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1 Epiphytes

In this section, we describe epiphytes. They consist in trees where nodes are labelled by trees, whose nodes
are labelled by trees... etc. They are a structure dedicated to encoding the combinatorics of opetopes. We
need first a notion of rooted tree, which is defined below:

—[ Definition 1.1 : Rooted tree }

A rooted tree T consist of:
* A finite set of nodes T*.
e For eachnode a € T*, a finite set A(a), called the arity of a.

* A (necessarily finite) set of triplets, denoted a —<j, a’ for somea, a’ € T* and b € A(a). Moreover
we ask that for eacha € T* and b € A(a), there is at most one triplet a —<; a’. If there is at least
one, (a, b) is called an inner edge of T, otherwise it is said to be a leaf of T. We let

Tl:={(a, b)leafof T}  and  TT:={(a, b) inner edge of T}.

We moreover ask for a distinguished element p(T) € T*, called the root of T, satisfying the following
property: for each node a € T*®, there is a unique (descending) path in T

a=ag>p, a1>p, - >p, ap = p(T)

from a to the root of T.

\

Remark 1.2
Notice that if it exists, the root is uniquely determined.

Exemple 1.3
Below is a representation of the rooted tree T having

asnodes T* := {ay, a, a3, a4}

as arities

A(ay) = {bs, b7} A(az) = {by, bs} A(az) = {by, b3} A(ay) = {by, bs}

as triplets

a1 —<pg 42 a1 —<p, a4 az —<pg a3

® asrootaj.




—[ Definition 1.4 : neat rooted tree }

Let T be a rooted tree, T will be called neat iff the second projection

pro: Tl = Usere T(a)
(a,b) — b

is injective. We then identify the leaf (a4, b) with b € A(a), and let 57(b) := a (or #7(b) := a if needed).
For a neat rooted tree T, the set T! will be replaced by its second projection.

\

1.5. We now describe the main definition of this section. Since the notion of epiphyte is closely entangled
with that of their target with which they call each other, we blend those definitions in the following three

mutually recursives ones. In the following, all the trees considered will be neat.

Definition 1.6 : Epiphyte

We define inductively epiphytes w and their dimension dim(w), as follows:

¢ There is only one epiphyte of dimension 0, which is denoted by 4. We let 4° :

* Suppose that we have defined epiphytes of dimension k < n for some n € IN, together with
their targets. Then a (1 4 1)-epiphyte w consists in the following data:

— A structure of neat rooted tree, which we also denote w.
- For each a € w*, a n-epiphyte s,w with (s,w)® = A(a), called the source at a.

Such that we have, for each triplet a —;, a’ of w, the equality of epiphytes s;s,w = tsyw.

\.

Remark 1.7
Notice that since 4°* = @, a 1-epiphyte is always of the form M, with B} = {a}, A(a) = @ and no triplets.

—]{ Definition 1.8: A, « |
Let w be an epiphyte of dimension > 1,and a € w*®, b € A(a).
e For ¢ € A(b) (in s,w) or equivalently ¢ € (sps,w)®, we define Ac(a, b) € wl by increasing
induction on the height of a in the tree structure of w.

- If (a, b) € wl, then Ac(a, b) :=D.
— If there is a triplet a —<;, @’ in w, then using the equality s,5,w = ts,w, we have ¢ € (syw)!.

Hence we may define A¢(a, b) := Ac(a’, 5(c)).
 We define x(a, b) € w! by increasing induction on the height of a in w.

— If (a, b) € wl, then k(a, b) := b.
— If there is a triplet a < 4’ in w, then x(a, b) := x(a’, p(s,w)).

Definition 1.9: target

Let w be a (1 + 1)-epiphyte with n > 0, then its farget tw, a n-epiphyte, is defined as follows.

o (tw)® = wl
e Foreachb € wl, welet A(b) := (spsy(pyw)* and sptw := sps, (pyw.
e For every a € w® and every triplet b —< b’ in s,w, there is a triplet A¢(a, b) —<.x(a, b’) in tw,

and the root is k(o (w), p(Sy(w)@))-

\

1.10. Correctness of Definition 1.9 (which implies that of Definition 1.6) will be the aim of Theorem 2.9.




Remark 1.11
Suppose that there is a path
}h() ap >—b1 e >*bp:b Llp =a

in an epiphyte w with dim(w) > 1, and there is ¢ € (sps,w)® with A¢(a, b) = by, n(bg) = ap.
Then we have

scs/\c(a,b)tw = ScSpySagW = ScSp, S = -0 = SCShpSapa) = S:SpSqaWw
dz c7 c3 dz
% (e (bs) (bs) C I8
dy Co C4 c2 cg d3

ShySaz W ShsSa, W

szsu3a) SaS(U Sa4w Sb4Sg4w

SheSa, W Sp,Sa, W Sa, W Say W Sb,Sa, W

Sy Say W

Exemple 1.12
We have depicted above a 4-epiphyte (that is, of dim. 4), which formalise the picture of the introduction. For
brevity, the 1 and 0-dimensional sources are left implicit.

Exemple 1.13
In the case of the 4—epiphyte above the target is the 3—epiphyte tw having

¢ Asnodes the leaves by, by, b3, by and bs of w.

e As arities

A(b1) = {c1, cs} A(b2) = {cy, c6} A(bs) = {c7}
A(by) = {c2, cs} A(bs) = {cs}
and the corresponding sources as in the definition above.
e As triplets
b3 —<¢, by induced by bg <, by in s, w
b1 —<¢s by induced by by <, bg in s4,w
by —<, bz induced by by <, b3 in s;,w

by —<¢q bs induced by by —<¢, bs in sp,w



* Asroot by.

And below is a graphical representation of the tree associated to fw.

We may also compute ts,, w and tts,, w as below:

(=)
N

AN
NN
&)

Sy, w

(o)
N

tsqw

r—' Lemma 1.14 I N

Let w be a n-epiphyte with n > 1, and b € (s5,w)*, by € w! such that there is a path

>—p, 11(bo) > a (bo = b when 77(bp) = a)

in w. Then there is a path
bo>— by> -~ > b, =x(a, b)

in tw, such that
Vi, ﬂ(bz) >>—p a

\

Proof. We proceed by decreasing induction on the height of 4 in the tree structure of w.

When b is a leaf, x(a, b) = b = by, hence there is a trivial path between by and x(a, b).

Suppose now that b is not a leaf, and let a’ be such that a —<; a’. We suppose that the result is known for
every b’ € A(a"). Let b’ be such that (by) > a’ > a. We again proceed by induction: on the increasing
height of ¥’ in the tree structure of s, w.



e Suppose that b’ = p(ssw).
Then x(a’, V') = x(a, b). Because of the induction hypothesis on b’, we may find a path

bo> by> -+ > b, =«(d’, V') =«(a, b)
in tw, such that for for all i, we have 7 (b;) > a’ >, a. Whence the result.

* Suppose that there is a triplet b —< b’ in s, w.
Then there is a triplet x(a’, b’)>—; Ac(a’, b") in tw. Hence, using the first induction hypothesis on
b' € A(a’), we may find a path

bo> by> -+ > by =x(a’, b') > Ac(a’, b")

such that
Vi, n(b;)>>—y a'>pa

Using the second induction hypothesis, we may find a second path
Ac(a', ") = by>= by > --- > by = «(a, b)

such that
Vi, n(b)) >} a

Concatenating those two paths yields the result.

2 Correctness

2.1. The aim of this section is to prove the following:

(n>0) P,: n-epiphytesand their target are well defined
(n>2) Qu: any n-epiphyte w satisfies ts, . w = ttw

by strong induction on #n > 0. In the case n = 0 and n = 1, P, is clear. From now on, we let n > 2, and
suppose Px, Oy for k < n such that those are defined.

Lemma 2.2

The target of a n-epiphyte is a neat rooted tree.

Proof. Let w be a n—epiphyte.

At most one triplet b —<, —:
Let b, b’ be two leaves of w and let a := 5(b), a’ := 5(b'), suppose that ¢ € (spytw)® = (spsaw)®, and
that there is a triplet b —<.b'. Let

/ ! /
a=ag>yp, a1>p, - >, ap = p(w) (resp. ' =ag>—y ay>—y o >y dy = p(w))

be the descending path from a (resp. a’) to the root in w. By definition of triplets in fw, there are two
integers [, m with | < p and m < g such that

- a; = am.
- Vi<, c€ (spw) withb; = Msa 0 (€)-
- Vi<m, b= p(sgw).
— there is a triplet b; —< b}, in s4,w.
This forces

~ I=min{i | c ¢ (sqw)'}.



- m=min{i | b} # p(syw)}.
Thus b, and hence b}, are uniquely determined, and b’ is uniquely determined as being «(a;, b},).

Unique path to the root :

The fact that for every b € (tw)® there is a path to the root is given by Lemma 1.14. As to see the
unicity of such a path, it suffices to show that for every b € (tw)®, there is at most one triplet of the
form b’ —< b in tw.

Because of the definition of triplets in tw, there is such a triplet iff there is a path

>_b=b0 a=dag >_b1 s >_bp ap
with, Vi < p, b; = p(sy;), and a path

[—— e —
>_b’:b6 a =da >—bi >—b'/7 ﬂq = ﬂp

such that Vi < p, ¢ € (saﬁw)‘, with a triplet b"7 —<cbp in sy,0. Hence, a, is entirely determined as the
first node on the path from a to the root such that b, # p(ss,w). Then, c and b"a are also characterised
by the triplet b[] ~< by in 54,. It determines b as Ac(ap, bt/i)

Neatness :

Let ¢ € (tw)l, where ¢ € (sps,w)®, we need to check that b can be recovered from c. In fact, we will
show that b = 74, (c) = Ac (p(w), ’75P<w>w(c)>- Let

>Th=by @ = A0> by T T h=b Ap = p(w)
be the descending path from b to the root in w. We show by induction on i < p the following property
(0<i<p) Pi : c € (sgw) and Msa,w(€) = b;

— Initialisation (i = 0) : Suppose that there is a triplet b —<. b’ in s,w, then by definition of tw, there
is a triplet Ac(a, b) —<.x(a, ') in tw. Since ¢ is a leaf in tw this is impossible, whence ¢ € (s,w)!.
Nsaw(€) = b is by assumption.

~ Heredity : Suppose the result known for some i < p. Using the equality (sp,54,w)! = (s, 18aqW)*,
we have ¢ € (sp,,,54;,,)°. As above, there is no triplet b;y; —< b’ in sy, w because ¢ € (tw)l.
Hence ¢ € (

suiﬂw)‘. Since ¢ € (sp,,,54;,,)®, we have Msay g (c) = bjy1.

Especially, we have shown b’ = Usp(w)w(c)- Using P; (i < p) we also have b = A (p(w), V).
Whence b = #4,(c) = A¢ (p(w), Wsp(w)w(c)>- O

Lemma 2.3

Let w be a n-epiphyte, then (ts,(,yw)* = (ttw)*®. Moreover, for all ¢ € (ttw)®, scts,(,)w = scttw.

Proof.
Nodes :

When showing neatness in the proof of Lemma 2.2, we have already shown the inclusion (tw)l C
(sp(w)w)|. We then show the converse. Let ¢ € (sp(w)w)| and suppose there is a triplet b —<. V' in tw.
Then there are two paths

>—p=by A0>—py " >—p, Ap =4 and >—p=p, a’0>—h1 >y a; =a

such that ¢ € (sq,w)], Msy(c) = bifori < pand b} = p(syw) for i < g, together with a triplet b, —<. by

in s,w. Extending the first path down to the root, we get to see ¢ € (s,w)!, hence there can not be a
triplet b, —<. b"a in s,w. So there is no triplet b —. b’ in tw, hence ¢ € (tw) |. This yields the inclusion

(tw)l D (sp(w)w)|,whence the equality (tw)® = (s, w)*.



Sources :

Let ¢ € (tw)®, and let b := n1,(c), a := u(b), V' := Usp(w)w(c)- Then using Remark 1.11, we have
5cSpSa = ScSp'S w, that is s ttw = SctSpwtw. ]

r—‘ Lemma 2.4 l

Let w be a n-epiphyte and b’ € (syw)®, b € (spw)*®, such that there is a path

o(w)

!/
a'=ag>p  >p,=pap =4
in w. We suppose moreover that for all i < p, there is a path in s,,w

bi = bY>—q o> b = plsa)
such that Vj < g;, cg =p (sb{saiw> . Then there is a path in fw.

K(a’, b/) - )(CIO, bO) <p(

e 1 pi
P(Sbosao“’ stSaO“’) _<P (SW—lsaﬂ—l“’) /\p(sb‘?sa‘?“’) (a /b )

where a7 = g, b7 = b and

Vi, p(spisuw) = p <S/\ (af,bf)t“’)
p(sbisaiw)

\

Proof. We proceed by induction on the increasing height of x(a’, b’) in the tree structure of tw. Let
/ A |
>—b6 a0>—bi >_hé:b/ ag =a

be the path in w such that b = x(a, b) € wl, and b, = p(syw) fori < s.
Then we have an extended path

/ o/ . !/ — —
ZTb) 2077 pi=b As = 4 2T =by ZTb yi=bp=b Asp = Ap = 4

And welet ] := s+ p, ¢ := p(sy Sy w), and r := max{r' € [0,1] | Vi <, c € (syw)'}. Note that for all
i <, thereis apathins,w

!
A X 4
bi = b > Clq?bi = p(sqw)
i

1

such that Vj < ¢/, o = Iy <sb,,:sa;w>. Hence, if p(sys,w) € (saﬁw)‘, then by Definition 1.9, it is the root of
£ = Sy Sq1 | W, hence ¢ = p(sysyw) = p(sb<+1sa<+lw). Thus, we always have ¢ = p(sy s, w).
e Eitherr =1, x(a’, V') = Ac(a, b) = Ap(sbsaw)(a, b), and we have the result with p = 0.

e Orr<l,and x(a, V') = Ac(al, b). Weleta” := a). Since r < I, we have (b}, ¢) € (sa;w)? and there is
a triplet b, —<.b" in s,nw. Hence there is a triplet x(a’, ') = Ac(a), b,) —<cx(a”, V") in tw. Moreover,

there is still a path a” = a, >yt >Tp=p @ = @in w, where bj = bbecause r < I. And we have
r
!
"ol "o 1l " I
bO =D >_C;’:=C bl = br >_C£/:=C’} s >_c”, ':C/Z/r bn]§+1 =D rr = p(SuL(U)
1

where Vj < g, +1,¢/ =p (sb;/sa;w) Hence, we may use the induction hypothesis to extend the path
from «(a”, b").

As to see the last assertion, we shall check that ¢ = p(s) (4, b;)tw), thatis: ¢ = p(sbés%w). This is the
definition of c. O



Lemma 2.5

Let w be an n-epiphyte, b € (s,w)*, ¢ = p(sps,w) and ¢’ = p(sy (4, ) tw).
Then «(Ac(a, b), ¢) = x(x(a, b), ').

Proof. By Lemma 2.4, there is a path
Kk(a, b) = by <g—ey b1 <¢; - ~<cp 1 bp = Ac(a, b)
where c; = p(sy, tw) for all i, including ¢, := c. Hence, k(A¢(a, b), ¢) = x(x(a, b), c’). O

r—‘ Lemma 2.6 l

Let w be a n-epiphyte and a triplet b —<. V' in s,w.

o For every leaf d € (sys,w)l we have Ay(Ac(a, b), ¢) = Ag(Aw(a, B), ¢') where ¢’ = 5(d).

o If ' = p(sys,w), we have k(Ac(a, b), ¢) = k(Au(a, V'), ).

Proof.

e Letd € (sys,w)! and ¢’ := 5(d). Since there is a triplet b’ > b in s,w, there is a triplet
k(a, b') > Ac(a, b) in tw. Hence, by Lemma 1.14, there is a path

Ag(a, b')>>— x(a, b') > Ac(a, b) in tw.

Since d € (sys.w)!, we have d € (scs5,w)* because of the triplet b —<.b’. Hence d € (ScSp(a,p)tw)®
(this is by Remark 1.11) and it implies the desired equality.

e In this configuration, there is a triplet Ac(a, b) —<«(a, b’). Using Lemma 2.4, there is a path
K(LI, b/) = bo <CO bl —~<e v <Cp—1 bp = /\C/(LI, b/)

where ¢; = p(sp,tw) for all i, including ¢, := ¢’. Hence, x(Ac(a, b), ¢) = (A (a, V'), ¢'). O
r—i Lemma 2.7 l
Let w be a n-epiphyte of dimension > 3, and let b, ¢ be such that ¢ € (sps, () w)*.
o Vd € (sespsp(yw)®,  Aalb, ) = Ag(Ac(p(w), b), c).
* x(b, c) =x(Ac(p(w), b), c).

Proof.

* Letd € (scspSp()w)®, and let
>_C0 bO >_C1 e >_Cp:C bp - b

be the path such that A4(b, ¢) = cg € (sp()w) |. Then Lemma 2.6 yields
Aa(Ac(p(@), b), €) = Ag(Ac,_, (p(w), bp-1), cp1) = - = Aa(Aqy(0(w), bo), co)

and Ag(A¢, (p(w), bo), co) = co is already a leaf of tw, because it is a leaf of s, w (we use Lemma 2.3).
Whence the first equality: A4(b, ¢) = Ay(Ac(p(w), b), ).

e Let
>y bo>—¢; -+ >—cp=c bp =b

be the path such that «(b, ¢) = cg € (sp(w)w)|. Then Lemma 2.6 yields

K(Ac(p(w), b), ¢) = x(Ac,_, (p(w), bp-1), cp-1) = -+ = k(Ao (0(w), b0), 0)
and x(A¢,(0(w), bo), co) = cp is already a leaf of tw, because it is a leaf of s,(,,)w (we use Lemma 2.3).
Whence the second equality: «(b, ¢) = k(A (p(w), b), ). O




Lemma 2.8

Let w be a n-epiphyte, and ¢, ¢’ € (sp8,w)*, d € (Scspsaw)®. Then

(c <) & (Aa(Acla, b), ¢) << x(A(a, b), ).

Proof. We proceed by induction on the height of 4 in w.
* Whenb € (s,w)® is aleaf, Aj(Ac(a, b), ¢) = Ay(b, ¢), and k(A (a, b), ¢') = (b, ¢’). Hence

Def. of tw f
c —<sdb5”w I IR c <Zb w
Def, of ttw
= Adg(b, c) <HYx(b, )

Equations above

hand Aa(Ac(a, b),) < k(A (a, b), )

* When there is a tripleta <, 4 in w,

SpSaw=tspw N
¢ {;bsaw o bSa i c {;suw c

Def. of tsyww SpSaw

<~ C—=<y ¢

where b>>—; band b’ >4 bin
Inducti .
nquction Ad()\ (a

It remains to show that Ay(As(, b), &) = Ay(Ac(a, b), ¢) and k(Aw(a, B), &) = k(Aw(a, b), ).
— As to see the first equality, let

>—c=cy b= bo >=c " >—Cp:5 bp =b

be the path in s;w such that cg = /\d(A, ¢) € (saw)l. Notice that since there is a triplet a —<; @ in w

and ¢ € (s;w)!, then Ac(a, b) = Ac(, b). Then Lemma 2.6 yields

Ai(Aey(8, bo), co) = Ag(Aey (4, br), 1) = - = Ag(Ac, (8, by), ¢p) = Aa(Ac(a, b), €).

Whence the equality.

— We now see the second equality: let

7 / / 7
S e > .
>_c’—c(’] b bO C/1 c{a—c bq b

be the path in szw such that ¢f, = K(E ) € (ssw)!. Notice that since there is a triplet a —<; @ in w
/
Ac(a,

and ¢’ € (szw)l, then Ay (a, b) = b’). Then Lemma 2.6 yields
K(Agy (8, b)), ) = 1(Agy (8, 1)), &) = - = k(Ag (8, by), c) = k(Aer (8, b), )

Whence the equality. O

Theorem 2.9

The properties P, and Q, hold.

Proof. Let w be a n-epiphyte. We begin by showing that tw is well-defined. Because of Lemma 2.2, we
already know that fw is a neat rooted tree.

(Vb € (tw)*, (sptw)® = A(D) |:

Letb € (tw)* = wl. Then A(b) = (spSy(pyw)*. On the other hand, sytw = sps, W
whence (sptw)® = A(b).

10



‘V(b —<b)inw, sesptw = tsytw ‘:

Notice that if dim(w) < 3, there is no triplet in tw, hence this property is vacuously satisfied. Hence-
forth, we suppose n > 3. Let b —< b’ be a triplet of w. Then there are two paths

>—p=by A0>—py *** >—p, Ap =4 and >—p=p, ”6>_hg >y a; =a

/

such that ¢ € (sq,w)], Msy(c) = bi fori < pand b} = p(syw) for i < g, together with a triplet b, —<. by

in s;w. Then, according to Remark 1.11, we have s.sptw = ScSp, Sa.
On the other hand, using Q,,_1, we have

tsyrtw = t5b65a6“] = ttsaéw = tsbisb{w == tsbgsaw.

Finally, because of the triplet b, —<, b‘;, we have ScSh,Saw = tsb&sﬂw,
whence the equality scspfw = tspytw.

This completes the proof of P, and we now show that fs,(,w = ttw.

Notice that if n = 2, this equality is clear, so we now suppose n > 3. Because of Lemma 2.3, we already
have the equality of nodes and sources. It remains to see the equality of triplets. Suppose that there is
a triplet Ay(b, ¢) —<4x(b, ¢') in ts,(,)w with a triplet ¢ —<;¢" in s,(,,)w. Hence, using Lemma 2.8, there
is a triplet Ay(Ac(p(w), b), ¢) —<4x(Av(p(w), b), ¢’) in ttw. Finally, using Lemma 2.7, this is the triplet
Ag(b, ¢) <4 x(b, ¢’). The other implication uses the same arguments.

Hence we have shown 9, and it ends the proof. O

3 Epiphytes morphisms
3.1. In this section, we focus on the definition of epiphytes morphisms and the associated category Epi.
Epiphytes morphisms are of two kinds:

* The renamings, which also are the isomorphisms. They goes between epihytes of the same dimension
and leave the structure unchanged.

* The structural maps, which are formal inclusions of sources and targets of some epiphyte in itself.

Definition 3.2 : Rooted tree isomorphism A

An isomorphism f : S — T from a rooted tree S to a rooted tree T corresponds to the data of
* Abijection f: S* — T*°.
* For eachnode a € S°®, a bijection f, : A(a) — A(f(a)).

such that for each triplet a —; a’ in S, there is a triplet f(a) <, f(a’) in T.

Iff:S— Tand g: T — U are two isomorphisms, their composition is defined as go f : 5* — U*
on nodes, and for each a € S*, (g0 f)a 1= g(a) © fa- The identity is defined as the identity map on
nodes and arities. Notice that the composition defined above is associative.

\

r—' Lemma 3.3 l

A tree isomorphism f : S — T is always invertible for the composition. Its inverse is given by
f~1: T — S defined by

e f~1:T* — S* onnodes.
e Foreacha € T*, (f 1), := (ffq(u))_l :Ala) = A(fY(a)).

Moreover, such an isomorphism f satisfies the following:

* f preserves paths to the root and height in the tree structure.

e (a,b) € Sliff (f(a), fa(b)) € Tl

11



Proof. We first prove the three last properties, then we will check that f~! is indeed a rooted tree isomor-
phism.
e Since f sends triplets to triplets, the first point is immediate. Since the height is the length of the
unique path from a node to the root, it is preserved.

e Letb € A(a)in S. If (f(a), fa()) is a leaf, then so is (a, b) because f sends triplets to triplets. Con-
versely, suppose that (a, b) € S, we check that (f(a), f2(b)) is a leaf. Suppose that there is a triplet
f(a) <,y 4 in T. Then we shall have a’ = f() for somea unique a’ € S°. Since f preserves height,
there is at least a triplet a”" — a’ in S. Such a triplet is sent onto a triplet f(a") —<; , ;) d by f. Hence
we shall have f(a) = f(a”) and f,(b) = f,#(b), hence a = 4’ and b = b". This implies the existence of
a triplet a —<; a’ in S, which is false.

* The root is preserved because it is the only element of null height.

We now prove that f ! is a rooted tree isomorphism. Suppose that there is a triplet a —<; a’ in T. Then there
are two nodes 4 := f~1(a), a’ := f~1(a’) € S*and b := (f;)'(b) € A(a). Since f preserves height, there
is at least a triplet 4’/ —<» a’ in S, which is sent to a triplet f(a”) —<f () a'in T. Hence f(a") = f(4) and
far(b") = fa(b), whence a” = 4,b" = b, and a triplet @ —<; 4’ in S. O

Definition 3.4 : Epiphyte renamings

Let w and @ be two epiphytes of the same dimension n. We define by induction on # the renamings
f 1w — @ between them.

e When w = @ = ¢ are 0-dimensional, there is a unique renaming between them, called the
identity, or the trivial-renaming:
id: w— @

e Letn > 1 and suppose known the definition of (n — 1) —epiphytes renamings and their target.
Then a renaming f : w — @ consists of

— A rooted-tree isomorphism f : w — ®.

— For each g € w®, a renaming f; : s, — s F(a)@ such that on nodes, f; coincide with the
bijection given by the rooted tree isomorphism f. We also write s, f for f,.

such that for each triplet a —; a’ and leaf ¢ of sy w, f, () = fa ney(©) and fob,c = fur (o), c-

Definition 3.5 : Composition and inverse

Given two renamings f : w — @ and g : @ — ¢ between epiphytes of the same dimension 1, we
may compose them. The composition g o f is defined inductively on the dimension # as follows:

¢ In dimension zero, id o id := id.

® Suppose the composition of (n — 1)-dimensional renamings is known. Then we define the
composition g o f as

- gof :w — ¢ as an isomorphism of rooted trees.
- Foreacha € w*, (g0 f)a = 8f(a) © fa : $aW = Sg(f(a)) -

We check below that this is well defined.
Moreover, for any epiphyte w, there is an identity id : w — w defined inductively as

¢ The identity on the rooted tree structure.

e Foreacha € w*,id; = id : s,w — s,w.

12



We also check below that any renaming f : w — @ between two n—epiphytes is invertible for the
composition, and its inverse f ! is given by id when n = 0 and when n > 0 by

» 1 onrooted trees

e Foreacha € @°®, f; ! := (ff*l(u))fl

Proof.
Composition is well-defined :

We proceed by induction on n. When n = 0, the composition is well defined.

Letn >0, f:w — @and g : @ — ¢ be two renamings between n—epiphytes. Let a —;, a’ be a triplet
in w, caleaf of syw and b’ = 77(c). Then there is a triplet f(a) <, ;) f(a’) in @, and using Lemma 3.3,
there is a leaf f; j(c) in 54 () @. Hence, we have the equations

) o, v (€)) = 85w, £ v) fur, () 8F(@), fo0), 30 (©) = &F(@), fy (V) fr 1y (©)

Because f is also a renaming, we have the identities

fa,b(c> :fu’,b’(c> fn,b,c:fa’,b’,c
Whence the identities
) (fa,6(€)) = &far, £, ) (far, 1 (€)) 8F(@), fa(b), fup(c) = SF(@), £ (1), fur y(0)
That is
(gof)a,b(c) = (gof)a’,b’<c) (gof)a,b,c = (gof)u’,b’,c
Inversibility :

We proceed by induction on the dimension # of the renaming f : w — ®.

Whenn =0, f =id, f~! = id and their composition is id.

Suppose now that the result is known in dimensions lower than n. By Lemma 3.3, we know that f is
inversible as a rooted tree isomorphism. Leta —<; a’ be a tripletin @, and c a leaf in sy with b’ = 5(c).
Still by Lemma 3.3, there is a triplet # —; @’ and a leaf ¢ in s w where

a=f"(a) i =f"Hd) b=(fa)"'() b= (fa) (D) = (fy,p) ' (0)

and b’ := 5(¢). Hence, we have the identities

fa,5(8) = fa,5:(8) fobe = Tap,e
The first equality yields ¢ = (f, b) I(c) = (far h,) 1(c), that is f~ ( ) = f‘;,lb,( ).
The second one yields fﬁ % ;= 7 e that is f = f O

Let f : w — @ be a renaming of epiphytes, ¢ € (sps,w)®, V' := Ac(a, b) and a' = 5(b’), then

fu,b(c) = fa/,h/(c) and fa,b,c = fa’,b/,c-

Proof. Let
!
>_b0:b’ agy=a >-p ay--- >_bp ap

be such that Vi < p, (b;, ¢) € (sq,w) |, then by definition of a renaming of epiphytes, we have

fug,bo,c = ful,bl,c == fap,bp,c and fﬂo,bo(c) = ful,bl(c) == fap,bp(c)'

13



— Definition 3.7 |

Let f : w — @ be a renaming of n-epiphytes for some n > 1.
Then f induces a renaming tf : tw — t® defined by id when n = 1, and when n > 1 by:

o Vbewl, tf(b):=fum D)
e vbewl, (t)y:= fym),e-

\. J

Proof. We check that tf as defined above indeed is a renaming.
tf is a bijection : This is shown by the second point of Lemma 3.3.
tf preserves triplets : Let Ac(a, b) —<«(a, b’) be a triplet in tw, and
>—py 80 >by " >~b,=p Ap =1
the path in w such that by = Ac(a, b). Then there is a path

> fio00) F(30) > w1) > i, () =fa() fap) = f(a)

with, Vi < p, fo, b,(c) € (s5(s,)@) ). Hence, foy (bo) = Ag,  (0)(f(a), f(b)) = Ag, (o) (f(a), f(b)) (Where
the second equality is by Lemma 3.6).

Let

>—b(/) a(') >_bi s >_b[1:b/ a; =a

be the path in w such that b, = «(a, b’). Then there is a path
> ) F(80)>= 1 ) > g 0p=haw) £ (o) = f(4)

with fﬂ;(bz’-) = p(sf(a;)co) fori < q (by Lemma 3.3). Hence f%(b(’)) =x(f(a), fa(b")).
Whence the existence of a triplet fa,(bo) ~<f. , () f%(bé), i.e. atriplet tf(Ac(a, b)) —<y, (o) tf(x(a, b')).

Equations on tfy, .(d) and tfy ¢ g

Let Ac(a, b) —<cx(a, b') be a triplet in tw, and d € (s, b/)tw)| with ¢/ = #5(d). We shall check that
Hrc(a,b),c(d) = tfe(a 1), (d). Thatis - by keeping the above notations - that

fao,b0,c(d) = far 1y, 00 (d)
We prove it by the following sequence of equalities:

fao,ho,c(d) = fay,b,c(d) becauseag>— a;andc € (suow)|

fa,,b,,c(d) becausea, 1> apandc € (Sap,]w)‘
fa, b,c(d)
Let ¢ := ¢’ and (b;, ¢i41) := A4(b], &) for 0 < i < p. Lemma 3.6 yields a0 (d) = fuéﬁo,ﬁ (d).

Since ¢; € (saéw)‘, we also have f%, bo,c; (@) = far b, ¢, (d). Then, continuing from this expression, we

have
fa, vh,60(d) = fary,6,(d) = -+ = fa vy, (d) = fa,,¢,(d)

We now show the following property by induction on i:
Vi, de (sb;su;w)‘, 8 = 1s,s,w0(d)
- Fori=0,de (sbés%w)‘ = (sK(a,b/)twﬂ and ¢’ = Mssa b/)tw(d) hold by assumption.
— Suppose that the result is known for i < p, thend € (s,s,w)! and ¢ = 1s,s,w(d). Hence we

also have d € (tsyw)! and Mts w(d) = Aq(b], ¢;) by Lemma 2.3. That is, #jts ,w(d) = ¢iy1. Since

ts w=s, s, w,wehaved € (s, s, w) and ¢4 = d) as expected.
d b, Sal W (sp1,, 501, @) i+1 ﬂsbz’-ﬂsﬂéﬂ“’( ) p
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We may finally use the identity (¢,, d) € (sysqw)! to have the equality f, 5 (d) = fa,p,¢,(d). Whence
the equality f, 4, c(d) = fa(’],b(’),c/(d)'

The second equation f, 4, c,d = f% ), c,d 18 shown by the same reasoning. O

Definition 3.8: Flag of an epiphyte

Let w be an epiphyte. A flag of w is a sequence p = ¢;¢;_1 - - - ¢1 of formal symbols ¢; for 1 < i <[
and 0 < I < dim(w). When the sequence is empty, we denote it by []. For each i, we have either
§i =tor; =syforsomex € (¢ 18 2+ G1w0)°.

When f : w — @ is a morphism between two epiphytes of the same dimension and p = ¢;¢;_1 -+ ¢1
is a flag of w, we define a flag f.p of @, and a morphism pf : pw — (f«p)@ by induction on p.

* When p is the empty flag, fip is defined as the empty flag and pf := f.
* Suppose that p = sxq, then fup :=5(q¢)(x) fxaand pf := (qf)x-
® Suppose that p = tq, then f.p := t(f.q) and pf := tf.

When q = ¢;¢;_1 -+ -G is aflag of w and q = nCp—1 - - - G111 is a flag of pw, we define their concate-
nation g —~ p as gy - - - 1. Itis a flag of w.

f—‘ Lemma 3.9 I ,

We have the following identites related to flags in epiphytes:

1. Let f : w — @ and g : ® — ¢ be two morphisms between epiphytes of the same dimension,
and p a flag of w. Then (g o f).«p = g« fsp and p(g o f) = (fip)g o pf.

2. Let f : w — @ be a morphism of epiphytes of the same dimension, p a flag of w and q a flag of
pw. Then fi(q —~ p) = (pf)«q — fup.

Proof.
1. We proceed by induction on p.

* Suppose that p is empty, then there is noting to prove.
* Suppose that p = syq where x € (qw)*®, then

(80f)b = Sq(gop)x) ~ (80 f)xa
S((fa)goaf)(x) — (8+f+a)
8+(S(af)(x) ™ f+a)

= g«fsp
and
pgof) = (a(gof)),
= ((fra)goaf),
= ((f+2)8)(qf)(x) © (af)x
= (S(qf)(x)f*q>qopf
= (fup)gopf

* Suppose that p = tq, then

(gof)p = t~(g0of)q
t~ gufs
g+ (t ~ fuq)
= &ufsp

(a(gof))
((fra)goaf)
(f«a)got(af)
fep)gopf

and

t
t
t
(
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2. We proceed by induction on the flag q.

* When q is empty, there is nothing to prove.

* Suppose that q = syt where x € (tw)®, then

fild=~p) = S(e~p)p) — fevt—~p)
= S(pf)x) — Pf)t — fup

= (pf)a~ fop
* Suppose that q = tt, then
flam~p) = t~ file~p)
= t~(pfle~ fup
= (pf)sa~ fup
O
Definition 3.10: Face of an epiphyte A

Let w be an epiphyte. The faces of w are defined as the flags of w, modulo the rewriting rules:
* gsysxp <> qsytp when (x, y) € (pw)l.
* gsySxp <> qtsyp when there is a triplet x —; x’ in pw.
® qgtsyp <> qttp when x = p(pw).

Notice that the application p — pw descend to the quotient as an application [p] — pw =: [p]w.
The length of flags is also invariant by rewritings, and the length of a (representant of a) face will be
called the codimension of that face. Given a face [p], we also define sy[p] := [syp] and t[p] := [tp].

r—i Lemma 3.11 l

Suppose p <+ q as flags of an epiphyte w, and f : w — @ a renaming. Then pf = qf.

Proof. Tt suffice to show the result in the case p = ¢’ <> ¢/ = q.

* Suppose ¢’ = sysy <+ syt = {¢’. Theny € w! and x = 5(y). Hence for any z € pw, (sysxf)(z) =
fry(z) and (sytf)(z) = f;(y),x(2) = sx,y(2). For the same reason (sysxf): = (sytf)., whence the result.

* Suppose (&' = sysx <> tsy = (. Then there is a triplet x —<, x" in w. Hence for any z € pw,
(sysxf)(z) = fry(z) and (tsf)(z) = fu yz)(2) = sxy(z) because f is a renaming. For the same
reason (sysyf); = (tsy f)z, whence the result.

* Suppose ¢¢' = tsx <> tt = {’. Then x = p(w). Hence for any z € pw, (tsx)(z) = fy 4, ., (z)(2) and
(tf)(2) = fy(no(2), o (z)(2). According to the proof of Neatness in Lemma 2.2, we have 1, (z) =
Az (%, 5,0(2)). Hence, by Lemma 3.6, (tsxf)(z) = (ttf)(z). For the same reason (tsyf). = (ttf),,
whence the result.

O

Lemma 3.12

Let f : w — @ be a renaming and ¢& « {¢’ in w. Then £, (&&') & f.(¢7') in @.

Proof. We distinguish on the rewriting rule applied.

e Suppose & = sysy <+ syt = {{’. Theny € w!l and x = 7(y). Hence f(y) € @l and (f:(y)) = f(x)
by Lemma 3.3. Since fi (sysx) = s, (y)S¢(x) and fu(syt) = sp,(,)t, we have £.(¢¢') <> f.(0C).

* Suppose (&' = sysxy ¢+ tsy = (. Then there is a triplet x —<, x’ in w. Hence there is a triplet
f(x) <p ) f(¥') in@. Since fi(sysx) = s, ()S(x) and fi(tsy) = tsf(x), we have f.(G¢') < f(CT').
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* Suppose &’ = tsy +» tt = {{’. Then x = p(w). Hence f(x) = p(@) by Lemma 3.3. Since f(tsy) =
tsf(yx) and fi(tt) = tt, we have f.(¢¢') <> f.(CC').

O

Lemma 3.13

Let f : w — @ be a renaming and p <+ q two equivalent flags of w. Then fip <+ f.q in .

Proof. It suffices to show p <+ q = f.«p <> fiq. We proceed by induction on the length of p and g.
e If p = q = [[]] the result is clear.
* Suppose now that p = {p’ and q = {q’ with p <> q.

— If the rewriting takes place in p’, we have p’ <+ ¢, hence f.p’ <> f.q' by induction hypothesis.
Whence fup = (p'f)«& — fup < (d'f)«{ — f«q = f.q, because = { and p'f = ¢'f by Lemma

3.11.
— If the rewriting takes place in the leftmost position, we write p = ¢¢’v and q = {{’t. Then
fup = (¢f)«(EE) —~ fer & (xf)«(¢L") —~ fir = fiq accoring to Lemma 3.12. O

Definition 3.14 : Epiphytes morphisms

For each epiphyte w and face [p| of w, there is by definition a structural map

l[p] Pw —w
More, generally, we define the morphisms of epiphytes w — @ as the pairs (f, [p]) where [p] is a
face of @ of length (dim(®@) —dim(w)), and f : w — p@ is a renaming of epiphytes (of the same

dimension), as defined in Definition 3.4. And 1|, is a short for (id, [p]).
Given two morphisms (f, [p]) : w — @ and (g, [q]) : @ — o, we define their composition as

(& lal) o (f, [p]) := (bg o f, [8p ~a]) s w0 = @

This is well defined according to lemmas 3.11 and 3.13. We let id., = (id, [[]]), it is neutral for o.

Lemma 3.15: Associativity of o

The composition of morphisms of epiphytes (as defined in Definition 3.14) is associative.

Proof. Let (f, [p]) : w — @, (g, [a]) : @ — o, (h, [t]) : 0 — ¢ be three composable morphisms of epiphytes.
Then we have, using Lemma 3.9:

((h, [e]) o (g, [a])) o (f, [p]) (qhog, [hq~x])o(f, [p])
= (p(ghog)of, [(qhog[)* ~ (hg ~v)])

= ((g«p ~aq)hopgof, [(qh)«gsp — hiq — 1])

and, on the other hand

(h, [e]) o (& [al) o (f, [P])) = (B, [c]) o (pg o f, [g«p — a])
= (g ~a)ho(pgof), [hlgp —~a) ~ )
= ((gp ~a)hopgof, [(ah)igsp — hig —~ 1)
Whence the associativity of o. O

Definition 3.16: Epi }

The category of epiphytes Epi has the epiphytes as objects and the epiphytes morphisms as arrows.
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4 Normal form of faces

4.1. Every face admits two distinguished representants, which will be called their normal forms. The exis-
tence of these normal forms allow us to decide easily if two given flags induce the same face. We begin by

characterising the 3-flags inducing a same face.

Definition 4.2 : Type of a 3-flag

We assign to each 3-flag p of an epiphyte w a type T(p), as follows:
e For each triplet b <. b in tw, let
!/

— /
>_b:b0 ap >_bl cee >_bp ap = ﬂq _<b,’1 cee _<b1 ag —<b6:b/

be the paths in w with ¢ € (s,,w)!, Mssw(c) = bj fori < p, bl = p(syw) for i < qand a triplet
by —<c by in sq,w. Then we have the following cycle of equivalent flags:

scsit > ScSpySay < SctSqy <> ScSpySay < -0 S¢Sb,Sa,

— tsbésa’q — ﬁsa/ <~ tsb;_lsa’

> > t8511 S > tsyt <> Sespt.
-1 -1 by°ag b’ cob

We assign to each flag in this sequence the type Iy, ).

e For each leaf c of tw, let
>"b=by A0>"by " >Th, Ap = p(w)

be the path in w with ¢ € (s,,w)!, flss,w(c) = b; for i < p. Then we have the following cycle of
equivalent flags:

scsitﬁﬁsuoﬁsctsﬂeﬂsa] <—>~--<—>@sap <—>sctsﬂ<—>sictt<—>ﬂt.
We assign to each flag in this sequence the type II..
* Since the root of tw is b := x(p(w), p(s,(w)w)), there is a path
>"b=by A0>"b " >Th, Ap = p(w)
such that b; = p(s,,w) for i < p. Hence there is a cycle of equivalent flags:
ttt = ﬁsap — tm — ﬁsapfl > & HESy) i‘sbosu(J — tiht > Lttt
We assign to each flag in this sequence the type III.

Since every 3-flag must appears in exactly one of those cycle, T is well defined. Moreover, for two
3-flags p, q, we have p <> qiff T(p) = 7(q).

\

Remark 4.3

Notice that for each of the above sequence, there are exactly two flags {1 &>t and ¢} &5t, and moreover §1 &t <+
& ¢ht. Hence, every 3-face of an epiphyte admits exactly two representants 1ot <+ &; &5t which are called

their normal forms. We focus now on extending this property to every face of an epiphyte.

Remark 4.4
Notice that any flag of the form scss, is equivalent to scsy_(, p)t.
Similarly, any flag of the form fs;,s, is equivalent to s, )t

Lemma 4.5 : confluence }

Let 4838281 ++ €48382G1 be two 4-flags of an epiphyte w.
Suppose {3821 <> &E5t and &8 < & E, then &4EE <& 8 E" as flags of tw.
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Proof. Notice first that the result does not depend on the choice of G55 (resp. 3%G5*) because they yield
equivalents flags 4385 (resp. £483%¢5") of tw. If {1 = t, then we may choose ¢3¢5 = £37¢5" = {382, hence
the result, we now suppose ¢ = s, for some a € w®.

If & = tand a = p(w) then ts, <> tt as flags of w, so we are done because we are reduced to the case {1 = t.
If & = t and there is a triplet ' —< a, then ts, <> sys, as flags of w.

Hence we may now suppose {, = s, for some b € (s,w)®.

e Suppose &3 = sz5c and & = syt, with d € (sp5,w)!, 17(d) = c. By Definition 4.2, the type of a flag
of the form s; * * in tw will always by II;, whence the result.

* Suppose 4¢3 = tt and &¢5 = tsc with ¢ = p(spssw). By Remark 4.4, we may choose {385 = tSx(a,b)
and ¢3¢ = ScSA(a,b)- Still by Remark 4.4, £483¢; = tSi(a,b) <> t5¢/Sk(ab) & tSi((a, b), ')t where
¢" = 0(sy(ap)tw), and E4E5* 83" = tseSy (a,0) < BSe(r(a b))
Using Lemma 2.5, x(x(a, b), ¢') = x(Ac(a, b), ¢), whence the result.

* Suppose {483 = s4sc and &)j¢h = tso with a triplet ¢ —; ¢ in sps,w. Using Remark 4.4, we may choose
fj;(f; = SCS/\C(a,b) and gé;* z* = SC/S/\C, (a,b) Still by Remark 44, 64(;";(:; = SdSCS/\C(a,b) (i> Sds/\d()\c(a,b),c)t

and Q/LC;* E* = tSC’SAE, (a,b) & tSK()LE/ (a, b)/cl)t.
By Lemma 2.8, there is a triplet Aj(Ac(a, b), ¢) <z x(Ax(a, b), ¢’) in ttw, whence the result.

r—[ Theorem 4.6 : Normal form of a face }

Let w be an epiphyte, and some face x of codimension p > 2. Then x admits exactly two distin-
guished representants of the form §,G, 1t---t and ¢), ;_11‘ -+ +t. Moreover, {ply-1 < &) ;_1 in

tP~2w. We call them the normal forms of x. Hence a normal form is always defined up to a leftmost
rewriting.

\

Proof. We proceed by induction on p.

Suppose p = 2, then x admits exactly two representants $>¢; <+ {5¢7, whence the result.

When p = 3, the result is known (see Remark 4.3).

Suppose now p > 4 and the result known in lower dimension. Then we write p = -+ {1 = (p¢ p_lp’ .
We may first compute a normal form n’ = $p—2Cp—at---tof p’, then find a normal form é;flé;;_g of

* Tokk

$p-10p—20p-3in tP~%w, and then find a normal form &p o1

n= ﬁ;* ;’jlt~~-tofp.
We now see the uniquess of n (up to one leftmost rewriting). In order to do so, we show that (up to one
leftmost rewriting) n does not change under rewritings of p. Suppose p < q.

t of z:pg’,;;_lff;fz in t~3w. Thus a normal form

* Either the rewriting takes place in ¢, 1 - - - {1, hence the normal form 52_162721‘ -+ -t did not change
up to a leftmost rewriting (by induction hypothesis), which in turn does not change n up to a leftmost
rewriting.

* Or the rewriting is of the form {,¢, 1 < é;é;fl in p’w = n'w, which leaves n unchanged up to a

leftmost rewriting, according to Lemma 4.5 applied to t7~4w.

In order to have the uniqueness, suppose now that n and m are two normal forms of p. Then using the
process described above we may compute the normal form of m, which is m up to a leftmost rewriting. But
by invariance under rewritings, we also have m = n up to a leftmost rewriting, whence the uniqueness. O

Lemma 4.7

Let p be a flag of length at least 2 in tw for some epiphyte w. Denoting n a normal form of p and m a
normal form of pt, we have m = nt up to a leftmost rewriting.

Proof. This is a direct consequence of the uniqueness of normal forms. O
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Lemma 4.8: Right regularity of ¢

Let p, q be two flags of tw for some epiphyte w, such that pt <> gt. Then p <> q in tew.

Proof. 1f p, q are the null flag or a 1-flag, this is a direct observation. Suppose now that they have length at
least 2. Denoting 1 a normal form of p and m a normal form of q, we have nt = mf up to a leftmost rewriting

because both are normal forms of pt. Hence there is a sequence of rewritings p HEndm S gintw. O

4 Definition 4.9: x(&), x(p)

Let w be an epiphte, and ¢ be the formal symbol t or s, for some b € w!l. Then x(¢) is the following
formal symbol:
s if§ =t
— ] “rlw)
X&) = { Syp) if § = sy for some b € wl.

For p = p/¢ anon empty flag, we let x(p) = x(&), in such a way that we always have ¢t + ¢x(¢).

\. J

r—' Lemma 4.10 I N

Suppose we have {81t <+ ¢4t as flags of some epiphyte w. Then there is a sequence of rewritings

GEx(E) =8axt « 83 0 B8 o o BE I o ST E K = B,

such that Vi, x! # t.

\.

Proof. This is directly seen by case analysis on the type of ¢»1t. O

Lemma 4.11

Let w be an epiphyte, and suppose there is a sequence of rewritings pt & qt. Then there is a sequence
of rewritings px(p) = p'x* <> -+ <> p9x7 = qx(q) such that Vi, ' # t.

Proof. We proceed by induction on the sequence length. If the sequence is empty, the result is clear.
We now suppose the sequence to be non-empty, and distinguish on the first rewriting.

* Assume the first rewriting to be of the form ¢,-¢; 1¢;C1t <> ¢pCip1iCit for some i > 1. Since

Sitw = ¢1x(¢1)w, the rewriting &y 18- C1x(€1) <> CpCit1li-G1x(81) is licit. We then conclude
by induction hypothesis.

* Assume the first rewriting to be of the form ¢, €281t <+ §p {201t Then using Lemma 4.10, we find a

sequence of rewritings ¢, 8281 (1) & CpC201x(¢1) with no t appearing in rightmost position. We
then conclude by induction hypothesis.

* Assume the first triplet to be of the form ¢, {281t <+ &p5281X(G1 ). Let the sequence of rewriting be
CprCix! & SpCin® & - o Gy Eix

Let m := min{i > 1| x' = t}. Then the (i — 1)-th rewriting is necessarily of the form
Cp0201x(81) <+ Cp 0201 t. Hence, picking the subsequence from the second to the (i — 1)-th elements

of the sequence yield a subsequence of rewritings of the form ¢,&1x(1) & CpC1x(C1). We then
conclude by induction hypothesis. O
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Lemma 4.12: Right regularity of s,

Let w be an epiphyte, a € w®, p, q two flags of s, and suppose ps, <> qs,.
Then p < q as flags of s,w.

Proof. We proceed by induction on the length p of p, q
e [nitialisation (p < 1).

* Heredity (p > 2). Suppose now p > 2 and suppose the result known for lower lengths. First, using
Lemma 4.11, we may suppose that no t appears in rightmost position along the sequence of rewritings

pss < gs;. Then we may cut the sequence in subsequences of rewritings as follows:
* — — — *
psa = P28 8,0 & p' 0% ¢ p'¢ls & - S pTTIE T s 0 o T 8500 5 pITT500 = e

With a® = a9 = 4, and each subsequence p'¢'s i & pitigis i having no rightmost rewriting. Notice that
each rightmost rewriting ¢'s; <+ ('s i1 must have the form ts;; <+ spi115,i11 Or Spis,i <+ ts,ir1. Hence
there is a zig-zag in the tree structure of w, following the sequence of nodes a = a® al, ... a1 = a.

We now reason by induction on the length of this path.

— Suppose it is constant on a. Hence the whole sequence of rewritings ps, <+ gs, is concentrated as
one subsequence of the form p°&%s, <+ p'¢%, having no roghtmost rewriting, whence the result.

- Suppose the path is not constant. Then there must be two consecutive triplets of the form
at <y >— iy ™t = a'or al>—; a1 —<i_ya""? = 4’ appearing along the zig-zag.
Hence ¢! = ¢+ for some i. Thus by induction hypothesis we may find a sequence of rewritings
p 1 & pit2in @tls w and assume the subsequence pit1Etls iy & p 205 1y to leave
unchnged the two rightmost elements. We may now supress the two rewritings {'s,i <+ &1 i1
and ¢ i+1g P Ci+zs 4i+2 in the sequence, which remains well formed. Hence we are reduced to
a smaller case, and conclude by induction hypothesis. O

Theorem 4.13 : Right regularity

Let w be an epiphyte, x a flag of w, and p, q two flags of yw. If px & qx, thenp & qin yw.

Proof. This is a direct induction on the length of x using Lemma 4.8 and Lemma 4.12. O

5 From epiphytes to dendritic face structures

5.1. The aim of this section is to associate to any epiphyte w a dendritic face structure F(w), and to show
that this construction is functorial. The elements of the poset will be the faces of w.

,—{ Definition 5.2 : face poset F(w)

Let w be an epiphyte, define its face poset F(w) as the following positive-to-one poset:
® The set of elements is given by the faces of w, as defined in Definition 3.10.
e If [p] is a face of w with codimension g, dim(a) := dim(w) — 4.

e We define <~ and <" by

b] <" [al & (3x, [p] =sxfa])  and  [p] <" [q] & [p] = t[a].

\

Proof. We check that F(w) as defined above indeed is a positive-to-one poset. We need to see that <~ and
<™ are disjoint, the other properties are clear from the definition. Suppose that v < u and v <~ u, then

choosing a representant p for u, we have v = [syp] = [tp] for some x € (pw)®. Hence s,p < tp which is
impossible, by Theorem 4.13. U
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Remark 5.3
Suppose that [p] <~ [g], then there is some x such that p <+ syq. Such a x is uniquely defined because of
Theorem 4.13.

Exemple 5.4
Let w be the 4-epiphyte considered in Exemple 1.12. We consider its source s,;, w. Then the poset of its faces
is the following:

€1 ) c3 Cs Y2(T) c7
| Y )]
dl d2 d3 d4 ')’3 (T)
F(sq,w)

Where T denotes [[]], and a face which has a normal form s,q is written x for short.

Proposition 5.5 : Greatest element

The face poset F(w) of an epiphyte w admits a greatest element [[]].

Proof. Itis clear from the definition of F(w) that the face asociated to the empty flag [] is a greatest element.
O

Proposition 5.6 : Oriented thinness

The face poset F(w) of an epiphyte w satisfies oriented thinness.

Proof. Let w < v < u in F(w). Choosing a representant p of 1, we may find &3, §» such that [§1p] = v

and [§281p] = w. The existence part of the lozenge completion follows from the definition of rewriting
rules. Suppose there is a lozenge completion w < v’ < u, then we may find ¢y, {» such that [{1p] = v/
and [(201p] = u. Hence &&p <> {2f1p. Using Theorem 4.13, it implies && <+ ({1 in pw, whence the
uniquenness. O

Proposition 5.7 : Acyclicity

The face poset F(w) of an epiphyte w satisfies acyclicity.
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Proof. Suppose there is a (non-trivial) cycle of the following form in F(w).
// u
V=1 U3

| /

7(02) 7(01)

Then choosing a representant p of u, we find xy, - -, xp and yy, - - -, yp such that v; = [sy;p] and ¥ (v;11) =
[tsx; . p] = [sy;Sx;p] for all i (with v,1 := vy and x;41 := x1). Using the same argument as in te proof
of Proposition 5.6, we have rewritings sy,sy; <> sy, in pw for all i. hence (by definition of the rewriting
rules) there must be triplets x; —<y, x;,1 in pw for all i, yielding a cycle in the tree structure of pw, which is
impossible. O

Theorem 5.8

The face poset F(w) of an epiphyte w is a dendritic face complex.

Proof. This is the consequence of Proposition 5.5, Proposition 5.6, Proposition 5.7. O

Proposition 5.9

For any epiphyte w and [p] a flag of w, we have an isomorphism ¢, : F(pw) =~ cl([p]) given by
Prp)([a]) = [ap].

Proof. Clearly, ¢ preserves the codimension, hence the dimension because both posets have the same di-
mension. Let u, v be two elements of F(pw), and let q be a representant of u. Suppose v <~ u, then there
is a x with v = [sxq]. Hence ¢(v) = [sxqp] <~ [gp] = ¢(u). Similarly, ¢ preserves <*. Suppose that
@(u) = ¢(v) and let q’ be a representant of v. Then [qp] = [q'p], whence u = [q] = [¢] = v by Theorem 4.13.
Hence ¢ is injective, so it is a well defined morphism. ¢ is an isomorphism because both posets have the
same dimension. O

Remark 5.10
Notice that we have the relations ¢ = id and @) © ¢[q) = @[4p) When it makes sense.

Proposition 5.11 }

Any renaming of epiphytes f : w — @ induces a morphism F(f) : F(w) — F(@) functorialy in f,
defined by F(f)([p]) = [f+p]-

Proof. Notice first that the well-definedness of F(f) follows from Lemma 3.13.

Since fi(sxp) = S(pf)(x) — feb, F(f) preserves <~. And since fi(tp) =t ~ fip, F(f) preserves <*.

Since pf isa bl]ectlon on nodes, F(f) induce a bijection between ([p]) and ([f«p]) for any p. Moreover, f.

preserves codimension, and F (w) has same dimension as F (@), hence F (f) preserves dimension. Whence

F(f) a morphism of DFC.

The functoriality of F is given by Lemma 3.9. F(f) is an isomorphism because dim (F(w)) = dim (F(@)).
O

Theorem 5.12 : Functoriality of F

F defines a functor from Epi to DFC by the formula F((f, [p])) = @[, o F(f).

Proof. We already have F(id) = F((id, [[]])) = idoid = id. Let (f, [p]) : w — @ and (g, [q]) : @ — ¢. Then
(& [a]) o (f, [p]) = (bgo f, [gsp ~a]) s w — 0.

F((pgof, [gsp ~d])) = @p—~q°F(pgof)
= Qlq° Plg.p ©F (0g) 0 F(f)
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And we are done if we show the equality ¢, ,j © F(pg) = F(g) © ¢[,]- Let v be a flag of F(pw), then we
have the following commutative square:

F(pg)

Whence the result. O

6 From Dendritic Face Complexes to Epiphytes

6.1. In this section, we describe a way to associate an epiphyte to every dendritic face complex. This is done
by induction on the dimension of the DFC, as follows:

Definition 6.2: £(C)

Let C be a dendritic face complex. We define an epiphyte £(C) of the same dimension:

e When C is 0—dimensional, we let

E(C):=¢
* When C is n—dimensional with n > 1, we let £(C) be the n—epiphyte defined by:

- (£(C))* =4(T), where T denotes the maximal element of C.
— The tree structure on (£(C))* is given by the tree structure on 6(T).
- Foreacha € 6(T), welets,E(C) := E(cl(a)).

\. J

r—' Lemma 6.3 l N

The definition above indeed defines an epiphyte.

Proof. We proceed by induction on the dimension of the poset C.

The result is clear when dim(C) = 0. Suppose now dim(C) > 0 and the result known in lower dimensions.
First, we check that the rooted tree structure on £(C) is neat. If b € £(C), let a be such that b € 5,E(C), then
by oriented thinness there is a lozenge

/\
\/

which characterise 4 as the lozenge completion of b <~ (T) <™ T. Whence the neatness.

Consider now a triplet a —<; a’ in £(C). Then there is a lozenge as above:

VN
N
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Letc € (sy&(C))!, then there is a lozenge

/\
\/

Hence ¢ € (sps,£(C))*. Conversely if ¢ € (s,5,£(C))®, the completion of ¢ <~ b <T 4’ yields a lozenge
of the above form, where ¢ has to be a leaf of s,,£(C), still by unicity of lozenge completion. Whence
(5p5,E(C))® = (tsyE)®. Forc € (syE(C))!, we have s ts,E(C) = Sesy ()80 €(C) = E(cl(c)) = sespsa€(C). 1t
ramains to prove that s,s,£(C) and ts,£(C) has same triplets.

Suppose there is a triplet ¢ —<; ¢’ in s35,E(C). Then ¢, ¢’ € (sy€(C))! and there is a hexagon

)/'\

S

By the hexagon property, we thus have the following diagram in £(C):

NS

/\+

\//

Where cg = ¢, 77(c) = bp and ¢y = ¢/, 57(c") = bf,. That s, there is a triplet ¢ <, " in ts;E(C).
Conversely, given a triplet ¢ <, ¢’ in ts;£(C), we have a shape as above with ¢y = ¢ and ¢, = ¢/, whence

/\
\/

That is, a triplet ¢ —<; ¢’ in s,5,E(C). O

a/

Lemma 6.4: t£(C) = E(cl(v(T)))

Let C be a DFC with dim(C) > 1, then t£(C) = E(cl(y(T))).
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Proof. As seen in the proof of Lemma 6.3, because of oriented thinness the leaves of £(C) are the sources of
7(T). Whence (££(C))* = (£(cl(v(T))))*.
Letb € (t£(C))*, then sptE(C) = sps, ) E(C) = E(cl(b)) = spE(cl(v(T))).

It remains to see that t£(C) and £ (cl(y(T))) has same triplets. This is shown using the hexagon property,
exactly as in the proof of Lemma 6.3. O

Definition 6.5: Flag of a DFC

Let C be a DFC. A flag of C is a sequence
s=(xp < ap_q <1< x <My =T)

for some p > 0. We say that this flag ends at x;,, denoting | s = x,, and has length p.

— Definition 6.6 f(s) .

Let s be a flag of C, there is flag in £(C) written f(s) associated to s. It is defined inductively as:
* J(T) = 1.
* Flxpar <7 8) = sy, ().

* Fxpr1 <Ts) =t~ (s).

In order to show that this is well-defined, we will inductively check the following property.

Lemma 6.7

Let s be a flag of C a DFC, then (s)E(C) = £(cl({s)).

Proof. We proceed by induction.
e f(T)E(C) =&E(C) =&(cI(T)).
© §(pa1 < 9)EC) = s, E(C(L5)) = E(Cl(xp41))-
o §(xp11 <t $)E(C) = tE(cI(Ls)) = E(cl(xpy1)) by Lemma 6.4. O

r—' Lemma 6.8 l

Lets = (x, <% --- <% xg = T)ands' = (y, <P --- <P1 yy = T) be two flags of C a DFC. There is
somek € [1, p—1] withx; = y; fori #k, a; = B; fori ¢ {k — 1, k}, and there is a lozenge

Xk—1 = Yk—1
Qg1 Br-1
Xk Yk
Xk+1 = Yk+1

if and only if f(s) <> §(s').

\.

Proof. Suppose there is a lozenge as in the statement, we distinguish on the signs appearing in the lozenge.
Let u be the flag x;_1 <%-1 ... <® xy = T, and p := §(s).

e Ifay_ = ay = B = — and By_1 = +, then by Lemma 6.7, x1 € (p€(C))! and 57(xx11) = x;. There
is some g such that f(s) = gsx,, Sx,p and f(s") = gsy,,, tp, whence a rewriting f(s) <> f(s’).

26



o Ifap_q = Br_1 = ax = — and By = +, then by Lemma 6.7 there is a triplet x; —<y,,, yx in p€(C). There
is some q such that f(s) = qsx,,,5xp and f(s') = qts,, p, whence a rewriting §(s) > f(s').

e If B 1 = ax = B = + and a1 = —, then by Lemma 6.7, x; = p(p€(C)). There is some q such that
f(s) = qtsx,p and f(s") = qttp, whence a rewriting f(s) < f(s).

* The other cases are symmetric to one of the previous ones.

Conversely, suppose f(s) <> §(s), then similarly distinguishing on the rewriting rule applied allow us to
recover a lozenge in C. O

Lets, s’ be two flags in C a DFC, then |s = |.s' if and only if f(s) < f(s').

Proof. Suppose |s = |s'. Using Lemma 6.8, it suffices to show that we may find a sequence s = sq, s, - -+, 55 =
s', where each s; differ from s; 1 by a lozenge. Pictorially, we seek a combinatorial homotopy between the
flags s and s’ in the hasse diagram of C. We achieve it by induction on the length of s, s'.

e Whens, s’ have length smaller than 2, they must be equal, whence the result.

e Whens, s’ have length 2, they are equal or differ by exactly one lozenge according to oriented thinness,
whence the result.

e Suppose now s, s’ of length greater than 2, and the result known for shorter flags. We write s =
(z=xp <% - <xMxy=T)and s = (z =Yp <Py <Py, = T). Notice that, up to finding a
lozenge completion for x; < x; < xg (resp. y2 < y1 < Yo), We may suppose a; = — (resp. f1 = —).
Then using Lemma 3.15 or 3.16 of [1] — according to the sign of x, (resp. B2) — to the chain
X3 <Xy < x1 <" Xp(resp. y3 < y2 < y1 <~ o), wefindu = (x, < -+ <M x3 < xb < (T) <t T)
(resp. u' = (yp <Pr oo <Pays <Pyl <= o(T) <+ T)) such that s and u (resp. s’ and u’) are re-
lated by a sequence of lozenges. We now have two flags v = (x, <*7 ---x3 <* x5 <~ ¢(T)) and
v = (yp <Pr . ys <Pyl < 'y(T)) of cl(y(T)) ending at the same point. Hence by induction hy-

pothesis, they are related by a sequence of lozenges. Whence s and s’ being related by a sequence of
lozenges.

Convrsely, suppose f(s) <> §(s), then using Lemma 6.8 we obtain that s and s’ differ by a sequence of
lozenges. Since modifying a flag by a lozenge does not change its end, we have | s = | s'. O

— Definition 6.10 |

Let f : C — D be an isomorphism of DFC (i.e. a morphism with dim(C) = dim(D)). There is a
renaming of epiphytes £(f) : £(C) — £(D) defined inductively as:

* id: 4 — ¢ifdim(C) =0.

e When dim(C) > 0:
- f|§g§)) : £(C) — &(D) on the tree structure.
- Fora e é(Te), E(f)a:= (ﬂjéﬁ)(a)))

where T¢ (resp. Tp) is the greatest element of C (resp. D).

. J

r—' Lemma 6.11 I N

Definition 6.10 indeed define a morphism of epiphytes.
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Proof. We proceed by induction on the dimension of C, D.
When dim(C) = dim(D) = 0, the result is clear.
Suppose now dim(C) = dim(D) > 0 and the result known in lower dimensions.

E(f) preserves triplets :

Suppose a < a’ in £(C), then there is a lozenge in C as follows:

/\
\/

Hence there is a lozenge as below in D.

f(Te)=Tp
f(a) \ / f@)
f(b) = fa(b)
Whence a triplet f(a) —<, ) f(a') in €(D).
relations on E(f ) p and E(f)a p,c -
Suppose a {ha in£(C), and letc e (sp&( ) )l with 4 (c ) =
Then £(f),,(c) = € (FI50") (©) = f(0) = € (F151" ) ~ (o)
And &(f)a,be = €(f|c| i ) = E(fa v,
Remark 6.12
For f : C — D an isomorphism of DFC and y <~ xp <~ xp_1 <~ - <~ x0 = T¢, E(f)xy, -,

— Definition 6.13 |

image under f is written fi.s = (f(xp) <% --- <M f(xg)), itisa flag of cl(f(Tc))-

Let f : C — D be an isomorphism of DFC, and s = (x, <% --- <" xq = T¢) a flag of C. Then its

f—‘ Lemma 6.14 I

Let f : C — D be a isomorphism of DFC, s a flag of C and x = | (s). Then §(s)&(

.

(f|cl(f X))>

Proof. By induction on s.

e Ifs = (T¢), itis clear.
s i =< EW) = (s~ HEER = (ARl ) = £(Flaty™):

* f(x <" SE(F) = (¢~ T(s)E(S ts(f\c. & )
Fory € t&(cl(s)), we have tf(ﬂd (1s) ) <f|cI ¢sLS) ) ") (y) = fly (f’

And this is well-defined according to Lemma 6.4.

Remark 6.15

cl(f(x)) )

cl(x)

Hence, if f : C — D is an isomorphism of DFC, s is a flag of C and x € 6(|s), f(s)E(f)(x) = f(x).
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Lemma 6.16

Let g: C — D be an isomorphism of DFC and s a flag of C, f(g«s) = £(g)«f(s).

Proof. We proceed by induction on s.
* Whens = (Tc), g+ = (8(Tc)). Hence f(g+s) = [| = £(g)+F(s)-
* (8+(x <7 ) =8¢0 ~ E()+F(5) “TE T sps1eg) ) ~ E(9)41(5) = E(9)af(x <7 5).

* f(ge(x <T5)) =t~ E(8)4H(s) = E(8)«(t ~ f(5)) = E(g)sf(x <7 5). 0
—| Definition 6.17 | .

Let f : C — D be a morphism of DFC, then there is an associated morphism of epiphytes
E(f) : £(C) — &(D) (in the category Epi) defined as £(f) = (5 (f\'m(f)) , [f(s)]), where s is any
flag ending at f(T) in D. Since f(s) does not depend on s (by Lemma 6.9), it is well defined.

r—{ Theorem 6.18 }

€ as defined above on DFC and their morphisms yields a functor £ : DFC — Epi.

Proof. Clearly, £ preserves identities. We prove that it preserves composition.
Let f : C — Dand g : D — E be two morphisms of DFC and let ' := f|CI(f(TC)), g = g|C|(g(TD)).

Then E(go f) = ( ((gof)|CI (8f) (TC))) [f(s)]) for any flag s with | s = (go f)(Tc).

Chosing a flag sy of D ending at f(Tc) and a flag s¢ of E ending at ¢(Tp), we may define s as the concate-
nation of sy and g (sy). Hence f(s) = f(g«(sf)) — f(sg) where f(g.(s¢)) is computed in £(cl(g(Tp)))-

By Lemma 6.16, f(s) = £(g)+f(sf) — f(sg)-

On the other hand, by Remark 6.15, £ ((g of) |CI((gof)(TC))) =f(sg)E(g) 0 E(f).

Whence, by Definition 3.14, £(g o f) = (f(sg)é’(g’) 0 E(f'), [E(8")«F(sf) — f(sg)]) =E(g) o E(f). O

7 An equivalence of categories

—] Definition 7.1 } ,

Let w be an epiphyte and p a flag of w. According to Proposition 5.9, there is an isomorphism
(pﬁ;] : F(pw) — cl([p]). We then define t/Jf;] as 8(@%]) (€0 F)(pw) — E(cl(p)).
By Remark 6.12, we have 1/1‘[*;] o ([a]) = [ap] whenever this expression makes sense.

—] Definition 7.2 } ,

Let w be an epiphyte and p = § - - - {7 a flag of w, we define p a flag of F(w) as

p = ([8pC1] < [Cpra] <+ =< []])-
Notice that | p = [p].

r—{ Definition 7.3 }

Let w be an epiphyte, there is a renaming 6% : w — (€ o F)(w), defined inductively as follows.
e Whenw = ¢, 0% = id.
* Whendim(w) > 0,65 ... (x) := [sxsx, -+ -5x,].

7 Yxq,
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Proof. We check that this is well-defined.

By Theorem 4.13, Vp, Vxy, -, xp, 05, .. o, (Sx, -+ $x,@)® = 6([sx, - - - sx,]) is injective. The surjectivity is

by definition. We check that it preserves triplets. Let x —<, x’ be a triplet in sy, - - - 51, w.

Then [sysxsxp ce Sy ] = [tsx/sxp -+ -5y, ]. We then have a lozenge
[sx, -5y
[SxSx, ** + Sx;] [Sx/8x, *++ Sx,]

T~

[SnySxp AR le]

in F(w). Whence a triplet 99‘3’1,...,xp(x) —<qw W 050 x, (x') in F(w).
X1 ’

S Xp, X
Still suppose that there is such a triplet x —, x’, with z € (Sx8x, sxlw)| and 77(z) = y'. Then we have
93‘;)1,...,xp’x,y(z) = [szsysxsxp cee Sy ] = [sztsxx’sxp ceSy | = [szsy/sx/sxp Ce Sy ] = 9)‘;’1,,,,’xp,x,,y,(z).
And similarly for the second identity. O

Lemma 7.4

Let w be an epiphyte and p a flag of w. Then 6Yp = §(p) and p6* = 1/;‘[;] o PY,

Proof. By induction on p.

o 0[] = §([[]}) and 64 = id o 0 = g4 0 6<.
o 0Y(sxp) = S(pow)(x) — F(P) = S[s,p) — F(P) = f(5xP),

o g0 =0y 0%) = 5 002 = 00
o 0Y(tp) =t ~f(P)

= f(tp),
and for any y, tp6“ (y)

= by, 0 167) (y) = 1952 ([syy)]) = 5y P] = [sytp] = (g 06%)(y). O

Lemma 7.5

Let f : w — @ be a renaming of epiphyte, then we have (£ o F)(f) 0 ¥ = 6 o f.

Proof. By induction on dim(w) = dim(®).
e Whendim(w) =0, f = id and w = @, whence the result.

* Suppose dim(w) > 0 and the result known in lower dimensions.

Fora € w*®,

(E(F(f)) o) (a) = E(F(f))([sa])
= F(f)([sa])
= [5fa)]
= 09(f(a))

and

(EF(F) 00 = EF () o0
cl([s
= e(Fla” oay) oow

= E(9f,, 0 F (fa)) 0 67 by (+)
= wgﬂ 1° 0@ o f, by induction
= 95‘3 @ ° fa by Lemma 7.4.

Sa

where () is given by the equality F(f)| o (pf" | = (pfs’f( 1° F(fa), as it may be directly checked. O
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Proposition 7.6 }

The isomorphism of epiphytes 8¢ is natural in w.

Proof. Let (f, [p]) : w — @ be a morphism of epiphytes.

0o (f, [p]) = (p8” o f, [67p]) by Definition 3.14
= (lPﬁi] 00"?o f, [f()]) by Lemma 7.4

On the other hand, £(F(f, [#])) = (&(¢f5, o F()), [i(7)]) (because 1§ = [p] = F(f)(T).

And £(¢2, 0 F(f)) = 95, 0 E(F(f)). Then (€ o F)(f, [b]) = (455 0 E(F (1)) 0 6%, [1(p)]).
The equation E(F(f)) 0 8 = 6% o f hold by Lemma 7.5, whence the commutative diagram:

Definition 7.7 |

Let Cbea DFC,welett¢ : C — (Fo&)(C) : x = [f(s)] where | s = x. This is well-defined according
to Lemma 6.9. It is an isomorphism of DFC.

Proof. Notice that C as same dimension as (F o £)(C). We only need to wheck that ¢ is a morphism.

¢ For any x € C, its codimension is the length of s for any flag with | s = x, and it is also the length of
f(s). Hence T€ preserves the codimension, thus the dimension.

e Lety <~ xinC,and s a flag of C with | s = x. Lets’ = (y <~ s).
We have [f(s')] = [sy — f(s)] <~ [f(s)]. Whence 7¢(y) <~ 7°(x). Similarly, ¢ preserves <.

e Using Lemma 6.9 we obtain the injectivity of TC.

Let x € C and s a flag in C with | s = x, it remain to check that Tcyggf)(s)]) is surjective. We have

5([5(s)]) = {lsy ~ F)}ye(is)ercys = {lfy <~ 8)]}y<- whence the surjectivity. -

Proposition 7.8 }

C

The isomorphism T+ is natural in C.

Proof. Let g : C — D be a morphism of DFC, x € C and s a flag of C with | s = x, we have:

(Fo&)(g)ot)(x) = F(E@)([i)]) by Definition 7.7
= F(EE), 1) ([§(s)]) where ¢’ = ¢'™(®), u a flag in D with Lu = g(Tc)
= (g o FEEG)(IHs)])
= @ (E(S)[Fs)])
= (P[f(u)] ([f(g;s)}) by Lemma 6.16.
= [f(gis) ~§(u)]
= [f(v)] for v the concatenation of g’s and u
= 1P(g(x)) because |v = g(x).
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,—[ Theorem 7.9: Epi ~ DFC

There is an equivalence of categories

].'
/ '\
Epi DFC

S~

\.

Proof. This is by Proposition 7.6 and 7.8.
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