
LMFI Cours Algèbre Homotopique et catégories supérieures
House work, February 2021

You may answer the questions in French or in English. You can either send a manuscript
or a typed file. Don’t forget to mention your name + student number + university + name
of master program on the file, and to mention whether you intend to validate the course or
if you just want to get a feed-back (in which case giving your name + master program is
enough). Please return your copies by February 28 evening.

The four problems are of inequal length. I do not necessarily expect that you’ll have the
time necessary to treat the four problems with equal attention. I would prefer you to treat
one of the longer problems I or II and one of the shorter problems III and IV in some depth
than to do a little bit of everything superficially.

I) The goal of this problem is to prove that there exists exactly one non-identity isomorphism
(in Cat) from ∆ to ∆. Recall the simplicial category ∆ from the course notes (Lecture 2
on simplicial sets). You may treat the following questions somewhat in parallel: progress in
one can help for the others.
1) Find out the natural candidate for this isomorphism and check that it is indeed an
isomorphism.

Therefore, we have at least one non-identity isomorphism. The rest of the problem focuses
on uniqueness. Let ρ : ∆→ ∆ be an isomorphism.
2) Show that any isomorphism between two categories must preserve limits and colimits
(try to find a one-line argument!)
3) Show that ρ is necessarily identity-on-objects, i.e., ρ([n]) = [n] for all n (hint: focus on
the action of ρ on ∆([0], [n])).
4) Show that each object [n] of ∆ is the colimit of a diagram F : I → ∆ such that
Fi ∈ {[0], [1]} for all i ∈ I.
5) Show that ρ is entirely determined by its action on all homsets ∆([0], [n]) and ∆([1], [n]).
6) Show that there are only two choices for ρ (hint: focus on the commutative triangles
f ◦ d1 and f ◦ d0, where f ranges over ∆([1], [n]) and d1, d0 are the two maps in ∆([0], [1])).

II) Recall from the course notes (Lecture 2) that the functor ∆•top : ∆→ Top maps [n] to

∆n
top = {(t0, . . . , tn) ∈ R | (∀i ti ≥ 0) and Σi∈[n]ti = 1}.

The ti’s are called barycentric coordinates. The functor part of ∆•top is defined as follows,
for α : [m]→ [n]: ∆α

top(t0, . . . , tm) = (t′0, . . . , t
′
n), where t′i = Σ{j| α(j)=i}tj for all i ∈ [n]. We

use the notation t for (t0, . . . , tn) and α·t for ∆α
top(t0, . . . , tm).

1) Check that these data indeed define a functor from ∆ to Top.
2) A point (t0, . . . , tn) is called interior in ∆n

top if ti > 0 for all i. Justify this terminology
from the point of view of topology.
3) Show that if α : [n] → [p] is surjective and t is interior in ∆n

top , then α·t is interior in
∆p

top .



4) Let t be an arbitrarily chosen interior point of ∆m
top . Show that the map

α 7→ (α·t) : ∆([m], [n])→ ∆n
top

is injective. (Hint: consider the smallest i at which two distinct α, β : [m]→ [n] differ.)

In the following questions, we shall introduce and use a different system of coordinates for
the points in the topological simplex ∆n

top .
5) Show that there is a bijection from ∆n

top to the set of (n+2)-tuples (s−1, s0, . . . , sn−1, sn)
such that

0 = s−1 ≤ s0 ≤ · · · ≤ sn−1 ≤ sn = 1

We call si the i-th sum coordinate (this name provides a hint!).
6) Show that under this new description of ∆n

top , we have, for all generators si and di of ∆
(renamed here σi and δi to avoid notational clashes):

(σi ·(s−1, . . . , sn+1)) = (s−1, . . . , si−1, si+1, . . . , sn+1)
(δi ·(s−1, . . . , sn−1)) = (s−1, . . . , si−1, si−1, . . . , sn−1)

Show that for arbitrary α : [n] → [p] and u ∈ ∆n
top and positive real number s, if s occurs

as a sum coordinate of α·u, then it occurs as a sum coordinate of u.
7) Show that the interior points are the tuples such that 0 < s0 < · · · < sn−1 < 1, i.e., are
the points whose sum coordinates are all distinct.
8) Show that if u ∈ ∆m

top is interior, then for any [n], the map α 7→ (α ·u) is a bijection
from ∆([m], [n]) to the set of elements of ∆n

top whose sum coordinates are all among the
sum coordinates of u.
9) Show that if u ∈ ∆m

top is interior and if α : [m]→ [n] is such that the i-th sum coordinate
of u does not occur in α·u, then there exists β such that α = βσi.

Recall that the topological realisation of a simplicial set is defined (as a set) by:

|X| = (Σn∈N(Xn ×∆n
top))/ ∼

where ∼ is the smallest equivalence relation containing (Xαx, u) ∼ (x, (α ·u)), for all α :
[m]→ [n], x ∈ Xn and u ∈ ∆m

top . We write [x, v] for the equivalence class of (x, v).
10) Show that each equivalence class in |X| has a representative (x, v) such that x is
non-degenerate and v is interior (hints: use Eilenberg-Zilber’s lemma and Question 3).
11) Show that |∆n| is in bijection with ∆n

top (recall that ∆n, not to be confused with ∆n
top ,

is the image of [n] under the Yoneda embedding).
12) Recall that products of simplicial sets are defined pointwise: (X×Y )n = Xn×Yn. The
projections X × Y → X and X × Y → Y induce maps |X × Y | → |X| and |X × Y | → |Y |.
Spell out these maps. Combining with the previous question, we have a map h : |∆p×∆q| →
∆p

top ×∆q
top . Spell out this map h explicitly, and justify how it was synthesised.

13) Show that h is a bijection. We provide the following hints. Let u ∈ ∆p
top and v ∈ ∆q

top (in
sum coordinates format), and consider the set of positive reals appearing as sum coordinates
in u or in v. This gives rise to a an internal point w in some ∆r

top (cf. Question 7). Use



then Question 8 to define the candidate g for being the inverse of h. For proving the harder
side g ◦ h = id , use Questions 10 and 9.

(One can then use a compactness argument to prove that h is in fact a homeomorphism.
One can then exploit this isomorphism to show that, more generally, topological realisation
preserves products.)

III) We consider the set R+ = {x ∈ R| x ≥ 0} of positive real numbers, considered as a
category with the order reversed, i.e., there is a morphism r → s exactly when s ≤ r.
1) Show that, setting r ⊗ s = r + s, R+ is a symmetric monoidal category.
2) Find out what the notion of V-category boils down to when V is a monoidal category
that is a preorder (i.e., for all v, w, V(v, w) has at most one element).
3) Instantiate this further in the case where V = R+. To be more suggestive, write X for
the collection of objects and d(x, y) for the hom-object of x and y. Contrast this with the
notion of metric space (X, d).
4) What does the underlying category of an R+-category boil down to?
5) Make explicit what an R+-functor from (X, d) to R+ is (remember from the course notes,
Lecture 3, that a monoidal-closed category V gives rise to a V-category V).
6) Make explicit what a tensored R+-category is. Can you find an example?

IV) LetM and N be tensored V-categories.
1) Show that if F is a V-functor fromM and N , then there are natural maps κ : v⊗Fm→
F (v ⊗m) in the underlying category N satisfying some compatibilities with the canonical
isomorphisms φ : I ⊗ m → m and ψ : v ⊗ (w ⊗ m) → (v ⊗ w) ⊗ m. Spell out these
compatibilities (cf. the definition of lax monoidal functor given in the course notes), and
prove that κ satisfies them.
2) Conversely, show that an ordinary functor F together with such natural compatible maps
κ gives rise to a V functor whose underlying functor is F .
3) Show that the correspondences established in the previous two questions are inverse.
4) Show that if the underlying functor F is a left adjoint, then κ is an isomorphism. (Hint:
you may refer to p. 19 of the course notes, Lecture 3, instantiate the series of isomorphisms
at the bottom of this page with n = F (v ⊗ m), and prove that the iso from v ⊗ Fm to
F (v ⊗m) obtained via these isomorphisms from the identity morphism on F (v ⊗m) is in
fact equal to κ as synthesised in Question 1.)


