
A recursive tree-shaped definition for positive opetopes.

Louise LECLERC Pierre-Louis CURIEN

February 5, 2024

1



1 Epiphytes

In this section, we describe epiphytes. They consist in trees where nodes are labelled by trees, whose nodes
are labelled by trees... etc. They are a structure dedicated to encoding the combinatorics of opetopes. We
need first a notion of rooted tree, which is defined below:

Definition 1.1 : Rooted tree

A rooted tree T consist of:

• A finite set of nodes T•.

• For each node a ∈ T•, a finite set A(a), called the arity of a.

• A (necessarily finite) set of triplets, denoted a −<b a′ for some a, a′ ∈ T• and b ∈ A(a). Moreover
we ask that for each a ∈ T• and b ∈ A(a), there is at most one triplet a −<b a′. If there is at least
one, (a, b) is called an inner edge of T, otherwise it is said to be a leaf of T. We let

T| := {(a, b) leaf of T} and T ⊸ := {(a, b) inner edge of T}.

We moreover ask for a distinguished element ρ(T) ∈ T•, called the root of T, satisfying the following
property: for each node a ∈ T•, there is a unique (descending) path in T

a = a0 >−b1 a1 >−b1 · · · >−bp ap = ρ(T)

from a to the root of T.

Remark 1.2
Notice that if it exists, the root is uniquely determined.

Exemple 1.3
Below is a representation of the rooted tree T having

• as nodes T• := {a1, a2, a3, a4}

• as arities

A(a1) := {b6, b7} A(a2) := {b1, b8} A(a3) := {b2, b3} A(a4) := {b4, b5}

• as triplets

a1 −<b6 a2 a1 −<b7 a4 a2 −<b8 a3

• as root a1.

a1

a2

b1

a3

b2 b3

b8

b6

a4

b4 b5

b7
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Definition 1.4 : neat rooted tree

Let T be a rooted tree, T will be called neat iff the second projection

pr2 : T| → ⋃
a∈T• T(a)

(a, b) 7→ b

is injective. We then identify the leaf (a, b) with b ∈ A(a), and let η(b) := a (or ηT(b) := a if needed).
For a neat rooted tree T, the set T| will be replaced by its second projection.

1.5. We now describe the main definition of this section. Since the notion of epiphyte is closely entangled
with that of their target with which they call each other, we blend those definitions in the following three
mutually recursives ones. In the following, all the trees considered will be neat.

Definition 1.6 : Epiphyte

We define inductively epiphytes ω and their dimension dim(ω), as follows:

• There is only one epiphyte of dimension 0, which is denoted by ♦. We let ♦• := ∅.

• Suppose that we have defined epiphytes of dimension k ≤ n for some n ∈ N, together with
their targets. Then a (n + 1)-epiphyte ω consists in the following data:

– A structure of neat rooted tree, which we also denote ω.

– For each a ∈ ω•, a n-epiphyte saω with (saω)• = A(a), called the source at a.

Such that we have, for each triplet a −<b a′ of ω, the equality of epiphytes sbsaω = tsa′ω.

Remark 1.7
Notice that since ♦• = ∅, a 1-epiphyte is always of the form ■a with ■•

a = {a}, A(a) = ∅ and no triplets.

Definition 1.8 : λ, κ

Let ω be an epiphyte of dimension ≥ 1, and a ∈ ω•, b ∈ A(a).

• For c ∈ A(b) (in saω) or equivalently c ∈ (sbsaω)•, we define λc(a, b) ∈ ω| by increasing
induction on the height of a in the tree structure of ω.

– If (a, b) ∈ ω|, then λc(a, b) := b.

– If there is a triplet a −<b a′ in ω, then using the equality sbsaω = tsa′ω, we have c ∈ (sa′ω)|.
Hence we may define λc(a, b) := λc(a′, η(c)).

• We define κ(a, b) ∈ ω| by increasing induction on the height of a in ω.

– If (a, b) ∈ ω|, then κ(a, b) := b.

– If there is a triplet a −<b a′ in ω, then κ(a, b) := κ(a′, ρ(saω)).

Definition 1.9 : target

Let ω be a (n + 1)-epiphyte with n ≥ 0, then its target tω, a n-epiphyte, is defined as follows.

• (tω)• := ω|.

• For each b ∈ ω|, we let A(b) := (sbsη(b)ω)• and sbtω := sbsη(b)ω.

• For every a ∈ ω• and every triplet b −<c b′ in saω, there is a triplet λc(a, b) −<c κ(a, b′) in tω,
and the root is κ(ρ(ω), ρ(sρ(ω)ω)).

1.10. Correctness of Definition 1.9 (which implies that of Definition 1.6) will be the aim of Theorem 2.9.
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Remark 1.11
Suppose that there is a path

>−b0 a0 >−b1 · · · >−bp=b ap = a

in an epiphyte ω with dim(ω) ≥ 1, and there is c ∈ (sbsaω)• with λc(a, b) = b0, η(b0) = a0.
Then we have

scsλc(a, b)tω = scsb0 sa0 ω = scsb1 sa1 ω = · · · = scsbp sap ω = scsbsaω

a1

a2

b1

a3

b2 b3

b8

b6

a4

b4 b5

b7

ω
b6

c1

b7

c2 c3

c7 c4

sa1 ω

b4

c2

b5

c3

c8

sa4 ω

b1

c1

b8

c7 c4

c5

sa2 ω

b2

b3

c7

c6 c4

sa3 ω

c5

c1

d1

d2

sb1 sa2 ω

c4

c7

d2

d4

sb8 sa2 ω

c4

c6

d2

d4

sb2 sa3 ω

c7

d2

sb3 sa3 ω

c8

c2

d2

d3

sb4 sa4 ω

c3

d3

sb5 sa4 ω

c4

c7

c1

d1

d2

d4

sb6 sa1 ω

c3

c2

d2

d3

sb7 sa1 ω

Exemple 1.12
We have depicted above a 4-epiphyte (that is, of dim. 4), which formalise the picture of the introduction. For
brevity, the 1 and 0-dimensional sources are left implicit.

Exemple 1.13
In the case of the 4−epiphyte above the target is the 3−epiphyte tω having

• As nodes the leaves b1, b2, b3, b4 and b5 of ω.

• As arities

A(b1) = {c1, c5} A(b2) = {c4, c6} A(b3) = {c7}

A(b4) = {c2, c8} A(b5) = {c3}

and the corresponding sources as in the definition above.

• As triplets

b3 −<c7 b4 induced by b6 −<c7 b7 in sa1 ω

b1 −<c5 b2 induced by b1 −<c5 b8 in sa2 ω

b2 −<c6 b3 induced by b2 −<c6 b3 in sa3 ω

b4 −<c8 b5 induced by b4 −<c8 b5 in sa4 ω
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• As root b1.

And below is a graphical representation of the tree associated to tω.

b1

c1

b2

b3

b4

c2

b5

c3

c8

c7

c6 c4

c5

We may also compute tsa1 ω and ttsa1 ω as below:

b6

c1

b7

c2 c3

c7 c4

sa1 ω

c4

c3

c2

c1

d1

d2

d3

d4

tsa1 ω

d1

ttsa1 ω

Lemma 1.14

Let ω be a n-epiphyte with n ≥ 1, and b ∈ (saω)•, b0 ∈ ω| such that there is a path

>−b0 η(b0) >−>−b a (b0 = b when η(b0) = a)

in ω. Then there is a path
b0 >− b1 >− · · · >− bp = κ(a, b)

in tω, such that
∀i, η(bi) >−>−b a

Proof. We proceed by decreasing induction on the height of a in the tree structure of ω.
When b is a leaf, κ(a, b) = b = b0, hence there is a trivial path between b0 and κ(a, b).
Suppose now that b is not a leaf, and let a′ be such that a −<b a′. We suppose that the result is known for
every b′ ∈ A(a′). Let b′ be such that η(b0) >−>−b′ a′ >−b a. We again proceed by induction: on the increasing
height of b′ in the tree structure of sa′ω.
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• Suppose that b′ = ρ(saω).
Then κ(a′, b′) = κ(a, b). Because of the induction hypothesis on b′, we may find a path

b0 >− b1 >− · · · >− bp = κ(a′, b′) = κ(a, b)

in tω, such that for for all i, we have η(bi) >−>−b′ a′ >−b a. Whence the result.

• Suppose that there is a triplet b′′ −<c b′ in sa′ω.
Then there is a triplet κ(a′, b′) >−c λc(a′, b′′) in tω. Hence, using the first induction hypothesis on
b′ ∈ A(a′), we may find a path

b0 >− b1 >− · · · >− bp = κ(a′, b′) >−c λc(a′, b′′)

such that
∀i, η(bi) >−>−b′ a′ >−b a

Using the second induction hypothesis, we may find a second path

λc(a′, b′′) = b′0 >− b′1 >− · · · >− b′q = κ(a, b)

such that
∀i, η(b′i) >−>−b a

Concatenating those two paths yields the result.

2 Correctness

2.1. The aim of this section is to prove the following:

(n ≥ 0) Pn : n-epiphytes and their target are well defined
(n ≥ 2) Qn : any n-epiphyte ω satisfies tsρ(ω)ω = ttω

by strong induction on n ≥ 0. In the case n = 0 and n = 1, Pn is clear. From now on, we let n ≥ 2, and
suppose Pk, Qk for k < n such that those are defined.

Lemma 2.2

The target of a n-epiphyte is a neat rooted tree.

Proof. Let ω be a n−epiphyte.

At most one triplet b −<c – :

Let b, b′ be two leaves of ω and let a := η(b), a′ := η(b′), suppose that c ∈ (sbtω)• = (sbsaω)•, and
that there is a triplet b −<c b′. Let

a = a0 >−b1 a1 >−b2 · · · >−bp ap = ρ(ω)
(

resp. a′ = aq >−b′1
a′1 >−b′2

· · · >−b′q a′q = ρ(ω)
)

be the descending path from a (resp. a′) to the root in ω. By definition of triplets in tω, there are two
integers l, m with l ≤ p and m ≤ q such that

– al = am.

– ∀i < l, c ∈ (sai ω)| with bi = ηsai ω(c).

– ∀i < m, b′i = ρ(sa′i
ω).

– there is a triplet bl −<c b′m in sal ω.

This forces

– l = min{i
∣∣ c /∈ (sai ω)|}.
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– m = min{i
∣∣ b′i ̸= ρ(sa′i

ω)}.

Thus bl , and hence b′m are uniquely determined, and b′ is uniquely determined as being κ(al , b′m).

Unique path to the root :

The fact that for every b ∈ (tω)• there is a path to the root is given by Lemma 1.14. As to see the
unicity of such a path, it suffices to show that for every b ∈ (tω)•, there is at most one triplet of the
form b′ −<c b in tω.
Because of the definition of triplets in tω, there is such a triplet iff there is a path

>−b=b0 a = a0 >−b1 · · · >−bp ap

with, ∀i < p, bi = ρ(sai ), and a path

>−b′=b′0
a′ = a′0 >−b′1

· · · >−b′q a′q = ap

such that ∀i < p, c ∈ (sa′i
ω)|, with a triplet b′q −<c bp in sap ω. Hence, ap is entirely determined as the

first node on the path from a to the root such that bp ̸= ρ(sap ω). Then, c and b′q are also characterised
by the triplet b′q −<c bp in sap ω. It determines b′ as λc(ap, b′q).

Neatness :

Let c ∈ (tω)|, where c ∈ (sbsaω)•, we need to check that b can be recovered from c. In fact, we will
show that b = ηtω(c) = λc

(
ρ(ω), ηsρ(ω)ω(c)

)
. Let

>−b=b0 a = a0 >−b1 · · · >−bp=b′ ap = ρ(ω)

be the descending path from b to the root in ω. We show by induction on i ≤ p the following property

(0 ≤ i ≤ p) Pi : c ∈ (sai ω)| and ηsai ω(c) = bi

– Initialisation (i = 0) : Suppose that there is a triplet b −<c b′ in saω, then by definition of tω, there
is a triplet λc(a, b) −<c κ(a, b′) in tω. Since c is a leaf in tω this is impossible, whence c ∈ (saω)|.
ηsaω(c) = b is by assumption.

– Heredity : Suppose the result known for some i < p. Using the equality (sbi
sai ω)| = (sbi+1

sai+1 ω)•,
we have c ∈ (sbi+1

sai+1)
•. As above, there is no triplet bi+1 −<c b′ in sai+1 ω because c ∈ (tω)|.

Hence c ∈ (sai+1 ω)|. Since c ∈ (sbi+1
sai+1)

•, we have ηsai+1
(c) = bi+1.

Especially, we have shown b′ = ηsρ(ω)ω(c). Using Pi (i ≤ p) we also have b = λc(ρ(ω), b′).

Whence b = ηtω(c) = λc

(
ρ(ω), ηsρ(ω)ω(c)

)
.

Lemma 2.3

Let ω be a n-epiphyte, then (tsρ(ω)ω)• = (ttω)•. Moreover, for all c ∈ (ttω)•, sctsρ(ω)ω = scttω.

Proof.

Nodes :

When showing neatness in the proof of Lemma 2.2, we have already shown the inclusion (tω)| ⊆
(sρ(ω)ω)|. We then show the converse. Let c ∈ (sρ(ω)ω)| and suppose there is a triplet b −<c b′ in tω.
Then there are two paths

>−b=b0 a0 >−b1 · · · >−bp ap = a and >−b′=b′0
a′0 >−b′1

· · · >−b′q a′q = a

such that c ∈ (sai ω)|, ηsai ω(c) = bi for i < p and b′i = ρ(sa′i
ω) for i < q, together with a triplet bp −<c b′q

in saω. Extending the first path down to the root, we get to see c ∈ (saω)|, hence there can not be a
triplet bp −<c b′q in saω. So there is no triplet b −<c b′ in tω, hence c ∈ (tω)|. This yields the inclusion
(tω)| ⊇ (sρ(ω)ω)|, whence the equality (ttω)• = (tsρ(ω)ω)•.
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Sources :

Let c ∈ (ttω)•, and let b := ηtω(c), a := ηω(b), b′ := ηsρ(ω)ω(c). Then using Remark 1.11, we have
scsbsaω = scsb′ sρ(ω)ω, that is scttω = sctsρωω.

Lemma 2.4

Let ω be a n-epiphyte and b′ ∈ (sa′ω)•, b ∈ (saω)•, such that there is a path

a′ = a0 >−b1 · · · >−bp=b ap = a

in ω. We suppose moreover that for all i < p, there is a path in sai ω

bi = b0
i >−c1

i
· · · >−c

qi
i

bqi
i = ρ(sai ω)

such that ∀j < qi, cj
i = ρ

(
s

bj
i
sai ω

)
. Then there is a path in tω.

κ(a′, b′) = λρ(sb0 sa0 ω)(a0, b0) −<
ρ(sb0 sa0 ω) · · · −<

ρ
(

s
bq−1 s

aq−1 ω
) λρ(sbq saq ω)(aq, bq)

where aq = a, bq = b and

∀i, ρ(sbi sai ω) = ρ

(
sλ

ρ(s
bi s

ai ω)(ai , bi)tω

)

Proof. We proceed by induction on the increasing height of κ(a′, b′) in the tree structure of tω. Let

>−b′0
a′0 >−b′1

· · · >−b′s=b′ a′s = a′

be the path in ω such that b′0 = κ(a, b) ∈ ω|, and b′i = ρ(sa′i
ω) for i < s.

Then we have an extended path

>−b′0
a′0 >−>−b′s=b′ a′s = a′ >−b′s+1 :=b1

· · · >−b′s+p :=bp=b a′s+p := ap = a

And we let l := s + p, c := ρ(sb′0
sa′0

ω), and r := max{r′ ∈ [[ 0, l ]]
∣∣ ∀i < r′, c ∈ (sa′i

ω)|}. Note that for all
i < l, there is a path in sa′i

ω

b′i = b′0i >−c′1i
· · · >−

c′
q′i
i

b′q
′
i

i = ρ(sa′i
ω)

such that ∀j < q′i, c′ ji = ρ

(
s

b′ ji
sa′i

ω

)
. Hence, if ρ(sb′i

sa′i
ω) ∈ (sa′i

ω)|, then by Definition 1.9, it is the root of

tsa′i
ω = sb′i+1

sa′i+1
ω, hence c = ρ(sb′i

sa′i
ω) = ρ(sb′i+1

sa′i+1
ω). Thus, we always have c = ρ(sb′r sa′r ω).

• Either r = l, κ(a′, b′) = λc(a, b) = λρ(sbsaω)(a, b), and we have the result with p = 0.

• Or r < l, and κ(a′, b′) = λc(a′r, b′r). We let a′′ := a′r. Since r < l, we have (b′r, c) ∈ (sa′r ω) ⊸ and there is
a triplet b′r −<c b′′ in sa′′ω. Hence there is a triplet κ(a′, b′) = λc(a′r, b′r) −<c κ(a′′, b′′) in tω. Moreover,
there is still a path a′′ = a′r >−b′r+1

· · · >−b′l=b al = a in ω, where b′l = b because r < l. And we have

b′′0 := b′′ >−c′′1 :=c b′′1 := b′r >−c′′2 :=c′1r
· · · >−

c′′
q′r+1

:=c′q
′
r

r
b′′q′r+1 := b′q

′
r

r = ρ(sa′r ω)

where ∀j < q′r + 1, c′′j = ρ
(

sb′′j
sa′r ω

)
. Hence, we may use the induction hypothesis to extend the path

from κ(a′′, b′′).

As to see the last assertion, we shall check that c = ρ(sλc(a′r , b′r)tω), that is: c = ρ(sb′0
sa′0

ω). This is the
definition of c.
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Lemma 2.5

Let ω be an n-epiphyte, b ∈ (saω)•, c = ρ(sbsaω) and c′ = ρ(sκ(a, b)tω).
Then κ(λc(a, b), c) = κ(κ(a, b), c′).

Proof. By Lemma 2.4, there is a path

κ(a, b) = b0 −<c′=c0
b1 −<c1 · · · −<cp−1 bp = λc(a, b)

where ci = ρ(sbi
tω) for all i, including cp := c. Hence, κ(λc(a, b), c) = κ(κ(a, b), c′).

Lemma 2.6

Let ω be a n-epiphyte and a triplet b −<c b′ in saω.

• For every leaf d ∈ (sb′ saω)| we have λd(λc(a, b), c) = λd(λc′(a, b′), c′) where c′ = η(d).

• If c′ = ρ(sb′ saω), we have κ(λc(a, b), c) = κ(λc′(a, b′), c′).

Proof.

• Let d ∈ (sb′ saω)| and c′ := η(d). Since there is a triplet b′ >−c b in saω, there is a triplet
κ(a, b′) >−c λc(a, b) in tω. Hence, by Lemma 1.14, there is a path

λc′(a, b′) >−>− κ(a, b′) >−c λc(a, b) in tω.

Since d ∈ (sb′ saω)|, we have d ∈ (scsbsaω)• because of the triplet b −<c b′. Hence d ∈ (scsλc(a, b)tω)•

(this is by Remark 1.11) and it implies the desired equality.

• In this configuration, there is a triplet λc(a, b) −<c κ(a, b′). Using Lemma 2.4, there is a path

κ(a, b′) = b0 −<c0 b1 −<c1 · · · −<cp−1 bp = λc′(a, b′)

where ci = ρ(sbi
tω) for all i, including cp := c′. Hence, κ(λc(a, b), c) = κ(λc′(a, b′), c′).

Lemma 2.7

Let ω be a n-epiphyte of dimension ≥ 3, and let b, c be such that c ∈ (sbsρ(ω)ω)•.

• ∀d ∈ (scsbsρ(ω)ω)•, λd(b, c) = λd(λc(ρ(ω), b), c).

• κ(b, c) = κ(λc(ρ(ω), b), c).

Proof.

• Let d ∈ (scsbsρ(ω)ω)•, and let
>−c0 b0 >−c1 · · · >−cp=c bp = b

be the path such that λd(b, c) = c0 ∈ (sρ(ω)ω)|. Then Lemma 2.6 yields

λd(λc(ρ(ω), b), c) = λd(λcp−1(ρ(ω), bp−1), cp−1) = · · · = λd(λc0(ρ(ω), b0), c0)

and λd(λc0(ρ(ω), b0), c0) = c0 is already a leaf of tω, because it is a leaf of sρ(ω)ω (we use Lemma 2.3).
Whence the first equality: λd(b, c) = λd(λc(ρ(ω), b), c).

• Let
>−c0 b0 >−c1 · · · >−cp=c bp = b

be the path such that κ(b, c) = c0 ∈ (sρ(ω)ω)|. Then Lemma 2.6 yields

κ(λc(ρ(ω), b), c) = κ(λcp−1(ρ(ω), bp−1), cp−1) = · · · = κ(λc0(ρ(ω), b0), c0)

and κ(λc0(ρ(ω), b0), c0) = c0 is already a leaf of tω, because it is a leaf of sρ(ω)ω (we use Lemma 2.3).
Whence the second equality: κ(b, c) = κ(λc(ρ(ω), b), c).
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Lemma 2.8

Let ω be a n-epiphyte, and c, c′ ∈ (sbsaω)•, d ∈ (scsbsaω)•. Then(
c −<sbsaω

d c′
)
⇔
(
λd(λc(a, b), c) −<ttω

d κ(λc′(a, b), c′)
)

.

Proof. We proceed by induction on the height of a in ω.

• When b ∈ (saω)• is a leaf, λd(λc(a, b), c) = λd(b, c), and κ(λc′(a, b), c′) = κ(b, c′). Hence

c −<sbsaω
d c′ Def. of tω⇐⇒ c −<sbtω

d c′
Def. of ttω⇐⇒ λd(b, c) −<ttω

d κ(b, c′)
Equations above⇐⇒ λd(λc(a, b), c) −<ttω

d κ(λc′(a, b), c′)

• When there is a triplet a −<b â in ω,

c −<sbsaω
d c′

sbsaω=tsâω⇐⇒ c −<tsâω
d c′

Def. of tsâω⇐⇒ ĉ −<
sb̂sâω

d ĉ′

where b̃ >−>−ĉ b̂ and b̃′ >−>−ĉ′ b̂ in sâω
Induction⇐⇒ λd(λĉ(â, b̂), ĉ) −<ttω

d κ(λĉ′(â, b̂), ĉ′)

It remains to show that λd(λĉ(â, b̂), ĉ) = λd(λc(a, b), c) and κ(λĉ′(â, b̂), ĉ′) = κ(λc′(a, b), c′).

– As to see the first equality, let

>−c=c0 b̃ = b0 >−c1 · · · >−cp=ĉ bp = b̂

be the path in sâω such that c0 = λd(b̂, ĉ) ∈ (sâω)|. Notice that since there is a triplet a −<b â in ω
and c ∈ (sâω)|, then λc(a, b) = λc(â, b̃). Then Lemma 2.6 yields

λd(λc0(â, b0), c0) = λd(λc1(â, b1), c1) = · · · = λd(λcp(â, bp), cp) = λd(λĉ(â, b̂), ĉ).

Whence the equality.

– We now see the second equality: let

>−c′=c′0
b̃′ = b′0 >−c′1

· · · >−c′q=ĉ b′q = b̂

be the path in sâω such that c′0 = κ(b̂, ĉ′) ∈ (sâω)|. Notice that since there is a triplet a −<b â in ω

and c′ ∈ (sâω)|, then λc′(a, b) = λc′(â, b̃′). Then Lemma 2.6 yields

κ(λc′0
(â, b′0), c′0) = κ(λc′1

(â, b′1), c′1) = · · · = κ(λc′q(â, b′q), c′q) = κ(λĉ′(â, b̂), ĉ′)

Whence the equality.

Theorem 2.9

The properties Pn and Qn hold.

Proof. Let ω be a n-epiphyte. We begin by showing that tω is well-defined. Because of Lemma 2.2, we
already know that tω is a neat rooted tree.

∀b ∈ (tω)•, (sbtω)• = A(b) :

Let b ∈ (tω)• = ω|. Then A(b) = (sbsη(b)ω)•. On the other hand, sbtω = sbsη(b)ω,
whence (sbtω)• = A(b).
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∀(b −<c b′) in ω, scsbtω = tsb′ tω :

Notice that if dim(ω) < 3, there is no triplet in tω, hence this property is vacuously satisfied. Hence-
forth, we suppose n ≥ 3. Let b −<c b′ be a triplet of ω. Then there are two paths

>−b=b0 a0 >−b1 · · · >−bp ap = a and >−b′=b′0
a′0 >−b′1

· · · >−b′q a′q = a

such that c ∈ (sai ω)|, ηsai ω(c) = bi for i < p and b′i = ρ(sa′i
ω) for i < q, together with a triplet bp −<c b′q

in saω. Then, according to Remark 1.11, we have scsbtω = scsbp saω.
On the other hand, using Qn−1, we have

tsb′ tω = tsb′0
sa′0

ω = ttsa′0
ω = tsb′1

sb′1
ω = · · · = tsb′q saω.

Finally, because of the triplet bp −<c b′q, we have scsbp saω = tsb′q saω,
whence the equality scsbtω = tsb′ tω.

This completes the proof of Pn, and we now show that tsρ(ω)ω = ttω.
Notice that if n = 2, this equality is clear, so we now suppose n ≥ 3. Because of Lemma 2.3, we already
have the equality of nodes and sources. It remains to see the equality of triplets. Suppose that there is
a triplet λd(b, c) −<d κ(b, c′) in tsρ(ω)ω with a triplet c −<d c′ in sρ(ω)ω. Hence, using Lemma 2.8, there
is a triplet λd(λc(ρ(ω), b), c) −<d κ(λc′(ρ(ω), b), c′) in ttω. Finally, using Lemma 2.7, this is the triplet
λd(b, c) −<d κ(b, c′). The other implication uses the same arguments.
Hence we have shown Qn, and it ends the proof.

3 Epiphytes morphisms

3.1. In this section, we focus on the definition of epiphytes morphisms and the associated category Epi.
Epiphytes morphisms are of two kinds:

• The renamings, which also are the isomorphisms. They goes between epihytes of the same dimension
and leave the structure unchanged.

• The structural maps, which are formal inclusions of sources and targets of some epiphyte in itself.

Definition 3.2 : Rooted tree isomorphism

An isomorphism f : S → T from a rooted tree S to a rooted tree T corresponds to the data of

• A bijection f : S• → T•.

• For each node a ∈ S•, a bijection fa : A(a) → A( f (a)).

such that for each triplet a −<b a′ in S, there is a triplet f (a) −< fa(b) f (a′) in T.
If f : S → T and g : T → U are two isomorphisms, their composition is defined as g ◦ f : S• → U•

on nodes, and for each a ∈ S•, (g ◦ f )a := g f (a) ◦ fa. The identity is defined as the identity map on
nodes and arities. Notice that the composition defined above is associative.

Lemma 3.3

A tree isomorphism f : S → T is always invertible for the composition. Its inverse is given by
f−1 : T → S defined by

• f−1 : T• → S• on nodes.

• For each a ∈ T•, ( f−1)a := ( f f−1(a))
−1 : A(a) → A( f−1(a)).

Moreover, such an isomorphism f satisfies the following:

• f preserves paths to the root and height in the tree structure.

• (a, b) ∈ S| iff ( f (a), fa(b)) ∈ T|.
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• f (ρ(S)) = ρ(T).

Proof. We first prove the three last properties, then we will check that f−1 is indeed a rooted tree isomor-
phism.

• Since f sends triplets to triplets, the first point is immediate. Since the height is the length of the
unique path from a node to the root, it is preserved.

• Let b ∈ A(a) in S. If ( f (a), fa(b)) is a leaf, then so is (a, b) because f sends triplets to triplets. Con-
versely, suppose that (a, b) ∈ S|, we check that ( f (a), fa(b)) is a leaf. Suppose that there is a triplet
f (a) −< fa(b) â in T. Then we shall have a′ = f (â) for somea unique a′ ∈ S•. Since f preserves height,
there is at least a triplet a′′ −<b′′ a′ in S. Such a triplet is sent onto a triplet f (a′′) −< fa′′ (b

′′) â by f . Hence
we shall have f (a) = f (a′′) and fa(b) = fa′′(b), hence a = a′′ and b = b′′. This implies the existence of
a triplet a −<b a′ in S, which is false.

• The root is preserved because it is the only element of null height.

We now prove that f−1 is a rooted tree isomorphism. Suppose that there is a triplet a −<b a′ in T. Then there
are two nodes â := f−1(a), â′ := f−1(a′) ∈ S• and b̂ := ( f â)

−1(b) ∈ A(â). Since f preserves height, there
is at least a triplet a′′ −<b′′ â′ in S, which is sent to a triplet f (a′′) −< fa′′ (b

′′) a′ in T. Hence f (a′′) = f (â) and

fa′′(b′′) = f â(b̂), whence a′′ = â, b′′ = b̂, and a triplet â −<b̂ â′ in S.

Definition 3.4 : Epiphyte renamings

Let ω and ϖ be two epiphytes of the same dimension n. We define by induction on n the renamings
f : ω → ϖ between them.

• When ω = ϖ = ♦ are 0-dimensional, there is a unique renaming between them, called the
identity, or the trivial-renaming:

id : ω → ϖ

• Let n ≥ 1 and suppose known the definition of (n − 1)−epiphytes renamings and their target.
Then a renaming f : ω → ϖ consists of

– A rooted-tree isomorphism f : ω → ϖ.

– For each a ∈ ω•, a renaming fa : saω → s f (a)ϖ such that on nodes, fa coincide with the
bijection given by the rooted tree isomorphism f . We also write sa f for fa.

such that for each triplet a −<b a′ and leaf c of sa′ω, fa, b(c) = fa′ , η(c)(c) and fa, b, c = fa′ , η(c), c.

Definition 3.5 : Composition and inverse

Given two renamings f : ω → ϖ and g : ϖ → ϱ between epiphytes of the same dimension n, we
may compose them. The composition g ◦ f is defined inductively on the dimension n as follows:

• In dimension zero, id ◦ id := id.

• Suppose the composition of (n − 1)-dimensional renamings is known. Then we define the
composition g ◦ f as

– g ◦ f : ω → ϱ as an isomorphism of rooted trees.

– For each a ∈ ω•, (g ◦ f )a := g f (a) ◦ fa : saω → sg( f (a))ϱ.

We check below that this is well defined.
Moreover, for any epiphyte ω, there is an identity id : ω → ω defined inductively as

• The identity on the rooted tree structure.

• For each a ∈ ω•, ida = id : saω → saω.
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We also check below that any renaming f : ω → ϖ between two n−epiphytes is invertible for the
composition, and its inverse f−1 is given by id when n = 0 and when n > 0 by

• f−1 on rooted trees

• For each a ∈ ϖ•, f−1
a := ( f f−1(a))

−1.

Proof.

Composition is well-defined :

We proceed by induction on n. When n = 0, the composition is well defined.
Let n > 0, f : ω → ϖ and g : ϖ → ϱ be two renamings between n−epiphytes. Let a −<b a′ be a triplet
in ω, c a leaf of sa′ω and b′ = η(c). Then there is a triplet f (a) −< fa(b) f (a′) in ϖ, and using Lemma 3.3,
there is a leaf fa′ , b′(c) in s f (a′)ϖ. Hence, we have the equations

g f (a), fa(b)( fa′ , b′(c)) = g f (a′), fa′ (b
′)( fa′ , b′(c)) g f (a), fa(b), fa′ , b′ (c)

= g f (a′), fa′ (b
′), fa′ , b′ (c)

Because f is also a renaming, we have the identities

fa, b(c) = fa′ , b′(c) fa, b, c = fa′ , b′ , c

Whence the identities

g f (a), fa(b)( fa, b(c)) = g f (a′), fa′ (b
′)( fa′ , b′(c)) g f (a), fa(b), fa, b(c) = g f (a′), fa′ (b

′), fa′ , b′ (c)

That is

(g ◦ f )a, b(c) = (g ◦ f )a′ , b′(c) (g ◦ f )a, b, c = (g ◦ f )a′ , b′ , c

Inversibility :

We proceed by induction on the dimension n of the renaming f : ω → ϖ.
When n = 0, f = id, f−1 = id and their composition is id.
Suppose now that the result is known in dimensions lower than n. By Lemma 3.3, we know that f is
inversible as a rooted tree isomorphism. Let a −<b a′ be a triplet in ϖ, and c a leaf in sa′ϖ with b′ = η(c).
Still by Lemma 3.3, there is a triplet â −<b̂ â′ and a leaf ĉ in sâ′ω where

â = f−1(a) â′ = f−1(a′) b̂ = ( f â)
−1(b) b̂′ = ( f â′)

−1(b) ĉ = ( f â′ , b̂′)
−1(c)

and b̂′ := η(ĉ). Hence, we have the identities

f â, b̂(ĉ) = f â′ , b̂′(ĉ) f â, b̂, ĉ = f â′ , b̂′ , ĉ

The first equality yields ĉ = ( f â, b̂)
−1(c) = ( f â′ , b̂′)

−1(c), that is f−1
a, b (c) = f−1

a′ , b′(c).
The second one yields f−1

â, b̂, ĉ
= f−1

â′ , b̂′ , ĉ
, that is f−1

a, b, c = f−1
a′ , b′ , c.

Lemma 3.6

Let f : ω → ϖ be a renaming of epiphytes, c ∈ (sbsaω)•, b′ := λc(a, b) and a′ = η(b′), then
fa, b(c) = fa′ , b′(c) and fa, b, c = fa′ , b′ , c.

Proof. Let
>−b0=b′ a0 = a′ >−b1 a1 · · · >−bp ap

be such that ∀i < p, (bi, c) ∈ (sai ω)|, then by definition of a renaming of epiphytes, we have

fa0, b0, c = fa1, b1, c = · · · = fap , bp , c and fa0, b0(c) = fa1, b1(c) = · · · = fap , bp(c).
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Definition 3.7

Let f : ω → ϖ be a renaming of n-epiphytes for some n ≥ 1.
Then f induces a renaming t f : tω → tϖ defined by id when n = 1, and when n > 1 by:

• ∀b ∈ ω|, t f (b) := fη(b)(b).

• ∀b ∈ ω|, (t f )b := fη(b), b.

Proof. We check that t f as defined above indeed is a renaming.

t f is a bijection : This is shown by the second point of Lemma 3.3.

t f preserves triplets : Let λc(a, b) −<c κ(a, b′) be a triplet in tω, and

>−b0 a0 >−b1 · · · >−bp=b ap = a

the path in ω such that b0 = λc(a, b). Then there is a path

>− fa0 (b0)
f (a0) >− fa1 (b1)

· · · >− fap (bp)= fa(b) f (ap) = f (a)

with, ∀i < p, fai , bi
(c) ∈ (s f (ai)

ϖ)|. Hence, fa0(b0) = λ fa0, b0
(c)( f (a), f (b)) = λ fa, b(c)( f (a), f (b)) (where

the second equality is by Lemma 3.6).
Let

>−b′0
a′0 >−b′1

· · · >−b′q=b′ a′q = a

be the path in ω such that b′0 = κ(a, b′). Then there is a path

>− fa′0
(b′0)

f (a′0) >− fa′1
(b′1)

· · · >− fa′q
(b′q)= fa(b′) f (a′q) = f (a)

with fa′i
(b′i) = ρ(s f (a′i)

ϖ) for i < q (by Lemma 3.3). Hence fa′0
(b′0) = κ( f (a), fa(b′)).

Whence the existence of a triplet fa0(b0) −< fa, b(c) fa′0
(b′0), i.e. a triplet t f (λc(a, b)) −< fa, b(c) t f (κ(a, b′)).

Equations on t fb, c(d) and t fb, c, d :

Let λc(a, b) −<c κ(a, b′) be a triplet in tω, and d ∈ (sκ(a, b′)tω)| with c′ = η(d). We shall check that
t fλc(a, b), c(d) = t fκ(a, b′), c′(d). That is – by keeping the above notations – that

fa0, b0, c(d) = fa′0, b′0, c′(d)

We prove it by the following sequence of equalities:

fa0, b0, c(d) = fa1, b1, c(d) because a0 >−b1 a1 and c ∈ (sa0 ω)|

= · · ·
= fap , bp , c(d) because ap−1 >−bp ap and c ∈ (sap−1 ω)|

= fa, b, c(d)

Let ĉ0 := c′ and (b̂i, ĉi+1) := λd(b′i , ĉi) for 0 < i ≤ p. Lemma 3.6 yields fa′0, b′0, c′(d) = fa′0, b̂0,ĉ1
(d).

Since ĉ1 ∈ (sa′0
ω)|, we also have fa′0, b̂0, ĉ1

(d) = fa′1, b′1, ĉ1
(d). Then, continuing from this expression, we

have
fa′0, b′0, ĉ0

(d) = fa′1, b′1, ĉ1
(d) = · · · = fa′p , b′p , ĉp

(d) = fa, b′ , ĉp(d)

We now show the following property by induction on i:

∀i, d ∈ (sb′i
sa′i

ω)|, ĉi = ηsb′i
sa′i

ω(d)

– For i = 0, d ∈ (sb′0
sa′0

ω)| = (sκ(a, b′)tω)| and c′ = ηsκ(a, b′)tω(d) hold by assumption.

– Suppose that the result is known for i < p, then d ∈ (sb′i
sa′i

ω)| and ĉi = ηsb′i
sa′i

ω(d). Hence we

also have d ∈ (tsa′i
ω)| and ηtsa′i

ω(d) = λd(b′i , ĉi) by Lemma 2.3. That is, ηtsa′i
ω(d) = ĉi+1. Since

tsa′i
ω = sb′i+1

sa′i+1
ω, we have d ∈ (sb′i+1

sa′i+1
ω)| and ĉi+1 = ηsb′i+1

sa′i+1
ω(d) as expected.
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We may finally use the identity (ĉp, d) ∈ (sb′ saω)| to have the equality fa, b, c(d) = fa, b′ , ĉp(d). Whence
the equality fa0, b0, c(d) = fa′0, b′0, c′(d).

The second equation fa0, b0, c, d = fa′0, b′0, c′ , d is shown by the same reasoning.

Definition 3.8 : Flag of an epiphyte

Let ω be an epiphyte. A flag of ω is a sequence p = ξlξl−1 · · · ξ1 of formal symbols ξi for 1 ≤ i ≤ l
and 0 ≤ l ≤ dim(ω). When the sequence is empty, we denote it by []. For each i, we have either
ξi = t or ξi = sx for some x ∈ (ξi−1ξi−2 · · · ξ1ω)•.
When f : ω → ϖ is a morphism between two epiphytes of the same dimension and p = ξlξl−1 · · · ξ1
is a flag of ω, we define a flag f∗p of ϖ, and a morphism p f : pω → ( f∗p)ϖ by induction on p.

• When p is the empty flag, f∗p is defined as the empty flag and p f := f .

• Suppose that p = sxq, then f∗p := s(q f )(x) f∗q and p f := (q f )x.

• Suppose that p = tq, then f∗p := t( f∗q) and p f := t f .

When q = ξlξl−1 · · · ξ1 is a flag of ω and q = ξmξm−1 · · · ξl+1 is a flag of pω, we define their concate-
nation q ⌢ p as ξm · · · ξ1. It is a flag of ω.

Lemma 3.9

We have the following identites related to flags in epiphytes:

1. Let f : ω → ϖ and g : ϖ → ϱ be two morphisms between epiphytes of the same dimension,
and p a flag of ω. Then (g ◦ f )∗p = g∗ f∗p and p(g ◦ f ) = ( f∗p)g ◦ p f .

2. Let f : ω → ϖ be a morphism of epiphytes of the same dimension, p a flag of ω and q a flag of
pω. Then f∗(q ⌢ p) = (p f )∗q ⌢ f∗p.

Proof.
1. We proceed by induction on p.

• Suppose that p is empty, then there is noting to prove.
• Suppose that p = sxq where x ∈ (qω)•, then

(g ◦ f )∗p = sq(g◦ f )(x) ⌢ (g ◦ f )∗q
= s(( f∗q)g◦q f )(x) ⌢ (g∗ f∗q)
= g∗(s(q f )(x) ⌢ f∗q)
= g∗ f∗p

and
p(g ◦ f ) = (q(g ◦ f ))x

= (( f∗q)g ◦ q f )x
= (( f∗q)g)(q f )(x) ◦ (q f )x

=
(

s(q f )(x) f∗q
)

q ◦ p f
= ( f∗p)g ◦ p f

• Suppose that p = tq, then
(g ◦ f )∗p = t ⌢ (g ◦ f )∗q

= t ⌢ g∗ f∗q
= g∗(t ⌢ f∗q)
= g∗ f∗p

and
p(g ◦ f ) = t (q(g ◦ f ))

= t(( f∗q)g ◦ q f )
= t( f∗q)g ◦ t(q f )
= ( f∗p)g ◦ p f
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2. We proceed by induction on the flag q.

• When q is empty, there is nothing to prove.

• Suppose that q = sxr where x ∈ (rω)•, then

f∗(q ⌢ p) = s((r⌢p) f )(x) ⌢ f∗(r ⌢ p)

= s(rp f )(x) ⌢ (p f )∗r ⌢ f∗p
= (p f )∗q ⌢ f∗p

• Suppose that q = tr, then
f∗(q ⌢ p) = t ⌢ f∗(r ⌢ p)

= t ⌢ (p f )∗r ⌢ f∗p
= (p f )∗q ⌢ f∗p

Definition 3.10 : Face of an epiphyte

Let ω be an epiphyte. The faces of ω are defined as the flags of ω, modulo the rewriting rules:

• qsysxp ↔ qsytp when (x, y) ∈ (pω)|.

• qsysxp ↔ qtsx′p when there is a triplet x −<y x′ in pω.

• qtsxp ↔ qttp when x = ρ(pω).

Notice that the application p 7→ pω descend to the quotient as an application [p] 7→ pω =: [p]ω.
The length of flags is also invariant by rewritings, and the length of a (representant of a) face will be
called the codimension of that face. Given a face [p], we also define sx[p] := [sxp] and t[p] := [tp].

Lemma 3.11

Suppose p
∗↔ q as flags of an epiphyte ω, and f : ω → ϖ a renaming. Then p f = q f .

Proof. It suffice to show the result in the case p = ξξ ′ ↔ ζζ ′ = q.

• Suppose ξξ ′ = sysx ↔ syt = ζζ ′. Then y ∈ ω| and x = η(y). Hence for any z ∈ pω, (sysx f )(z) =
fx, y(z) and (syt f )(z) = fη(y), x(z) = sx, y(z). For the same reason (sysx f )z = (syt f )z, whence the result.

• Suppose ξξ ′ = sysx ↔ tsx′ = ζζ ′. Then there is a triplet x −<y x′ in ω. Hence for any z ∈ pω,
(sysx f )(z) = fx, y(z) and (tsx′ f )(z) = fx′ , η(z)(z) = sx, y(z) because f is a renaming. For the same
reason (sysx f )z = (tsx′ f )z, whence the result.

• Suppose ξξ ′ = tsx ↔ tt = ζζ ′. Then x = ρ(ω). Hence for any z ∈ pω, (tsx)(z) = fx, ηsxω(z)(z) and
(tt f )(z) = fη(ηtω(z)), ηtω(z)(z). According to the proof of Neatness in Lemma 2.2, we have ηtω(z) =
λz(x, ηsxω(z)). Hence, by Lemma 3.6, (tsx f )(z) = (tt f )(z). For the same reason (tsx f )z = (tt f )z,
whence the result.

Lemma 3.12

Let f : ω → ϖ be a renaming and ξξ ′ ↔ ζζ ′ in ω. Then f∗(ξξ ′)
∗↔ f∗(ζζ ′) in ϖ.

Proof. We distinguish on the rewriting rule applied.

• Suppose ξξ ′ = sysx ↔ syt = ζζ ′. Then y ∈ ω| and x = η(y). Hence fx(y) ∈ ϖ| and η( fx(y)) = f (x)
by Lemma 3.3. Since f∗(sysx) = s fx(y)s f (x) and f∗(syt) = s fx(y)t, we have f∗(ξξ ′) ↔ f∗(ζζ ′).

• Suppose ξξ ′ = sysx ↔ tsx′ = ζζ ′. Then there is a triplet x −<y x′ in ω. Hence there is a triplet
f (x) −< fx(y) f (x′) in ϖ. Since f∗(sysx) = s fx(y)s f (x) and f∗(tsx′) = ts f (x), we have f∗(ξξ ′) ↔ f∗(ζζ ′).
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• Suppose ξξ ′ = tsx ↔ tt = ζζ ′. Then x = ρ(ω). Hence f (x) = ρ(ϖ) by Lemma 3.3. Since f∗(tsx) =
ts f (x) and f∗(tt) = tt, we have f∗(ξξ ′) ↔ f∗(ζζ ′).

Lemma 3.13

Let f : ω → ϖ be a renaming and p
∗↔ q two equivalent flags of ω. Then f∗p

∗↔ f∗q in ϖ.

Proof. It suffices to show p ↔ q ⇒ f∗p ↔ f∗q. We proceed by induction on the length of p and q.

• If p = q = [[]] the result is clear.

• Suppose now that p = ξp′ and q = ζq′ with p ↔ q.

– If the rewriting takes place in p′, we have p′ ↔ q′, hence f∗p′ ↔ f∗q′ by induction hypothesis.
Whence f∗p = (p′ f )∗ξ ⌢ f∗p ↔ (q′ f )∗ζ ⌢ f∗q = f∗q, because ξ = ζ and p′ f = q′ f by Lemma
3.11.

– If the rewriting takes place in the leftmost position, we write p = ξξ ′r and q = ζζ ′r. Then
f∗p = (r f )∗(ξξ ′) ⌢ f∗r ↔ (r f )∗(ζζ ′) ⌢ f∗r = f∗q accoring to Lemma 3.12.

Definition 3.14 : Epiphytes morphisms

For each epiphyte ω and face [p] of ω, there is by definition a structural map

ι[p] : pω → ω

More, generally, we define the morphisms of epiphytes ω → ϖ as the pairs ( f , [p]) where [p] is a
face of ϖ of length (dim(ϖ)− dim(ω)), and f : ω → pϖ is a renaming of epiphytes (of the same
dimension), as defined in Definition 3.4. And ι[p] is a short for (id, [p]).
Given two morphisms ( f , [p]) : ω → ϖ and (g, [q]) : ϖ → ϱ, we define their composition as

(g, [q]) ◦ ( f , [p]) := (pg ◦ f , [g∗p ⌢ q]) : ω → ϱ

This is well defined according to lemmas 3.11 and 3.13. We let idω = (idω, [[]]), it is neutral for ◦.

Lemma 3.15 : Associativity of ◦

The composition of morphisms of epiphytes (as defined in Definition 3.14) is associative.

Proof. Let ( f , [p]) : ω → ϖ, (g, [q]) : ϖ → ϱ, (h, [r]) : ϱ → ς be three composable morphisms of epiphytes.
Then we have, using Lemma 3.9:

((h, [r]) ◦ (g, [q])) ◦ ( f , [p]) = (qh ◦ g, [h∗q ⌢ r]) ◦ ( f , [p])
= (p(qh ◦ g) ◦ f , [(qh ◦ g)∗p ⌢ (h∗q ⌢ r)])
= ((g∗p ⌢ q)h ◦ pg ◦ f , [(qh)∗g∗p ⌢ h∗q ⌢ r])

and, on the other hand

(h, [r]) ◦ ((g, [q]) ◦ ( f , [p])) = (h, [r]) ◦ (pg ◦ f , [g∗p ⌢ q])
= ((g∗p ⌢ q)h ◦ (pg ◦ f ), [h∗(g∗p ⌢ q) ⌢ r])
= ((g∗p ⌢ q)h ◦ pg ◦ f , [(qh)∗g∗p ⌢ h∗q ⌢ r])

Whence the associativity of ◦.

Definition 3.16 : Epi

The category of epiphytes Epi has the epiphytes as objects and the epiphytes morphisms as arrows.
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4 Normal form of faces

4.1. Every face admits two distinguished representants, which will be called their normal forms. The exis-
tence of these normal forms allow us to decide easily if two given flags induce the same face. We begin by
characterising the 3-flags inducing a same face.

Definition 4.2 : Type of a 3-flag

We assign to each 3-flag p of an epiphyte ω a type τ(p), as follows:

• For each triplet b −<c b′ in tω, let

>−b=b0 a0 >−b1 · · · >−bp ap = a′q −<b′q · · · −<b′1
a′0 −<b′0=b′

be the paths in ω with c ∈ (sai ω)|, ηsai ω(c) = bi for i < p, b′i = ρ(sa′i
ω) for i < q and a triplet

bp −<c b′q in sap ω. Then we have the following cycle of equivalent flags:

scsbt ↔ scsb0 sa0 ↔ sctsa0 ↔ scsb1 sa1 ↔ · · · ↔ scsbp sap

↔ tsb′q sa′q ↔ ttsa′q−1
↔ tsb′q−1

sa′q−1
↔ · · · ↔ tsb′0

sa′0
↔ tsb′ t ↔ scsbt.

We assign to each flag in this sequence the type I(b, c).

• For each leaf c of tω, let
>−b=b0 a0 >−b1 · · · >−bp ap = ρ(ω)

be the path in ω with c ∈ (sai ω)|, ηsai ω(c) = bi for i ≤ p. Then we have the following cycle of
equivalent flags:

scsbt ↔ scsb0 sa0 ↔ sctsa0 ↔ scsb1 sa1 ↔ · · · ↔ scsbp sap ↔ sctsap ↔ sctt ↔ scsbt.

We assign to each flag in this sequence the type IIc.

• Since the root of tω is b := κ(ρ(ω), ρ(sρ(ω)ω)), there is a path

>−b=b0 a0 >−b1 · · · >−bp ap = ρ(ω)

such that bi = ρ(sai ω) for i ≤ p. Hence there is a cycle of equivalent flags:

ttt = ttsap ↔ tsbp sap ↔ ttsap−1 ↔ · · · ↔ ttsa0 ↔ tsb0 sa0 ↔ tsbt ↔ ttt.

We assign to each flag in this sequence the type III.

Since every 3-flag must appears in exactly one of those cycle, τ is well defined. Moreover, for two
3-flags p, q, we have p

∗↔ q iff τ(p) = τ(q).

Remark 4.3
Notice that for each of the above sequence, there are exactly two flags ξ1ξ2t and ξ ′1ξ ′2t, and moreover ξ1ξ2t ↔
ξ ′1ξ ′2t. Hence, every 3-face of an epiphyte admits exactly two representants ξ1ξ2t ↔ ξ ′1ξ ′2t which are called
their normal forms. We focus now on extending this property to every face of an epiphyte.

Remark 4.4
Notice that any flag of the form scsbsa is equivalent to scsλc(a, b)t.
Similarly, any flag of the form tsbsa is equivalent to tsκ(a, b)t.

Lemma 4.5 : confluence

Let ξ4ξ3ξ2ξ1 ↔ ξ ′4ξ ′3ξ2ξ1 be two 4-flags of an epiphyte ω.

Suppose ξ3ξ2ξ1
∗↔ ξ∗3 ξ∗2 t and ξ ′3ξ2ξ1

∗↔ ξ∗∗3 ξ∗∗2 t, then ξ4ξ∗3 ξ∗2
∗↔ ξ ′4ξ∗∗3 ξ∗∗2 as flags of tω.
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Proof. Notice first that the result does not depend on the choice of ξ∗3 ξ∗2 (resp. ξ∗∗3 ξ∗∗2 ) because they yield
equivalents flags ξ4ξ∗3 ξ∗2 (resp. ξ4ξ∗∗3 ξ∗∗2 ) of tω. If ξ1 = t, then we may choose ξ∗3 ξ∗2 = ξ∗∗3 ξ∗∗2 = ξ3ξ2, hence
the result, we now suppose ξ1 = sa for some a ∈ ω•.
If ξ2 = t and a = ρ(ω) then tsa ↔ tt as flags of ω, so we are done because we are reduced to the case ξ1 = t.
If ξ2 = t and there is a triplet a′ −<b′ a, then tsa ↔ sb′ sa′ as flags of ω.
Hence we may now suppose ξ2 = sb for some b ∈ (saω)•.

• Suppose ξ4ξ3 = sdsc and ξ ′4ξ ′3 = sdt, with d ∈ (sbsaω)|, η(d) = c. By Definition 4.2, the type of a flag
of the form sd ∗ ∗ in tω will always by IId, whence the result.

• Suppose ξ4ξ3 = tt and ξ ′4ξ ′3 = tsc with c = ρ(sbsaω). By Remark 4.4, we may choose ξ∗3 ξ∗2 = tsκ(a, b)

and ξ∗∗3 ξ∗∗2 = scsλc(a, b). Still by Remark 4.4, ξ4ξ∗3 ξ∗2 = ttsκ(a, b) ↔ tsc′ sκ(a, b)
∗↔ tsκ(κ(a, b), c′)t where

c′ = ρ(sκ(a, b)tω), and ξ ′4ξ∗∗3 ξ∗∗2 = tscsλc(a, b)
∗↔ tsκ(λc(a, b), c)t.

Using Lemma 2.5, κ(κ(a, b), c′) = κ(λc(a, b), c), whence the result.

• Suppose ξ4ξ3 = sdsc and ξ ′4ξ ′3 = tsc′ with a triplet c −<d c′ in sbsaω. Using Remark 4.4, we may choose
ξ∗3 ξ∗2 = scsλc(a, b) and ξ∗∗3 ξ∗∗2 = sc′ sλc′ (a, b). Still by Remark 4.4, ξ4ξ∗3 ξ∗2 = sdscsλc(a, b)

∗↔ sdsλd(λc(a, b), c)t

and ξ ′4ξ∗∗3 ξ∗∗2 = tsc′ sλc′ (a, b)
∗↔ tsκ(λc′ (a, b), c′)t.

By Lemma 2.8, there is a triplet λd(λc(a, b), c) −<d κ(λc′(a, b), c′) in ttω, whence the result.

Theorem 4.6 : Normal form of a face

Let ω be an epiphyte, and some face x of codimension p ≥ 2. Then x admits exactly two distin-
guished representants of the form ξpξp−1t · · · t and ξ ′pξ ′p−1t · · · t. Moreover, ξpξp−1 ↔ ξ ′pξ ′p−1 in
tp−2ω. We call them the normal forms of x. Hence a normal form is always defined up to a leftmost
rewriting.

Proof. We proceed by induction on p.
Suppose p = 2, then x admits exactly two representants ξ2ξ1 ↔ ξ ′2ξ ′1, whence the result.
When p = 3, the result is known (see Remark 4.3).
Suppose now p ≥ 4 and the result known in lower dimension. Then we write p = ζp · · · ζ1 = ζpζp−1p

′.
We may first compute a normal form n′ = ξp−2ξp−3t · · · t of p′, then find a normal form ξ∗p−1ξ∗p−2t of
ξp−1ζp−2ζp−3 in tp−4ω, and then find a normal form ξ∗∗p ξ∗∗p−1t of ξpξ∗p−1ξ∗p−2 in tp−3ω. Thus a normal form
n = ξ∗∗p ξ∗∗p−1t · · · t of p.
We now see the uniquess of n (up to one leftmost rewriting). In order to do so, we show that (up to one
leftmost rewriting) n does not change under rewritings of p. Suppose p ↔ q.

• Either the rewriting takes place in ξp−1 · · · ξ1, hence the normal form ξ∗p−1ξ∗p−2t · · · t did not change
up to a leftmost rewriting (by induction hypothesis), which in turn does not change n up to a leftmost
rewriting.

• Or the rewriting is of the form ξpξp−1 ↔ ξ ′pξ ′p−1 in p′ω = n′ω, which leaves n unchanged up to a
leftmost rewriting, according to Lemma 4.5 applied to tp−4ω.

In order to have the uniqueness, suppose now that n and m are two normal forms of p. Then using the
process described above we may compute the normal form of m, which is m up to a leftmost rewriting. But
by invariance under rewritings, we also have m = n up to a leftmost rewriting, whence the uniqueness.

Lemma 4.7

Let p be a flag of length at least 2 in tω for some epiphyte ω. Denoting n a normal form of p and m a
normal form of pt, we have m = nt up to a leftmost rewriting.

Proof. This is a direct consequence of the uniqueness of normal forms.
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Lemma 4.8 : Right regularity of t

Let p, q be two flags of tω for some epiphyte ω, such that pt ∗↔ qt. Then p
∗↔ q in tω.

Proof. If p, q are the null flag or a 1-flag, this is a direct observation. Suppose now that they have length at
least 2. Denoting n a normal form of p and m a normal form of q, we have nt = mt up to a leftmost rewriting
because both are normal forms of pt. Hence there is a sequence of rewritings p ∗↔ n

∗↔ m
∗↔ q in tω.

Definition 4.9 : χ(ξ), χ(p)

Let ω be an epiphte, and ξ be the formal symbol t or sb for some b ∈ ω|. Then χ(ξ) is the following
formal symbol:

χ(ξ) =

{
sρ(ω) if ξ = t.
sη(b) if ξ = sb for some b ∈ ω|.

For p = p′ξ a non empty flag, we let χ(p) = χ(ξ), in such a way that we always have ξt ↔ ξχ(ξ).

Lemma 4.10

Suppose we have ξ2ξ1t ↔ ξ ′2ξ ′1t as flags of some epiphyte ω. Then there is a sequence of rewritings

ξ2ξ1χ(ξ1) = ξ1
2ξ1

1χ1 ↔ ξ2
2ξ2

1χ1 ↔ ξ2
2ξ3

1χ2 ↔ · · · ↔ ξ
p
2 ξ

2p−1
1 χp ↔ ξ

p+1
2 ξ

2p
1 χp = ξ ′2ξ ′1χ(ξ ′1).

such that ∀i, χi ̸= t.

Proof. This is directly seen by case analysis on the type of ξ2ξ1t.

Lemma 4.11

Let ω be an epiphyte, and suppose there is a sequence of rewritings pt ∗↔ qt. Then there is a sequence
of rewritings pχ(p) = p1χ1 ↔ · · · ↔ pqχq = qχ(q) such that ∀i, χi ̸= t.

Proof. We proceed by induction on the sequence length. If the sequence is empty, the result is clear.
We now suppose the sequence to be non-empty, and distinguish on the first rewriting.

• Assume the first rewriting to be of the form ξp · · ·ξi+1ξi · · ·ξ1t ↔ ξp · · ·ζi+1ζi · · ·ξ1t for some i > 1. Since
ξ1tω = ξ1χ(ξ1)ω, the rewriting ξp · · ·ξi+1ξi · · ·ξ1χ(ξ1) ↔ ξp · · ·ζi+1ζi · · ·ξ1χ(ξ1) is licit. We then conclude
by induction hypothesis.

• Assume the first rewriting to be of the form ξp · · ·ξ2ξ1t ↔ ξp · · ·ζ2ζ1t. Then using Lemma 4.10, we find a

sequence of rewritings ξp · · ·ξ2ξ1χ(ξ1)
∗↔ ξp · · ·ζ2ζ1χ(ζ1) with no t appearing in rightmost position. We

then conclude by induction hypothesis.

• Assume the first triplet to be of the form ξp · · ·ξ2ξ1t ↔ ξp · · ·ξ2ξ1χ(ξ1). Let the sequence of rewriting be

ξ1
p · · ·ξ1

1χ1 ↔ ξ2
p · · ·ξ2

1χ2 ↔ · · · ↔ ξ
q
p · · ·ξq

1χq.

Let m := min{i > 1 | χi = t}. Then the (i − 1)-th rewriting is necessarily of the form
ζp · · ·ζ2ζ1χ(ζ1) ↔ ζp · · ·ζ2ζ1t. Hence, picking the subsequence from the second to the (i − 1)-th elements

of the sequence yield a subsequence of rewritings of the form ξp · · ·ξ1χ(ξ1)
∗↔ ζp · · ·ζ1χ(ζ1). We then

conclude by induction hypothesis.
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Lemma 4.12 : Right regularity of sa

Let ω be an epiphyte, a ∈ ω•, p, q two flags of saω and suppose psa
∗↔ qsa.

Then p
∗↔ q as flags of saω.

Proof. We proceed by induction on the length p of p, q.

• Initialisation (p ≤ 1).

• Heredity (p ≥ 2). Suppose now p ≥ 2 and suppose the result known for lower lengths. First, using
Lemma 4.11, we may suppose that no t appears in rightmost position along the sequence of rewritings
psa

∗↔ qsa. Then we may cut the sequence in subsequences of rewritings as follows:

psa = p0ξ0sa0
∗↔ p1ζ0sa0 ↔ p1ξ1sa1

∗↔ · · · ∗↔ pq−1ζq−1saq−1 ↔ pq−1ξqsaq
∗↔ pqζqsaq = qsa.

With a0 = aq = a, and each subsequence piξ isai
∗↔ pi+1ζ isai having no rightmost rewriting. Notice that

each rightmost rewriting ξ isai ↔ ζ isai+1 must have the form tsai ↔ sbi+1 sai+1 or sbi sai ↔ tsai+1 . Hence
there is a zig-zag in the tree structure of ω, following the sequence of nodes a = a0, a1, · · · , aq = a.
We now reason by induction on the length of this path.

– Suppose it is constant on a. Hence the whole sequence of rewritings psa
∗↔ qsa is concentrated as

one subsequence of the form p0ξ0sa
∗↔ p1ζ0sa having no roghtmost rewriting, whence the result.

– Suppose the path is not constant. Then there must be two consecutive triplets of the form
ai −<bi ai+1 >−bi+1=bi ai+2 = ai or ai >−bi ai+1 −<bi+1=bi ai+2 = ai appearing along the zig-zag.
Hence ξ i+1 = ζ i+1 for some i. Thus by induction hypothesis we may find a sequence of rewritings
pi+1 ∗↔ pi+2 in ξ i+1sai+1 ω and assume the subsequence pi+1ξ i+1sai+1

∗↔ pi+2ζ i+1sai+1 to leave
unchnged the two rightmost elements. We may now supress the two rewritings ζ isai ↔ ξ i+1sai+1

and ζ i+1sai+1 ↔ ξ i+2sai+2 in the sequence, which remains well formed. Hence we are reduced to
a smaller case, and conclude by induction hypothesis.

Theorem 4.13 : Right regularity

Let ω be an epiphyte, χ a flag of ω, and p, q two flags of χω. If pχ
∗↔ qχ, then p

∗↔ q in χω.

Proof. This is a direct induction on the length of χ using Lemma 4.8 and Lemma 4.12.

5 From epiphytes to dendritic face structures

5.1. The aim of this section is to associate to any epiphyte ω a dendritic face structure F (ω), and to show
that this construction is functorial. The elements of the poset will be the faces of ω.

Definition 5.2 : face poset F (ω)

Let ω be an epiphyte, define its face poset F (ω) as the following positive-to-one poset:

• The set of elements is given by the faces of ω, as defined in Definition 3.10.

• If [p] is a face of ω with codimension q, dim(a) := dim(ω)− q.

• We define ≺− and ≺+ by

[p] ≺− [q] ⇔ (∃x, [p] = sx[q]) and [p] ≺+ [q] ⇔ [p] = t[q].

Proof. We check that F (ω) as defined above indeed is a positive-to-one poset. We need to see that ≺− and
≺+ are disjoint, the other properties are clear from the definition. Suppose that v ≺+ u and v ≺− u, then
choosing a representant p for u, we have v = [sxp] = [tp] for some x ∈ (pω)•. Hence sxp

∗↔ tp which is
impossible, by Theorem 4.13.
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Remark 5.3
Suppose that [p] ≺− [q], then there is some x such that p ∗↔ sxq. Such a x is uniquely defined because of
Theorem 4.13.

Exemple 5.4
Let ω be the 4-epiphyte considered in Exemple 1.12. We consider its source sa1 ω. Then the poset of its faces
is the following:

⊤

γ(⊤)

c1

d1

c2

d2

c3

d3

c4

d4

γ2(⊤)

γ3(⊤)

|

|

|

b6

c7

b7

| | | |

| |

|

F (sa1 ω)

Where ⊤ denotes [[]], and a face which has a normal form sxq is written x for short.

Proposition 5.5 : Greatest element

The face poset F (ω) of an epiphyte ω admits a greatest element [[]].

Proof. It is clear from the definition of F (ω) that the face asociated to the empty flag [] is a greatest element.

Proposition 5.6 : Oriented thinness

The face poset F (ω) of an epiphyte ω satisfies oriented thinness.

Proof. Let w ≺ v ≺ u in F (ω). Choosing a representant p of u, we may find ξ1, ξ2 such that [ξ1p] = v
and [ξ2ξ1p] = w. The existence part of the lozenge completion follows from the definition of rewriting
rules. Suppose there is a lozenge completion w ≺ v′ ≺ u, then we may find ζ1, ζ2 such that [ζ1p] = v′

and [ζ2ζ1p] = u. Hence ξ2ξ1p
∗↔ ζ2ζ1p. Using Theorem 4.13, it implies ξ2ξ1 ↔ ζ2ζ1 in pω, whence the

uniquenness.

Proposition 5.7 : Acyclicity

The face poset F (ω) of an epiphyte ω satisfies acyclicity.
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Proof. Suppose there is a (non-trivial) cycle of the following form in F (ω).

u

v = v1 v2 v3 vp v1

γ(v2) γ(v3) γ(v4) γ(v1)

p p p p

Then choosing a representant p of u, we find x1, · · · , xp and y1, · · · , yp such that vi = [sxip] and γ(vi+1) =
[tsxi+1p] = [syi sxip] for all i (with vp+1 := v1 and xi+1 := x1). Using the same argument as in te proof
of Proposition 5.6, we have rewritings syi sxi ↔ tsxi+1 in pω for all i. hence (by definition of the rewriting
rules) there must be triplets xi −<yi xi+1 in pω for all i, yielding a cycle in the tree structure of pω, which is
impossible.

Theorem 5.8

The face poset F (ω) of an epiphyte ω is a dendritic face complex.

Proof. This is the consequence of Proposition 5.5, Proposition 5.6, Proposition 5.7.

Proposition 5.9

For any epiphyte ω and [p] a flag of ω, we have an isomorphism φ[p] : F (pω) ≃ cl([p]) given by
ϕ[p]([q]) = [qp].

Proof. Clearly, φ preserves the codimension, hence the dimension because both posets have the same di-
mension. Let u, v be two elements of F (pω), and let q be a representant of u. Suppose v ≺− u, then there
is a x with v = [sxq]. Hence φ(v) = [sxqp] ≺− [qp] = φ(u). Similarly, φ preserves ≺+. Suppose that
φ(u) = φ(v) and let q′ be a representant of v. Then [qp] = [q′p], whence u = [q] = [q′] = v by Theorem 4.13.
Hence φ is injective, so it is a well defined morphism. φ is an isomorphism because both posets have the
same dimension.

Remark 5.10
Notice that we have the relations φ[[]] = id and φ[p] ◦ φ[q] = φ[qp] when it makes sense.

Proposition 5.11

Any renaming of epiphytes f : ω → ϖ induces a morphism F ( f ) : F (ω) → F (ϖ) functorialy in f ,
defined by F ( f )([p]) = [ f∗p].

Proof. Notice first that the well-definedness of F ( f ) follows from Lemma 3.13.
Since f∗(sxp) = s(p f )(x) ⌢ f∗p, F ( f ) preserves ≺−. And since f∗(tp) = t ⌢ f∗p, F ( f ) preserves ≺+.
Since p f is a bijection on nodes, F ( f ) induce a bijection between δ([p]) and δ([ f∗p]) for any p. Moreover, f∗
preserves codimension, and F (ω) has same dimension as F (ϖ), hence F ( f ) preserves dimension. Whence
F ( f ) a morphism of DFC.
The functoriality of F is given by Lemma 3.9. F ( f ) is an isomorphism because dim (F (ω)) = dim (F (ϖ)).

Theorem 5.12 : Functoriality of F

F defines a functor from Epi to DFC by the formula F (( f , [p])) = φ[p] ◦ F ( f ).

Proof. We already have F (id) = F ((id, [[]])) = id ◦ id = id. Let ( f , [p]) : ω → ϖ and (g, [q]) : ϖ → ϱ. Then
(g, [q]) ◦ ( f , [p]) = (pg ◦ f , [g∗p ⌢ q]) : ω → ϱ.

F ((pg ◦ f , [g∗p ⌢ q])) = φ[g∗p⌢q] ◦ F (pg ◦ f )
= φ[q] ◦ φ[g∗p] ◦ F (pg) ◦ F ( f )
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And we are done if we show the equality φ[g∗p] ◦ F (pg) = F (g) ◦ φ[p]. Let r be a flag of F (pω), then we
have the following commutative square:

[r] [(pg)∗r]

[r ⌢ p] [g∗(r ⌢ p)] [(pg)∗r ⌢ g∗p]

F (pg)

φ[g∗p]φ[p]

F (g) Lemma 3.9

Whence the result.

6 From Dendritic Face Complexes to Epiphytes

6.1. In this section, we describe a way to associate an epiphyte to every dendritic face complex. This is done
by induction on the dimension of the DFC, as follows:

Definition 6.2 : E(C)

Let C be a dendritic face complex. We define an epiphyte E(C) of the same dimension:

• When C is 0−dimensional, we let
E(C) := ♦

• When C is n−dimensional with n ≥ 1, we let E(C) be the n−epiphyte defined by:

– (E(C))• = δ(⊤), where ⊤ denotes the maximal element of C.

– The tree structure on (E(C))• is given by the tree structure on δ(⊤).

– For each a ∈ δ(⊤), we let saE(C) := E(cl(a)).

Lemma 6.3

The definition above indeed defines an epiphyte.

Proof. We proceed by induction on the dimension of the poset C.
The result is clear when dim(C) = 0. Suppose now dim(C) > 0 and the result known in lower dimensions.
First, we check that the rooted tree structure on E(C) is neat. If b ∈ E(C), let a be such that b ∈ saE(C), then
by oriented thinness there is a lozenge

⊤

a γ(⊤)

b

p

which characterise a as the lozenge completion of b ≺− γ(T) ≺+ ⊤. Whence the neatness.

Consider now a triplet a −<b a′ in E(C). Then there is a lozenge as above:

⊤

a a′

b

p
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Let c ∈ (sa′E(C))|, then there is a lozenge

a′

b η(c)

c

p

Hence c ∈ (sbsaE(C))•. Conversely if c ∈ (sbsaE(C))•, the completion of c ≺− b ≺+ a′ yields a lozenge
of the above form, where c has to be a leaf of sa′E(C), still by unicity of lozenge completion. Whence
(sbsaE(C))• = (tsa′E)•. For c ∈ (sa′E(C))|, we have sctsa′E(C) = scsη(c)sa′E(C) = E(cl(c)) = scsbsaE(C). It
ramains to prove that sbsaE(C) and tsa′E(C) has same triplets.

Suppose there is a triplet c −<d c′ in sbsaE(C). Then c, c′ ∈ (sa′E(C))| and there is a hexagon

a′

η(c) η(c′)

c c′

d

p

By the hexagon property, we thus have the following diagram in E(C):

a′

b b0 bp−1 bp = b′q b′q−1 b′0 b

c0 c1 cp c′q c′1 c′0

d

p p
p p p p

p p p

Where c0 = c, η(c) = b0 and c′0 = c′, η(c′) = b′0. That is, there is a triplet c −<d c′ in tsa′E(C).
Conversely, given a triplet c −<d c′ in tsa′E(C), we have a shape as above with c0 = c and c′0 = c′, whence

a lozenge
b

c c′

d

p

That is, a triplet c −<d c′ in sbsaE(C).

Lemma 6.4 : tE(C) = E(cl(γ(⊤)))

Let C be a DFC with dim(C) ≥ 1, then tE(C) = E(cl(γ(⊤))).
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Proof. As seen in the proof of Lemma 6.3, because of oriented thinness the leaves of E(C) are the sources of
γ(⊤). Whence (tE(C))• = (E(cl(γ(⊤))))•.
Let b ∈ (tE(C))•, then sbtE(C) = sbsη(b)E(C) = E(cl(b)) = sbE(cl(γ(⊤))).

It remains to see that tE(C) and E(cl(γ(⊤))) has same triplets. This is shown using the hexagon property,
exactly as in the proof of Lemma 6.3.

Definition 6.5 : Flag of a DFC

Let C be a DFC. A flag of C is a sequence

s =
(

xp ≺αp xp−1 ≺αp−1 · · · ≺α2 x1 ≺α1 x0 = ⊤
)

for some p ≥ 0. We say that this flag ends at xp, denoting ↓ s = xp, and has length p.

Definition 6.6 : f(s)

Let s be a flag of C, there is flag in E(C) written f(s) associated to s. It is defined inductively as:

• f(⊤) := [].

• f(xp+1 ≺− s) = sxp+1 ⌢ f(s).

• f(xp+1 ≺+ s) = t ⌢ f(s).

In order to show that this is well-defined, we will inductively check the following property.

Lemma 6.7

Let s be a flag of C a DFC, then f(s)E(C) = E(cl(↓ s)).

Proof. We proceed by induction.

• f(⊤)E(C) = E(C) = E(cl(⊤)).

• f(xp+1 ≺− s)E(C) = sxp+1E(cl(↓ s)) = E(cl
(

xp+1
)
).

• f(xp+1 ≺+ s)E(C) = tE(cl(↓ s)) = E(cl
(

xp+1
)
) by Lemma 6.4.

Lemma 6.8

Let s = (xp ≺αp · · · ≺α1 x0 = ⊤) and s′ = (yp ≺βp · · · ≺β1 y0 = ⊤) be two flags of C a DFC. There is
some k ∈ [[ 1, p − 1 ]] with xi = yi for i ̸= k, αi = βi for i /∈ {k − 1, k}, and there is a lozenge

xk−1 = yk−1

xk yk

xk+1 = yk+1

αk−1

αk

βk−1

βk

if and only if f(s) ↔ f(s′).

Proof. Suppose there is a lozenge as in the statement, we distinguish on the signs appearing in the lozenge.
Let u be the flag xk−1 ≺αk−1 · · · ≺α1 x0 = ⊤, and p := f(s).

• If αk−1 = αk = βk = − and βk−1 = +, then by Lemma 6.7, xk+1 ∈ (pE(C))| and η(xk+1) = xk. There
is some q such that f(s) = qsxk+1 sxkp and f(s′) = qsxk+1 tp, whence a rewriting f(s) ↔ f(s′).
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• If αk−1 = βk−1 = αk = − and βk = +, then by Lemma 6.7 there is a triplet xk −<xk+1 yk in pE(C). There
is some q such that f(s) = qsxk+1 sxkp and f(s′) = qtsykp, whence a rewriting f(s) ↔ f(s′).

• If βk−1 = αk = βk = + and αk−1 = −, then by Lemma 6.7, xk = ρ(pE(C)). There is some q such that
f(s) = qtsxkp and f(s′) = qttp, whence a rewriting f(s) ↔ f(s′).

• The other cases are symmetric to one of the previous ones.

Conversely, suppose f(s) ↔ f(s′), then similarly distinguishing on the rewriting rule applied allow us to
recover a lozenge in C.

Lemma 6.9

Let s, s′ be two flags in C a DFC, then ↓ s = ↓ s′ if and only if f(s) ∗↔ f(s′).

Proof. Suppose ↓ s = ↓ s′. Using Lemma 6.8, it suffices to show that we may find a sequence s = s0, s1, · · · , sq =
s′, where each si differ from si+1 by a lozenge. Pictorially, we seek a combinatorial homotopy between the
flags s and s′ in the hasse diagram of C. We achieve it by induction on the length of s, s′.

• When s, s′ have length smaller than 2, they must be equal, whence the result.

• When s, s′ have length 2, they are equal or differ by exactly one lozenge according to oriented thinness,
whence the result.

• Suppose now s, s′ of length greater than 2, and the result known for shorter flags. We write s =(
z = xp ≺αp · · · ≺x1 x0 = ⊤

)
and s′ =

(
z = yp ≺βp · · · ≺β1 y0 = ⊤

)
. Notice that, up to finding a

lozenge completion for x2 ≺ x1 ≺ x0 (resp. y2 ≺ y1 ≺ y0), we may suppose α1 = − (resp. β1 = −).
Then using Lemma 3.15 or 3.16 of [1] – according to the sign of α2 (resp. β2) – to the chain
x3 ≺ x2 ≺ x1 ≺− x0 (resp. y3 ≺ y2 ≺ y1 ≺− y0), we find u =

(
xp ≺αp · · · ≺α4 x3 ≺α3 x′2 ≺− γ(⊤) ≺+ ⊤

)
(resp. u′ =

(
yp ≺βp · · · ≺β4 y3 ≺β3 y′2 ≺− γ(⊤) ≺+ ⊤

)
) such that s and u (resp. s′ and u′) are re-

lated by a sequence of lozenges. We now have two flags v =
(
xp ≺αp · · · x3 ≺α3 x′2 ≺− γ(⊤)

)
and

v′ =
(

yp ≺βp · · · y3 ≺β3 y′2 ≺− γ(⊤)
)

of cl(γ(⊤)) ending at the same point. Hence by induction hy-

pothesis, they are related by a sequence of lozenges. Whence s and s′ being related by a sequence of
lozenges.

Convrsely, suppose f(s) ∗↔ f(s′), then using Lemma 6.8 we obtain that s and s′ differ by a sequence of
lozenges. Since modifying a flag by a lozenge does not change its end, we have ↓ s = ↓ s′.

Definition 6.10

Let f : C → D be an isomorphism of DFC (i.e. a morphism with dim(C) = dim(D)). There is a
renaming of epiphytes E( f ) : E(C) → E(D) defined inductively as:

• id : ♦ → ♦ if dim(C) = 0.

• When dim(C) > 0:

– f
∣∣δ(⊤D)

δ(⊤C)
: E(C) → E(D) on the tree structure.

– For a ∈ δ(⊤C), E( f )a := E
(

f
∣∣cl( f (a))
cl(a)

)
.

where ⊤C (resp. ⊤D) is the greatest element of C (resp. D).

Lemma 6.11

Definition 6.10 indeed define a morphism of epiphytes.
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Proof. We proceed by induction on the dimension of C, D.
When dim(C) = dim(D) = 0, the result is clear.
Suppose now dim(C) = dim(D) > 0 and the result known in lower dimensions.

E( f ) preserves triplets :

Suppose a −<b a′ in E(C), then there is a lozenge in C as follows:

⊤C

a a′

b

p

Hence there is a lozenge as below in D.

f (⊤C) = ⊤D

f (a) f (a′)

f (b) = fa(b)

p

Whence a triplet f (a) −< fa(b) f (a′) in E(D).

relations on E( f )a, b and E( f )a, b, c :

Suppose a −<b a′ in E(C), and let c ∈ (sa′E(C))| with η(c) = b′.

Then E( f )a, b(c) = E
(

f
∣∣cl( f (b))
cl(b)

)
(c) = f (c) = E

(
f
∣∣cl( f (b′))
cl(b′)

)
(c) = fa, b′(c).

And E( f )a, b, c = E
(

f
∣∣cl( f (c))
cl(c)

)
= E( f )a′ , b′ , c.

Remark 6.12
For f : C → D an isomorphism of DFC and y ≺− xp ≺− xp−1 ≺− · · · ≺− x0 = ⊤C, E( f )x1, · · · , xp(y) = f (y).

Definition 6.13

Let f : C → D be an isomorphism of DFC, and s = (xp ≺αp · · · ≺α1 x0 = ⊤C) a flag of C. Then its
image under f is written f∗s = ( f (xp) ≺αp · · · ≺α1 f (x0)), it is a flag of cl( f (⊤C)).

Lemma 6.14

Let f : C → D be a isomorphism of DFC, s a flag of C and x = ↓ (s). Then f(s)E( f ) = E
(

f
∣∣cl( f (x))
cl(x)

)
.

Proof. By induction on s.

• If s = (⊤C), it is clear.

• f(x ≺− s)E( f ) = (sx ⌢ f(s))E( f ) = E
(

f
∣∣cl( f (↓s))
cl(↓s)

)
x
= E

(
f
∣∣cl( f (x))
cl(x)

)
.

• f(x ≺+ s)E( f ) = (t ⌢ f(s))E( f ) = tE
(

f
∣∣cl( f (↓s))
cl(↓s)

)
.

For y ∈ tE(cl(↓ s)), we have tE
(

f
∣∣cl( f (↓s))
cl(↓s)

)
(y) = E

(
f
∣∣cl( f (↓s))
cl(↓s)

)
η(y)

(y) = f (y) = E
(

f
∣∣cl( f (x))
cl(x)

)
(y).

And this is well-defined according to Lemma 6.4.

Remark 6.15
Hence, if f : C → D is an isomorphism of DFC, s is a flag of C and x ∈ δ(↓ s), f(s)E( f )(x) = f (x).

28



Lemma 6.16

Let g : C → D be an isomorphism of DFC and s a flag of C, f(g∗s) = E(g)∗f(s).

Proof. We proceed by induction on s.

• When s = (⊤C), g∗s = (g(⊤C)). Hence f(g∗s) = [] = E(g)∗f(s).

• f(g∗(x ≺− s)) = sg(x) ⌢ E(g)∗f(s)
Remark 6.15

= sf(s)E(g)(x) ⌢ E(g)∗f(s) = E(g)∗f(x ≺− s).

• f(g∗(x ≺+ s)) = t ⌢ E(g)∗f(s) = E(g)∗(t ⌢ f(s)) = E(g)∗f(x ≺+ s).

Definition 6.17

Let f : C → D be a morphism of DFC, then there is an associated morphism of epiphytes
E( f ) : E(C) → E(D) (in the category Epi) defined as E( f ) =

(
E
(

f |Im( f )
)

, [f(s)]
)

, where s is any
flag ending at f (⊤) in D. Since f(s) does not depend on s (by Lemma 6.9), it is well defined.

Theorem 6.18

E as defined above on DFC and their morphisms yields a functor E : DFC → Epi.

Proof. Clearly, E preserves identities. We prove that it preserves composition.

Let f : C → D and g : D → E be two morphisms of DFC and let f ′ := f
∣∣cl( f (⊤C)), g′ := g

∣∣cl(g(⊤D)).

Then E(g ◦ f ) =
(
E
(
(g ◦ f )

∣∣cl((g◦ f )(⊤C))
)

, [f(s)]
)

for any flag s with ↓ s = (g ◦ f )(⊤C).
Chosing a flag s f of D ending at f (⊤C) and a flag sg of E ending at g(⊤D), we may define s as the concate-
nation of sg and g∗(s f ). Hence f(s) = f(g∗(s f )) ⌢ f(sg) where f(g∗(s f )) is computed in E(cl(g(TD))).
By Lemma 6.16, f(s) = E(g′)∗f(s f ) ⌢ f(sg).

On the other hand, by Remark 6.15, E
(
(g ◦ f )

∣∣cl((g◦ f )(⊤C))
)
= f(sg)E(g′) ◦ E( f ′).

Whence, by Definition 3.14, E(g ◦ f ) =
(
f(sg)E(g′) ◦ E( f ′), [E(g′)∗f(s f ) ⌢ f(sg)]

)
= E(g) ◦ E( f ).

7 An equivalence of categories

Definition 7.1

Let ω be an epiphyte and p a flag of ω. According to Proposition 5.9, there is an isomorphism
φω
[p]

: F (pω) → cl([p]). We then define ψω
[p]

as E(φω
[p]
) : (E ◦ F )(pω) → E(cl(p)).

By Remark 6.12, we have ψω
[p], α1, ··· , αp

([q]) = [qp] whenever this expression makes sense.

Definition 7.2

Let ω be an epiphyte and p = ξp · · · ξ1 a flag of ω, we define p̄ a flag of F (ω) as

p̄ =
(
[ξp · · ·ξ1] ≺ [ξp−1 · · ·ξ1] ≺ · · · ≺ [[]]

)
.

Notice that ↓ p̄ = [p].

Definition 7.3

Let ω be an epiphyte, there is a renaming θω : ω → (E ◦ F )(ω), defined inductively as follows.

• When ω = ♦, θ♦ = id.

• When dim(ω) > 0, θω
x1, · · · , xp

(x) := [sxsxp · · · sx1 ].
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Proof. We check that this is well-defined.
By Theorem 4.13, ∀p, ∀x1, · · · , xp, θω

x1,· · · , xp
: (sxp · · · sx1 ω)• → δ([sxp · · · sx1 ]) is injective. The surjectivity is

by definition. We check that it preserves triplets. Let x −<y x′ be a triplet in sxp · · · sx1 ω.
Then [sysxsxp · · · sx1 ] = [tsx′ sxp · · · sx1 ]. We then have a lozenge

[sxp · · · sx1 ]

[sxsxp · · · sx1 ] [sx′ sxp · · · sx1 ]

[sysxsxp · · · sx1 ]

p

in F (ω). Whence a triplet θω
x1, · · · , xp

(x) −<θω
x1, · · · , xp , x(y)

θω
x1, · · · , xp

(x′) in F (ω).

Still suppose that there is such a triplet x −<y x′, with z ∈ (sx′ sxp · · · sx1 ω)| and η(z) = y′. Then we have
θω

x1, · · · , xp , x, y(z) = [szsysxsxp · · · sx1 ] = [sztsxx′sxp · · · sx1 ] = [szsy′ sx′ sxp · · · sx1 ] = θω
x1, · · · , xp , x′ , y′(z).

And similarly for the second identity.

Lemma 7.4

Let ω be an epiphyte and p a flag of ω. Then θω
∗ p = f(p̄) and pθω = ψω

[p]
◦ θpω.

Proof. By induction on p.

• θω
∗ [] = f([[]]) and θω = id ◦ θω = ψω

[[]]
◦ θω.

• θω
∗ (sxp) = s(pθω)(x) ⌢ f(p̄) = s[sxp] ⌢ f(p̄) = f(sxp),

and sxpθω = sx(ψω
[p]

◦ θpω) = ψω
[p], [sxp]

◦ θpω
x = ψω

[sxp]
◦ θsxpω.

• θω
∗ (tp) = t ⌢ f(p̄) = f(tp),

and for any y, tpθω(y) = (tψω
[p]

◦ tθpω)(y) = tψω
[p]
([sysη(y)]) = [sysη(y)p] = [sytp] = (ψω

tp ◦ θtpω)(y).

Lemma 7.5

Let f : ω → ϖ be a renaming of epiphyte, then we have (E ◦ F )( f ) ◦ θω = θϖ ◦ f .

Proof. By induction on dim(ω) = dim(ϖ).

• When dim(ω) = 0, f = id and ω = ϖ, whence the result.

• Suppose dim(ω) > 0 and the result known in lower dimensions.
For a ∈ ω•,

(E(F ( f )) ◦ θω)(a) = E(F ( f ))([sa])
= F ( f )([sa])
= [s f (a)]

= θϖ( f (a))

and
(E(F ( f )) ◦ θω)a = E(F ( f ))[sa ] ◦ θω

a

= E
(
F ( f )

∣∣cl([s f (a) ])
cl([sa ])

◦ φω
[sa ]

)
◦ θsaω

= E(φϖ
[s f (a) ]

◦ F ( fa)) ◦ θsaω by (∗)
= ψϖ

[s f (a) ]
◦ θs f (a)ϖ ◦ fa by induction

= θϖ
s f (a)

◦ fa by Lemma 7.4.

where (∗) is given by the equality F ( f )| ◦ φω
[sa ]

= φϖ
[s f (a) ]

◦ F ( fa), as it may be directly checked.

30



Proposition 7.6

The isomorphism of epiphytes θω is natural in ω.

Proof. Let ( f , [p]) : ω → ϖ be a morphism of epiphytes.

θϖ ◦ ( f , [p]) = (pθϖ ◦ f , [θϖ
∗ p]) by Definition 3.14

= (ψϖ
[p]

◦ θpϖ ◦ f , [f(p̄)]) by Lemma 7.4

On the other hand, E(F ( f , [p])) =
(
E(φϖ

[p]
◦ F ( f )), [f(p̄)]

)
(because ↓ p̄ = [p] = F ( f )(⊤)).

And E(φϖ
[p]

◦ F ( f )) = ψϖ
[p]

◦ E(F ( f )). Then (E ◦ F )( f , [p]) =
(

ψϖ
[p]

◦ E(F ( f )) ◦ θω, [f(p̄)]
)

.
The equation E(F ( f )) ◦ θω = θpϖ ◦ f hold by Lemma 7.5, whence the commutative diagram:

ω ϖ

(E ◦ F )(ω) (E ◦ F )(ϖ)

θω θϖ

f

(E◦F )( f )

Definition 7.7

Let C be a DFC, we let τC : C → (F ◦ E)(C) : x 7→ [f(s)] where ↓ s = x. This is well-defined according
to Lemma 6.9. It is an isomorphism of DFC.

Proof. Notice that C as same dimension as (F ◦ E)(C). We only need to wheck that τC is a morphism.

• For any x ∈ C, its codimension is the length of s for any flag with ↓ s = x, and it is also the length of
f(s). Hence τC preserves the codimension, thus the dimension.

• Let y ≺− x in C, and s a flag of C with ↓ s = x. Let s′ = (y ≺− s).
We have [f(s′)] = [sy ⌢ f(s)] ≺− [f(s)]. Whence τC(y) ≺− τC(x). Similarly, τC preserves ≺+.

• Using Lemma 6.9 we obtain the injectivity of τC.

Let x ∈ C and s a flag in C with ↓ s = x, it remain to check that τC
∣∣δ([f(s)])
δ(x) is surjective. We have

δ([f(s)]) = {[sy ⌢ f(s)]}y∈(f(s)E(C))• = {[f(y ≺− s)]}y≺−x, whence the surjectivity.

Proposition 7.8

The isomorphism τC is natural in C.

Proof. Let g : C → D be a morphism of DFC, x ∈ C and s a flag of C with ↓ s = x, we have:

((F ◦ E)(g) ◦ τC)(x) = F (E(g))([f(s)]) by Definition 7.7
= F (E(g′), f(u))([f(s)]) where g′ = g|Im(g), u a flag in D with ↓u = g(⊤C)
= (φ[f(u)] ◦ F (E(g′)))([f(s)])
= φ[f(u)](E(g′)∗[f(s)])
= φ[f(u)]([f(g′∗s)]) by Lemma 6.16.
= [f(g′∗s) ⌢ f(u)]
= [f(v)] for v the concatenation of g′∗s and u
= τD(g(x)) because ↓v = g(x).
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Theorem 7.9 : Epi ≃ DFC

There is an equivalence of categories

Epi DFC

F

E

Proof. This is by Proposition 7.6 and 7.8.
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