (scut®) 7T, 7T, A
—ra
e Promotion versus weakening:
. 1M .
s O LAy ot oy FmB Tt FA?B (scut?)
scu
-oT, A HT, A
e Promotion versus contraction:
. 1L (+2) .
T - ?F,B (') T - - A,f?B (C) T - = ?F7B (') L(l+2)
}_ ?F’ |B ! |_ A’?Bl(l+1) ( ta) ?) '7 ?F, ‘B T F A, 7.B (scutﬁ)
scu
F T, A =LA
Figure 1.8: Exponential key cases.
o (1) versus (7) (I =0): rk(B) < rk(w) and IVI(5) = Ivl(a) — 2.
o (1) versus (?) (I > 1): rk(B) < rk(a), rk(vy) = rk(a), WI(y) =
Ivi(a) = 1 (but Ivl(8) may be larger than the Ivl(«)).
e (1) versus (w): rk(B) = rk(a), WI(B) = IVl(a) — 1.
e (1) versus (c): rk(B) = rk(a), WI(B) = Ivl(a) — 1.

The symmetrical case, 7—/’> is naturally considered too.

Commutative cases When none of the previous cases apply, one considers
commutation steps which do not modify the rank of the cut but decrease
the level of the cut. We depict some of thoses cases:

% commutation step

(scut
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m: FT,A, B ,C®
FT,A% B,C® m: FA,ct®
FT,A% B,A

(scut®)

m: FT,ABC®  my: A 00
—
ot FT.A4,B A -
FT, A% B, A
We notice that rk(5) = rk(a) and I(8) < Ivl(«).

& commutation step

(scut?)

T FAT,C®  my: BT,CH (&)
- A& B,T,C® g kA0
FA& B, T, A

(scut®)

e FAT,CH Aot m: F B,T,C®

w3k A,C’L(

(scut?)

comm(&)

AT, A FB,T,A

FA&B,T,A
We notice that rk(5) = rk(y) = rk(a) and WI(3), IVI(y) < Ivl(a).

T commutation step

e U ac® — (M
2 - ’ (scut®) _(>T) T, I,A
FT,T,A comm

We notice that the resulting proof is cut-free.

Promotion commutation step

7 B A, 200 |

F1A o 20® T s A0t
(scut®™)
F 1A T, 7A
T F A 2CR g b 2A 10T 5
F AT, 7A (scut”)
comm(!) e |
F1A, 7T, 7A
We notice that rk(5) = rk(a) and WI(8) < Ivl(«).
Dereliction commutation step
T AT, C®
F2A,T,C% s A0t
(scut®)

- 74,1, A

(&)
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m: FAT,C®  my: FA,CLG)
FAT.A
o~ D
F?7A,T, A
We notice that rk(8) = rk(a) and WI(8) < Ivl().

Structural commutation step For contraction:

(scut?)

comm(?)

m: F?A,7A4,T,C%)
C
24T, C® m: FAcL®
F7AT, A

(scut®)

m F2A24,0,00 s A cLW

— F74,7A4,T, A
comm(c) (C)
F?7AT A

(scut®)

For weakening:

7 FT,C%
v )
F?4,T,C%) T A CF
F?4,T, A

(scut®)

m: FDT,CH oy b A,C’l(l)
—
comm(w) FT,A (’LU)
F?AT,A

For both cases, we notice that rk(8) = rk(a) and IvI(5) < Ivi(a).

(scut?)

1.5.1.3 +—— is rank-decreasing

We now prove that — is rank-decreasing, therefore concluding that cut-elimination
holds.

Lemma 1.5.8. Let 7 be an LL structural proof of the form.:

T FCR® T oy I—CJ‘(Z),A

“T.A (scut)

such that rk(m),rk(me) < rk(m), then there exists @' such that m —* 7' and
rk(7') < rk(m).

Proof. We prove the lemma by induction on the size of 7.

Base case: Assume that at both premises of 7 are or size 1: they are either an
axiom, a 1 or a T. Then 7 reduces to some scut-free 7/, therefore of rank
0.



36 CHAPTER 1. SEQUENTS

Inductive case: We reason by case analysis on the last inference of 7, and 5.

1. Exponential key-case: we saw in the previous section that 7 — =’

by reducing the root cut of 7 into one or more cuts which are either
(i) of the same rank and lower level or (ii) of lower rank and that at
most one cut has its rank unchanged. If all cuts are of a smaller rank
we are done, otherwise, we can apply the induction hypothesis to the
subproof of 7’ rooted in the cut of maximal rank (equal to rk(m)) as
it is of a smaller size than m and we obtain a proof n”, such that
7 — ' —* 7" and rk(7”) < rk(m).

2. Linear key-cases: we saw in the previous section that the rank de-
crease by one step of —.

3. Axiom/scut case: assume, wlog, that 7o is an axiom: context A is
the singleton context C' and 7w = I', C. Then either £k = 1 and we set
7’ tom orl # 1 and C is an ?-formula and there is some 7’ obtained
by adding structural rules on C to the conclusion of 71, such that
7 — 7. In both cases rk(pi’) = rk(m) < rk(m).

4. Commutative cases: In all cases, 1 — 7y where the root cut of 7 is

transformed into one or more cuts on C,C*, ie of the same rank as
7, which are all incomparable (ie they are on different branches) and
of a strictly smaller level.

As a consequence, the induction hypothesis can be applied indepen-
dently to each of the proofs mq1, ..., mor rooted in those cuts of rank
equating rk(m) leading proofs m,, ..., m(, such that mo; —* 7(,;,1 <

i < k of rank strictly smaller that rk(z) and we conclude by contex-
tuality of — that mp —* 7" with rk(7’) < rk(m).

1.5.2 Consequences

Cut elimination has several important consequences:

Definition 1.5.9 (Subformula). The subformulas of a formula A are A and,
inductively, the subformulas of its immediate subformulas:

e the immediate subformulas of AQ B, A% B, A® B, A& B are A and B,
e the only immediate subformula of !A and 7A is A,
e 1, 1,0, T and atomic formulas have no immediate subformula,

e the immediate subformulas of Jz.4 and Vz.A are all the A[t/z] for all
first-order terms ¢,
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e the immediate subformulas of 3X.A and VX.A are all the A[B/X] for all
formulas B (with the appropriate number of parameters).

Theorem 1.5.10 (Subformula property). A sequent T' = A is provable if and
only if it is the conclusion of a proof in which each intermediate conclusion is
made of subformulas of the formulas of I' and A.

Proof. By the cut elimination theorem, if a sequent is provable, then it is prov-
able by a cut-free proof. In each rule except the cut rule, all formulas of the
premises are either formulas of the conclusion, or immediate subformulas of it,
therefore cut-free proofs have the subformula property. O

The subformula property means essentially nothing in the second-order sys-
tem, since any formula is a subformula of a quantified formula where the quan-
tified variable occurs. However, the property is very meaningful if the sequent
I" does not use second-order quantification, as it puts a strong restriction on the
set of potential proofs of a given sequent.

In particular, it implies that the first-order fragment without quantifiers is
decidable.

Theorem 1.5.11 (Consistency). The empty sequent b is not provable. Subse-
quently, it is impossible to prove both a formula A and its negation AL it is
impossible to prove 0 or L.

Proof. If a sequent is provable, then it is the conclusion of a cut-free proof.
In each rule except the cut rule, there is at least one formula in conclusion.
Therefore F cannot be the conclusion of a proof. The other properties are
immediate consequences: if - A+ and - A are provable, then by the cut rule
one gets empty conclusion, which is not possible. As particular cases, since 1
and T are provable, L and O are not, since they are equivalent to 1+ and T+
respectively. O

1.6 Reversibility and focusing

As already seen in Section 1.5.2, cut-free proofs play a central role when studying
provability. In particular when trying to determine whether a sequent - T is
provable or not, it is equivalent to wonder whether it has a cut-free proof or
not. This is a very important property for proof search since it induces a huge
restriction on the set of proofs one has to explore when trying to find a proof
of a given sequent. One can wonder whether it is possible to restrict even more
the set of proofs without loosing provability. That is to find constraints on
proofs such that the sequents provable with and without these constraints are
the same.

1.6.1 Reversibility

Definition 1.6.1 (Reversibility). A connective ¢ is called reversible if for every
proof m: F T',c(Ay,...,A,), there is a proof 7’ with the same conclusion in
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which ¢(A44,...,4,) is introduced by the last rule (i.e. principal).

Remark 1.6.2. Now that we have Theorem 1.5.1, we can refine a bit Defini-
tion 1.2.2 with the following implications:

derivable without cuts = derivable with cuts = admissible
FA FA&B 74

FAX L - A A TA

Example rules satisfy the given property but not the stronger ones, thus proving
that the reverse implications do not hold in general.

Lemma 1.6.3. The following reversed rules are derivable with cuts:

FA%B,T F LT F A & Ay, T _
T (73)7"61}) (Lre’u> e (&lrev) = {]_72}
FA BT FT AT
F1A,T FVEAT
|rev (vrev)
AT FAT

Proof. Derivability results from the following proof schema (which relies on
considering proofs from Table 1.3 and removing their last rule):

FA AL (a2) - B, Bt (a)
(®)

* A, B, At @ B+ FA®B,T
HA BT

(cut)
F1 (1) FLT

T (cut)

Taan

o« i (@)
FA At © Bt FA&B,T

(cut)

- . _ 2
*+B,At® Bt FA&B,T

[ ]
T
o
-~
N
[
T
=
—

® A 3eAL FVEAT
AT

(cut)
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Theorem 1.6.4. The negative connectives %%, 1, & and ¥V are reversible.

Proof. For each connective ¢ € {®, L, &,V}, we can apply the reversed rule
from Lemma 1.6.3 followed by the introduction rule of ¢ to the proof of F
F,C(Al, N 7An)l

- A% B,T 1.7 A& B,T FA&B,T
(&) (L) = (&) ———— (&)
A, BT ) FT ) AT FBI(M
- A% B,T LT FA&B,T
FVEAT
vrev)
AT

FVEAT

In the (V) case, this requires to choose a £ which is not free in T' (this is always
possible up to renaming). But a similar dependency over the context with !,
makes | non reversible since it is not possible to apply (!) to = A,T" in general
since I may not start with a 7. O

A consequence of this fact is that, when searching for a proof of some sequent
F I, one can always start by decomposing negative connectives in I' without
losing provability. Applying this result to successive connectives, we can get
generalized formulations for more complex formulas. For instance:

e FT,(A® B)%® (B& () is provable

o iff T, A® B, B & C is provable

o iff FTAX¥ B,Band FT', A% B, are provable
o iff T, A B,B and FT', A, B,C are provable

So without loss of provability, we can assume that any proof of FT', (A% B) %
(B & C) ends like:

-T,A,B,B FT,A4,B,C
) ()
-I,A% B,B FRA@RC(M
FT,A®B,B&C
)

FT,(A®B)3 (B&C)

In order to define a general statement for compound formulas, as well as
an analogous result for positive connectives, we need to give a proper status to
clusters of connectives of the same polarity.
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1.6.2 Generalized connectives and rules

Definition 1.6.5. A positive generalized connective is a parametrized formula
P[X3,...,X,] made from the variables X; using the connectives ®, @, 1, 0.

A negative generalized connective is a parametrized formula N[X,..., X,]
made from the variables X; using the connectives %, &, L, T.

If C[Xy,...,X,] is a generalized connectives (of any polarity), the dual of
C is the connective C* such that C*[Xi,..., X;] = C[X1,..., X,]*.

It is clear that dualization of generalized connectives is involutive and ex-
changes polarities. We do not include quantifiers in this definition, mainly for
simplicity. Extending the notion to quantifiers would only require taking proper
care of the scope of variables.

Sequent calculus provides introduction rules for each connective. Negative
connectives have one rule, positive ones may have any number of rules, namely
2 for ® and 0 for 0. We can derive introduction rules for the generalized con-
nectives by combining the different possible introduction rules for each of their
components.

Considering the previous example N[X7, X5, X3] = (X1 % X2) B (X2 & X3),
we can derive an introduction rule for N as

|_F7X1aX27X2 3 |_F7X15X27X3 }_F7X15X27X2 l_FaXlaXQaXB

3 &
FT, X, B Xa, X, FT, X, % Xy, X3 E&i FT, X1, Xy, Xa & X5 . (&)
FT. X, 2 Xg, Xy & X3 ) o FT. X, % Xq, Xy & X3 -
FT, (X0 % Xo) B (Xa & Xa) FT, (X0 % Xo) B (Xa & Xa)

but these rules only differ by the commutation of independent rules. In
particular, their premises are the same. The dual of N is P[X;, Xa, X3] =
(X1 ® X5) ® (X2 ® X3), for which we have two possible derivations:

FI', Xq Iy, Xo FI'g, Xs FI, Xq FTI'y, Xo FTs, X3
(®) —m—— (@) (®) ———— (®2)
FI, o, Xy ® Xy FIs3, Xo® X3 FIy,Te, Xy ® Xo FTI's, Xo ® X3 2)
FT1,T2,T5, (X1 @ Xo) @ (X2 & X3) FTq,T%,T5, (X1 @ Xo) @ (X2 @ X3)

These are actually different, in particular their premises differ. Each possible
derivation corresponds to the choice of one side of the @ connective.

We can remark that the branches of the negative inference precisely corre-
spond to the possible positive inferences:

e the first branch of the negative inference has a premise X7, X5, X5 and
the first positive inference has three premises, holding X;, X5 and X,
respectively.

e the second branch of the negative inference has a premise X, X5, X3 and
the second positive inference has three premises, holding X7, X5 and X3
respectively.
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This phenomenon extends to all generalized connectives.

Definition 1.6.6. The branching of a generalized connective P[X7, ..., X,] is
the multiset Zp of multisets over {1,...,n} defined inductively as

Ipgg:=I+J|I€Zp,J ey,
Ipeq :=1Ip +Ig,

Iy =[],

To =),

Ix, = [[7]].

The branching of a negative generalized connective is the branching of its dual.
Elements of a branching are called branches.

In the example above, the branching will be [[1,2,2],[1, 2, 3]], which corre-
sponds to the branches of the negative inference and to the cases of positive
inference.

Definition 1.6.7. Let Z be a branching. Write Z as [I1, ..., I] and write each
I; as [ij1,...,45¢,]. The derived rule for a negative generalized connective N
with branching 7 is

ET Ay Aiyy, ET Aig s Ai, )
FT,N[Ay,..., A,
For each branch I = [iy,...,4] of a positive generalized connective P, the
derived rule for branch I of P is
FDy, A - F Dy A
— L (Py)

FT4,....Ty, P[Ay,..., Ay

The reversibility property of negative connectives can be rephrased in a
generalized way as follows:

Theorem 1.6.8. Let N be a negative generalized connective. A sequent F
', N[A1,...,A,] is provable if and only if, for each [i1,...,i;] € Iy, the sequent
FT,A , A, 1is provable.

igy e

The corresponding property for positive connectives is the focusing property,
defined in the next section.

1.6.3 Focusing

Definition 1.6.9. A formula is positive if it has a principal connective among
®, @, 1, 0. It is called negative if it has a principal connective among %, &, 1,
T. It is called neutral if it is neither positive nor negative.
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If we extended the theory to include quantifiers in generalized connectives,
then the definition of positive and negative formulas would be extended to in-
clude them too.

Definition 1.6.10. A proof 7 : F I', A is said to be positively focused on A if
it has the shape

T - I—Fl,Ail Ty FF@,AW
FTy,...,T, P[A1,..., A)]

[il,-»qie])

where P is a positive generalized connective, the A; are non-positive and A =
P[A4,...,A,]. The formula A is called the focus of the proof 7.

In other words, a proof is positively focused on a conclusion A if its last rules
build A from some of its non-positive subformulas in one cluster of inferences.
Note that this notion only makes sense for a sequent made only of positive
formulas, since by this definition a proof is obviously positively focused on any of
its non-positive conclusions, using the degenerate generalized connective P[X| =
X.

Theorem 1.6.11. A sequent b T' is cut-free provable if and only if it is provable
by a cut-free proof that is positively focused.

Proof. We reason by induction on a (cut-free) proof 7 of I'. As noted above,

the result trivially holds if I" has a non-positive formula. We can thus assume

that I' contains only positive formulas and reason on the nature of the last rule,

which is necessarily the introduction of a positive connective (it cannot be an

axiom rule because an axiom always has at least on non-positive conclusion).
Suppose that the last rule of 7 introduces a tensor, so that 7 is

p: FT,A 9:FA,B<®)
FI,AJA® B

By induction hypothesis, there are positively focused proofs p’ : + I'; A and
0"+ A, B. If A is the focus of p’ and B is the focus of #’, then the proof

P FT,A 0 :FAB
(®)
FT,AJA® B
is positively focused on A ® B, so we can conclude. Otherwise, one of the two

proofs is positively focused on another conclusion. Without loss of generality,
suppose that p’ is not positively focused on A. Then it decomposes as

pli i—Fl,Cil pzi "Fbcig
FTy,...,Te, P[Cy,...,Ch)

where the C; are not positive and A belongs to some context I'; that we will
write F;-, A. Then we can conclude with the proof

Py - FFj,A,Cij 0 : "A,B( )
&
pll I—I‘l,C'il }_F]‘,A,A(@B,Cij pg: "Fg,cil

FTy,....Te,A,A® B, P[Cy,...,C,]
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which is positively focused on P[C1,...,C,).

If the last rule of 7w introduces a &, we proceed the same way except that
there is only one premise. If the last rule of 7 introduces a 1, then it is the only
rule of m, which is thus positively focused on this 1. O

As in the reversibility theorem, this proof only makes use of commutation
of independent rules.

These results say nothing about exponential modalities, because they respect
neither reversibility nor focusing. However, if we consider the fragment of LL
which consists only of multiplicative and additive connectives, we can restrict
the proof rules to enforce focusing without loss of expressiveness.

1.7 Variations

1.7.1 Exponential rules
The promotion rule, on the right-hand side for example:

lAy,...,!A, F B,?By,..., 7B
lA1,...,'A, F1B,?B,...,?Bm

('r)

can be replaced by a multi-functorial promotion rule

Ai,...,AyF B,Bi,...,Bm
lA1,...,'A, F1B,?B1,..., 7B,

("%

and a digging rule
'E774,A

Tk 74.A (dig)

without modifying the provability. Note that digging violates the subformula

property.
In presence of the digging rule

TF774,A

Troaa (9

AM A

FE7A A
occurrences of formula A) is equivalent (for provability) to the triple of rules:
contraction, weakening, dereliction.

the multiplexing rule (mplex) (remember that A stands for n

1.7.2 Non-symmetric sequents

The same remarks that lead to the definition of the one-sided calculus can lead
the definition of other simplified systems:

e A one-sided variant with sequents of the form I' F could be defined.
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e When considering formulas up to De Morgan duality, an equivalent sys-
tem is obtained by considering only the left and right rules for positive
connectives (or the ones for negative connectives only, obviously).

e Intuitionistic linear logic is the two-sided system where the right-hand side
is constrained to always contain exactly one formula (with a few associated
restrictions).

e Similar restrictions are used in various semantics and proof search for-
malisms.

1.7.2.1 Intuitionistic Linear Logic

The connectives of Intuitionistic Linear Logic (ILL) are not exactly the same as
in LL since not only some connectives are rejected (_+, 2, L and ?), but also
—o is now a primitive connective. The ILL formulas are then obtained as:

Ti=a|IQT|T—T|1|[I&T|1&I|0|T|\I|VET|3T

Sequents are two sided but their right-hand side contains exactly one formula:
1.

The rules are described in Table 1.6. For each connective of ILL, they are
obtained from the corresponding rules of Table 1.2 by restricting to exactly one
formula on the right-hand side of the sequents. The case of linear implication
is slightly different since it is not a primitive connective of LL. However the
ILL rules can nevertheless be obtained by restricting the following derivations
to intuitionistic sequents:

THAA I,AF B,A
——— () —————— (ng)
TAL A I',BF A’ T AL, B,A
(Br) —————— (®R)
I, T, AL 3 BF A, A I'-AL3BA

1.7.3 Mix rules
It is quite common to consider mix rules:

r-A TIVFA

- — (miz)
LT EAA

C (mizg)

1.7.4 Dyadic sequent calculus
FT|As FIT,A
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Identity group

-1 AJTFK

e t
1 @ rarx

Multiplicative group

I, JEK K LI ARJ

7 (®) —— = (1 ®r) — (1
F,I®J}—K( 2 F,lI—K(L) T AFI®J ®r) 7 (1r)
I AJFEK r.I+J
(=) =———— (~°r)
AT —-JFK TFI—J
Additive group
rI+K F,J}—K(@) o TEh
T ieJFK Y rTork Y rrnen
LK 'l TFJ
R (&) = 2T () —— (T
F,Il&IQFK( v Trres &R e (Te)

Quantifier group

In the rules (31) (resp. (32)) and (V%) (resp. (V%)),
the variable = (resp. X) must not occur free in I" nor in K.

I''I+-K I''I+-K I'-1It/x T'HI[J/X
——— (3 ———= (3]) iU 3Rr) /e (3%)
dz b+ K IixXI+-K 't 3x.1 I'-3ax.J
I It/z|F K II[J/X|FK
L (vi) L (v%) IET (v}%) N (V%{)
I\WVzlkF K I'VvXI+K I'+Vz.I I'-vX.I

Exponential group
I'IFK TF T
— (! - !
TFK () g ()
Structural rules
I',I,JI2 - K TK LI FK
———— (exy) —— (wp) ——— (c1
I, J, LI, - K i+-K ii+-K

Table 1.6: Inference rules for Intuitionistic Linear Logic sequent calculus
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Chapter 2

Proof nets

We give some basic results of the theory of proof nets for multiplicative linear
logic and multiplicative exponential linear logic with mix. The relation between
proof nets and the lambda-calculus is precisely described.

Warning! Only the first two sections, about multiplicative proof nets, are cur-
rently in a satisfactory state, although some introductory material and pictures
are missing. The treatment of MELL is only roughly sketched.

2.1 Multiplicative Proof Nets

We first consider multiplicative proof nets without units, i.e. proof nets for the
MLL, fragment (see Section 1.4).

2.1.1 Proof structures
2.1.1.1 Definition of proof structures

Definitions and abstract properties of graphs we are going to use can be found
in Appendix ?7.
An proof structure!multiplicative S is the data of:

e a directed acyclic graph Gs — the incoming arrows of a node are called
its premise, the outgoing arrows are its conclusion;

e a labelling of the nodes of Gs with labels in {az, cut,®,%, e} — a node
with label £ is called a k-node — such that:

each az-node has exactly two conclusions and no premise;

each cut-node has exactly two premises and no conclusion;

each ®-node or %¥-node has exactly two premises and one conclusion;

— each e-node has exactly one premise and no conclusion;

47
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e an ordering of the premises of each ®-node and of each %¥-node — the first
premise is called the left premise of the node, and the second one is the
right premise.

A premise of a e-node is called a conclusion edge of the proof structure.

Nodes with all their conclusions connected to e-nodes are called terminal
node (in particular cut nodes are always terminal). Nodes which are not e-
nodes are called internal node of the proof structure: note that internal nodes
can be terminal. A premise node of some node N is any internal node Ny such
that a conclusion of Ny is also a premise of N. By definition a non-empty proof
structure must contain at least one ax node and at least one terminal node.

In the graphical representation of a proof structure, we do not mention
explicitly the direction of arrows, but we draw them in such a way that direction
in represented in a top-down way, which is always possible thanks to directed
acyclicity. Nodes are depicted as circles, each with its node label, except for
e-nodes which are simply represented as bullets.

Ezample 2.1.1 (Untyped Proof Structure). Consider the proof structure

Ne .

l

which has 9 nodes (7 internal ones), 2 conclusions and 2 terminal nodes above
these conclusions: a ®-node and a %-node.

A typing of a proof structure of a proof structure is a labelling of its arrows
with formulas of MLL,, — the label of an arrow is called its type — such that:

e the conclusions of an az-node (resp. the premises of a cut-node) have dual
types;

e if the left premise of a ®-node (resp. a %-node) has type A and its right
premise has type B then its conclusion has type A ® B (resp. A% B).

A typed proof structure is the data of an untyped proof structure together with
such a typing. Given an enumeration of the conclusions of a typed proof struc-
ture S, the conclusion sequent of a proof structure of S is the sequence of the
types of its conclusions. Note that the empty graph is a typed proof structure,
whose conclusion is the empty sequent .
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Ezample 2.1.2 (Typed Proof Structure). We can type the previous example of
proof structure as follows

NCANZowE
AJ_AJ_ A AJ_
CRNC
A®Ai\ At A At A

l(A@AL)@(AMyA)

yielding a typed proof structure with conclusion - (A® A+) @ (A+ R A), AL A.

Remark 2.1.3. In presence of typing, the directed acyclicity requirement is re-
dundant: typing conditions are sufficient to ensure that there is no directed
cycle. Indeed the only nodes with both premises and conclusions (i.e. incoming
and outgoing arrows) are those labelled ® and %: in this case the definition im-
poses that premises are typed with an immediate subformula of the conclusion.

In the more general setting to be introduced later, this will no longer hold
and directed acyclicity must be required explicitly. Moreover, the notion of
untyped structure is also relevant per se: for instance, typing plays no role in
the correctness criteria to be introduced in the next section.

Given an untyped proof structure, directed acyclicity ensures that types can
be inferred from top to bottom: the data of an untyped proof structure S,
together with a typing of its axioms with dual formulas, induces at most one
proof structure (and if S is cut-free, such a proof structure always exists).

In the following, we will simply call proof structure any untyped proof struc-
ture, that might or might not be associated with a typed proof structure.

2.1.1.2 Translation of proof trees into typed proof structures

A proof 7 of the sequent calculus MLL, can be translated into a typed proof
structure ps(m) with the same conclusion. There is a bijection between internal
nodes of ps(7) and the rules of = which are not exchange rules, in such a way
that each node is labelled with the name of its corresponding rule.

The translation is defined by induction on the structure of the proof:

(az)

labelled A+ and A which have e-nodes as targets.

e An (az)rule | 41 4 is translated into an az-node with conclusions
)
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("a)
=

e If 7r; is translated into S; = ps(m1) and 79 is translated into So = ps(ms),
1 2

then with the proof FT, A FANA (cut) we associate the typed proof
FT,A

structure S obtained from &; and Sy by removing the e-nodes with premises

a1 labelled A and as labelled A, and by introducing a new cut-node with

premises a; and as.

e If m is translated into S = ps(m) and ms is translated into Sy =
™ )

ps(m2), then with the proof FILA FAB (@) We associate the typed
FT.A A® B

proof structure S obtained from S; and Sz by removing the e-nodes with
premises a1 labelled A and as labelled B, and by introducing a new ®-
node with premises a; and as and with conclusion a new arrow labelled
A ® B which is itself the premise of a new e-node.

s ) [

FlA B A

A®B

1

e If 7 is translated into &1 = ps(my), then to the proof FT,A, B we
s (3)

FT A% B
associate the typed proof structure S obtained from S; by removing the

e-nodes with premises a; labelled A and as labelled B, and by introducing
a new %¥-node with premises a; and as and with conclusion a new arrow
labelled A % B which is itself the premise of a new e-node.
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o)

FlA B
(3

AN B

It is then natural to try to analyse the kernel of the translation ps by un-
derstanding when two different sequent calculus proofs are mapped to the same
typed proof structure. One can prove that it is the case if and only if one can
transform one of the two proofs to the other by some permutations of the order
of application of rules.

In a cut-free sequent calculus proof or typed proof structure, the formulas
used in the az rules or nodes are occurrences of sub-formulas of the conclusions
of the proof or the typed proof structure. Two proofs are mapped to the same
typed proof structure if and only if the pairing of such occurrences of formulas
given by az rules are the same in the two proofs.

2.1.2 Proof nets

Not all typed proof structures represent (or are the translation of) proofs in the
sequent calculus MLL,,. This leads to the study of correctness criteria to try to
delineate a sub-set of “valid” proof structures which belong to the image of the
translation ps.

Ezample 2.1.4. Here are a few examples of typed proof structures which do not
correspond to any proof of MLL,:

A At
(?

_

(eup—
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ALt B
A Bt
AL B
B B+ n
LA TG LS
AL B BLt®C

l (A* % B)® (B3 0)

(a2
AL e JAL
i
C C ct| | Bt e E
aCavt Taay:
(3 (3 (3
A% B D3 AL
BLxyCL ELx Dt
lcmmyg) l(BMycL)@(EMyDL) l(DWAi)@E

2.1.2.1 Switching graphs

Given a proof structure S, let Az (S) be the set of its -nodes. A switching of
S is a function ¢ defined on Nzx(S) and such that, for each %¥-node P, ¢(P)
is one of its premises. The switching graph S¥ associated with ¢ is the graph
obtained from S by keeping only the premise ¢(P) for each %¥-node P: formally,
we modify the target of the other premise into a new node P*®, as in Fig. 2.1 —
where we depict nodes with the labels inherited from S, and the new node P*®
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r ARt

A

Figure 2.1: Switching a %-node.

is depicted as a e-node.
More explicitly:

e the nodes of S¥ are those of S, plus one node P* for each P € Nx(S);
e the set of arrows of S¥ is the same as that of S;
e the source function s in S¥ is the same as in S;

e the target function t in §¥ is the same as in S, except each premise a of
a B¥-node P with a # ¢(P) is mapped to P°.

Observe that S¥ is not the graph of a proof structure in general, because its
Z¥-nodes have only one premise. Moreover, no typing information is involved to
define switching graphs. A proof structure with p %-nodes induces 2P switchings
and thus (up to) 2P switching graphs.

Definition 2.1.5 (Proof nets). A proof structure is acyclic proof structure if
its switching graphs do not contain any undirected cycle. An acyclic proof
structure is called a proof net!multiplicative.

Note that the empty proof structure has exactly one switching, which is the
empty function, and the associated switching graph is the empty graph, which
is acyclic: the empty proof structure is thus a proof net.

Lemma 2.1.6 (Connected Components). All the switching graphs of a proof
net have the same number of connected components.
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Proof. Let S be a proof net. If N is the number of nodes of S, P its number of
% nodes and A its number of arrows, any switching graph of § is acyclic and
has N + P nodes and A arrows. By Lemma 7?7, any such acyclic graph has
N + P — A connected components. O

Given a proof net R, we write #..(R) for the number of connected compo-
nents of its switching graphs.

A proof net R is connected if all its switching graphs have exactly one con-
nected component: #..(R) = 1. Thanks to the previous lemma, this is equiva-
lent to checking that one switching graph is connected.

Ezercise 2.1.7. Inspect all possible switchings of the proof structures of Exam-
ple 2.1.4. Which of these structures are proof nets? For the latter, check that
no switching graph is connected.

2.1.2.2 Soundness

Proposition 2.1.8 (Soundness of Correctness). The translation ps(w) of a
sequent calculus proof m of MLL, is a typed connected proof net.

Proof. By definition, the translation ps(w) of a sequent calculus proof 7 of
MLL, is a typed connected proof structure: it remains only to check that the
underlying proof structure is acyclic (it is a proof net). By induction on the
structure of the MLL, proof w. Let & be the proof structure associated with
7, and we also need to consider two sub-proofs m; and mo of m with associated
proof structures S; and Ss.

e The proof structure below has a unique switching graph which has no
undirected cycle.

(o)
ol 4

e If 7 is obtained from m; and w3 with a (cut) rule, every switching graph
S¥ of S is obtained by connecting through a cut-node a switching graph
87 of 8 and a switching graph S of Ss.

We can deduce that no switching graph of S contains an undirected cycle.
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e If 7 is obtained from m; and my with a (®) rule, any switching graph §¥
of S is obtained by connecting through a ®-node a switching graph Sy of
S and a switching graph Sf of Ss.

SY S5
r A B LA
A®B

We can deduce that no switching graph of S contains an undirected cycle.

e If 7 is obtained from 7; with a (%) rule, any switching graph S¥ of S is
obtained by putting a Z-node connected to a e-node instead of a e-node
in some switching graph 87 of S;.

[l Aff /j [l S !
€ : 3

A% B A% B

We can deduce that no switching graph of S contains an undirected cycle.

O

We will establish the converse of this property in Section 2.1.4: each typed
connected proof net is the translation of a proof. Before that, however, we first
establish that proof nets enjoy a cut elimination procedure.

2.1.3 Cut Elimination

If we propose proof nets as an alternative to sequent calculus to study proofs in
(multiplicative) linear logic, we need to be able to deal with cut elimination in
this new syntax without referring to the sequent calculus.

Cut elimination in proof nets is defined as a graph rewriting procedure, which
acts through local transformations of the proof net.

We first define the transformation on proof structures, but we will restrict
immediately after to the case of proof nets.
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2.1.3.1 Reductions Steps

We consider two reductions steps:

—®

@

In the left hand side of the —,-step, we require that there is no directed path
from a to a’, where a is the arrow on the left (with an unknown target) and o
is the arrow on the right (with an unknown source): this condition is always
verified in the case in a proof net.

More precisely, notice that:

1. if R is a proof structure which is not a proof net, one might have a cut
having as premise a conclusion of an ar node which does not belong to
any redex (see e.g. the “loop” made of an axiom with a cut between its
conclusions, as in Example 2.1.4);

2. if R is a proof net, any cut having as premise a conclusion of an azx node
always belongs to a redex;

3. if R is a proof net that cannot be typed, one might have a cut which does
not belong to any redex (e.g. a cut between two ®-nodes);

4. if R is a proof net that can be typed, every cut belongs to a redex: by
Point 2 we only have to check this is the case when both premises of the
cut are conclusions of a ®-node or a %-node. Just observe that in this

®

& —
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case, due to the typing constraints, the premises of the cut cannot be both
conclusions of a ®-node (resp. #¥-node). As a consequence, normal forms
for the reduction of typed proof nets are exactly cut-free typed proof nets.

Notice also that applying these reduction steps inside a typed structure
preserves typing:

A‘ At | A —a A

c

A\ B AL\ Bt A

@ " O N

A® B @ Al Bt

Examples

2.1.3.2 Preservation of Correctness

Lemma 2.1.9 (Preservation of Acyclicity). If R is a proof net and R — R’
then R' is a proof net.

Proof. We consider the two steps:

e Through an a step, a switching graph of the reduct can be turned into a
switching graph of the redex by replacing an edge crossing the new arrow
with a path of length 3 going through the az node and through the cut
node (we use here in a crucial way the condition required to apply the
—q-step). Then one of these two switching graphs is acyclic if and only if
the other one is.

e Through an m step, a switching graph S of the reduct gives rise to two
switching graphs &; and Sy in the redex depending on the choice of a

O
)
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premise aj or as of the % node which disappears through the reduction.
Assume there is a cycle in S. It must go through at least one of the cuts
otherwise it is a cycle in §; and Ss.

If it goes only through the cut with premise a; in the reduct, the premises
of this cut are connected in § (without using the cut) and then we have a
cycle in S;, hence a contradiction.

If it uses both cuts: either the premises of the ®-node are connected in &
(without using those cuts) and we have a cycle in both &; and Ss; or a;
is connected to a premise of the ®-node, and we have a cycle in S7.

Remember that, thanks to Lemma 2.1.6, all the switching graphs of a proof
net have the same number of connected components.

Lemma 2.1.10 (Preservation of Connected Components). If R is a proof net
and R — R’ then the number of connected components of the switching graphs
of R' is the same as for the switching graphs of R.

Proof. The switching graphs are acyclic in both R and R’ (see Lemma 2.1.9).
We can thus use Lemma ?7. We consider the two reduction steps. In each case,
in every switching graph we loose two nodes and two edges thus the number of
connected components is not modified. O

In particular a reduct of a connected proof net is a connected proof net.

2.1.3.3 Properties

If we consider cut elimination as a computational process on proof nets, the two
key properties we want to prove about it are termination and uniqueness of the
result. If the existence of a terminating reduction strategy (weak normaliza-
tion) allowing to reach a cut-free proof net from any typed proof net is enough
from the point of few of logical consistency, it is more satisfactory from a com-
putational point of view to prove that any reduction will eventually terminate
(strong normalization). It turns out that, in the multiplicative case, this does
not require any typing condition.

Lemma 2.1.11 (Sub-Confluence). The reduction of proof structures is sub-
confluent.

Proof. There are two kinds of critical pairs:
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e a/a (shared cut)

e a/a (shared az)

In all the other situations, two different reductions from a given proof net com-

mute:
(y \(i)
(2) ,J L (1)
since they cannot overlap. O

Proposition 2.1.12 (Convergence). The reduction of proof structures is con-
vergent.

Proof. Confluence is obtained by Proposition 7?7 and Lemma 2.1.11. Moreover,
the number of nodes is reduced in each reduction step. O

Since each cut of typed proof nets is involved in at least one redex, we obtain:

Corollary 2.1.13 (Normalisation of typed proof nets). The reduction of typed
proof nets is convergent, and the unique normal form of a typed proof net is
cut-free.

2.1.4 Sequentialization

We want to associate an MLL, proof with each typed connected multiplicative
proof net. This is called the sequentialization process, for it requires to turn the
graph structure of proof nets into the more sequential tree structure of sequent
calculus proofs.
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2.1.4.1 Sequential structures

In order to help the reuse of some of the results, we consider here a simple
generalization of proof structures where az-nodes are replaced with hyp-nodes:

e cach node labelled hyp has an arbitrary number of conclusions (at least
one) and no premise;

e in a typing for a proof structure with hyp-nodes, we require that for each
hyp-node with conclusions Ay, ..., A,, the sequent - Ay,..., A, is deriv-
able in MLL,,.

The original az-nodes are clearly a particular case of these new hyp-nodes since
- A, At is provable for any A in MLL, by means of an (ax) rule.

In fact, some form of sequentiality can be recovered from the correctness
criterion, even without typing. We say that a proof structure S is sequential
structure (resp. connected sequential structure) if one of the following holds
(resp. if one of (S1) to (S4) holds), assuming inductively that S; and Sy are
sequential (resp. connected sequential):

(S1) S is reduced to an hyp-node with its conclusion arrows and respective
e-nodes;

(S2) S is obtained from S; and Sy by removing one e-node in each of S; and Ss,
with premises a; in &; and ag in So, and by introducing a new cut-node
with premises a; and as;

(S3) S is obtained from S; and Sy by removing one e-node in each of S; and Ss,
with premises a; in & and ay in Sp, and by introducing a new terminal
®-node with premises a; and ao;

NIy
[ Gy

(S4) S is obtained from S; by removing two e-nodes in S; and Sa, with premises
a1 in 81, and by introducing a new terminal %-node with premises a; and
az;
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(S5) S is the empty proof structure;
(S6) S is the sum of S; and Ss.

Note that cases (S1) to (S4) match exactly the structure of the proof of
Proposition 2.1.8.

Lemma 2.1.14 (Untyped correctness). Any sequential (resp. connected se-
quential) proof structure is a proof net (resp. a connected proof net).

Proof. By induction on the definition of sequential (resp. connected sequential)
proof structures: cases (S1) to (S4) match exactly the structure of the proof
of Proposition 2.1.8; case (S5) is trivial, and (S6) follow straightforwardly from
the induction hypotheses. O

In the following, we will establish the converse, first in the connected case:
every connected proof net is connected sequential. We will deduce the sequen-
tialization theorem (Theorem 2.1.23) from the fact that a typed proof structure
is the translation of a proof as soon as it is connected sequential. We will also
deduce that a proof structure is sequential iff it is a proof net (Theorem 2.2.15),
which will be useful later.

Lemma 2.1.15. Let S be a sequential proof structure. Then S is connected
sequential iff one of its switching graphs is connected.

Proof. We have already noted that if S is connected sequential then S is a
connected proof net. Conversely, assume that S is sequential and one of its
switching graphs is connected. We show that S is connected sequential by in-
duction on sequential structures. Cases (S1) to (S4) are straightforward by
induction hypothesis. Case (S5) does not apply because S is not empty. More-
over, to apply (S6), one of §; or S must be empty, otherwise the switching
graphs of § must have at least two components: then S = &; or § = S and we
conclude directly by induction hypothesis. O

To establish the correspondence between sequential structures and proof
nets, it will be sufficient to consider cut-free structures. Indeed, for any proof
structure S, we write S[®/cut] for the proof structure obtained by replacing
each cut-node with a ®-node — with conclusion pointing to a fresh e-node. We
obtain:

Lemma 2.1.16. For any proof structure S:
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o S is sequential (resp. connected sequential) iff S[®/ cut] is.
e S is a proof net (resp. a connected proof net) iff S[®/cut] is.

Proof. The first item is direct by induction on the definition of sequential (resp.
connected sequential) structures. For the second item, it is sufficient to observe
that:

e the W-nodes of S[®/cut] are those of S;

e given a switching ¢ of S (equivalently, of S[®/cut]), any path of S¥ is
also a path of S[®/cut]?, with the same endpoints;

e a cycle in S[®/cut]¥ cannot cross the conclusions of the newly introduced
terminal ®-nodes, hence it is also a cycle in S¥.

O

2.1.4.2 Switching paths

Recall that any switching graph S% of S has an additional node P*® for each
X-node P, and the same edges as S, except that the target of the premise ¢(P)
of each @¥-node P is changed to P*. In particular, any path v of S¥ defines a
path p~1(v) of S with the same sequence of edges, and visiting the same nodes,
except maybe at endpoints: if the source (resp. target) of v is P® for some
%-node P, then the source (resp. target) of p~1(v) is P. Moreover 7 is simple
iff p=1(7) is. We call switching path of S any such simple path ¢~1(v), for any
switching .

Given a path v, a blocking % of ~ is any %-node P such that afa, is a
subpath of v, where a; and as are both premises of P. It should be clear that
a path with a blocking % cannot be a switching path. Conversely:

Lemma 2.1.17 (Non switching path). A simple path v of S is a switching path
unless it admits a blocking 7.

Proof. If there is no blocking %, we construct a switching ¢ such that v is of
the shape ¢~ *(vp). For each %-node P with premises a; and as, and conclusion
ap:

e if v does not cross aj, or if aj is the first edge of v, or if a; is the last
edge of v, then we can set ¢(P) := ag — and this is sufficient ensure that
s(ay), s(az) and t(az) are the same in Gs and in S%;

e if v does not cross ay, or if a, is the first edge of v, or if aj is the last
edge of v, then we can set ¢(P) := a; — and this is sufficient ensure that
s(az), s(a1) and t(ay) are the same in Gs and in S%.

If each @¥-node occurring in ~y falls in one of these two cases, we obtain 7 with
the same sequence of edges as v — but maybe with different endpoints.

It suffices to check that this covers all possible cases. Indeed, if 7 crosses
both premises of a %-node P, we write a; and as for those premises so that
crosses a1 before as and we observe that:
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e either v contains a subpath of the shape af'y’ a, , which is forbidden be-
cause 7' should either cross agy twice, or be empty;

e or v contains a subpath of the shape afy’a;, and then 4/ must have ag

as first edge and (12+ must be the last edge of v because +y is simple;

e or v contains a subpath of the shape a;7'a; and then we can apply the
previous case to 7;

e or v contains a subpath of the shape al_'y’aé", and then either a; is the
first edge of v or the previous edge in v is a; , and then 0L2+ is the last edge
of 7, because + is simple.

O

Observe that there might be cyclic switching paths, although there is no cycle
in a switching graph: both cyclic paths between the premises of the %-node in

the proof net
A A+

AR AL

are indeed switching paths. We generalize this as follows: a proper cycle of a
%-node P is any switching path of the shape aj 7/aj where a; and ay are both
premises of the same Z¥-node.

Notice that the two premises of a %¥-node which has no proper cycle are
disconnected in every switching graph. Hence, every switching graph of a proof
net containing a Z¥-node which has no proper cycle has at least two connected
components (and thus the proof net is not connected).

Lemma 2.1.18 (Cyclic Switching Paths). In a proof net, every cyclic switching
path is a proper cycle of some % -node.

Proof. Assume v = ¢~ () is a switching path in a proof net S, with s(y) =
t(7y). It will be sufficient to show that the first edge of v is a~ with a a premise
of a &¥-node: then we can apply the same argument to 7.

If s(y) is not a %-node, then v has the same endpoints as g, which is thus a
cycle in §%: this is forbidden since S is a proof net. So s(y) must be a %¥-node
P, with conclusion ay: it suffices to show that ag is not the first edge of .

Indeed, we could otherwise write v = aj7’a] with a; a premise of P. Then
~ would be a cycle in 8¢, defining ¢’ by ¢/(P) = a; and ¢'(P') :== @(P’) for
each ®-node P’ # P. O
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Given a cycle v in a proof net, one of the following must thus hold:

e ~ has no blocking %, hence it is a switching path and it must be a proper
cycle of some Z¥-node;

e 7 has exactly one blocking %¥-node P, and a cyclic permutation of the
edges of v yields a proper cycle of P: in this case, writing N for the
source and target of v, we say P clasping ¥-node N and write P < N

e 7 has at least two blocking %¥-nodes, or it is of the shape a; v'a3 where 7/
has at least one blocking % and a; and as are both premises of a %¥-node
— 4.e. no cyclic permutation of the edges of v yield a switching path.

A strong switching path is a switching path whose first edge (if any) is not
a” with a a premise of a ®-node. In particular, the previous Lemma entails
that there is no cyclic strong path in a proof net.

Lemma 2.1.19 (Concatenation of Switching Paths). If v is a switching path
and ' is a strong switching path with t(v) = s(v'), and if v and v are disjoint
then their concatenation vy is a switching path. If moreover v is strong, then
v is strong as well.

Proof. By hypotheses, the path v’ is a simple undirected path of S. If it is not
a switching path, then the previous lemma gives a %¥-node P with premises a;
and as such that vy’ contains afa; . Since v and 7/ are both switching paths,
none can contain such a subpath. Then a; must be the first edge of 4/, which
contradicts the fact that it is strong.

If moreover 7 is strong, then either it is empty and vy’ = +/ is strong, or the
first edge of v+’ is the first edge of v and v+’ is strong. O

Note that in general, if ag is the conclusion of a %-node or ®-node, and a; is
one of its premises, there may exist non disjoint switching paths vy = aar ~ and
Y1 = aj 74, even in a proof net: for instance, in the net associated with the cut
free proof of X+, (X ® Y)Z Y+, we can consider the paths from the ®-node to
the conclusion of the %-node. However, this never occurs if 7, is a proper cycle
of a ¥-node:

Lemma 2.1.20. Let 7 be a proper cycle of a %¥-node P in a proof net R, and
v = ag'y’ be a switching path of R, where aq is the conclusion of P. Then t(v)
does not occur in w and vy is disjoint from .

Proof. Observe that m does not cross ag: otherwise, we obtain a suffix of 7 or
of 7 of the shape aj7’a] for some premise a; of P, which is a strong cyclic
switching path, thus violating Lemma 2.1.18.

We first prove that t(y) does not occur in m. Otherwise, we consider the
longest prefix ¢ of v that is disjoint from 7: either é = 7 or there is some edge
e such that de is also a prefix of v and e or € occurs in 7. In both cases, t(d)
occurs in 7, and § = ag §’ for some prefix 6’ of 4'. Then we can write 7 = 772
with t(m) = t(m2) = P and s(my) = s(m2) = t(d). Applying Lemma 2.1.19, we
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thus obtain two cyclic switching paths 71 and m9d. Applying Lemma 2.1.18 to
these two paths, we obtain that t(J) is a %¥-node, with premises ag and a1, so
that both 7 or my have a; as first edge: this contradicts the fact that 7 is a
simple path.

We deduce that v is disjoint from 7: otherwise, we can apply the previous
result to the longest prefix § of v that is disjoint from . O

2.1.4.3 Sequentialization of connected proof nets

For every ®-node T of a proof net R, exactly one of the following holds:
1. no cycle of R contains T}

2. T belongs to some switching cycle of R and thus (by Lemma 2.1.18) T
occurs in the proper cycle of some %-node P, hence P < T

3. T belongs to some simple cycle of R, but none of the simple cycles of R
containing 7T is switching. In this case, for every simple cycle v of R with
source T', by Lemma 2.1.17 there is a blocking %-node of v and, since no
switching cycle of R contains T', v has to contain another blocking Z¥-node.
Thus T is the source of at least one simple cycle and every simple cycle
with source T' contains at least two blocking Z-nodes.

In case 1, the ®-node T is called splitting, since removing it splits its con-
nected component in three: in other words, writing a; and as for the premises of
T and ay for its conclusion, there is no path aj vyaj (and thus no path a; va7),
there is no path a] yay (and thus no path afvya;) and there is no path a; vagy
(and thus no path ag Waér) in R. In the particular case of a terminal split-
ting ®-node, its connected component is actually split in two (if we ignore the
conclusion of the node and of the proof net).

Case 3 never occurs in a connected proof net:

Lemma 2.1.21 (Non-splitting ® in a connected proof net). For each ®-node
T of a connected proof net R, if T is not splitting then there is a %¥-node P with
P<T.

Proof. Fix a connected proof net R and a non-splitting ®-node T in R. We
write e1, ex and ez for the three edges such that t(e;) = T for 1 < j < 3.
Consider a cyclic path v with source T: for each %¥-node P occurring in -,
either v crosses exactly one premise of P together with its conclusion, or P is
blocking for v. We fix a switching ¢ of R selecting the premise of P crossed by
~ when there is exactly one, leaving the other values unspecified.

Since 7 is a cycle in a proof net, it must have at least one blocking 2. Thus
we can write v = 7o - - - Yp+1 uniquely so that the following holds:

o the first edge of vy is €;,; and the last edge of v,,11 is e;, for some j; # jo;

e for 0 < i < n, the last edge of ~; is aifl and the first edge of v, 41 is a, 5,
where a; 1 and a; 2 are the premises of a blocking %¥-node F;;
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e cach blocking % of ~ is some P;.

In particular, each 7; induces a path +/ in R¥ with the same edges.

By acyclicity and connectedness of R¥, removing T from R¥ (and replacing
it with two new e-nodes as targets for its premises and an hyp-node as a source
for its conclusion) defines exactly three connected components Gy, Go and Gs,
each G; containing e; for 1 < j < 3. Moreover, for 0 <i < n, a;2 and a;41,1 are
connected via 7;, 1, hence they belong to the same component; similarly, a1 is
in G, and a, 2 is in Gj,.

It follows that at least one blocking %¥-node P; is such that a; 1 is in gji and
aiz2 is in G, with ji # jy. We thus obtain paths 6; and 6y in R¥ such that,
for k € {1,2}, the first edge of 0 is €;; and its last edge is a:k. Then ¢~ 1(6;)
and p~1(6,) are disjoint strong switching paths in R with source 7" and target

P, which makes ¢~1(6;)p~1(62) a proper cycle of P; containing 7. O

A descent path is a directed path from an internal node to a terminal node:
each internal node admits a unique descent path, except for hyp-nodes which
have as many descent paths as conclusions. Moreover, a descent path is always
a strong switching path.

Lemma 2.1.22 (Finding a splitting node). Let R be a connected proof net,
whose terminal nodes are all ®-nodes. Then R must have a splitting ®-node.

Proof. If all the terminal nodes of R are non-splitting ®-nodes, we can construct
an infinite path as follows:

Step 0: since R is not empty, it must have a terminal node Tj, and we can
fix an arbitrary premise to enter Tj, and start with the empty path
at To;

Step 1: since Ty is a non-splitting ®, Lemma 2.1.21 provides some Z%-node
Py such that Py < Ty, and then we reach Py by following a suffix of
some proper cycle of it, starting from the other premise of Tp;

Step 2: now we can follow the descent path from Py to reach a new terminal
node T7;

Step 3: and then we iterate from Step 1, with 77 in place of Tj.

Since this path is infinite, some edge must be repeated: to obtain a contradiction,
it is sufficient to deduce the existence of a cycle in a switching graph of R.

Let us formalize the construction as follows. Let Ty be any non-splitting
terminal ®-node and vy be the empty path at Ty. Now, assuming the path -,
has been constructed, with T;, = t(v,) a terminal ®-node, we define T}, and
Yna1 as follows. We fix a, to be a premise of T}, such that a; is not the last
edge of 7, (we have only one choice, unless n = 0). Choose P, to be a %¥-node
such that P, < T}, and let 7, be any proper cycle of P, containing the edge a,, .
We can write 7, = A\, p, where s(\,) = s(p,) = T,, and t(\,) = t(pn) = Py, 50
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that a,, is the first edge of p,. Then we define d,, to be the descent path from
P, and T, = t(d,). Finally, we set Y411 = Ynpnon-

For some sufficiently large ng, v,, crosses some arrow twice. For 0 < i < ny,
for any prefix « of v,, that is also a suffix of +;, we write v = 7;7/; if moreover
pi is a prefix of ~/, we write v/ = p;; so that v = v;p;p;.

Let v be the longest simple prefix of v,, such that, for 0 <14 < ng, if v is
a suffix of ;p; then ; is disjoint from 7;: in other words, to construct v, we
follow vy,, and stop the first time we reach an arrow that was crossed before, or
that is crossed by the proper cycle m; of a previous blocking %-node P;.

By construction, v is simple. Moreover, there exists an edge e such that e
is a prefix of 7y, and:

(a) either v = ~;, pi, i, and m;, crosses e, for some iy < np;
(b) or v crosses e.

Since 7y is simple and p; and §; are strong switching paths for each i, Lemma 2.1.19
entails that 7 is a strong switching path, as well as each v, and each ¢;. Let us
write V = t(y) = s(e).

In case (a), observe that ¢;, is not empty: otherwise e = a™ where a is the
conclusion of P, , hence m;, crosses a, which violates Lemma 2.1.20. Hence ¢;,
is a switching path whose first edge is a*, and such that t(¢;,) = V occurs in
T, again, this violates Lemma 2.1.20.

In case (b), observe that, for some n < ng, either 7/ e is a prefix of p,, or
we can write vy, = ppd,, with ¢/ e a prefix of d,. In both cases, 7, must cross e:
indeed, p,, and §,, are simple, and also disjoint by Lemma 2.1.20, so ~/, cannot
cross e. Hence there, for some 0 < iy < n, e is crossed by either p;, or ¢;,. Note
that 4/, is not empty: otherwise, ~, crosses both premises of T},, which yields a
switching cycle with source T;,, thus violating Lemma 2.1.18.

If p;, crosses e, case (a) applies, and we obtain a contradiction. Hence d;,
crosses e and then V' occurs in d;,. Write ' for the suffix of ¢;, starting at that
occurrence: 7' a non empty suffix of v with s(y') = V, hence it is a switching
cycle; moreover, its first edge is either an edge of d;, or a; ., with a;,+1 a
premise of T;, 41, which violates Lemma 2.1.18.

O

Theorem 2.1.23 (Connected sequentialization). Any connected proof net R
s connected sequential. If moreover R is typed then it is the translation of a
sequent calculus proof of MLL,,.

Proof. Suppose R is a connected proof net: by Lemmas 2.1.15 and 2.1.16, R
is connected sequential as soon as R[®/cut] is. For the first part, it is thus
sufficient to prove that if R is a cut-free connected proof net, then R is connected
sequential. We reason by induction on the number of internal nodes of R.

If R contains a terminal hyp-node then it is reduced to that node and its
conclusions: we conclude by (S1).

If R contains a terminal %-node, then:
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e we consider the proof structure R’ obtained from R by replacing this
%-node and its conclusion with two fresh e-nodes;

e R/’ is also a connected proof net, which yields a connected sequential struc-
ture by induction hypothesis;

e we conclude by (S4).

Otherwise, all the terminal nodes of R are ®-nodes, and Lemma 2.1.21
allows to apply Lemma 2.1.22, and we obtain a splitting terminal ®-node T
with premises a; and as:

e we consider the proof structure R’ obtained from R by replacing T and
its conclusion with two fresh e-nodes, with premises a; and as;

e R’ is made of two connected components, R; containing a; and Ry con-
taining as, each being a connected proof structure;

e the induction hypothesis can be applied to R; and to R5 to yield connected
sequential structures;

e we conclude by (S3).

For the second part, assuming R is typed, we construct a suitable proof of
MLL, by a straightforward induction on R as a connected sequential structure.
O

2.2 Multiplicative units and the mix rules

2.2.1 Multiplicative units and jumps

Until this point, multiplicative proof nets only covered the fragment without
units MLL,. To cover the propositional fragment MLLg, it remains only to
translate the two rules (1) and (L). A natural idea is to extend the definition
of proof structures with two new node labels 1 and L, and require that each
1-node (resp. each 1-node) has no premise and exactly one conclusion, of type
1 (resp. 1).

Then the translation ps from proof trees to proof structures is extended as
follows:

e the proof

— (1)
F1

is translated to the proof structure with a single 1-node;

e the translation of -

T

— (L
FT, L (L)

is ps(m) with an additional |-node.
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Note that the case of (L) generates a new connected component in the under-
lying graph: the proof structure associated with an MLLy proof is not neces-
sarily connected. In particular, a cut between a |-node and a 1-node forms
a connected component: eliminating this cut simply amounts to removing this
component.

Proposition 2.2.1 (Acyclicity of MLLy proofs). The translation ps(w) of a
sequent calculus proof m of MLLy is a typed proof net.

Proof. The proof is the same as that of Proposition 2.1.8, except that we drop
the connectedness requirement, which allows to treat the translation of the (L)
rule. O

Of course, the converse does not hold: consider for instance the proof struc-
ture whose only internal node is a 1-node. If one wants to recover a correctness
criterion as in Section 2.1, one possible fix is the introduction of jumps, restoring
the connectivity of -nodes.

2.2.1.1 Proof structures with jumps

A jump function on an MLLy-proof structure S is a function mapping each
1-node B € N (S) to some internal node j(B) € N(S). A proof structure
with jumps is a pair (S, j), where S is an MLLg-proof structure and j is a jump
function on S. Given a switching ¢ of S, the switching graph (S, j)¥ is obtained
as previously, with the addition of an arrow from j(B) to B for each L-node B.

A proof net with jumps is a proof structure with jumps such that each switch-
ing graph is acyclic. A proof net with jumps is connected if all its switching
graphs are connected.

Proposition 2.2.2 (Soundness of Correctness with Units). The translation
ps(7) of a sequent calculus proof ™ of MLLy can be equipped with a jump function
to obtain a connected proof net with jumps.

Proof. We reason by induction on 7, the only interesting case being that of
the (L) rule. In this case, it is sufficient to apply the induction hypothesis
and observe that the immediate subproof m; of 7 involves at least one rule:
then, attaching a new L-node to any node of ps(m1) via a jump edge does not
introduce cycles and preserves the number of connected components of switching
graphs. O

Let us insist on the fact that the jump function thus obtained is not defined
uniquely by 7: the existence of jumps making switching graphs connected acyclic
should be considered as a side condition rather than as part of the structure.

2.2.1.2 Sequentialization of connected proof nets with jumps

As a converse to Proposition 2.2.2, we will show that if a typed MLLg-proof
structure S can be equipped with a jump function j making (S, j) a connected
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proof net with jumps, then S is the translation of a proof tree of MLLy. For
that purpose, we will first establish that the image of the jump function can be
restricted to az- and 1-nodes.

Given a proof structure with jumps (S,j) we consider the graph G(S, )
obtained from the underlying graph G(S) by adding an arrow from j(B) to B
for each 1-node B. We call initial node any ax- and 1-node of S: initial nodes
are exactly those nodes without incoming arrow in G(R,j). We say a jump
function is initial if each j(B) is an initial node.

Lemma 2.2.3. If (R,j) is a proof net with jumps then G(R,j) is directed
acyclic.

Proof. Assume otherwise that there is a directed cycle 7 in G(R,j): this must
contain a subpath 7’ that is also a directed cycle, with the additional property
that no node of R occurs twice as the target of an arrow of /. In particular, if P
is a %§-node of R, 7’ crosses at most one of the premises of P. It follows that 7’ is
also a cycle in some switching graph of (R, j) which yields a contradiction. O

If (R, 7) is a proof net with jumps and N is a node of R, we can thus define
dr ;(N) to be the maximum length of a path v in G(R, j) with target N.

Lemma 2.2.4. If (R,j) is a connected proof net with jumps, then there exists
an initial jump function jo on R such that (R, jo) is also a connected proof net
with jumps.

Proof. We prove the result by induction on Y pcn (g dr,;(B). If j is not
initial, we select some L-node B such that j(B) is not initial, and we define a
jump function j' which is the same as j except for its value on B, for which we
chose the source of an incoming arrow of B in G(R, j). More explicitly: if j(B) is
a %- or ®- or cut-node, then we set j'(B) to be the source of any premise of j(B);
and if j(B) is a L-node, then we set j'(B) to be j(j(B)). This transformation
does not introduce cycles and preserves the number of connected components
of switching graphs, and then we can apply the induction hypothesis. O

Theorem 2.2.5 (Sequentialization with Units). For any typed connected proof
net with jumps (R, j), the underlying structure R is the translation of a sequent
calculus proof of MLLy.

Proof. Let (R,j) be a connected MLLy proof net with jumps. By the previous
result, we can assume j to be initial. Consider the (jump-free) structure R’
obtained from R as follows:

e remove all 1-nodes;

e for each az-node N with conclusions a; and a9, fix an enumeration By, ..., B,
of 771(N), and write a, for the conclusion arrow of B; in R, for 1 < i < n;
then replace N with an hyp-node, with n+ 2 conclusions a1, a2 and a} for
1 < i < n, leaving each t(a}) unchanged;
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e similarly replace each 1-node with conclusion ag, with an hyp-node with
n + 1 conclusions ap and a} for 1 <4 < n, with ai,...,a], constructed as
above.

Observe that any switching path in R’ induces a path in R with the same
endpoints (identifying each az- or 1-node in R with the corresponding hyp-node
in R’). Conversely, any switching path in R without |-node as an endpoint,
induces a switching path in R’ with the same endpoints. Hence R’ is a connected
proof net and we can apply Theorem 2.1.23: R’ is connected sequential.

If moreover R is typed, we construct an MLLg-proof 7 such that ps(7) = R,
by induction on the connected sequentiality of R’.

(S1) If R’ is reduced to an hyp-node, then R is reduced to a number of L-nodes
By, ..., By, plus one node N such that j(B;) = N for 1 <i <mn,and N is
either a 1-node, or an az-node with conclusions typed A and A+. Then
we can set 7 to be either: — )

1

or

AL (az)

followed by n applications of the (L) rule.

(S2) If R’ is a cut between a conclusion of R} and a conclusion of R, where
R} and R are connected sequential structures, then R is a cut C' between
a conclusion of R; and a conclusion of Ro, such that each R/ is obtained
from R; by as above. If moreover R is typed, then R; and Ry are typed
with conclusion sequents I'1, A and A+, T's, so that the premises of C' have
dual types A and A+. The induction hypothesis yields m; and 7 such
that ps(m;) = R;, and we can set

T 2
1
r=11,4 A~ Ty (cut)
I'1, Iy
(S3) If R’ is a ®-node between a conclusion of R} and a conclusion of Rj,
where R} and R} are connected sequential structures, then R is a ®-node
T between a conclusion of Ry and a conclusion of Rs, such that each R/
is obtained from R; by as above. If moreover R is typed, then R; and R
are typed with conclusion sequents I'y, A and B, T's, so that the premises
of T have types A and B. The induction hypothesis yields 7, and 7o such
that ps(m;) = R;, and we can set

1 Up)

—I,A BT
mi="11 2 (®

F17A®B;F2

(S4) If R’ is a B-node between two conclusions of R} where R/ is a connected
sequential structure, then R is a Z¥-node P between two conclusions of R4
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such that R is obtained from R by as above. If moreover R is typed,
then R, is typed with conclusion sequent I';, A, B so that the premises
of P have types A and B. The induction hypothesis yields 7, such that
ps(m1) = R, and we can set

m
T = F1,A7B

T o ®
Fl,A?S’B( )

O

Observe that, given a proof 7 in MLLg, the proof obtained by sequentializing
ps(7) might be quite different from 7, as the rule (L) is only applied immediately
below (az) or (1). For the purposes of sequentialization, it would thus be
sufficient to consider initial jump functions only. On the other hand, allowing
jumps from arbitrary nodes makes the it easier to describe the preservation of
connected proof nets with jumps under cut elimination.

2.2.1.3 Jumps and cut elimination

Recall that cut elimination in MLLg-proof structures is the same as in MLL,-
proof-structures, with the addition of the 1/ L case, which amounts to removing
any connected component made of a cut between a 1-node and a 1-node. This
preserves connected sequentiality with jumps, in the following sense:

Lemma 2.2.6. If (S, ) is a connected proof net with jumps, and S — S’ then
there exists a jump function j' on 8" making (S', ') a connected proof net with
Jumps.

Proof. By Lemma 2.2.4, we can assume j to be initial. Then we define j' to be
the same as j except on those L-nodes B such that j(B) is a premise node of
the cut-node C, eliminated in the step S — &’. If C' is a cut between a 1-node
Py and a Ll-node By, then for each l-node B such that j(B) = Py, we set
J'(B) = j(Bp). And if C is a cut between an az-node A and some other node
N, then for each L-node B such that j(B) = A, we set j/(B) :== N.

In both cases, this transformation does not introduce cycles in switching
graphs and it preserves their number of connected components. It follows that
(S,7") is also a connected proof net with jumps. Observe that the proofs of
Lemmas 2.1.9 and 2.1.10 only rely on transformations of switching graphs that
are local to the eliminated cut. They can thus be adapted straightforwardly
to the reduction & — &', considering the switching graphs of (S, ;) and of
(83" O

Tracing the rewriting of jump functions through cut elimination steps is
tedious, and we have already explained that jumps are not really intended to
be part of the structure of proof nets: they only exist because we need to
relax the connectedness condition to obtain a sequentialization result with |-
nodes. In most cases, the additional technicality is not worth the effort: a much
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simpler course is to drop connectedness, thus considering proof nets rather than
connected proof nets. On the logical side, this amounts to augment the sequent
calculus with so-called miz rules.

2.2.2 The Mix Rules

The two mix rules are the nullary mix rule (mizg) and the binary mix rule
(miz).

— (mizo) FI' FA
= FT,A

(miz)

We can interpret these two rules as proof structure constructions.

The (mizo) rule is translated into the empty proof structure.

The (miz) rule applied to two proofs m; and mo which translate into the
proof structures S; and Sy leads to the disjoint union of S; and Ss.

r A

2.2.2.1 Dealing with the empty proof net

Lemma 2.2.7 (Sociability of (mizg)). If w is a proof in any fragment of LL with
(mizg) and (miz) rules, by applying (possibly many times) the transformation:

— (max ™
F( 0) B

T
; —
—_— (mix
T (miz) T
we obtain either the proof = (mizo) or a proof without the (mixo) rule.

Proof. The transformation described can only be applied a finite number of
times (the number of rules strictly decreases). Assume we apply it as many
times as possible. If the obtained proof contains an occurrence of the (mizg)
rule, it is the only rule of the proof since the only possible rule below it is (mix)
(it must admit the empty sequent - as a premise) but then the transformation
can be applied one more time, a contradiction. O

Note that the transformation considered in Lemma 2.2.7 does not modify
the associated proof structure.

Proposition 2.2.8 (Soundness and Sequentialization with (mizg)). A typed
MLL, -proof structure is the translation of a sequent calculus proof of MLL, +
(mizo) if and only if it is acyclic and its switching graphs have at most one
connected component.
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Proof. By Lemma 2.2.7, for soundness it is enough to apply Proposition 2.1.8
and to see that the empty proof structure (obtained from the (mizg) rule) has
empty switching graphs thus is acyclic and with no connected component.
Concerning sequentialization, since the only multigraph with no connected
component is the empty one, the only multiplicative proof structure with switch-
ing graphs with no connected component is the empty one which is the trans-
lation of the (miz) rule. For acyclic and connected multiplicative proof struc-
tures, we apply Theorem 2.1.23. O

2.2.2.2 Clasping chains and the almost connected case

The treatment of proof structures whose switching graphs have more than one
connected component is more delicate. The difficulty lies in the fact that this
does not necessarily delineate two connected components in the proof structure
itself. Consider for instance a structure S of the shape:

(3

In a switching graph for S, the nodes of S; are disconnected from those of Ss,
but the terminal %§-node might be connected to nodes of S; or of Sy depending
on the switching.

In fact, this is exactly the problem we faced in the proof of sequentialization
for connected proof structures: in a structure of the shape

s
[

we know that the premises of the ®-node are disconnected in every switching
graph of &1, but this does not necessarily entail that this node is splitting.

In Theorem 2.1.23, we relied on the existence of some proper cycles to find
a splitting ®-node in a proof net whose terminal nodes are all ®-nodes, thanks
to Lemma 2.1.22. However, this hypothesis is no longer available in a non
connected proof net.

We will nonetheless establish that sequentialization can be deduced from
connected sequentialization, in case every %-node admits a proper cycle: we say
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a proof net with this property is almost connected. Indeed, we will show that
an almost connected proof net is always a sum of connected proof nets — that
we can thus sequentialize component by component.

The proof relies on the fact that the length of clasping chains is bounded: a
clasping chain in a proof structure is a sequence (P;)o<i<n such that each P; is
a %¥-node and P; < Py for 0 <i < n.

Lemma 2.2.9 (Clasping chains are bounded). In a proof net R, there is no
clasping chain Py < --- < Py41 with Py = Pyy1. Moreover, the length of
clasping chains is bounded.

Proof. Assume, towards a contradiction, that there is a chain Py < -+ < P41
with Py = P, 41 in a proof net R. Moreover assume that this chain is of minimal
length: in particular the P;’s are pairwise distinct.

For 0 <i < n, write m; for a proper cycle of P; such that P;; occurs in ;.
Since m; is proper, it must cross the conclusion a; 1,0 of Piyi: w.lo.g., we can
write m; = \;p;, where the first edge of p; is a;’;l’o — otherwise, we consider 7;
instead. We moreover write p,41 = po and p = pp+1pn - Po-

By Lemma 2.1.20, p,+1 and p, are disjoint; and by definition, p,4+1 and
po are not disjoint. Consider the longest simple prefix v of p: we can write
Y = Ppt1- - pit1p; for some i with 0 < i < n, where p) is a non empty prefix of
pi. Moreover, there is an edge e such that ~e is a prefix of p and e is crossed by
v if pl = pi, e = a;,_o and Lemma 2.1.20 entails that p does not cross e; and if
p5 is a proper prefix of p; then e is an edge of p; which is a simple path, hence
p; does not cross e.

It follow that e is crossed by some p; with i« < 7 < n + 1; in particular,
V = t(p}) occurs in p;. Since each py, is a strong switching path, Lemma 2.1.19
entails that v is a switching path, hence its suffix v/ == p;_1---pi11p} is a
switching path with first edge a;fo and such that t(y") = V occurs in 7;: this
yields a contradiction with Lemma 2.1.20.

We have thus obtained the first result. Now, assuming that there are clasping
chains of unbounded length, it is sufficient to consider a clasping chain whose
length exceeds the number of %¥-nodes of R to obtain a cyclic clasping chain,
hence a contraction by the first result. O

Given a %-node P in a proof net R, we write cr(P) for the greatest number
n of nodes of a clasping chain P = P; < -+ < P,,, and call ¢r(P) the clasping
rank of P. Note that cr(P) > 1. Then, if v is a path in R, the clasping rank
cr(y) of 7 is the maximum of the clasping ranks of the -nodes having at least
one premise edge crossed by v — we set cr(y) = 0 if there is no such Z%-node.

We are now ready to show that, in an almost connected proof net R, each
connected component of the graph of R defines a connected proof net: in other
words, all the switching graphs of a connected component are connected.

Lemma 2.2.10 (Switching paths in an almost connected proof net). Let R be
an almost connected proof net. Then for every switching @ of R, and every path
~v in R, there exists a path ' in R¥ having the same endpoints as .
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Proof. Note that we do not require 7’ to be a simple path nor to be non-empty:
anyway, we will only use this result to establish a connectedness property. Also
note that 7" and v'~1(¢) need not have the same endpoints: to obtain a connect-
edness property in R¥ it is thus important to focus on 4/ rather than ¢ =1(v/).
We reason by well-founded induction on cr(7).

Assume cr(y) = n and the induction hypothesis applies to all paths of clasp-
ing rank strictly less than n. Write aq, . .., ai for the premises of Z¥-nodes crossed
by = such that ¢(t(a;)) # a;. Observe that the edges of v have the same end-
points in R¥ as in R, except for the edges supported by the a;’s. To obtain a
path 7/ in R¥ with the same endpoints as v in R it is thus sufficient to find a
path 7; in R¥ with the same endpoints as a; in R, for 1 < < k.

Write P; := t(a;) and af := ¢(F;) for the other premise of P;. Let m; be a
proper cycle of P;:' w.l.o.g. (otherwise consider 7;), we can write m; = a; piaf.
Every ®-node P’ occurring in p; is clasped by P;, hence cr(P’) < cr(P;) < cr(v):
it follows that cr(p;) < er(y), and the induction hypothesis yields a path p} in
R? with s(p;) = s(a;) and t(p}) = s(a}). It is then sufficient to set 7; =

/7 1+
pia; . O

Corollary 2.2.11 (Sequentialization of almost connected proof nets). Every
almost connected proof net is a sequential proof structure.

Proof. First observe that, for any switching ¢ of a proof structure R, each node
n of R¥ is connected to a node of R in R¥:

e cither n is already a node of R;

e or n is the newly introduced target P*® of a premise a of a %-node P, and
then a™~ connects n to s(a) — and s(a) is already in R, because the source
of arrows is unchanged in R¥.

Assume that R is an almost connected proof net, whose graph Gx is con-
nected, and fix a switching ¢ of R. We know R¥ is acyclic. Given two nodes in
R?, we have just observed that these nodes are connected to nodes of R; since
Gr is connected, the two latter nodes are connected by a path v in R; and the
previous Lemma yields a path in R¥ with the same endpoints. It follows that
R is a connected proof net, and Theorem 2.1.23 ensures that R is connected
sequential, hence sequential.

Now assume that R is an almost connected proof net: applying the previ-
ous reasoning to the connected components of R, we obtain a sequential proof
structure for each component. Then we conclude by induction on the number
of connected components: if there is none, we apply Item (S5); in the inductive
case, we apply Item (S6). O

Here it is important to note that ; is given by a switching ;, that need not be compatible
with ¢’ on the edges of ;.
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2.2.2.3 Nonconnected sequentialization

It only remains to tackle the case of proof nets having Z%¥-nodes without proper
cycles. The key observation is that such a node can be replaced with a ®-node
without introducing switching cycles. Moreover, this operation decreases the
number of connected components of switching graphs.

If S is a proof structure and P a %-node of S, we write S[®/P] for the
structure obtained by changing P into a ®-node.

Lemma 2.2.12. If S[®/P] is a proof net, then so is S. Moreover in this case,
#ee(S) = #ce(S[®/P]) + 1.

Proof. Write 8’ := S§[®/P]. Given a switching ¢ of S, we obtain a switching ¢’
of &’ just by forgetting the value of ¢ on P. Given a cycle v in 8%, v does not
cross the premise of P that is rejected by ; hence « is also a path S’ ‘p/, which
is a cycle. It follows that if S is a proof net then so is S.

The switching graphs of 8" have the same number of arrows as those of S, but
one node less: in case both are proof nets, 7?7 entails the required identity. [

Lemma 2.2.13. If P is a ®-node of a proof structure S, then S is sequential
as soon as S[®/P].

Proof. The proof is by a straightforward induction on the sequentiality of R[®/P):
one simply replaces the application of (S3) to P, with the application of first
(S6) then (S4). O

Lemma 2.2.14 (#¥-node without proper cycle). Let R be a proof net and as-
sume P is a %-node of R, which does not have any proper cycle. Then R[®/P]
s a proof net,

Proof. Assume there is a cycle 7 in some switching graph R[®/P]? of R[®/P]:
then 7 must cross P, as otherwise it is also a cycle in R?', where ¢’ is any
switching of R that agrees with ¢ on the %¥-nodes of R[®/P]. We can thus
assume w.l.o.g. that t(w) = s(7) = P, which yields a proper cycle of P, and a
contradiction with the hypothesis. O

The previous Lemmas ensure that if we want to sequentialize a proof net R
containing a %-node P without proper cycle, then it is sufficient to sequentialize
R[®/P]. We are now ready to treat the general case.

Theorem 2.2.15 (Sequentialization of proof nets). FEwvery proof net is a se-
quential proof structure.

Proof. By Lemma 2.1.16, it is sufficient to treat the case of cut-free proof nets.
We reason by induction on #..(R).

If R is almost sequential, we conclude directly by Corollary 2.2.11. Otherwise
R contains a %-node P without proper cycle. By Lemmas 2.2.14 and 2.2.12,
we can apply the induction hypothesis to R[®/P], hence R[®/P)] is sequential,
and so is R, by Lemma 2.2.13. O
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Observe that the previous theorem actually applies to proof structures with
hyp-nodes, hence to proof structures with 1- and |-nodes.

Proposition 2.2.16 (Soundness and Sequentialization with (mizg) and (miz)).
A typed multiplicative proof structure S is the translation of a sequent calculus
proof of MLLy + (mizo) + (miz) (resp. of MLLy + (miz)) if and only if it is a
proof net (resp. a non empty proof net).

Proof. By a straightforward induction on sequent calculus proofs, we obtain
that the translation ps(w) of a proof 7 in MLLy + (mizg) + (miz) (resp. in
MLLo + (miz)) is sequential (resp. is sequential and non empty): it is thus a
proof net by Lemma 2.1.14.

Conversely, given a typed multiplicative proof net R, Theorem 2.2.15 ensures
R is sequential: we obtain a proof m of MLLg + (miz¢) + (miz) such that R =
ps(m) by induction on sequential structures. Moreover, by Lemma 2.2.7, if R is
not empty, we can assume 7 does not use (mizg). O

2.3 Multiplicative Exponential Proof Nets

We introduce now the exponential connectives which provide linear logic with
real expressive power. The rewriting theory of proof nets becomes much richer.

2.3.1 Multiplicative Exponential Linear Logic with Mix
The formulas of multiplicative exponential linear logic (MELL) are defined as:
AB:=X|X-|A®B|AX®B|!A|?4

L is extended into an involution on all formulas by:

The connective (.)
(1A) =24+ (74)+ =14+

For MELL, we consider the rules of MLL as well as the two mix rules, together
with:

FT,74,7A FT,A I, A
) (wo) 2, ? T
: FI,7A FT,74 For,lA
Due to the presence of mix rules, our presentation of the weakening rule
. . - T
(wp) is equivalent to the more traditional one T 74 (w). The two rules are
inter-derivable: o
T (mizg)
————— (mix) o W
FT,74 =74
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2.3.2 Proof Structures

bozes B, main door, with explicit ?p nodes (auziliary doors)
content of a box
The ?-tree of an edge of type ?_ is defined inductively by:

e If the edge is conclusion of an ax node, its ?-tree is empty.

If the edge is conclusion of a d node, its 7-tree is this d node.

If the edge is conclusion of a w node, its 7-tree is this w node.

If the edge is conclusion of a ¢ node, its ?-tree is this ¢ node together with
the ?-trees of the two premises of the ¢ node.

If the edge is conclusion of a ?p node, its ?-tree is this 7p node together
with the ?-tree of the its premise.

The size of a ?-tree is its number of nodes.
descent path (bis): from a node downwards to a conclusion or to a cut or to
a premise of ! node (that is we do not continue down through an ! node)

2.3.3 Correctness Criterion
acyclicity

sequentialization
2.3.4 Cut Elimination
2.3.4.1 Reductions Steps

A numbered proof net is a proof net together with a strictly positive natural
number, as well as a strictly natural number associated with each box. All
these natural numbers are called labels of the numbered proof net. Numbered
proof nets will mainly be a tool to prove properties of the normalization of proof
nets. We define reduction steps on numbered proof nets, but the corresponding
notion for proof nets can simply be obtained by forgetting labels.

e a:n—>n+1

e m:n—n+1
ednm—n+m+1
e Ccn,m—n,m,m

e w:n,Mm—n

e p:n,m,k—n,m,k

Lemma 2.3.1 (Preservation of Correctness). If R is a proof net and R — R’
then R’ is a proof net.

Proof. O



80 CHAPTER 2. PROOF NETS

2.3.4.2 Properties

The goal of this section is to prove the convergence of the reduction of proof
nets.

Lemma 2.3.2 (Numbered Congruence). If R is a proof net containing Ro as
a sub proof net a depth 0, if Ro equipped with label m reduces to R with label
m’ then R reduces to R’ where R’ is obtained from R by replacing Ry with Ry
and the label of R’ is n +m' —m (where n is the label of R).

Proof. U

Proposition 2.3.3 (Local Confluence). The reduction of numbered proof nets
18 locally confluent.

Proof. e a/a (shared cut)
n
n+1
e a/a (shared ax)
n
n+1
e d/in
n,m
v
n+m+1 n+m

in « wod

n+m +1

e c/in

e w/in
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p/in (left side)

n,m,k

N
n,m,k n,m', k
in4 WP

n,m’, k

e p/in (right side)

e d/p

c/p
n,m,k
o/
n,m,m,k
c .
‘.
n,m,m,k, k n,m,k

P
n,m,m,k, k

pu N
n,m,m,k, k

° w/p
n,m,k
v N

n, k n,m,k
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* p/p
n,m,k,l
D
n,m,k,l n,m,k,l
P
n,m,k,l p

n,m,k,l

« | TODO p/p both on auxiliary doors of the same box
TODO O

Proposition 2.3.4 (Weak Normalization). The reduction of proof nets is weakly
normalizing.

Proof. We define a size associated with each cut of a proof net R. It is a pair
of natural numbers (s,t) where s is the size of the cut formula (i.e. the size of
the types of the premises of the cut node) and ¢ is the size of the ?-tree above
the 7 premise of the cut if any, and t = 0 otherwise. These pairs are ordered
lexicographically. The cut size of the proof net R is the multiset of the sizes of
its cuts. Thanks to the multiset ordering, the cut sizes are well ordered.

We now prove that it is always possible to reduce a cut in a proof net R in
a way which makes its size strictly decrease. By Proposition 77, this proves the
weak normalization property.

A cut is of exponential type if the types of its premises are !4 and ?A~ for
some A. Note the source of the premise with type !A of a cut of exponential
type must be an ax node or an ! node.

e If R contains an a redex for which the cut is not of exponential type,
we reduce it. A cut disappears and the sizes of the other cuts are not
modified.

e If R contains an m redex, we reduce it. If A® B and A+ 2 B+ are the
types of the premises of the cut, we replace a cut of size (s4 + sp + 1,0)
by two cuts of sizes (sa, ) and (sp, ) (and the sizes of the other cuts
are not modified), thus the cut size of the proof net strictly decreases.

e If R has only cuts of exponential types, we consider the following relation
on cuts: ¢ < ¢ if one of the following two properties holds:

— The !A premise of ¢ has an ax node as source and there is a descent
path from the ?A* conclusion of this az node to ¢'.

— The !A premise of ¢ has an ! node with box B as source and there is
a descent path from an auxiliary door of B to ¢'.
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We are going to show that < is an acyclic relation on the cuts of R. Let
us consider a minimal cycle ¢cg < ¢y < --- < ¢, withn > 0 and ¢, = ¢y, it
induces a path in R (enriched with the edges from the main door of each
box to its auxiliary doors): from each ¢; we go to the 7 premise of ¢;11 by
going to the ! premise of ¢; reaching the main door of the box B; (or an
az node) then we go to an auxiliary door of B; (or to the 7 conclusion of
the az node) and we follow the descent path until the ? premise of ¢; 1
(we cannot reach its | premise since descent paths stop when going down
on the premise of an ! node). In the case of a minimal cycle, the induced
path is a simple undirected path, and all the cuts under consideration
must have the same depth since the depth always decreases along the <
relation. Moreover each % node is crossed from one of its premises to its
conclusion. By considering a switching graph which contains all the ¢;’s
(they live in the same boxes) and which connects the 2 nodes of the path
with the premise contained in the path, we would obtain a cycle which
contradicts the acyclicity of the proof net.

Let us now consider the set C of all cuts which are maximal for the <
relation (it is finite and not empty since the set of cuts is finite and the
relation < is acyclic), and let ¢ be a cut of C of maximal depth, we reduce
c. The reduction of ¢ does not modify the size of any other cut since:

— If ¢ is maximal for <, has a box B above its | premise, then any cut
in B which is maximal for < is maximal in R, so if there is a cut in
B there is a maximal cut in B for < with bigger depth than c¢ (this
contradicts the choice of ¢, thus the content of B is cut free).

— The reduction of ¢ does not modify the type of any other cut.
— The reduction of ¢ can only modify the ?-trees of cuts ¢’ such that

¢ < ¢ (and there is no such ¢ thanks to the choice of ¢).

If the reduction step is an a or w step, a cut disappears, thus the cut size
strictly decreases. If the reduction step is a d step, a cut of size (s + 1, 1)
is replaced by a cut of size (s, ), thus the cut size strictly decreases. If
the reduction step is a ¢ or p step, a cut of size (s,t) is replaced by 2 or 1
cut(s) of size(s) (s,t') with ¢ < ¢, thus the cut size strictly decreases.

O

We define some sub-reduction relations:

e The — 4, reduction is the reduction of proof nets obtained by considering
only —, and —,, steps.

e The — reduction, also called strict reduction, is the reduction of proof
nets restricted to non w steps.

e The —, reduction is the reduction of proof nets restricted to non c steps.
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Lemma 2.3.5 (Strong am Normalization). The —,,, reduction of proof nets
18 strongly normalizing.

Proof. We use Proposition 77, since the number of nodes of proof nets is strictly
decreasing along an a or m reduction step. O

Lemma 2.3.6 (Strong w Normalization). The —,, reduction of proof nets is
strongly normalizing.

Proof. We use Proposition 77, since the number of nodes of proof nets is strictly
decreasing along a w reduction step. O

Lemma 2.3.7 (Sub-Commutation of am and non c¢). The reduction relations
—am ond —y sub-commute.

Proof. This easily comes by looking at the proof of Proposition 2.3.3. O

Lemma 2.3.8 (Quasi-Commutation of w over non w). The —,, reduction of
proof nets quasi-commutes over the —; reduction.

Proof. Assume we have R —,, R' —, R”. If the —,, and the — steps do not
overlap, we directly have commutation and by first applying the — step, one
obtains R —4 R —, R”.

R_ y
V 4

R/II

/
SN ww
R//

R

The only possible overlapping is when the — step acts on a box containing
the —,, step, but then by looking at the /in cases of the proof of Proposi-
tion 2.3.3, we can see we can close the diagrams in an appropriate way:

. - .
d LW c e p LW

w

O

Lemma 2.3.9 (Weak non w Normalization). The —, reduction of numbered
proof nets is weakly normalizing.

Proof. We can use the same proof as for Proposition 2.3.4, by using the following
remarks.

We consider the non w cut size of a proof net to be the multiset of the sizes
of the non w cuts of R.
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Reducing a cut of non exponential type makes the non w cut size strictly
decrease.

If ¢ < ¢ (for the < relation of the proof of Proposition 2.3.4) then ¢’ cannot
be a w cut. Thus if there are non w cuts in R, the set C contains non w cuts.
We now choose ¢ to be of maximal depth among the non w elements of C, and
we reduce c. The only difference with the proof of Proposition 2.3.4 is that the
box above ¢ might contain some w cuts. We then see that the non w cut size
strictly decreases. O

Lemma 2.3.10 (Increasing non w Reduction). The reduction —, on numbered
proof nets is p-increasing where, for a numbered proof net R, u(R) = 1?+p with:

o [ is the sum of all the labels of R,
e p is the sum of the depths of the boxes of R.

Proof. We analyse each non w step R —4 R’, we note I’ the sum of the labels
of R’ and p’ the sum of the depths of the boxes of R'.

e a: u(R)>p(R) (' =1+1and p’ =p).
o m: u(R')>pu(R) (I'=1+1and p =p).

e d: Let n be the label at the current depth in R and the same for n’ in R/,
if m is the label of the box, we have n’ = n +m + 1 and the other labels
are not modified thus I’ =1+ 1. Let D be the depth of R, the depth of
the opened box is at most D. Let B be the number of boxes in R, there
are at most B — 1 boxes inside the opened box in R. The opened box
disappears, the depth of the boxes inside it decreases by 1, and the depth
of the other boxes is not modified. We thus have p’ > p— D — (B — 1).
Since all the labels are strictly positive numbers, we have | > B > D. We
can deduce:

pRY=1%+p >(1+1) > +p—2=02+20+1+p—2l=pR)+1

e ¢: The label of the duplicated box is duplicated (as well as for the labels
of all the boxes included in it) and the other labels are not modified thus
" > 1. New boxes are created (the duplicated one and the new boxes in
the copy) and the depth of the other boxes is not modified thus p’ > p
and p(R") > u(R).

e p: We have I’ =[. The depth of the right box, as well as the depth of all
the boxes included in it, increases by 1. The depth of all the other boxes
is not modified thus p’ > p and pu(R’) > u(R).

O

Theorem 2.3.11 (Convergence). The reduction of proof nets is convergent.
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Proof. We first prove the strong normalization of the —, reduction by means
of Proposition 7?7: we have Lemmas 2.3.10 and 2.3.9, and we can check in the
proof of Proposition 2.3.3 that diagrams with a — b and a — c can be closed
into b = d and ¢ =7, d (that is there is no need for w steps in closing the
diagram).

We now apply Proposition ?? to —,, and —, using Lemmas 2.3.8 and 2.3.6
to obtain strong normalization.

We conclude with confluence by Newman’s Lemma (Proposition ?7?) using
Proposition 2.3.3. O

2.3.5 Generalized ? Nodes

We now consider a modified syntax for the exponential connectives in proof
nets. The goal is to make more canonical the representation of ?-trees in proof
nets. We want a syntax able to realize the fact that the differences between the
following ?7-trees do not matter:

7A 74 7A 74
7A 7A Vs 7A 7A
7A 74
o4 vs A 7Aoo 74 74

7A 7A

Among the different kinds of nodes we used for exponential proof nets, we
replace d, ¢, w and 7p nodes by two new kinds of nodes:

e Nodes labelled p have exactly one premise and one conclusion. The label
of the premise is the same as the label of the conclusion.

e Nodes labelled ? have an arbitrary number n > 0 of premises and one
conclusion. The labels of the premises are the same formula A and the
label of the conclusion is 7A.

In a proof structure, we add the constraint that a p node must be above a p
node or above a 7 node. In particular it cannot be above a conclusion node.

It is not possible to represent arbitrary proofs of the sequent calculus MELL
in this new syntax. We need the slight restriction that the principal connectives
of the formulas introduced by (az) rules is not ? or . Note however there is an
easy transformation of proofs ensuring this property:

—— (az)
(az) A
~ - A 7AL 0

F14,744

F14,7A44

This is an instance of the general notion of axioms expansion of proofs of MELL.
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Instead of translating sequent calculus proofs, we will define a translation of
the previous proof nets (with az nodes not introducing formulas with principal
connective ? or !) into the new syntax.

translation (.)* from proof nets to proof nets with ? nodes (just for infor-
mation): replace maximal ?-trees by a ? node with chains of p nodes above
it

correctness

reduction

translation (.)* into proof nets: use degenerate binary trees (left comb trees)

Lemma 2.3.12 (Translation of Correctness). Let S be a proof structure with ?
nodes, S is acyclic if and only if S is acyclic.

Proof 0

Proposition 2.3.13 (Simulation). The translation (.) is an injective strict

simulation which preserves normal forms from proof nets with 7 nodes into proof
nets.

Proof. O

Lemma 2.3.14 (Preservation of Correctness). Let R be a proof net with ? nodes
which reduces into R', R’ is a proof net.

Proof. By Lemma 2.3.12, R°¥ is acyclic. By Proposition 2.3.13, R¥ —+ R/¢¥,
thus by Lemma 2.3.1 R’ is acyclic. By Lemma 2.3.12 again, R’ is acyclic. [

Proposition 2.3.15 (Convergence). The reduction of proof nets with ? nodes
18 convergent.

Proof. We have strong normalization by Propositions 7?7 and 2.3.13 and Theo-
rem 2.3.11.

Concerning confluence, by Proposition ?? and Theorem 2.3.11, proof nets
have the unique normal form property. By Propositions 7?7 and 2.3.13, proof nets
with ? nodes have the unique normal form property. By Propositions 77, 77,
proof nets with 7 nodes are confluent thanks to strong normalization. O

2.4 Translation of the Lambda-Calculus

2.4.1 The Lambda-Calculus inside Linear Logic

Given a denumerable set of A-variables z, y, ..., the terms of the A-calculus (or
A-terms) are:
tun=x| Azt |tu

where A is a binder for « in Az.t and terms are considered up to a-renaming of
bound variables.
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We assume given a denumerable set of ground types «, 3, ... The simple
types of the A-calculus are:

T,ou=al|T =0

Typing judgements are of the shape I' - ¢ : 7 where T" is a finite partial
function from A-variables to simple types. The typing rules of the simply typed
A-calculus are:

(var) Tyo:ThHt:0 'tt:7—0 Thru:T

(abs)

- app
'FXet:T—o0 I'Ftu:o ( )

zx:tkx:7

We assume given a bijection (.)® from the ground types of the simply typed
A-calculus to the atoms of linear logic. We extend it to any simple type by:

(r—0)* = et 3 o

LM =X |?2LY 3 M
2.4.2 Directed Proof Nets
D,E:=X|DRE|?U
UV:=X- UV |'D

LCDand Lt CU

with generalized ? nodes: appropriate definition of the orientation of edges
sequentialization: slight generalization of Theorem 2.4.1

mention cut-free correctness

2.4.3 The Translation

into directed proof nets using only sub-formulas of L (or dual) and only D
conclusions

2.4.3.1 Definition

Pre-translation (.)°

(az)

L L 0
A A
- w)

Fort 2Ll L
Fort 2L M
()

F oL, 2Lt 3 M
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Fort L
! (azx)
FoTLIL - MY M ©)
FrL, 7Lt 3 M Fri Lo ML, M
(cut)
Fort ort M
P —————— C)
Fort, M

By looking at the proof of Lemma 2.3.7, one can see —g,, is sub-confluent
thus it satisfies the unique normal form property (Proposition ??). Moreover
—am 1is strongly normalizing (Lemma 2.3.5), thus we can define the multiplica-
tive normal form NF,,(R) of a proof net R as its unique —,, normal form.

We define the translation ¢* of A-term ¢ by t* = NF,,, (t°).

2.4.3.2 Simulations

Substitution Lemma for (.)°
(.)° is a strict simulation of S-reduction
translation (.)® of a S-redex: (Ay.t)u
Fort L
Fort 2Lt M Frb L
Tt M

O]

cut)

cuts correspond to S-redexes through (.)®

(.)® is an injective strict simulation of S-reduction which preserves normal
forms

convergence of the simply typed A-calculus

2.4.3.3 Image

We already mentioned that proof nets obtained from A-term by means of the
()*:

e only contain edges labelled with sub-formulas of formulas generated by
the grammar L (or of their dual),

e and only contain exponential cuts.

One can remark as well that all conclusions are labelled with formulas of the
shape L or 7L* .

Add variables as labels of 7 formulas

require exactly one non ?_ formula or prove it is necessarily the case in

directed LL
A proof net satisfying these three conditions is called a A-proof net.

Theorem 2.4.1 (Sequentialization). Any A-proof net is the image of a A-term
through the translation (.)®.
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Proof. O

2.4.3.4 Kernel

The o-reduction is the congruence on A-terms generated by:

(Ayt)u)v =5 (Ay.(tv)) u y¢v
Ay Azt)u =4 Az.((Ay.t) u) xé¢u

The o-equivalence is the equivalence relation generated by the o-reduction.

Lemma 2.4.2 (Strong Normalization). The o-reduction is strongly normaliz-
mg.

The o-reduction is not locally confluent, as one can see with the following
example:

(Ay.Az.x)
- &
(Ay-((Az.2)v)) u (Ay-((Az.z)v)) u

a$ ﬁg

with y ¢ v and z ¢ u.
A M-term is called a canonical form if it is of the shape:

where B(y,u).t = (Ay.t)u and all the s and U's are themselves canonical
forms.
Note that g-normal forms are exactly canonical forms without S-redex.

Lemma 2.4.3 (0-Normal Forms). A A-term is a o-normal form if and only if
it is a canonical form.

Proof. We prove, by induction on its size, that any A-term ¢ which is a o-normal
form is a canonical form. We can always write ¢ in a unique way as t = M. ()
where =z or _ = fB(y,u).t'. In the first case, t is a canonical form (the U's
are themselves o-normal forms thus canonical forms by induction hypothesis).
In the second case, by induction hypothesis, ¢’ is a canonical form (and u as
well), moreover it does not start with a A (otherwise we have a o-redex in t). If
the sequence ¥ is not empty, we have a o-redex in ¢ as well. We can conclude
that ¢ = Az.8(y, u).t’ with u and ¢’ in canonical form and ¢’ not starting with a
A, which makes ¢ a canonical form.

Conversely, there is no o-redex in a canonical form. O
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Theorem 2.4.4 (o-Equivalence). Let t and t' be two A-terms, t* = t'* if and
only if t ~, t'.

Proof. We start with the second implication by considering the two equations

defining the o-reduction. TODO

Concerning the first implication, we can remark that it is enough to prove
the result for two canonical forms ¢ and t'. Indeed, assuming this particular
case of the result, if u and u’ are two arbitrary A-terms such that u® = u’®, then
by Lemmas 2.4.2 and 2.4.3, there exist two canonical forms ¢ ~, u and ¢’ ~, v’
thus t* = u® = v/* = ¢'* (using the other direction proved above). This entails
t ~, t' and thus u ~, u'.

We thus assume ¢ and ¢’ to be two canonical forms such that ¢* = ¢'°.

0

direct/global translation of canonical forms into proof nets

2.4.4 Untyped Lambda-Calculus

The untyped A-calculus can be seen as the result of quotienting the types of the
simply typed A-calculus by means of an equation o = 0 — 0. Any variable can
then be seen as typed with type o and the typing rules become:
(var) Mz:okt:o I'Ft:o Thu:o
——— (abs)
T'FXzt:o 'Ftu:o

The information provided by these rules is mainly a super-set of the list of free
variables of the term.

One can similarly quotient formulas of linear logic by means of the equation
0 =10 —o o, that is 0 = 70 % 0. This entails that the set of the sub-formulas of
formulas generated from the atom o by the unique construction ?o* % 0 and of
their dual (up to the quotient) contains four elements: o, ¢ = o+, lo and 7. It
is then possible to translate A-terms as proof net with edges labelled with these
four formulas.

For example the A-term Ax.x x is translated as: [figure]

I'z:okFx:0 (app)

2.5 Further Reading

We suggest an incomplete list of related papers.

2.5.1 Historical Papers

e The original paper on linear logic which introduces proof nets [20]. The
correctness criterion used there is the long trip criterion and the proof
technique for sequentialization is based on the theory of empires.

e The definition of the acyclic-connected correctness criterion we use here [13].

e The definition of the o-equivalence on A-terms [39].
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2.5.2 Sequentialization

e A sequentialization proof based on the acyclic-connected criterion and
using empires [22].

e [9]
e []

e The sequentialization proof we used here [33].

2.5.3 Rewriting Properties
o [17]
° [J]
o [37]

2.5.4 Extensions of the Syntax
e Modules

e Units [, 29]
e Quantifiers [22]

e Additive connectives [21, 30]

2.5.5 Relations with the Lambda-Calculus
o [39]
o [14]

2.5.6 Complexity
* [27]
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Chapter 3

Coh

Uniform coherent spaces were defined by Girard in [23] as a variant of Scott
domains giving a denotational semantics to system F. However their main
interest was the analogy they bare with linear algebra that led Girard to discover
firstly their linear structure from which he could then derive the definition of
linear logic.

In this chapter we will stick to the historical terminology and call uniform
coherent spaces just coherent spaces. Most proofs will be sketched, when not
left to the reader. We will also use the convenient language of category theory,
the reader is refered to the chapter 5 for the the basic definitions and properties.

3.1 Coherent spaces

3.1.1 The coherence relation
A coherent space E is a structure
E=(|E],<p)

where |E| is a set (which can be assumed to be at most countable) and <g is a
binary reflexive and symmetric relation on |F| called coherence.
We use the following definitions and notations:

Strict coherence: ~p = (cgN#), thatis a ~g o’ iff (a cg @’ and a # d');
Incoherence: <p = - ~p, that is a xg o’ iff (a g @' or a = a’);
Strict incoherence: — g = - cp, that isa —g o' iff a &5 d'.

Note that any of these four relations caracterises the three others.
An easy consequence of these definitions, that will be used in the sequel is
that the intersection of ©g and =g is equality:

Va,a' € |E|,a =d iff a g d’ and a xg d
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A clique of E is a set of pairwise coherent points of |E|; we denote by Cl(E)
the set of cliques:

Cl(E) ={uC |E|,Va,d’ €u,a<pad'}

We note u C FE when u is a clique of E, that is u C E iff u € CI(E). The
following properties are immediately derived from the definition; in some sense
it states that the set C1(E) ordered by inclusion is a Scott domain.

Proposition 3.1.1 (Elementary properties of cliques). Let E be a coherent
space. We have:

e ) C E so that CI(E) is never empty (even when the web is empty).
e Singletons are cliques: for any a € |E|, {a} C E.

o CI(E) is downward closed for inclusion: if u C E andw' C u thenv' C E.
For that reason we call v’ a subclique of w.

e CI(E) is closed by directed unions: if U is a directed family of cliques of
E, then \JU is a clique. In particular any clique u is the directed union
of its finite subcliques:

u = U{uo € CI(E), ug Can u}

o The space E+ = (|E|,<g) is a coherent space. The cliques of E*+ are sets
of pairwise incoherent points and are called the anticliques of E.

The dual of the dual (E+)* is denoted E++. By definition of incoherence

we have:
Etl g

The last property exhibiting a canonical duality in coherent spaces is proper,
w