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Abstract

We introduce in this paper a new formalisation of positive opetopes where faces are organised in a
poset. Then we show that our definition is equivalent to that of positives opetopes as given by Marek
ZAWADOWSKI in [9].

Introduction

We begin by motivating the notion of opetope that is lying at the heart of this article. When manipulating
categories, we find ourselves considering two types of forms: zero dimensional elements, which are the
objects (the 0-cells):

•

And one dimensional ones: the arrows (the 1-cells).

• −→ •

Category theory is mainly about composing arrows, so the category-theorist often draws diagrams as below:

•

• •

f g

h

and says that it commutes if g ◦ f = h. It can be understood as a kind of surface whose boundary is given
by the arrows f , g and h, which ensures that there is a way to go from the upper path to the lower one.
Since in a weak setting we do not like equalities, it would be better to replace this g ◦ f = h by some kind of
algebraic data

α : g ◦ f =⇒ h

Hence we give a name to our (oriented) surface (or 2-cell), α, and depict it as below:

•

• •

f g

h

α

More generally, one is interested in n-ary compositions of arrows, so we may also consider diagrams such
as

• •

• •

• •

f1

f2

f3

f4

f5

h

α
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Since our surfaces are now algebraic data, we will soon be interested in comparing them, too. Once again,
since asking if they are equal or not is more a strict-minded approach to category theory, we wish to intro-
duce named volumes (3-cells), which may assert that there is a way to go from a composite of surfaces to
another one. An illustration is given below:

• • • •

• • • •

• • • •

f1

f2

f3

f4

f5

h

f6

f7

A

f1

f2

f3

f4

f5

h

α1

α2

α3

α

And as another example:

• • • •

• • • •

• • • •

f1

f2

f3

f4

f5

h

A

f1

f2

f3

f4

f5

h

f6 f7

α
α1

α2

α3

Typically, in those drawings, (which are in fact 3-dimensional opetopes) the rightmost 2-cell α will be called
the target of the 3-cell A. The 2-cells α1, α2 and α3 will be called its sources. Notice that each 1-cell (our basic
arrows • → •) has exacly one source, and one target. But in higher dimensions, 2-cells and 3-cells may have
many sources, while still having exactly one target. We may also say that 0-dimensional cells, (i.e. points •),
have no sources, and no target. Pictures as above take the shape of a polytope when increasing dimension,
and they represent algebraic operations, whence the term introduced by BAEZ and DOLAN in [2]: opetopes,
for "ope(ration-poly)topes".

We have several ways to encode such shapes combinatorially.

• An approach, taken by Marek ZAWADOWSKI in [9], is to name all cells as above (including 0-cells), and
store them in a poset, where every element has a dimension (its geometric dimension), and a relation
z ≤ x will mean that z is a subface of x in the opetope. Then we need to identify axioms to ensure that
those posets fit our intuition of opetopes as above. This is exposed in Section 2.

Using the ideas of Amar HADZIHASANOVIC [3] and Pierre-Louis CURIEN, we were able to identify a
second formalism using a similar principle, presented in Section 1.

In the sections 3 and 4, we will show that the two formalisms are equivalent.

• We may also notice that there are trees hidden in opetopes, which may be retrieved by POINCARÉ

duality:
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• •

• α1 •

α2 α3

• •

f1

f2

f3

f4

f5

h

f6

f7

And for the second example:

• •

• α1 α2 •

α3

• •

f1

f2

f3

f4

f5

h

f6
f7

Here, cells α1, α2 and α3 are lower dimensional opetopes, and should have an associated tree too. Hence we
may represent an opetope with a bunch of trees in several dimensions, interconnected by gluing relations.
This is the approach taken by Joachim KOCK, André JOYAL, Michael BATANIN and Jean-François MASCARI

in [5], or by Cédric HO THANH, Pierre-Louis CURIEN and Samuel MIMRAM in [4] And also, from a dif-
ferent perspective originating from Pierre-Louis CURIEN, with the formalisation of epiphytes, which will be
presented in a future paper.

In order to provide the reader with a better intuition of opetopes in higher dimension, an illustration of
a 4-dimensional opetope is given below:
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•

•

•

•c7

•

b7

b6•

• •

•

c5
b8

• •
c6

• •

•

•
c8

•d1

•d2

•
d3

•d4

• t4ω

•

•

•

•

•

b5

b4

b3

b2
b1

•

•

c1

•

c2

•

c3

•

c4

t3ω

ttω

a2

a3 a4

a1

tω

ω

For the reader introduced to the ideas of higher category theory, we specify that opetopes are a form
of cell, like globes, or simplexes. They fit into the broader context of opetopic cardinals, which plays a
role similar to that of pasting diagrams (see [6], or [1] where they are called globular sums) in the globular
setting. In particular, opetopic cardinals are arranged in a strict ω-category, freely generated by opetopes of
all dimensions. The study of opetopes is (for instance) motivated by the following result (see Corollary 13.5
in [9], which is proved by using the aforementioned opetopic cardinals):

Theorem : ZAWADOWSKI

There is an equivalence of categories between p̂Ope and pPoly.

where pOpe denotes the category of positive opetopes, p̂Ope the associated presheaf category, and
pPoly the category of positive-to-one polygraphs. That is, positive opetopes may be used to present a strict
ω-category.
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1 Dendritic face complexes

The poset structure that will be introduced below makes implicit use of a notion of rooted tree, which we
start by defining below.

Definition 1.1 : Rooted tree

A rooted tree T consist of:

• A finite set of nodes T•.

• For each node a ∈ T•, a finite set A(a), called the arity of a.

• A (necessarily finite) set of triplets, denoted a −<b a′ for some a, a′ ∈ T• and b ∈ A(a). Moreover
we ask that for each a ∈ T• and b ∈ A(a), there is at most one triplet a −<b a′. If there is none,
the pair (a, b) is said to be a leaf of T, and we let

T| := {(a, b) leaf of T}

We moreover ask for a distinguished element ρ(T) ∈ T•, called the root of T, satisfying the following
property: for each node a ∈ T•, there is a unique (descending) path in T

a = a0 >−b1 a1 >−b1 · · · >−bp ap = ρ(T)

from a to the root of T.

1.2
Notice that if it exists, the root is uniquely determined.

1.3
Below is a representation of the rooted tree T having

• as nodes T• := {a1, a2, a3, a4}

• as arities

A(a1) := {b6, b7} A(a2) := {b1, b8} A(a3) := {b2, b3} A(a4) := {b4, b5}

• as triplets

a1 −<b6 a2 a1 −<b7 a4 a2 −<b8 a3

• as root a1.

a1

a2

b1

a3

b2 b3

b8

b6

a4

b4 b5

b7

1.4. We now present the notion of dendritic face complexes (DFC), defined in order to encode opetopes.
Formally, they are partially ordered sets, where relations between elements are labelled by a sign (+ or
−) in the Hasse diagram of which. They shall also satisfy some properties that will be given below. The
elements of the poset, sometimes called faces, stand for the faces of the opetope. All faces have a dimension
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in the poset, which reflects the intuitive dimension in the geometrical sense. A relation y ≺ x should be
thought as "y is a codimension-1 subface of x". Since in an opetope, faces come with an orientation, the sign
tells if y is an input or an output of x.

For exemple, if the picture belows is part of an opetope, we should have

b1 ≺− a • •

b2 ≺− a

b3 ≺− a

b4 ≺+ a • •

b1

b2

b3

b4

a

In order to define formally DFCs, we first need the notion of positive-to-one poset (POP).

Definition 1.5 : Positive-to-one poset

A positive-to-one poset consists of:

• A finite set of elements P.

• A gradation dim : P → N.

• Two binary relations ≺− and ≺+ on P, and we let x ≺ y iff x ≺− y or x ≺+ y.

With the following properties:

• ∀x, y ∈ P, y ≺ x → dim(x) = dim(y) + 1.

• ∀x, y ∈ P, ¬ (y ≺− x ∧ y ≺+ x).

• ∀x ∈ P, dim(x) ≥ 1 → (∃!y, y ≺+ x) ∧ (∃y, y ≺− x).

In particular: ≺, ≺− and ≺+ are asymmetric, and the reflexive transitive closure of ≺ equips P with
a structure of partially ordered set, such that dim is an increasing map.
Following the conventions of [9], for x ∈ P, we denote

δ(x) := {y ∈ P
∣∣ y ≺− x}

and when dim(x) ≥ 1,
γ(x) := {y ∈ P

∣∣ y ≺+ x}

because of the third property, γ(x) is always a singleton, hence we sometimes identify γ(x) with its
unique element, which we call the target of x. For k ∈ N, we also denote

Pk := dim−1 ({k}) , P≥k :=
⋃
i≥k

Pi, P>k :=
⋃
i>k

Pi

and we let dim(P) := max{dim(x)}x∈P be the dimension of P.

1.6. From now on, we will use a kind of HASSE diagrams to represent POPs. The convention will be as
follows:

x x x

y y y

y ≺− x y ≺+ x y ≺α x

p α
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Definition 1.7 : Dendritic face complex

A dendritic face complex is a positive-to-one poset C, satisfying the following extra axioms:

• (greatest element)
There is a greatest element in C, for the partial order induced by ≺.

• (oriented thinness)
For z ≺ y ≺ x in P, there is a unique y′ ̸= y in P such that z ≺ y′ ≺ x. Hence there is a lozenge
as in Figure 1.1 below. Moreover, we ask for the sign rule αβ = −α′β′ to be satisfied. When
finding such a y′ we say that we complete the half lozenge z ≺ y ≺ x.

• (acyclicity)
For x ∈ P1, δ(x) is a singleton.
Let x ∈ P≥1, then δ(x) ̸= ∅ and there is no cycle as in Figure 1.2 below.

x

y y′

z

α

β

α′

β′

Figure 1.1: Lozenge

x

y = y1 y2 y3 yp y1

γ(y2) γ(y3) γ(y4) γ(y1)

p p p p

Figure 1.2: Cycle

Proposition 1.8 : Tree structure

Let P be a DFC and x ∈ P≥1. There is a rooted tree structure on δ(x), given by the following data:

• The set of nodes is δ(x).

• For each y ∈ δ(x), A(y) := δ(y).

• There is a triplet y −<z y′ iff there is a lozenge as in Figure 1.3 below.

• When dim(x) ≥ 2, the root is given, as in [9], by the unique ρ(x) completing the lozenge as in
Figure 1.4 below.

x

y y′

z

p

Figure 1.3: Triplet

x

ρ(x) γ(x)

γ2(x)

p

p

p

Figure 1.4: Root

Proof. If dim(x) = 1, then δ(x) is a singleton, hence there is a structure of tree as stated.
Suppose that dim(x) > 1. By oriented thinness, we may define the root of δ(x) as above.
If there is a triplet y −<z y′ in δ(x), then y′ is uniquely determined by the uniqueness of lozenge completion.
Let y ∈ δ(x), then by successively completing lozenges (from left to right in the following diagram) we
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obtain a configuration as below:

x

y = y1 y2 y3 yp = ρ(x) γ(x)

γ(y1) γ(y2) γ(y3) γ(yp)

p p p p p

p

That is, we keep completing lozenges while the completion of γ(yi) ≺+ yi ≺− x yields γ(yi) ≺− yi+1 ≺− x.
Because of acyclicity, there is some p ≥ 1 such that the completion of γ(yp) ≺+ yp ≺− x must yield the
rightmost lozenge as above. Hence, this gives a descending path from y to the root of δ(x). Because of
uniqueness of lozenge completion, this is the unique such path.

Definition 1.9 : morphism of DFC

Let C and D be two dendritic faces structures. Then a morphism f : C → D of DFCs corresponds to
the data of such a map f between the underlying sets of C and D, such that:

• f preserves the dimension.

• When y ≺+ x in C, f (y) ≺+ f (x) in D.

• When y ≺− x in C, f (y) ≺− f (x) in D.

• fx := f |δ(x) : δ(x) → δ( f (x)) is a bijection.

1.10
It follows from the definition that every morphism f : C → D induces an isomorphism onto its image
cl( f (⊤)) where ⊤ denotes the greatest element of C, and cl the downward closure.

Definition 1.11

Let C be an POP of dimension n. For k ∈ [[ 0, n ]], we introduce the two following sets:

Γk := γ(Ck+1) and its complement Λk := Ck \ γ(Ck+1)
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2 Positive opetopes

In this section, we describe positive opetopes, as they are defined by ZAWADOWSKI in [9]. They are another
formalism dedicated to encoding opetopes, in the wider context of opetopic cardinals. We need first a notion
of positive hypergraphs.

Definition 2.1 : Positive hypergraph

A positive hypergraph consists of:

• A family of finite sets (Sk)k∈N of faces such that for k large enough, Sk = ∅.

• For all k ∈ N, a function γk : Sk+1 → Sk and a total relation δk : Sk+1 → Sk. We moreover ask
for δ0 to be functional.

We introduce the notations S≥k for
⋃

i≥k Si and S>k for
⋃

i>k Si. Following [9], we will omit indices
for δi’s and γi’s, and denote for any x ∈ S, γ(k)(x) the iterate γq(x) such that γq(x) ∈ Sk.
We also let, for x ∈ S, ι(x) := δδ(x) ∩ γδ(x).

Definition 2.2 : Morphism of positive hypergraphs

Let S = (Sk)k∈N and T = (Tk)k∈N be two positive hypergraphs, then a morphism between S and T
corresponds to a family of maps ( fk : Sk → Tk)k∈N such that:

• ∀x ∈ S≥1, the restriction fx := f |δ(x) : δ(x) → δ( f (x)) is a bijection.

• ∀x ∈ S≥1, γ( f (x)) = f (γ(x)).

2.3. The positive-to-one posets are the analogue of positive hypergraphs in the formalism of dendritic face
structures. More precisely: let POP be the category of positive-to-one posets, and pHg the category of
positive hypergraphs. Then we may associate to a POP (P = ⨿k∈N Pk, ≺+, ≺−) a positive hypergaph F(P)
such that:

• For all k ∈ N, the set of k-dimensional faces of F(P) is defined as Pk.

• For all k > 0, we define the function γk as γ| : Pk+1 → Pk.

• For all k > 0, we define the total relation δk as δ| : Pk+1 → P(Pk).

Conversely, to any positive hypergraph (S = (Sk)k∈N, γ, δ), we may associate a positive-to-one poset G(S)
defined as follows:

• The set of elements is ⨿k∈N Sk.

• For all k, the gradation dim sends any x ∈ Sk on k.

• ≺− is defined by y ≺− x iff y ∈ δ(x), and ≺+ by y ≺+ x iff y = γ(x).

We may also associate to any morphism f : P → Q of POPs a morphism of positive hypergaphs F( f ) :
F(P) → F(Q) defined by F( f )k := f | : Pk → Qk. Conversely, to any morphism of positive hypergraphs
g : S → T we may associate a morphism of POPs G(g) : G(S) → G(T) defined by G(g)|Tk

Sk
:= gk. A

straightforward check yields the following result:

Theorem 2.4

The functors POP
F
⇄
G

pHg form an equivalence of categories.

2.5. From now on, we will make implicit use of this correspondance. For instance we may use the notation
≺−,≺+ and ≺ for positive hypergraphs.
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Definition 2.6 : ◁Sk ,+, ◁Sk ,−, <Sk ,+, <Sk ,−

We define the following relations:

• <S0,− is the empty relation.
For k > 0, <Sk ,− is the transitive closure of the relation ◁Sk ,− on Sk, such that x ◁Sk ,− x′ iff
γ(x) ∈ δ(x′). We write x⊥−x′ iff either x <− x′ or x′ <− x, and we write x ≤− x′ iff either
x = x′ or x <− x′.
A lower path is a sequence x0 ≻+ y0 ≺− · · · ≺− xp−1 ≻+ yp ≺− xp.

• <Sk ,+ is the transitive closure of the relation ◁Sk ,+ on Sk, such that x ◁Sk ,+ x′ iff there is w ∈ Sk+1,
such that x ∈ δ(w) and γ(w) = x′. We write x⊥+x′ iff either x <+ x′ or x′ <+ x, and we write
x ≤+ x′ iff either x = x′ or x <+ x′.
An upper path is a sequence y0 ≺− x1 ≻+ y1 ≺− · · · ≺− xp ≻+ yp.

Definition 2.7 : Opetopic cardinal, positive opetope

An opetopic cardinal corresponds to the data of a positive hypergraph S satisfying the following
axioms:

• (Globularity)
For x ∈ S≥2,

γγ(x) = γδ(x) \ δδ(x) δγ(x) = δδ(x) \ γδ(x).

• (Strictness)
For k ∈ N, <Sk ,+ is a strict order and <S0,+ is linear.

• (Disjointness)
For k > 0, ⊥Sk ,− ∩⊥Sk ,+ = ∅.

• (Pencil linearity)
For any k > 0 and y ∈ Sk−1, the sets below are linearly ordered by <Sk ,+.

{x ∈ Sk
∣∣ y = γ(x)} and {x ∈ Sk

∣∣ y ∈ δ(x)}.

An opetopic cardinal S is called principal if for all k ≤ dim(S), |Sk \ δ(Sk+1)| = 1.
A positive opetope is a principal opetopic cardinal.
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3 From dendritic face complexes to ZAWADOWSKI’s positive opetopes

3.1. Let (C = ⨿k∈N Ck, ≺+, ≺−) be a dendritic face complex. Recall from Theorem 2.4 that C may be given
a structure of positive hypergraph. Denote by n the dimension of its greatest element ω. Our goal is to
prove that C is indeed a positive opetope, in the sense of ZAWADOWSKI. We prove the required properties
in the following order: globularity, strictness and principality, pencil linearity and then disjointness. In
what follows, <+, <−, ◁+ and ◁− refer to the corresponding notations introduced in Definition 2.6.

Proposition 3.2 : globularity

The positive hypergraph C satisfies the property of globularity. That is:
γγ = γδ − δδ and δγ = δδ − γδ

Proof. We first prove that γγ = γδ − δδ:
Let k ≥ 2 and a ∈ Ck, and let b ∈ δ(a). Then we have γ(b) ≺+ b ≺− a, and hence two possible lozenge
completions:

a a

b b′ or b γ(a)

γ(b) γ(b)

p p

p

p

In the first case, γ(b) ∈ δδ(a). In the second case, γ(b) = γ2(a). Hence γδ(a) − δδ(a) ⊆ γγ(a) For the
converse inclusion, we observe that there is only one possibility of lozenge completion:

a

γ(a) b

γ2(a)

p

p p

Hence, γ2(a) ∈ γδ(a) and because of the sign rule, it is impossible to have γ2(a) ∈ δδ(a). So by double
inclusion, we have shown that γγ(a) = γδ(a)− δδ(a).
We now prove the second equation: δγ = δδ − γδ. Let k ≥ 2, a ∈ Ck, and c ≺− b ≺− a. Then we have two
possible lozenge completions:

a a

b b′ or b γ(a)

c c
p

p

In the first case, c ∈ γδ(a) and in the second one, c ∈ δγ(a). Hence δδ(a)− γδ(a) ⊆ δγ(a). On the other
hand, if c ≺− γ(a) ≺+ a, then the only possible shape for lozenge completion is

a

γ(a) b

c

p

Hence c ∈ δδ(a), and because of the sign rule, c /∈ γδ(a).
Whence the second equality: δγ(a) = δδ(a)− γδ(a).

Proposition 3.3 : strictness, first part

C satisfies the first half of the axiom of strictness. That is: <+ is a strict partial order.
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Proof. We shall prove the following three properties:

(k ∈ [[ 0, n ]]) Pk : <Ck ,+ is a strict order
(k ∈ [[ 0, n − 1 ]]) Qk : ∀e ∈ Λk, ∃!d ∈ Λk+1 s.t. e ≺− d
(k ∈ [[ 0, n − 1 ]]) Rk : ∀e ∈ Λk, e ≺− γ(k+1)ω

by induction on the codimension n − k.

• k = n
Since ω is a greatest element, Cn = {ω}. Hence Pn is clear.

• k = n − 1 .
Because ω is a greatest element, when a ◁Cn−1,+ a′, the only possible situation is the following:

ω

a a′
p

Hence a cycle a0 ◁
Cn ,+ a1 ◁

Cn ,+ · · · ◁Cn ,+ a0 must have the form a0 ◁
Cn ,+ a0 with n = 0 and a0 = γ(ω).

But γ(ω) ⊀− ω. So there is no such cycle. Whence Pn−1.

Because ω ∈ Λn, and because it is a greatest element, Qn−1 and Rn−1 are clear.

• Induction We suppose now Pk+1, Qk+1 and Rk+1. First, we prove Qk.

– Uniqueness: Let e ∈ Ck and suppose e ≺− d and e ≺− d′, with d, d′ ∈ Λk+1. By using Rk+1 we
may construct a lozenge as in Figure 3.1 below:

γ(k+2)ω

d d′

e

Figure 3.1: Degenerated lozenge

c1

d1 d2

e

p

Figure 3.2: Lozenge

and because of the sign rule, it must be the case that d = d′.

– Existence. Let e ∈ Λk. Since e must be a codimension-1 subface of some d, we may choose such a
d =: d1. And because e is not a target, we must have e ≺− d1. If d is in Λk+1, then we are done.
Else, let c1 be such that d1 = γ(c1). Then we may complete e ≺− d1 ≺+ c1 into a lozenge as in
Figure 3.2 above. If d2 ∈ Λk+1, we have finished. Else, we continue with d2, taking c2 such that
d2 ≺+ c2 etc.. While iterating this construction, we cannot produce a loop as in Figure 3.3 below:

c1 c2 cq c1

d1 d2 dq d1

e

p p pp

Figure 3.3: Impossible loop

γ(k+2)(ω)

d1 d2 dq

e0 e1 e2 eq

p p p

Figure 3.4: Path

because it would contradict Pk+1. Hence, each time di /∈ Λk+1, the next element di+1 is a new
one, and this construction must finish because the poset is finite. So when the construction ends,
it produces an element e ≺− dq ∈ Λk+1. Whence the existence.
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We then prove Rk. Let e ∈ Λk+1, then using Qk,Rk+1, we may find some d ∈ Λk+1 such that e ≺−

d ≺− γ(k+2)ω. Since e is not a source, the only possible lozenge completion for this triple yield
e ≺− γ(k+1)ω ≺+ γ(k+2)ω. Whence Rk.

Now we prove Pk. The strategy is to replace a related pair e ◁Ck ,+ e′ by a path
e = e0 ◁

Ck ,+ e1 ◁
Ck ,+ · · · ◁Ck ,+ eq = e′ as in Figure 3.4 above: Indeed, if we are able to do this, every cyclic

path e0 ◁
Ck ,+ e1 ◁

Ck ,+ · · · ◁Ck ,+ eq = e0 will induce a longer path e0 = e′0 ◁
Ck ,+ e′1 ◁

Ck ,+ · · · ◁Ck ,+ e′m = e0
as above, which cannot exist because it would imply the existence of a cycle in the tree structure of
δ(γ(k+2)ω). First, notice that if we know each di is in Λk+1 then we know that di ≺− γ(k+2)ω (by
Rk+1). So we will be able to conclude if we prove 3.4 below.

Lemma 3.4

if e ◁Ck ,+ e′, then we have a sequence as follows, with d1, d2, · · · , dq ∈ Λk+1.

d1 d2 dq

e = e0 e1 e2 eq = e′

p p p

Proof. If e ≺− d ≻+ e′ with d ∈ Λk+1, then the result is proven. So we may suppose that d is the target
of some element: d = γ(c), as in Figure 3.5 below.

c

d

e e′
p

p

Figure 3.5

c

d d1

e

p

Figure 3.6

First, complete the left half lozenge with some d1 as in Figure 3.6 above.

Then we consider its target γ(d1), and complete γ(d1) ≺+ d1 ≺− c as a lozenge. We have two
possibilities. Either the completion is of the type 1 as in Figure 3.7 below, or it of the type 2 as in Figure
3.8 below:

c

d d1 d2 = d

e γ(d1) = e′

p

p

p

p

Figure 3.7: Type 1

c

d d1 d2

e γ(d1)

p

p

Figure 3.8: Type 2

In the second case, we keep completing lozenges on the right until ending with a diagram of the shape
of Figure 3.9 below:
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c

d d1 d2 dq d

e γ(d1) γ(d2) γ(dq) = e′

p p p p

p p

Figure 3.9: Path

c

dj dj+1 di+1 = dj

γ(dj) γ(dj+1) γ(di+1) = γ(dj)

p p p

Figure 3.10: Cycle

First, we will never encounter a situation where di+1 = dj for a j ≤ i as in Figure 3.10 above, because
it would imply having a cycle

dj −<γ(dj)
dj+1 −<γ(dj+1)

· · · −<γ(di)
di+1 = dj

hence a cycle in the tree structure of δ(c). And this construction must finish as above because of the
finitness of the poset C. Now, after renaming the elements, we end up with this situation.

c[]

d = d[] d[1] d[2] d[q[]]

e γ(d[1]) γ(d[2]) γ(d[q[]]) = e′

p p p

p

If each d[i] is in Λk+1 then we are done. In the other case, for example if d[2] ≺+ c[2], then we can once
again unfold

c[2] c[2]

d[2] as d[2] d[2, 1] d[2, 2] d[2, q[2]]

γ(d[1]) γ(d[2]) γ(d[1]) γ(d[2, 1]) γ(d[2, 2]) γ(d[2, q[2]]) = γ(d[2])

p p p

pp
p

Now we may iterate this unfolding process. This will produce a tree shaped collection of d’s and c’s,
with relations

d[a1, · · · , ap] ≺+ c[a1, · · · , ap] and c[a1, · · · , ap] ≻− d[a1, · · · , ap, a]

for each a ∈
[[

1, q[a1, ··· , ap ]

]]
. Each branch

d[] ≺+ c[] ≻− d[a1] ≺+ c[a1] ≻− d[a1, a2] ≺+ · · · ≻− d[a1, · · · , ap] ≺+ · · ·

must be finite, otherwise it would contradict Pk+1. i.e. at some point, all d[a1, · · · , ap] are in Λk+1. We
thus obtain a path of the desired form, which completes the proof of Lemma 3.4.

Notice that through the proof above, we have seen the following result (c.f. Rk):

Lemma 3.5

∀k ∈ [[ 0, n − 1 ]] , Λk ⊆ δ(γ(k+1)ω).

14



Lemma 3.6

Suppose d ∈ Ck is not a source (i.e. there is no c ∈ Ck−1 such that d ≺− c). Then d = γ(k)ω.

Proof. We will proceed by induction on the codimension of d.

• k = n
In this case, d = ω is the only n-dimensional cell.

• Heredity
Suppose that we know the result for all cells of dimension k + 1, and let d ∈ Ck not being a source.
Because ω is a greatest element, we know that there is a chain from d to ω. Hence, there is c0 ∈ Ck+1
such that d ≺+ c0, i.e. d = γ(c). If c0 is not a source, then we are done by induction hypothesis. In the
other case, there is b0 ≻− c, thus there is a lozenge completion as in Figure 3.11 below:

b0

c0 c1

d

p p

p

Figure 3.11: Lozenge completion

b0 b1 b2 bp−1

c0 c1 c2 cp−1 cp

d

p p p

p p p

p p

Figure 3.12: Path

with d ≺+ c1, because d is not a source. If c1 is not a source, then we are done by induction hypothesis.
Else, there is b1 ∈ Ck+1, such that b1 ≻− c1. Hence we may keep completing lozenges as in Figure
3.12 above, until coming accross some cp which is not a source. This proccess must end because of
strictness (first part). By induction hypothesis, cp is an iterated target, and so is d.

Lemma 3.7

If d is a source, then ∃!c ∈ Λk+1 s.t. d ≺− c.

Proof. Let c0 be such that d ≺− c0. Suppose c0 ∈ Λk+1, then we are done taking c = c0. Else as in the proof
of Lemma 3.6 we may complete lozenges from left to right (refer to Figure 3.13 below), until coming accross
some c ∈ Λk+1. Notice that it must finish because <+ is a strict order. The uniqueness follows also from the
same argument as in the proof of Qk.

Lemma 3.8

If d ∈ Ck is a target, then it is the target of a unique c ∈ Λk+1.

Proof. The proof of existence goes by the same kind of construction as above, by filling lozenges as below
from left to right until coming accross some c ∈ Λk+1 (refer to Figure 3.14 below). The uniqueness comes
from the same argument as for the uniqueness in Qk.
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b0 b1 b2 bq

c0 c1 c2 cq c

d

p p p p

Figure 3.13

b0 b1 b2 bq

c0 c1 c2 cq c

d

p p p p

p p p

p p

Figure 3.14

We mention that Lemma 3.5 has a converse, although we will not use it later on.

Lemma 3.9

If d ≺− γ(k+1)ω, then d ∈ Λk.

Proof. Suppose d is a target, then because of Lemma 3.8, there is c ∈ Λk+1 s.t. d = γ(c). But because c is in
Λk+1, we have seen in the proof of strictness that c ≺− γ(k+2)ω. Hence we are in the situation of Figure 3.15
below, which is prohibited by the sign rule, whence d ∈ Λk+1.

Lemma 3.10

γ(k)ω is not a source.

Proof. Suppose that it is, then by Lemma 3.7 it is the source of some c ∈ Λk. Hence we have the lozenge of
Figure 3.16 below, which is prohibited by the sign rule.

γ(k+2)ω

γ(k+1)ω c

d

p

p

Figure 3.15: Forbidden lozenge

γ(k+2)ω

γ(k+1)ω c

γ(k)ω

p

p

Figure 3.16: Forbidden lozenge

We also have the following corollary of Lemma 3.6, Lemma 3.7 and Lemma 3.8:

Lemma 3.11

If d ∈ Ck for some k < n, it is the source of a unique c ∈ Λk+1 or the target of a unique c ∈ Λk+1.

Finally, we may state the following theorem:

Theorem 3.12 : Sources partition

(0 ≤ k ≤ n) Ck \ {γ(k)ω} = ⨿
c∈Λk+1

δ(c)

Proof.

• Ck \ {γ(k)ω} ⊆ ⨿c∈Λk+1
δ(c) is given by Lemma 3.6 and Lemma 3.7.

• Ck \ {γ(k)ω} ⊇ ⨿c∈Λk+1
δ(c) is given by Lemma 3.10.
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Proposition 3.13 : principality

The positive hypergraph C is principal.

Proof. It follows directly from Theorem 3.12.

Proposition 3.14 : strictness (<C0,+ is total)

C satisfies the second half of the strictness property. That is: <C0,+ is a linear total order.

Proof. Let x ∈ C0. From Theorem 3.12, we know that either x = γnω, or x is the source of a unique w ∈ Λ1.
By iterating this case disjunction, we may produce a unique path as below:

wp−1 w1 w0

γnω = xp xp−1 x1 x0 = x
ppp

where the wi’s are in Λ1. Because of the functionality of δ0 and Lemma 3.8, the path from left to right starting
from γnω is also unique (and this is independant of x). Hence by extending this path as far to the right as
possible (which ends because <c0,+ is a strict order), all 0-dimensional elements must appear somewhere
along the path. Which proves that <C0,+ is total.

Lemma 3.15

For every configuration e ≺β d ≺+ c ≺− b, there is a (unique) chain

c = c0 ≻− d0 ≺+ c1 ≻− d1 ≺+ · · · ≺+ cp ≻− dp ≺− cp+1 = γ(b)

with p ≥ 0, as below:

b

c = c0 c1 cp cp+1 = γ(b)

d d0 d1 dp

e

p

p

p p

β
β β β

Proof. By lozenge completion, we may find a unique d0 completing the lozenge (c, d, e, d0). Because of the
sign rule, we have e ≺β d0 ≺− c =: c0. Then we may find a unique c1 completing the lozenge (b, c0, d0, c1).
If d0 ≺− c1 ≺+ b, then we are done taking p = 1. Else, we continue this process starting from d0. It must
finish because of strictness.

Lemma 3.16

For every configuration e ≺β d ≺− c ≺− b, there is a (unique) chain

c = c0 ≻− d = d0 ≺+ c1 ≻− d1 ≺+ · · · ≺+ cp ≻− dp ≺− cp+1 = γ(b)
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with p ≥ 0 as below:

b

c = c0 c1 c2 cp cp+1 = γ(b)

d = d0 d1 d2 dp

e
β

p p p

p

βββ

Proof. We follow the same argument as for Lemma 3.15. By lozenge completion, we may find a unique c1
completing the lozenge (b, c0, d0, c1). If d0 ≺− c1 ≺+ b, then we are done taking p = 0. Else, we may find a
unique d1 completing the lozenge (c1, d0, e, d1). Because of the sign rule, e ≺β d1 ≺− c1. Then we continue
this process starting from c1. It must finish because of strictness.

The two previous lemmas yield the following:

Lemma 3.17

For every hexagon as in Figure 3.17, there is – up to potentially exchanging c and c′ – a (maybe trivial)
lower path from c to c′ as in Figure 3.18 below:

b

c c′

d d′

e

α

β

α′

β

Figure 3.17: Hexagon

b

c • • c′

d • • • d′

e

α p p p

β
β

β β

α′

β

Figure 3.18: Filled hexagon

Proof. Suppose that we have such a hexagon, then using either Lemma 3.15 or Lemma 3.16, we may produce
two paths as described in the those lemmas, starting from the left side and the right side of the hexagon,
respectively. But those two paths must finish at the same source of γ(b). Indeed, because of uniqueness of
lozenge completion, there is at most one d′′ with e ≺β d′′ ≺− γ(b). Hence, both paths are ascending paths
in δ(b), reaching the same leaf. More precisely, in the tree structure of δ(b), they both are of the form:

c0 −<d0 c1 −<d1 · · · −<dp cp −<dp+1=d′′

Because of the tree structure, one of those paths must be an extension of the other one, which yields the
result.

Definition 3.18 : zig-zag

A zig-zag from c to c′ is the data of a sequence as follows:

c = c0 ≻α0 d0 ≺−α0 c1 ≻α1 d1 ≺−α1 c2 ≻α2 · · · ≻αp−1 dp−1 ≺−αp−1 cp = c′

18



Such a zig-zag is said to be simple whenever ∀i, di ̸= di+1.
It is said to be non-trivial if p > 0. If ∀i, ci ≺− b, the zig-zag will be called a δ(b)-zig-zag.
Notice that because of the tree-structure on δ(b), if c, c′ ≺− b there is a unique simple δ(b)-zig-zag
between c and c′. In term of rooted trees, a simple zig-zag is a sequence of the following form:

c0 >−d0 c1 >−d1 · · · >−dr−1 cr −<dr · · · −<dp−1 cp−1 −<dp cp

where no two triplets are the same.

Proposition 3.19 : Hexagon property

For every hexagon
b

c c′

d d′

e

β β′

α α′

Either c = c′, or (potentially by exchanging the role of c and c′) there is a non-trivial simple δ(b)-zig-
zag as below:

b

c = c0 c1 cr cr+1 cr+2 cp−1 cp = c′

d0 d1 dr dr+1 dp−1 dp−1

e

p p p p p p

β −β −β −β
β

β

Proof. Lemma 3.17 shows the case β = β′. We should now consider the case where we have a hexagon as
above, with β′ = −β. Starting from the left part of the hexagon e ≺β d ≺α c ≺− b, we may either construct
a sequence as in Figure 3.19, or as in Figure 3.20 below (with p ≥ 0):
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b

c = c0 c1 cp

d d0 dp−1 dp

e

α p

β −β
β β

Figure 3.19: First case

b

c = c0 c1 cp γ(b)

d d0 dp−1 dp

e

α p p

β β
β β

p

p

Figure 3.20: Second case

To see this we fill lozenges from left to right as follows: First, we let d0 := d if α = +, and in the other
case, we find d0 as the unique one completing the lozenge (c0, d, e, d0). If e ≺−β d0 ≺− c0, then we are in
the first case, with p = 0. Else we find the unique c1 filling the lozenge (b, c0, d0, c1). If d0 ≺+ c1 ≺+ b, then
we are in the second case with p = 0. Else, we continue the same process, filling the lozenge (c1, d0, e, d1)
etc. This process must finish because of strictness.

Now, if we end up in the first case, we may use Lemma 3.17 to find a path between cp and c′, and
conclude. If we end up in the second case, we repeat the same argument with the right parenthesis e ≺−β

d′ ≺α′ c′ ≺− b. We thus find a path, either with the shape of Figure 3.21, or with the shape of Figure 3.22
below (with q ≥ 0):

b

c′ = c′0 c′1 c′q

d′ d′0 d′q−1 d′q

e

α′ p
−β β

−β −β

Figure 3.21: First case

b

c′ = c′0 c′1 c′q γ(b)

d′ d′0 d′q−1 d′q

e

α′ p p

−β −β
−β −β

p

p

Figure 3.22: Second case

In the first case, we may conclude using Lemma 3.17. In the second case, we end up with the following
configuration:

b

cp γ(b) c′q

dp−1 dp = d′q cq−1

p
pp p
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So, by uniqueness of lozenge completion, cp = c′q and we have the following zig-zag between c and c′:

b

c cp−1 cp = c′q cq−1 c′

d d0 dp−1 dq−1 d′0 d′

e

pp ppα α′

β −β

β −β −ββ

Proposition 3.20 : pencil linearity

C satisfies the axiom of pencil linearity. That is:
∀k > 0, ∀e ∈ Ck−1, ∀β ∈ {+, −},

{
d ∈ Ck | e ≺β d

}
is linearly ordered by <+.

Proof. Suppose d ≻β e ≺β d′, with d ̸= d′. We know that every element is always the source or the target of
some element in Λ. Because elements in Λ are sources of an iterated target of ω, we may find a hexagone as
follows:

γqω

c c′

d d′

e

β β

α α′

If c = c′, then by the sign rule α = −α′, hence d and d′ are <+-comparable and we are done. In what follows,
we suppose c ̸= c′. So – up to potentially exchanging c and c′ – there is a simple non-trivial zig-zag with
d0 = γ(c0) as follows:

b

c = c0 c1 cr cr+1 cr+2 cp−1 cp = c′

d d0 d1 dr dr+1 dp−2 dp−1 d′

e

p p p p p p

β −β −β −β
β

β

α′α

β β

In this situation, distinguishing on the sign of α′, we see on the rightmost lozenge that necessarily r = p − 1.
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Hence the zig-zag is a path:

γqω

c = c0 c1 cp−1 cp = c′

d d0 d1 dp−1 dp d′

e

p p pα α′

β
β β β

β
p

β

Either α = + and d = d0, or α = − and d ◁C,+ d0. Also, either α′ = + and d = dp, or α′ = −, and because
of the uniqueness of lozenge completion, d′ = dp−1. Summing up all cases, we always have an upper path
from c to c′ (in the tree structure of γqω, and of the shape depicted above). Hence it proves that all faces
having a given e as a source are linearly ordered for <+, and that all faces having e as a target also are
linearly ordered by <+.

3.21. We shall finally focus on the remaining axiom of positive opetopes: disjointness. We will need some
lemmas, and we will split the proof into two parts.

Lemma 3.22

If d ≺− c with d ∈ C≥1, then there is a (unique) path as follows.

c

d d1 d2 dq γ(c)

e γ(d1) γ(d2) γ2(c)
p p p p p

p

In fact this is the unique path from d to ρ(δ(c)) in the tree structure on δ(c).

Proof. This is seen by completing lozenges from left to right until coming accross one with the shape

c

• dq γ(c)

• γ2c

p

p

p

which ends the path. The process must finish because there is no infinite branch in the tree structure of δ(c).
Moreover the path obtained this way is unique because all lozenge completions are.

This lemma yields the following one, by concatenating paths.

22



Lemma 3.23

If there is an upper path: d = d0 ≺− c1 ≻+ γ(c1) ≺− · · · ≺− cq ≻+ γ(cq) = d′, then there is a path:

c1 c2 • cq

d • • γ(c1) • • γ(c2) γ(cq−1) • • γ(cq)

γ(d) • γ2(c1) • γ2(c2) γ2(cq−1) • γ2(cq)

p p

p

p p p p

p

p p

p

ppp

hence yielding an upper path from γ(d) to γ(d′)

Now using Lemma ??, we are able to prove the first half of disjointness:

Proposition 3.24

If k > 0, and d, d′ ∈ Ck then it cannot be the case that d <+ d′ and d′ <− d.

Proof. If d <+ d′ and d′ <− d, then we have γ(d) ≤+ γ(d′) by Lemma ??, and γ(d′) <+ γ(d) by the second
hypothesis (because d′ <− d ⇒ γ(d′) <+ γ(d)). Thus, we have a cycle γ(d) <+ γ(d), which is absurd by
strictness.

3.25. We will now focus on the second half by handling the case where d <+ d′, and d <− d′. We begin with
another lemma.

Lemma 3.26

There is no (non-trivial) upper path between two sources of a common cell.

Proof. First, if the common cell is ω, one of the sources should also be the target of ω, which is absurd. If the
common cell a0 is of codimension 1, assuming the upper path bp ≺− ap ◁− ap−1 ◁

− · · · ◁− a1 ≻+ b0 takes
place in Λ, we have a diagram as follows:

ω

a0 a1 ap a0

b0 b1 bp

p p

α α

and we cannot choose α consistently.
From now on, we will assume that the dimension of the common cell is n − k with k ≥ 2.
Notice that we have the following corollary of the hexagon property: If there is a hexagon as in Figure

3.23 below,

γq(ω)

c c′

d d′

e
p

α α′

Figure 3.23: Hexagon

γq(ω)

c0 c1 c2 cp

d0 d1 d2 dp

e0 e1 e2

α0 αp

p p p

α1 α2

Figure 3.24: Succesive hexagons
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then there is a simple zig-zag from c to c′ in the tree structure of γqω, where every lower element has e as a
codimension-1 subface. We can generalize this assertion a bit: When there is a shape as in Figure 3.24 above,
there is a zig-zag from c0 to cp in the tree-structure of γqω where lower elements successively have e1, then
e2 ... then en as a codimension-1 subface. It is seen by considering such zig-zags between each ci and ci+1.
More precisely, assuming that for all i, αi = −, the – a priori non simple – zig-zag has the shape depicted in
Figure 3.25. Then, by shortening this zig-zag whenever possible, one obtains a simple zig-zag between c0
and cp made of consecutive triplets

cφ(i), σ(i) ≻αi dφ(i), σ(i) ≺−αi cφ(i), σ(i)+1

for 0 ≤ i < l with ∀i ≤ l − 2, cφ(i), σ(i)+1 = cφ(i+1), σ(i+1).
Moreover, φ is non-decreasing, (αi)i is non-increasing, and if φ(i) = φ(i + 1) then σ(i) < σ(i + 1). Notice
that for every i, eφ(i) ≺−αi dφ(i), σ(i).

Now suppose that we have a path as in Figure 3.26 below, such that ep and e0 are both sources of a same
element: e0, ep ≺− d0 ∈ Cn−k. We may moreover suppose that all di’s for i > 0 are in Λ.

d0 d1 dp d0

e0 e1 ep

p p

Figure 3.26: Hypothetical path

γk−1(ω)

d0 d1

e0

p

p

Figure 3.27: Impossible lozenge

If d0 = γkω, then there is a lozenge as in Figure 3.27 above, which is not possible by the sign rule. Hence
d0 is not γk(ω), and is (by Lemma 3.6 and Lemma 3.7) the source of some c0 ∈ Λ.

So we may extend this path with hexagons as in Figure 3.28 below.

γk−2ω

c0 c1 cp c0

d0 d1 dp d0

e0 e1 ep

p p

Figure 3.28: Path with hexagons

d0 d1 dφ(i0)−1 dφ(i0) = d0

e0 e1 eφ(i0)
pp p

Figure 3.29: Impossible path

where for every i ≥ 0, ci is chosen as the unique element in Λn−k+1 such that di ≺− ci.
Using the hexagon property in the rightmost hexagon yields a path in the tree structure of δ

(
γk−2ω

)
(the same as in the proof of pencil linearity), which must be from cp to c0 because dp is not a target. On the
other hand, there is a simple zig-zag from cp to c0 obtained by the previous construction. But because of
the uniqueness of simple zig-zag between two nodes of a tree, the path from cp to c0 and the simple zig-zag
from c0 to cp constituted of triplets

cφ(i), σ(i) ≻αi dφ(i), σ(i) ≺−αi cφ(i), σ(i)+1

for 0 ≤ i < l must be the symmetric of each other. Hence it only contains such triplets with αi = −, and
ei ≺+ dφ(i), σ(i). In particular the last triplet · ≻+ d0 ≺− c0 of the path from cp to c0 corresponds to one of
the triplets above. Suppose it is the i0’th, then we have eφ(i0) ≺

+ dφ(i0), σ(i0) = d0. Hence we have a path as
in Figure 3.29 above; this is absurd by strictness, and ends the proof of the lemma.
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Lemma 3.27

If e ≺− d ≺− c, then there is a (unique) upper path from a source e′ of γ(c) to e as follows:

c

γ(c) • • • d

e′ • • e

ppp

p

Proof. We keep completing half lozenges from right to left as above, until coming across the leftmost pattern.

Proposition 3.28

If k > 0, and d, d′ ∈ Ck then it cannot be the case that d <+ d′ and d <− d′.

Proof. Suppose that we have d <+ d′ and d <− d′. Then by concatenating paths obtained as in Lemma 3.27,
d <+ d′ yields a non-trivial upper path from e to γ(d) where e ≺− d′ is a source of d′. On the other hand,
d <− d′, hence γ(d) ≤+ e′ for some e′ a source of d′. Now by concatenating the path from e to γ(d) and the
path from γ(d) to e′, we obtain a non-trivial upper path from e ≺− γ(d′) to e′ ≺− γ(d′), which is impossible
by Lemma 3.26.

Proposition 3.29 : disjointness

C satisfies the axiom of disjointness. That is: two elements d and d′ cannot be comparable for both
relations <+ and <−.

Proof. This is a consequence of Proposition 3.24 and Proposition 3.28.

Theorem 3.30

The dendritic face complex C is a positive opetope.

Proof. This is a consequence of Propositions 3.2, 3.3, 3.14, 3.24, 3.28, 3.20 and 3.13.
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4 From ZAWADOWSKI’s positive opetopes to dendritic face complexes

4.1. In this section, we consider an opetopic cardinal S = ((Sk)k∈N, γ, δ). We aim to prove that S gives rise
to a dendritic face complex. (At a certain point, we will require S to be principal in order to conclude.) Recall
from Theorem 2.4 that S may be given the structure of a POP, we will then focus on proving the axioms of
DFCs, in the following order: oriented thinness, acyclicity and the existence of a greatest element.

Proposition 4.2 : Oriented Thinness

Let S be an opetopic cardinal, S seen as a positive-to-one poset satisfies the property of oriented
thinness.

Proof. We consider a chain c ≺ b ≺ a in S. And we distinguish on the signs appearing in this relation.

• c ≺β b ≺+ c
Because of globularity, γγ(a) = γδ(a)− δδ(a) and δγ(a) = δδ(a)− γδ(a). Hence there is some b′ as
in Figure 4.1 below. Suppose that there is another b′′ such that c ≺ b′′ ≺ a.
Then still because of globularity , either c ≺−β b′′ ≺+ a or c ≺β b′′ ≺− a.
In the first case, b′′ = b by target uniqueness, hence c ≺− b and c ≺+ b which is impossible. Hence
only the second case may occur.
In the second case, the point (2.) of the proposition 5.1 in [9] shows that necessarily b′′ = b′, whence
the uniqueness.

• c ≺+ b ≺− c Lemma 4.1 in [9] gives γδ(a) = γγ(a)⊔ ι(a). Hence either c ∈ γγ(a) or c ∈ δδ(a) (those
two cases are exclusive), and there is some b′ as in Figure 4.2 below. Suppose that there is another b′′

such that c ≺ b′′ ≺ a.
Then because of globularity c /∈ δγ(a), hence there is some α′′ ∈ {+, −} such that c ≺α′′ b′′ ≺α′′ a.
And because the union γδ(a) = γγ(a) ⊔ ι(a) is disjoint, α′′ = α′. If α′ = −, we may conclude again by
the point (2.) of the proposition 5.1 in [9] that b′ = b′′. And if α′ = +, then by uniqueness of the target,
b′ = γ(a) = b′′.

• c ≺− b ≺− c Lemma 4.1 in [9] gives δδ(a) = δγ(a) ⊔ ι(a). Hence either c ∈ δγ(a) or c ∈ γδ(a) (those
two cases are exclusive), and there is some b′ as in Figure 4.3 below. Suppose that there is another b′′

such that c ≺ b′′ ≺ a.
Then because of globularity c /∈ γγ(a), hence there is some α′′ ∈ {+, −} such that c ≺−α′′ b′′ ≺α′′ a.
And because the union δδ(a) = δγ(a) ⊔ ι(a) is disjoint, α′′ = α′. If α′ = −, we may conclude again by
the point (2.) of the proposition 5.1 in [9] that b′ = b′′. And if α′ = +, then by uniqueness of the target,
b′ = γ(a) = b′′.
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b b′

c

p

β β

Figure 4.1: Lozenge 1
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b b′

c

p
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α′

Figure 4.2: Lozenge 2
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b b′

c

α′

−α′

Figure 4.3: Lozenge 3

Proposition 4.3 : Acyclicity

Let S be an opetopic cardinal, S satisfies the axiom of acyclicity.

Proof. If x ∈ S1, then δ(x) is a singleton because δ0 is functional. If x ∈ S≥1, then δ(x) ̸= ∅ because for all k,
δk is total. There is no cycle as in Figure 1.2 because of strictness.
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Proposition 4.4 : Greatest element

If S is supposed to be principal, then Ŝ admits a greatest element ω.

Proof. Because of principality, |{Sn \ δ(Sn+1)}| = 1. But Sn+1 is empty, hence Sn is a singleton. The fact that
its only element is indeed a greatest element is given by the point (1.) of Lemma 7.1 in [9].

Theorem 4.5

Let S be a positive opetope, S is a dendritic face complex.

Proof. This is a consequence of Proposition 4.2, Proposition 4.3 and Proposition 4.4.

4.6. Note that Theorem 4.5 is the converse of Theorem 3.30. Because of our previous results, we may also
state a converse to Proposition 4.4:

Theorem 4.7

If an opetopic cardinal S admits a greatest element, then it is principal. That is, it is a positive opetope.

Proof. Because of Proposition 4.2 and Proposition 4.3, we know that S may be seen as a DFC. We may then
use the Proposition 3.13 to conclude.
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Conclusion and related works

We have shown in this paper a way to associate a (ZAWADOWSKI’s) positive opetope to any dendritic face
complex, and vice versa. Noting that these constructions extend to morphisms, we obtain two functors F
and G as depicted below.

DFC pOpe

F

G

where DFC and pOpe denote respectively the categories of dendritic face complexes and positive opetopes.
Since G ◦ F and F ◦ G leave the structure unchanged as proved in Theorem 2.4, they form an equivalence of
categories.

This result should be extended in a future paper, dealing with the equivalence with epiphytes (which
will be defined then) and zoom complexes (see [5]).

There is also a definition of opetopes, namely dendrotopes, due to Thorsten PALM (see [8] for an introduc-
tion and [7] for a more complete description), which in many aspects is close to that of DFCs. The author
is convinced that there should be a functor from DFC to the category of PALM’s dendrotopes, although the
details remain to be checked.
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Thanks to Amar HADZIHASANOVIĆ for discussions about this article, and for ideas which helped develop
the formalism of DFCs. I also want to thank Marek ZAWADOWSKI for his inspiring and wide-ranging work
on opetopes and their formalization as posets. Finally, I would like to express a special thank you to the
supervisor of my master’s thesis, Pierre-Louis CURIEN, without whom this article would never have been.

29



References

[1] Dimitri ARA. Sur les infini-groupoïdes de Grothendieck et une variante infini-catégorique. Thèse de doctorat
dirigée par Maltsiniotis, Georges Mathématiques Paris 7 2010. 2010.

[2] John C. BAEZ and James DOLAN. “Higher-Dimensional Algebra III: n-Categories and the Algebra of
Opetopes”. In: Advances in Mathematics (1998). ArXiv:q-alg/9702014. DOI: 135(2):145âĂŞ206.
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