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FOREWORD

The investigation of clones o;iginafés p#ftly iﬁ logié, namely in the
study of compositién of truth functions, and partly in universal algebra, from the
observation that most properties of algebras depend on their term operations rath-
er than on the choice of their basic operations. During the last fifteen years
or so the combination of these two aspects and the application of new algebraic
methods produced a rapid development, and by now the theory of clones has become

an integral part of universal algebra.

The aim of these lecture notes is to introduce the reader to some results
showing how clones can contribute to the understanding of the structure of alge-
bras, and not less importantly, to present several techniques in clone theory. To
keep the length within reasonable limits I had to select a few topics. The choice
is certainly rather subjective. I took this opportunity to reconsider a number of
results I was interested in, and to point out some connections between them, a

part of which may not have been known hefore.

The book is self-contained, the reader is assumed to be familiar only
with the rudiments of universal algebra and lattice theory, and some basic facts
in other fields of abstract algebra (e.g. groups, permutation groups, rings, mod-

ules). Four textbooks, three on universal algebra and one on clones, are listed



on p. 159. Throughout, they are referred to by an abbreviation. To all other
books and papers reference is made by the author's name and year of publication.

This volume is an extended version of my lectures delivered at the 23rd

Session of the Séminaire de mathématiques supérieures on '"Universal Algebra and
Relations'", held at the Université de Montréal in 1984. I wish to express my
thanks to the organizers, Professors P. Berthiaume and I.G. Rosenberg, for the
invitation. I am greatly indebted to P.P. Palfy who read most of the manuscript
and made a lot of valuable suggestions and corrections. I am grateful also for

the helpful remarks by B. Csdkidny and L. Szabé.
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Chapter 1

ALGEBRAS AND CLONES

The notion of a éione, which will be fundamenfél'fh¥ou§houf tﬂese notes,
was introduced by P. Hall. In 2-valued as wéli és.in multiple—vélued fogié a ;é—
lated concept, called closed class, or iterative class éf truth functions was used
already by E.L. Post [1921], [1941]. However, the importance of clones in univer-

sal algebra was not recognized until the early seventies.

By an operation we will always mean a finitary, nonnullary operation.
(The exclusion of nullary operations does not cause any essential restriction in
generality.) Let A be a set. For integers n 21 and 1 < i <n, the i-th

n-ary projection on A is the operation defined by

e .(a;,...,a) = a, for all a J,a A.
n’1( 100 0dy) i ,a_ €

1°°°"’"n

If £ isan n—éry and 81s----8, 2T€ k;ary operations‘on A, then we define a
k-ary operation f(gl,...,gn) on A, called the Aupenpoiizion of f,gl,..,,gn,
as follows: ' i .

f(gl,...,gn)(al,.‘..,ak) = f(glcal,...,ak),...,gn(al,...,ak)) 

for all Ayseees8y € A.

DEFINITION. A set of operations on a fixed set A 1is said to te a clone

on A iff it contains the projections and is'closéd under superposition.
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Clearly, the set 0A of all operations on A, and the set JA of all
projections on A are clones. Furthermore, the intersection of arbitrary set of
clones on A 1is again a clone. Thus it follows that thé clones on A form a
complete lattice Lat(A) with least element JA and greatest element 0A .
Furthermore, for arbitrary set F of operations on A there exists a least clone
containing F. As usual, this clone will be called the clone generated by F, and
will be denoted by [F]. Instead of [{f}] we write simply [f]. For a clone

C and n 21 we let C(n) denote the set of n-ary operations from C.

An n-ary operation f on A is said to depend on its i-th variable

(1 £ i <n) iff there exist elements a

1,...,ai_l,ai+1,...,an,b,c € A such that

f(al,.. b,a.

1+1,...,an) $ f(al,...,ai_l,c,ai+1,...,a ).

034010 n
Otherwise the i-th variable of f is called §{ictitious. 1In that case f can

be regarded to arise from an (n-1)-ary operation by adding a new, fictitious var-
jable in the i-th place. Using the projections it is easy to see that for every
clone C and every operation g e C, C contains all operations arising from g

by identifying variatles, or by permuting variables, or by adding fictitious var-

iables.

Two clones are naturally attached to every algebra UL = (A;F): the
clone T(Q) of term operations (or term functions [BSJ], polynomials [G]) of
(t, whichk is the clone génerated by F, and is called the clone of £ ; and the
clone P(AR) of polynomial operations (polynomials [BS], algebraic functions
[G]) of (L, which is the clone generated by F and-all the unary constant opera-

tions on A.

EXAMPLES. 1. If A = (A;+,-,0) is an Abelian group, then

n

TA) ={] c.x, :nz21, c,...,c. eZ},
=1 11 1 n
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n
P(A) ={i§1 c.x; fainx1,c .,cnez, a e A}

17

(Z denotes the set of integers).

2. For a ring R with 1 and a unitary R-module PA-: (A;+,-,0,R) we

have

TG =
1

nos~—13

riX;i no2 1, TiseeesT € R},
1

,...,T € R, a € A}.
1 n

v
—
2}

n
P(A) = {'21 r.x; +a:n
i=

3. For a commutative ring R with 1, the clone P(R) consists of all
polynomial functions of several variables (in the classical sense) on R.
4. Lagrange's interpolation theorem for functions of several variables

implies that P(K) = 0, for every finite field K.

K
5. Let d?, = ({0,1};A,v,r,0,1) be the 2-element Boolean algebra (r
stands for complementation). It is known from elementary logic that

T(#2) = 00,1y -

DEFINITION. Two algebras with a common universe are called fexrm equdiva-
Lent [polynomially equivalent] iff they have the same term [polynomiall] opera-
tions. We say that two algebras Cli = (Ai;Fi) (i = 1,2) are equivalent iff Cll
is isomorphic to an algebra term equivalent to Clz .

It is easy to see that all three relations defined above are indeed equi-
valence relations. Equivalence of algetras is just the abstract version of term
equivalence. Term equivalence is important because term equivalent algetras be-
have very similarly: they have the same sutalgecbras, endomorphisms, congruences,
etc., moreover, they have finite btases for their identities simultaneously provid-

ed both are of finite type. In fact, most properties of an algebra derend on its

clone rather than the choice of its basic operations. Several well-known
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instances of term equivalence are listed below to illustrate that term equivalent

algebras are indeed "essentially the same".

EXAMPLES. 1. A Z-module and its additive group;
2. a Boolean algebra and the corresponding Boolean ring with 1;

3. a zero ring and its additive group are term equivalent.

Recall that an operation f on A is {idempotent iff it satisfies the
identity f(x,...,x) = x. A clone on A is called idempotent iff it consists of
idempotent operations, while an algebra (A;F) is idempotent iff its basic opera-

tions (or equivalently, its term operations) are idempotent.

DEFINITION. Let 0!1 = (A;F)) be an algebra. An algebra Ucz = (A5F,)
is said to be a feduct [polyncmial reduct] of Cll iff T(Clz) < T((Xl)
(P(d,) < P(Ckl), respectively]. The full idempotent reduct of Cll is the alge-

bra on A vwhosec operations are the idempotent term operations of Cll.

EXAMPLE. The full idempotent reduct of a unitary R-module RA

(A;+,-,0,R) 1is the algebra
n n
) r.x;imnzl, r,...,r €R, ) r, = 1h,
i=1 i=1

which is term equivalent to the affine R-module
(A;x-y+z,{rx + (1-1)y: r € R})
corresponding to pA (cf. Proposition 2.6).

It is easy to see that a clone C on ‘A is the clone of a unary algetra
with universe A if and only if every operation in C depends on at most one of
its variables. These clones will be termed unary clones. Occasionally it will be
convenient to call J, the taivial clone on A. Accordingly, by a trivial alge-

bra we mean an algebra whose basic operations (or equivalently, term operations)

are projections.
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For an algetra = (A;F) a subset L of A is said to ke a subuni-

vernse of (L iff B is empty or is the universe of a sutalgetra of (I .

The fundamental notions of universal algebra and lattice theory, which
are not defined here, can be found in any textbook on universal algebra, say
[BS], [G], or [MMPT]. The 1l-element algebras are considered simple. For a set
A, the equality relation AA = {(a,a): a ¢ A} and the total relation VA = A2
are called trivial equivalence nelations on A. The identity mapping A > A will
be denoted by idA . (The subscripts A can be omitted if there is no danger of
confusion.) For an Abelian group A = (A;+,-,0) the exponent of A 1is the least

positive integer n such that A satisfies the identity nx = 0, if such an n

exists; otherwise the exponent of A is 0.

Term operations and subalgebras

The most fundamental observation in clone theory is that the clone T
of an algebra (L= (A;F) can also be described by "invariants' rather than its
generating set F. Namely, these invariants are the subuniverses of powers of
QL. This connection between the-term operations and the subuniverses of powers of
I is especially nice if OX is finite, for then the subuniverses of finite
powérs of already determine T(({). Although in a completely different ter-
minology, these ideas go back to the investigations of A. V. Kuznetsov and his
school, and M. Krasner in the forties and fifties. However, a systematic treat-

ment was not available until the late sixties and early seventies.

The aim of this section is to record those facts from the general theory
which will be needed later on. A more complete discussion can te found in the

books [PK] and [MMPT; Chapter VIIIJ.
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DEFINITION. Let A be a set and B a subset of a power AI of A.
An operation f on A is said to preserve B iff B is a subuniverse of the
algebra (A;f)I.

For example, if B € A2 is an equivalence relation;on A, thén f pre-
serves B means that B 1is a congruence of the algebra (A;f), while if B s A2

is a partial order on A, then f preserves B 1is equivalent to saying that f

is monotone with respect to B.

The set of those operations on A which preserve a subset B of a power
of A will be denoted by Pol,{B} (as these operations are sometimes called
polymorphisms). More generally, for arbitrary set S of subsets of powers of A

we define the set PolA S of operations by

Pol, S= N Pol,{B}.
A BeS A

(The subscript A may be omitted if it is understood from the context.)

. . c
To every function f: A1 X ... X An -> Ao (n 21, Ao,Al,...,An = A) we
can assign in a natural way a subset of An+1 as follows:
£ = {(a),...,a ,f(a,...,a)): a; e Aj,...,a_ € A}

Sometimes it will te more convenient to write the values of f in the first com-

ponent, that is, to associate with f the set

fD = {(f(al,...,an),al,...,an): a, € Al""’an € An}

instead of f”. In most cases these notations will be used for operations.

DEFINITION. For two operations f,g on A we say that f commutes

with g iff f preserves gD (or equivalently, gD).

In particular, if g is unary, this means that g is an endomorphism

of the algebra (A;f). As we shall see below (Proposition 1.1(b)), the
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commutativity of two operations is a symmetric relation.

The following simple facts are immediate consequences of the definitions,

therefore the proofs are left to the reader.

PROPOSITION 1.1. Let A be a sef,

(a) Pol, S 44 a clone fon arbitrarny set S o0f subsets of powerns of A.

A
(b) An cperation £ e ng) commutes with an operation g e Ogn) A

and only if f and g satisfy the identity

f(g(xll,...,xln),...,g(xkl,...,xkn)) = g(f(xll,...,xkl),...,f(xln,...,xkn)).

(c) For a subset B o0f A and for anbitrary operations £ e 0,,
h e Oy, we have £ e Pol (b7} 4f and onky if B 4s closed unden £ and the

restriction f|, of £ commutes with h.

Let us consider a set T of n-ary operations on A. Each member of T
n

is a mapping A" > A, and hence is an element of AA
n

a subset Xp of AA . The proof of the following lemma is again straightforward.

Thus T corresponds to

LEMMA 1.2. Let T be a set of n-ary operations on A. A k-ary opera-
tion g on A preserves Xp 44 and only if for all operations £l f T

we have glfy,..,f) e T.

Now we can state more precisely the connection between the term opera-

tions and the subuniverses of powers of an algebra.

PROPOSITION 1.3. Let X = (A;F) be an algebra. For every integen
n

nxz1, X 48 a subuniverse cf A , and an cperation £ on A 48 a
term operation of (L 4if and onky if it preserves all subunivernses xT(“) u
(o)
(n=>1).
PROOF. Let C = Pol,{X :n>1}., By Lemma 1.2 we have T(QX) € C, imply-
A (n)
T (D Al

ing also that X is a subuniverse of (L

T (o)

for every n 2 1. To prove
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the reverse inclusion T((Z) 2 C, let ge C, say g is n-ary. Then g pre-

serves , so applying Lemma 1.2 for the n-ary projections

X
7M™ )

e 1r--s€ € T(“)(cm) we get that g = g(e

n,n ',en,n) € T(n)(OZ) . This

n,1°°°

completes the proof.
COROLLARY 1.4. For a finite algebra X = (A;F), an operation g on A

i8 a term operation of U if and only if it preserves the subunivernses of ginite

powerns of O .

PROOF. Let S denote the set of subuniverses of finite powers of Ol. Since

{ :n>1} €S, we have

X
™ ()

Pol, {X
AT

The left hand side equals T(QI) by Proposition 1.3. The right hand side con-

:n>1} 2 Pol, S.

tains F by definition, so it contains T((L) as well by Proposition 1.1(a).

Thus T(QL) = PolA S, as claimed.

1f (I is infinite, then |A"| = |A| for all n > 1, so the same argu-
ment as above yields

COROLLARY 1.5. For an infinite algebra X = (A;F), an operation g on
A 48 a term cperation of K if and only 4if it preserves the subuniverses of
o .

Proposition 1.3 for A finite and Corollary 1.4 were proved independent-
ly by D. Geiger [1968] and V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, B. A.

Romov [1969], and they were generalized to the infinite case by I. G. Rosenberg

[1972].

For comparison, it is worth mentioning how those operations g on A
can be characterized which preserve the subuniverses of finite powers of an in-

finite algebra O = (A;F).
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DEFINITION. Let C be a clone on A. We say that an operation
g € O&n) can be interpolated by operations from C iff for every finite subset
B of A" there exists an operation f e C such that £l = gly - The clone C
is called Locally closed iff it contains every operation that can be interpolated
by operations from C. For an algebra Ot = (A;F), the operations that can be

interpolated by operations from T(QX) [P(OL)] are called Local temm operations

of (X [Local polynomial operations of (I , respectivelyl.
The definitions immediately imply

PROPOSITION 1.6. Let A be a set.

(a) The Local term operations of any algebra WL = (A;F) gorm a Locak-
Ly closed clone on A.

) Pol, S 45 a Locally closed clone fon anbitrary set S o4 subsets
0f finite powers of A.

For arbitrary set T of n-ary operations on A, and for arbitrary fi-

T B denote the subset of AB consisting of the
L
B

functions g[B with g € T, considered as elements of A~ . Similarly to Lemma

nite subset B of An, we let X

1.2 we have

LEMMA 1.7. Llet T be a set of n-ary operations on A and £et B be a
finite subset of A". A k-ary operation g on A preserves XT,B i§ and only
if gon all operations £ f, e T, there exists f e T such that

TS 5
gy, f) ]y = £l

Thus we get the following analogue of Proposition 1.3 for local term op-

erations.

PROPOSITION 1.8. Let (L = (A;F) be an algebra. For every integen

n=>1 and for arbitrarny §inite subset B of A", X is a subuniverse
; ™ @y,
of A°, and an operation £ on A 48 a Local term operation of a Af and only



20

Af At preserves all these subunivernses X (n) .
T () ,B

PROOF. Let C = Pol,{X :n=21, BES An, B is finite}. In the same
A" (n)
TV (@),
way as in Proposition 1.3, making use of Lemma 1.7 in place of Lemma 1.2, we can
conclude that C is the clone of local term operations of (X . The details are

left to the reader.

As before, we get the required characterization, which is due to B. A.

Romov [1977].

COROLLARY 1.9. Fox an algebra U = (A;F), an operation g on A 4is a
Local term operation of X if and only if it preserves the subuniverses of fi-

nite powerns of .

Clearly, if (& is finite, then the local term operations of (X are

term operations as well, so Corollary 1.4 is a special case of Corollary 1.9.

For a set F of operations on a fixed set A, let InvA F denote the

family of subuniverses of finite powers of the algebra (A;F).
EXERCISE 1.10. For every set A, the mappings

Feo InvF

Pol S « S

between the power sets of OA and {B: B S A" for some n > 1} define a Galois
connection (or polarity), that is, the following two conditions hold for arbitrary

subsets F, F' of OA and for arbitrary sets S, S' of subsets of finite powers

of A:

n

(1) if F S F' then Inv F 2 Inv "', and similarly, if S £ S' then
Pol S 2 Pol S';
(2) FEPol InvF and S £ Inv Pol S.

This implies also that for F, S as above we have
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(3) Inv F = 1Inv Pol Inv F and Pol S = Pol Inv Pol S.
Consequently

(4) the mappings Pol Inv and Inv Pol ére closure operators, hence
the respective closed sets (that is the sets of the form Pol S and those of the
form Inv F, respectively) constitute complete lattices; moreover, Pol and Inv,

when restricted to these lattices, yield mutually inverse dual isomorphisms.

Propositions 1.6 and 1.8 (or Corollary 1.9) show that the sets of the
form PolA S are exactly the locally closed clones on A, or for A finite, they
are exactly the clones on A. We note that the sets of the form InvA F can
also be described as sets of subsets of finite powers of A that are closed under
certain constructions. (For A finite this was discovered independently by V. G.
Bodnarchuk, et al [1969] and D. Geiger [1968]. Later these results were general-
ized to the infinite case independently by R. Poschel [1979] and L. Szabd [1978].)
However, as we will not need this fact later on, we do not go into the details.
Nevertheless, some constructions will be used quite often, so we introduce the no-

tations here.

Let B be a subset of Ak (k 2 1). We will write k for the set

{1,...,k} indexing the components of B. For an £-tuple (il""’il) € 5@ we

define the projection of B onto its components il""’iﬁ by

PT. . B = {(x. ,...,x. )t (Xqy5...,X,) € B}.
S ERERTEY) i i, 1 k

In particular, if £ = k and il""’ik is a permutation of 1,...,k, then

pPT B arises from B by rearranging the components. The property that,

i, ...,1

17°°°77k

up to the order of their components, the subsets B and B' of Ak coincide,

will be denoted by B & B'. For example, if k = 2, then PT, B 1is the inverse
)

of B, which will be denoted by B”. For a nonvoid subset I of k with

I = {11,...,1£}, i < ... < iy, we write pr; B for pril""’iﬂ B. The symbol
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13:§81 X ... x B will be used to designate that pr; B = B, for all 1 < i < k.
The sign < stands for "< and $", For B= B1 X ... X Bk and for arbitrary
bijections ™ Bi > Ci (Ci SA, 1<1ic<k) we set

B[ﬂl,...,nk] = {(xlnl,...,xknk): (xl,...,xk) e B}.

k-£

If 1< <k and a = (a£+1,...,ak) e A° 7, then we define the subset of Aﬂ

arising from B by "substituting the constants TREEE for the (£+1)-st

Sy

up to the k-th components'" as follows:

B(xl,...,xz,a) = B(xl,...,xz,a£+1,...,ak)

£,
{(xl,...,xz) e A (xl,...,xz,a£+1,...,ak) € B}.
As usual, for C(C,C' S A2 we set
CoC'={(xy) e A%: (x,z) ¢ C and (z,y) € C' for some z e A}.

Let now (X = (A;F) be an arbitrary algebra. It is easy to check that
C o C' 1is a subuniverse of 012 if C and C' are such. Similarly,

. . . . k
pT; ; B is a subuniverse of O[z whenever B is a subuniverse of X
1, e e 0y z

and (il""’il) € gz. Furthermore, if B=$ B1 X ... X B is a subuniverse of

k
o

A, 1<1ic<k)), m is a sub-

nn

X and for each bijection me: By > C, (€
universe of Clz, then B[ﬂl,...,ﬂk] is also a subuniverse of Cﬂk. In general,
the remaining construction fails to have the analogous property. However, if w

is idempotent, then B(Xy,...»Xp,8p 15,8 ) 1is a subuniverse of (kz whenever

B 1s a subuniverse of CEk and ap,qs-++18 are arbitrary elements from A.

For later use and to illustrate the power of the above tools we finally
prove a result establishing a relation between the subuniverses of finite powers
of a finite algebra and its full idempotent reduct. We will call a subset B of
AK Auedundant iff PT; ; B $ Ay for all 1<i<j <k and Ipri B| >1 for

all 1 <1i < k.
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PROPOSITION 1.11. Let I = (A;F) be a finite algebra and Uzo Ats
full idempotent reduct. Every set of the foam P, B(xl"“'xz’a)’ where B A4
a subunivernse of ak , l<sn<f<k and a e Al—"l, 48 a subunivernse cf (I.g.
anuenbely, all inedundant subunivernses of ginite powenrs of C&o are of this

goam.

PROOF. The first claim is easy to check. To prove the second one, consider an
irredundant subuniverse S of Clg (n > 1), and let |[S]| =m,

S = {(sil,...,s. ): 1 <i<m}. Since S 1is irredundant, the elements

in
(slj,...,smj) e A" (1 £j <£n) are pairwise distinct, and none of them equals

m
(a,...,a) € A" for any a € A. Thus, if in the subuniverse of OtA

X

7™ (o)
(cf. Proposition 1.3) we first substitute a in the component corresponding to
(a,...,a) € A" for every a € A, and then project the resulting set onto its com-

ponents (slj,...,smj) e A" (1 £j <£n), then we get the set

S = {(8(S,qs-vesS, )5 sB(Sy e s )2 g € TV ()Y

Because of the projections we have S € S'. On the other hand, S' £ S, since S

is a subuniverse of Cﬂg . Thus S = S', concluding the proof.

!/

Minimal clones and maximal clones

It is easy to see that for every set A, the lattice Lat(A) of sub-
clones of 0A is an algebraic lattice. The atoms [dual atoms] of Lat(A) are
called minimal [maximal] clLones; that is, a subclone C of OA is minimal iff
C % JA and C, ]A are the only subclones of C, while C is maximal iff C # OA
and C, OA are the only clones containing C. We prove that for a finite set A,
the lattice Lat(A) is atomic and dually atomic with finitely many atoms and dual

atoms.



24

Clearly, every minimal clone is 1l-generated. To describe what kind of

operations may define minimal clones, we introduce several names.

DEFINITION. Let A be a fixed set. A ternary operation f on A is

called a majonity operation iff it satisfies the identities

f(x,x,y) = f(x,y,x) = £(y,x,x) = x,
a minonity operation iff it satisfies the identities
f(x,x,y) = £f(x,y,x) = £(y,x,x) =y,

and a 2/3-minonilty opernation iff it satisfies the identities

f(x,x,y) = £(y,x,y) = f(y,x,x) = y.

For k23 and 1 <1<k, a k-ary operation g on A 1is called a k-ary semi-
projection onto the i-th variable, or an i-th k-ary semdiprojection, iff it sa-
tisfies all identities

g(x. ,...,X. ) = X,
J1 Ik i

such that jl”' e {1,...,k-1}.

iy
PROPOSITION 1.12. Every nontrivial algebra O = (A;F) has a team cp-
ernation of one of the folLowing types:
(I) a nonidentical unary operation,
(I1) a binary idempotent operation distinct from the projecticns,
(II1) a terrnarny majority operation,
(IV) a Zernary minonity operation, or
(V) fon some k = 3, a k-ary semiprojection which i85 not a projection.
PROOF. Select a term operation f of (0 so that f is not a projection, and

the arity k of f is the least possible. If k = 1, then we have case (I). If

k > 2, then by the choice of f
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every operation arising from f by identification

(1.1 of some variables is a projection.

Thus, in case k = 2, f 1is of type (II). Assume now k = 3. By (1.1), f sa-

tisfies one of the identities f(x,x,y) = x or f£f(x,x,y) y, and similarly for
f(x,y,x) and f(y,x,x). This leads to eight possible systems of identities des-
cribing the behaviour of f wunder identification of variatles. One of them means
that f 1is a majority operation, another one that f is a minority operation,
and three others that f is a first, second or third semiprojection, respectively
The remaining three sets of identities yield that f itself, or an operation
arising from f by permuting its variables is a 2/3-minority operation. In this
case, it is easy to produce a majority term operation. Indeed, if f is a 2/3-
minority operation, then f(x,f(x,y,z),z) is a majority operation. Therefore we

are done if k = 3. Finally, the case k > 4 1is settled by the following result

often referred to as Swierczkowski's Lemma (cf. S. Swierczkowski [1960-611).

LEMMA 1.13. Every at Least quaternary operation with property (1.1) 4s

a semiprojection.

PROOF. Let f be a k-ary (k =2 4) operation on A satisfying (1.1). We may
assume without loss of generality that |A| > 1. Since both of the (k-1)-ary
operations f(x,x,x

and f(xl,x ,x,x,xs,...,xk) are projections, look-

3,...,xk) 2
ing at the operation f(y,y,z,z,xs,...,xk) we can see that one of them is a pro-
jection onto a variable distinct from x. So, permuting the variables of f we

can suppose that f satisfies the identity f(xl,x,x,x4,...,xk) = Xq- Taking

into account property (1.1) we conclude that the identity

(1.2) f(xl’XZ""’xi-l’x’xi+1’""xj—l’x’xj+l’""Xk) =X

holds for all 2 < i < j <k, as in view of f(xl,y,...,y) =Xy the operation on

the left hand side of (1.2) can be no other projection. Similarly, making use of
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(1.2) and k = 4, we also get that the identity

f(x,xz,...,xi_l,x,xi+1,.:.,xk) = X

holds for all 2 < i < k. Thus f 1is a first semiprojection.

Proposition 1.12 yields the result mentioned above on the minimal clones.

COROLLARY 1.14. Every nontrnivial clone on a finite base set A contains
a minimal clone. Furntherwmonre, there are only a ginite numbern of minimal clones

on A, and each of them is generated by an operation of one of the types (I)-(V).

PROOF. Observe that on the finite set A, every k-ary semiprojection with

k > }AI is a projection. Therefore the operations (I)-(V) on A are finite in
number. Proposition 1.12 implies that every minimal clone is generated by one of
these operations, and hence there are only finitely many of them. On the other
hand, since by Proposition 1.12 every nontrivial clone on A contains a clone
generated by one of the operations (I)-(V), the finiteness ensures that every non-

trivial clone contains a minimal one, as well.

:We note that all the five types do indeed occur among the minimal clones.

EXAMPLES. Let A be an arbitrary set, |A| > 2.

(1) If £ # idA is a unary operation on A such that £ = f or
£9 - idA for some prime q, then [f] is a minimal clone. In fact, it is easy
to see that every minimal clone of type (I) on a finite set A is of one of these
forms.

(IT) If (A;+) 1is a semilattice (that is a commutative, idempotent semi-
group), then its clone is minimal.

(III) The dual discriminaton d on A is the operation defined by

a if a =»
d(a,b,c) = (a,b,c € A).
c otherwise
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It is not hard to show that {d] 1is a minimal clone. (For iAf > 5 this fol-
lows also from the results of Chapter 5.)

(Iv) If (A;+,0) 1is an Abelian group of expénent 2, then [x +y + z]
is a minimal clone.

(V) Let A be finite, |A| = n 2 3, and define an n-ary operation Kn

on A as follows:

[}
>

a if {al,...,an} =

(a;,...,a_ € A).
a; otherwise 1 n :

Zn(al,...,an) = {

It can bte proved that [Zn] is a minimal clone. (Again, for n > 5 this follows

also from the results of Chapter 5.)

The results summarized in Proposition 1.12 and Corollary 1.14 have been
around for some time, and were used implicitly in a number of papers, perhaps for
the first time in B. Csakény [1980]. An improved version of Corollary 1.14, to be
discussed in Chapter 2, which states that every minimal clone of type (IV) is of
the form mentioned in the example above was discovered recently by I. G. Rosenberg
[al. So the minimal clones that need further investigation are those of types
(IT), (III) and (V). All minimal clones are explicitly described only for
|A] = 2 (an easy exercise, using Corollary 1.14) and for |A| = 3 (B. Csakany

(1983a],[1983b1) .

Let us turn now to the maximal clones. More generally, we discuss the
maximal subclones of arbitrary clones on finite sets. The main result is the fol-

lowing characterization of finitely generated clones (S. V. Yablonskil [19587).

PROPOSITION 1.15. For a clone C on a finite set, the following condi-
tions are equivalent:
(i) C 48 finitely genenrated;

(ii) eveny proper subclone of C 48 contained in a maximal subclone of
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C, and the maximal subclones of C are finite in numbenr.
The proof is based on a lemma.

LEMMA 1.16. Let C be a clone on a finite set, and Let T C c(m gor

some n>=1. Then C has at most one maximal subclone D such that D(n) = T.

PROOF. Let D be a maximal subclone of C with D(n) = T. Applying Proposi-
tion 1.3 for the algebra (A;D) and Lemma 1.2 for D(n), respectively, we get
that

(n) _ p(n)
A D(n) and PolA XD(n) =7 .

|
o
o
—
~

D <
Thus, since D(n) =TCcC C(n) and D € C, we have

peEcCn PolA XT c C.

The maximality of 0 implies then that D = C N PolA X hence D is uniquely

determined by T.

PROCF of Proposition 1.15. The implication (ii) = (i) is trivial, as
every subset of C containing for each maximal subclone P of C an operation
outside 0, generates C. Conversely, suppose (i) holds. Then the first part of
(ii) is an immediate consequence of Zorn's Lemma. Furthermore, there exists a
natural number n 2 1 such that [C(n)] = C. Clearly, D(n) c C(n) holds for
every maximal subclone D of C. By Lemma 1.16, D is uniquely determined by

o™ et

, SO the number of maximal subclones of C does not exceed 2 However,

n . .. . ..
C( ) is finite, as the base set is finite.

To get the required results for the maximal clones on a finite set A it
suffices by Proposition 1.15 to show that OA is finitely generated. This can be
done, for example, by considering finite algebras which mimic the 2-element

Boolean algebra.

DEFINITION. The Post algebra of order n is the algebra
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p‘n = ({o,...,n-1}; A,v,r,0,1) where A, v denote meet and join with respect to
the order 0 < n-1<n-2< ...<2<1 and r is the cyclic permutation

(01 ... n-1).
Obviously, 'p 2 is the 2-element Boolean algebra.

EXERCISE 1.17. T(pIJ = 0{0 holds for every integer n = 1.

,n-1}
(Hint: Represent every operation in a form similar to the disjunctive normal form
for the term operations of the 2-element Boolean algebra, or apply Corollary 1.25

to be proved in the next section.)

Thus we have
COROLLARY 1.18, Let A be a finite set. Every propern subclone of OA
48 contained in a maximal clone on A, and the maximal clones on A are finite in

numben.

Contrary to the minimal clones, the maximal clones are known on every
finite set A. The deep theorem explicitly describing all maximal clones on A
is due to I. G. Rosenberg [1965], [1970]. The special cases |A| = 2, 3 and 4
were settled earlier by E. L. Post [1941], S. V. Yablonskif [1958], and A. I.
Mal'tsev [unpublished], respectively. A new proof for Rosenberg's Theorem was
found by R. W. Quackenbush [1981] (see also the book [MMPT]). Here we include the

theorem without proof.

It is clear that every maximal clone on a finite set A is of the form
Pol, {B} for some subset B of a finite power of A. So the description of the
maximal clones amounts to the determination of the corresponding sets B. We need
some definitions. A subset B of Ak is called ftotally reglexive (in case
k = 2 neglexdive) iff it contains every k-tuple (al,...,ak) € Ak with

I{al,...,a }| < k, and totally symmetric iff (a .»8,) € B for every k-tuple

1T

(al,...,ak) e B and every permutation m of {1,...,k}. A totally reflexive,
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totally symmetric subset B of Ak is termed centrnal iff B # Ak and there is
k-1 o

an element ¢ ¢ A such that {c} x A B. (Note that every nonempty proper
subset of A is central.) For 3 < k < |A|, aset T = {61,...,62} (L 21) of

equivalence relations on A is called k-regular iff each Gi (1 <1ix<4) has

£

exactly k equivalence classes and the intersection 0 €5 of arbitrary equi-
i=1

valence classes €, of 6, is nonempty. The subset of Ak determined by T

consists of all k-tuples (al,...,ak) € Ak having the property that for each

1 <j <4& at least two of the elements a are equivalent modulo Gj. A

1ree oy
partial order on A is said to be bounded iff there are a least element and a

greatest element as well.

Now we can formulate Rosenberg's Theorem.

THEOREM 1.19. The maximal clones on a ginite set A are exactly the

clones of the goam Pol, {B} where

(@) B S A% is a bounded partial onder on A; or

(B) B =1 where m 48 a fixed point free permutation of A with
7 = idA gorn some prime q; on

(Y) B = (x-y+z2)° with (Aj+,-,0) an Abelian group of exponent q for
some prime q; or

2

(8) B S A 48 a nontrnivial equivalence nelation on A; or

(e) B 48 a central subset of Ak

(1 <k<|AD; on
(z) B 4s the subset of AK determined by a k-regulan gamily of equi-

valence relations on A (3 < k < |A]).

DEFINITION. An algebra @ = (A;F) is called paimal iff (F is finite

and every operation on A is a term operation of (1.

Corollary 1.18 and Theorem 1.19 immediately imply

COROLLARY 1.20. A §inite algebra U = (A;F) is primal if and only if
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no set of types (a)-(g) 4is among the subuniverses cf finite powerns of .

If we want to generalize the concept of primality to infinite algebras
(Lt = (A;F), we have two possibilities: we may require either the clone of term
operations or the clone of local term operations of (f to be equal to OA' How-
ever, as [OAI >j¢o if A 1is infinite, no infinite algebra of finite (or count-
able) type can satisfy the first condition. Therefore we consider local term
operations, and call an algebra Ol = (A;F) ALocally primal iff every operation
on A is a local term operation of (L. Interestingly, in spite of the fact that
the lattice of locally closed clones on an infinite set A is not dually atomic,
a characterization similar to (but weaker than) Corollary 1.20 can be proved for

locally primal algebras as well (I. G. Rosenberg, L. Szabo [19841]).

Clones containing special operations

Although varieties of algebras will not be considered in these notes, it
should be mentioned that the existence of certain operations among the term opera-
tions of an algebra I 1is closely related to properties of the variety D)

generated by OI.

DEFINITION. A ternary operation p satisfying the identities

p(x,y,y) = p(y,y,x) = x
is called a Mal'tsev operation.

In particular, minority and 2/3-minority operations introduced earlier
are special Mal'tsev operations. The name refers to a theorem of A. I. Mal'tsev
[1954] (see also [BS], [G], [MMPT]) stating that an algebra Ol has a Mal'tsev
operation among its term operations if and only if the variety V((1) 1is con-
gruence permutable (that is, every algebra S ¢ V(1) has permutable congruences).

Mal'tsev's Theorem was the first result of this nature, characterizing some
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property of varieties by the existence of terms satisfying certain identities.
Since then an abundance of such theorems, called Mal'tsev conditions, were dis-
covered, of which we mention only those playing a role here. A. F. Pixley [1963]
proved that an algebra UL has a Mal'tsev operation as well as a majority opera-
tion among its term operations if and only if the variety V(L) generated by (I
is arithmetical (that is, for every algebra & e V((Z) the congruence lattice
of & is distributive and § has permutable congruences). For a majority op-
eration alone, a similar theorem does not hold. In fact, it follows that the
existence of a majority operation among the term operations of (I implies that
the congruence lattice of every algebra & e V(L) is distributive, however, the
converse is not true. The Mal'tsev condition characterizing congruence distribu-

tivity was found by B. Jonsson [1967] (see [BS] or [G; p. 221]).

DEFINITION. An algebra will be called a Mal'tsev algebra [majority alge-
bra, anithmetical algebral iff it has a Mal'tsev operation [majority operation, or

both, respectivelyl among its term operations.

EXAMPLES. 1. Groups, rings and modules are Mal'tsev algebras.
2. Every lattice is a majority algebra.
3. Boolean algebras, finite fields, and the Post algebras ¥)n (n>1)

are arithmetical.

Note that an algebra (U 1is arithmetical if and only if it has a 2/3-
minority term operation. Indeed, if p 1is a Mal'tsev operation and f 1is a ma-
jority operation, then f(x,p(x,y,z),z) is a 2/3-minority operation; and con-
versely, if g is a 2/3-minority operation, then it is also a Mal'tsev operation

and g(x,g(x,y,z),z) 1is a majority operation.

Quasigroups provide an important and wide class of examples of Mal'tsev

algebras. Let A be a set. A groupoid (A;+) is called a quasigroup, or =+ is
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called a quasigroup operation, iff the unary operations ax and xa are permuta-
tions of A for all a e A. It is easy to see that this condition on - is
equivalent to requiring that there exist btinary operations \ and / on A such

that the identities

xX\(xy) =y, x(x\y) =y, (xy)/y =x, x/y)y =x
are satisfied. Clearly, \ and / are uniquely determined. They are called the

Legt and night divisions, respectively, corresponding to < . The above identi-

ties immediately imply that the term operation

p(x,y,z) = (x/x)\((x/y)z)

of (A;-,\,/) 1is a Mal'tsev operation, and hence (A;+,\,/) is a Mal'tsev alge-
bra. Indeed, the identity p(x,x,z) = z 1is obvious, while the other one can be

proved as follows:

P(x,y,¥y) = (x/X)I\N((x/y)y) = (x/x)\x = (x/x)\((x/x)x) = x.
A stronger claim is true if A 1is finite.

PROPOSITION 1.21. I§ (A;*) 44 a finite quasigroup, then the Left and
rnight divisions corresponding to « anre term operations of (As;+). Consequently

every ginite quasigroup 4is a Mal'tsev algebra.

PROOF. For every integer k > 1 define a binary term operation f(k) of (A;*)
as follows:
£ ey = 2L 0)00)
k times
Since ay 1is a permutation of A for all a € A, we get the identity
f(|A|!)(x,y) = y. Hence x\y = f(IA]!—l)(x,y) is the left division corresponding

to -+ . The argument for the right division is symmetric.
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Next we discuss an important theorem of K. A. Baker and A. F. Pixley

[1975] on a class of algebras including majority algebras.

DEFINITION. For m > 3, an m-ary operation f satisfying the identi-
ties
fly,Xs...,X) = £(X,Y5X,...,X) = ... = £(X,...,X,yY) = X

is called an m-ary near-unanimity operation.

Clearly, the ternary near-unanimity operations are exactly the majority

operations.

THEOREM 1.22., Let U = (A;F) be an algebra having an m-ary near-
unanimity operation among its term operations (m 2 3). Then an operation on A
is a Local term opernation of U if and only if it preserves all subuniverses of
mm-l

PROOF. In view of Corollary 1.9 we are done if we show that every operation pre-
serving the subuniverses of Cnm°1 preserves all subuniverses of finite powers

of QU. Let g be an n-ary operation preserving all subuniverses of Clm-l, and

let B be a subuniverse of Cuk (k=z21). If k <m-1, then B x Aw—k'l is a

subuniverse of CQm'l, and hence is preserved by g. Therefore g preserves B,
too. From now on we proceed bty induction on k. Assume that k=m and g pre-

serves all subuniverses of Ckk-l. Consider arbitrary elements b, = (b,

5 11,...,b

ik
(1<i<n) of B, and set ¢ = g(bl”"’bn)’ that is, ¢ = (cl,...,ck) with
€5 = g(blj""’bnj) (1 £j <k). We have to prove that c ¢ B. Since g pre-

serves the subuniverse B(Y) = pr, B of Clk-l, we have

R
- (D
(cz,...,ck) = g((blz’“"blk)"‘”(bn2"“’bnk)) € B .

Hence there is an element a e A such that the k-tuple ccl) = (al,cz,...,ck)

belongs to B. Repeating the same argument for the i-th component (1 < i < m)



we get that there exists an element a; ¢ A such that the k-tuple c(i) =
(cl""’ci-l’ai’ci+l""’ck) belongs to B. Now, taking into account that there
is an m-ary near-unanimity operation f among the term operations of A, we
conclude that ¢ = f(c(l),c(z),...,c(m)) € B, as required.

COROLLARY 1.23. Let QU = (A;F) be a §inite algebra having an m-ary
near-unanimity operation among its term operations (m = 3). Then an operation
on A 48 a term operation of N if and only if it preserves all subuniverses of

o1

In the most important special case, when m

3, we have

COROLLARY 1.24. For a majority algebra QU = (A;F), an operation on A
i8 a Local term operation of R if and only if it preserves all subuniverses

of 2.

COROLLARY 1.25. For a §inite majornity algebra QU = (A;F), an operation

on A 4is a term operation of U if and only if it preserves all subuniverses
04 o,

Besides providing an easy test for the term operations of a finite near-

unanimity algebra, Corollary 1.23 has another interesting consequence.

COROLLARY 1.26. On a g4inite base set, every clone containing a near-
unanimity operation is ginitely generated.

PROOF. Let C be a clone on a finite set A, and let f be a near-unanimity op-

eration in C, say f is m-ary (m 2 3). By Corollary 1.23 every clone 0 with

C is determined by a set of subsets of Am-1

nn

[f1E0D Hence these clones are

finite in number, implying that C is finitely generated.

Finally, we mention a simple fact concerning the subuniverses of Ckz of

a Mal'tsev algebra a .
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EXERCISE 1.27. For every Mal'tsev algebra C¥ , the reflexive subuniver-

ses of Clz are exactly the congruences of dr. (Cf. the proof of Theorem 4.2.)

The lattice of clones on a 2-element set

Operations on a 2-element set, say A = {0,1}, are truth functions. 1In
propositional logic it is important to decide whether a truth function is expres-
sible via other givén truth functions. This problem was the motivation for E. L.
Post's investigations which led him to the full description of the lattice of
clones on {0,1}, announced in E. L. Post [1921] and published in [1941]. Later,
the applications in computer science, for example in the synthesis of switching

circuits, have increased the significance of these investigations.

E. L. Post's original proof is rather complicated, and involves a lot of
computations. Making use of some recent developments in universal algebra, such
as for example Corollary 1.23 or the theory of para-primal algebras discussed in
Chapter 4, J. Berman [1980] deviced a fairly short proof. However, even this one

is too long to be included here. The interested reader can find it in the book

[MMPT 3.

The diagram of the lattice of clones on A = {0,1}, often called Post's
Lattice, is shown in Figure 1. The dotted lines indicate 8 descending w-chains,

each one followed at the bottom by the meet (= intersection) of the chain.

To describe the clones corresponding to the vertices of the diagram, we
have two possibilities. Every clone C on A = {0,1} can be described either
by a generating set, that is a set F £ C with C = [F], or in view of Corollary
1.4 by a set of invariants, that is a set S of subuniverses of finite powers of

(A;C) with C = Pol S. Since [F] \/ [£f], it follows that the join irreduc-

feF
ible clones are 1-generated, furthermore, it suffices to present a generating
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operation for each join irreducible element of Post's lattice. Similarly, as
Pol S = N Pol {B}, the meet irreducible clones are determined by a single sub-

BeS
universe B, and it is enough to present such a subuniverse for each meet irredu-

cible element of the lattice.

Accordingly, in Figure 1, the join irreducible elements of the diagram,
denoted by U, are labelled with the generating operation of the corresponding
clone, while the meet irreducible elements, denoted by N, are labelled with the
subuniverse determining the corresponding clone. The notations are as follows:

« stands for multiplication modulo 2 (or conjunction), + for addition modulo 2,

v for disjunction, r for negation, and 0, 1 for the two constants; further-

more,
p(x,y,2) = x ty+ z,
d(x,y,z) = xy vV yz v zx (the dual discriminator on {0,1}),
u(x,y,z) = x(y v z2), u'(x,y,z) = x Vyz,
v(x,y,2) = u(x,y,r(z)), v'(x,y,z) = u'(x,y,r(z)),
i+l
hi(xl""’xi+1) = A xl"'xj—lxj+1"‘xi+1 (i =3,
i+l
hi(xl,...,xi+1) = A (x1 V ... V xj_1 Y xj+1 V ...V xi+1) (i=z3;

< denotes the natural order 0 < 1, and

¢, = 10,11 - {1,...,0},  «! = (0,1} - {(0,...,0} (i=2),

o = {(0,0,0),(0,0,1),(0,1,0),(1,0,0),(1,1,1)},

p' = {(0,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)},

T={ace {0,1}8: exactly 0, 4, or 8 components of a equal 1}.

In universal algebra, Post's result has the effect that for many conside-
rations, 2-element algebras can be regarded as known. For example, R. C. Lyndon

[1951] made essential use of it when he proved that every 2-element algebra has
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a finite basis for its identities. The description of the clones on {0,1} in
terms of invariants provides a quick and easy algorithm to decide whether two

given algebras on {0,1} are term equivalent, or one is a reduct of the other,

etc.

Finally, it should be pointed out that Post's result is unique in that
nothing similar can be expected for any of the clone lattices Lat(A) with
|A] > 2. Yu. I. Yanov and A. A. Muchnik [1959] proved that |Lat(A)| = 2R° if
A is finite, |A| > 2, while a result of I. G. Rosenberg [1976] shows that

|A
|Lat(A)| = 22 if A 1is infinite. (Moreover, in the latter case even the

Al
maximal clones are 2° in number.) Compared to Lat({0,1}), rather little is
known about the lattices Lat(A) when A is finite, |A| > 2, and even less when

A is infinite. Nevertheless, most results to be discussed here yield a piece of

information on Lat(A).



Chapter 2

AFFINE AND SEMI-AFFINE ALGEBRAS

Affine algebras are a special kind of Mal'tsev algebras which, during the
last decade, turned out to play an important role in universal algebra. Before

the definition we state a simple proposition.

PROPOSITION 2.1. For an arbitrany Abelian group A = (A;+,-,0) and for
every cperation £ on A the following conditions are equivalent:
(1) (x-y+2)® s a subunivense 65 (A;f)4;
(1i1) £ commutes with the fternary operation x -y + z;
(iii) flutv) + £(0) = £(u) + £(v) holds for all wu,v ¢ A", where n 44
the anity ¢f £ and 0 = (0,...,0);
(iv) £ 448 a polynomial operation of the unitary (End A)-module

(End A)é-: (A;+,-,0,End A), where End A 48 the endomorphism ning of A.

PROOF. (i) <= (ii) holds by definition. The implications (ii) = (iii),
(iv) => (1) are straightforward, the reader can verify them without difficulty.
To establish (iii) => (iv) consider the operation fo(xl,...,xn) =

f(xl,...,xn) - £(0). Then
£f2utv) = £ ) + £ (v) for all u,v e A",

implying that
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n i
o o \s
£ (x5 0x) = igl £(0,...,0,%;,0,...,0) for all x;,...,x e A,

where each summand, considered as a function of Xs s is an endomorphism of A.

DEFINITION. Let A = (A;+,-,0) be an Abelian group. The operations
satisfying the equivalent conditions of the preceding proposition are said to be

agine with nespect to A. The set of these operations will be denoted by A(A).

It is clear from (iv) that A(A) is a clone, namely A(A) A).

= Plend
In accordance with the notation commonly used for modules, the members of A(gg
will be written in the form

n
z r.x, +a with ae¢ A and r
i=1 13

,...,T_ € End A.
1 n -

DEFINITION. An algebra U = (A;F) is called affine iff there exists
an Abelian group A = (A;+,-,0) such that

() x -y +z is a term operation of (I, and

(b) every basic operation (and hence every polynomial operation) of

is affine with respect to A.

Since x - y + z 1is a Mal'tsev operation, every affine algebra is indeed
a Mal'tsev algebra. Furthermore, as x - y + z 1is easily seen to be the only
Mal'tsev operation in A(A), it follows that every affine algebra has a unique

Mal'tsev operation among its term operatioms.

EXAMPLES. 1. Abelian groups and, more generally, modules are affine
algebras.

2. If C 1is a maximal clone of type (y) on a finite set A (cf. The-
orem 1.19), then (A;C) 1is an affine algebra.

3. A group is an affine algebra if and only if it is Abelian.

4., A ring is an affine algebra if and only if it is a zero ring.
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The concept of affine algebras was introduced by R. McKenzie [1976] in
connection with his investigatiqns on locally finite, minimal, congruence permu-
table varieties. The so-called term condition (TC), which later turned out to
play a significant role in the representation problem for congruence lattices (see
R. McKenzie [1983] and the references there) as well as in commutator theory (see
R. Freese and R. McKenzie [a]), was defined in the same paper, although it ap-

peared also in H. Werner [1974].

DEFINITION. An algebra U = (A;F) is said to be a TC-algebra iff for

every n 2 1, for every n-ary term operation f of (L and for arbitrary ele-

ments u,v ¢ A and (n-1)-tuples a,b ¢ An—l,

(TC) f(u,a) = f(u,b) holds if and only if f(v,a) = f(v,b) does.

Notice that the requirement (TC) for all f ¢ T((I) implies that the
same holds for all f ¢ P((1) as well. It is easy to see that X is a TC-

2
algebra if and only if AA is a congruence class of a congruence of O°.

EXAMPLE. Affine algebras and unary algebras are TC-algebras.

Affine algebras

As we mentioned earlier, affine algebras have a unique Mal'tsev opera-
‘tion among their term operations, narmely the term operation x - y + z of the
corresponding Abelian group. Since this operation is crucial in establishing the
affineness of an algebra, it is useful to find necessary and sufficient conditions

ensuring that a Mal'tsev operation be of this form.

PROPOSITION 2.2. For a Mal'tsev operation p on a set A Zhe gollowing
conditions are equivalent:
(i) zhere exists an Abelian group (Aj+,-,0) such that p(x,y,z) =

X -y +z;
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(ii) p commutes with itself;

(iii) p satisfies the identities
(2.1) p(x,y,2) = p(z,y,x),
(2.2) p(p(x,y,2),z,u) = p(x,y,u).
PROOF. (i) = (ii) is trivial.

(ii) => (iii). A direct application of Mal'tsev's identities and the
PP

commutativity yields that

p(x,y,z) = p(p(y,Y,xX),F(y,Y,Y),pP(Z,y,Y))
= p(p(¥,y,2),p(y,y,Y),Pp(x,y,¥)) = p(z,y,x),

p(p(x,y,2),z,u) = p(p(x,y,2),p(z,2,2),p(z,2,u))
= p(p(x,z,2),p(y,z,2),p(z,z,u)) = p(x,y,u).

(iii) = (i). Choose an element C ¢ A arbitrarily, and define opera-

tions + and - on A by
x +y=pkx,0,y) and -x = p(0,x,0).

Then + is commutative by (2.1), and 0 is a neutral element for +. Now using
(2.1) and (2.2) we get that
(2.3) x + (-y) = (-y) +x = p(p(0,y,0),0,x) = p(0,y,x) = p(x,y,0),
in particular, x + (-x) = p(x,x,0) = 0, whence also

-(-x) = p(0,-x,0) = p(x+(-x),-x,0) = p(p(x,0,-x),-x,0) = x.
Furthermore, (2.3) implies that

(x + (-y)) +z = p(p(x,y,0),0,z) = p(x,Yy,2),

thus
(x + (-)) + z = p(x,y,2z) =p(z,y,x) = (z + (-¥)) +x =x + ((-y) + z).

Since we have -(-y) = y, it follows that + is associative. llence (A;+,-,0)



44

is an Abelian group and p(x,y,z) =X -y + z.

Clearly, minority operations are special Mal'tsev operations, and a
Mal'tsev operation arising from an Abelian group is a minority operation if and

only if the group is of exponent 2.

COROLLARY 2.3. Let p be a minonity operation on a set A (|A| 2 2)
such that every semiprojection in the clone [pl 4is a projection. Then there
exists an Abelian group (A;+,0) of exponent 2 such that p(x,y,z) = X +y + z.

PROOF. First we show that p is the unique minority operation in [p]l. For
arbitrary minority operations p,,p, ¢ [(p]l the ternary operation
(2.4) r,(p,(x,¥,2),2,Y)
is a semiprojection onto x, hence by assumption it is a projection onto x, that
is the identity
(2.5) Py (Py(x,¥,2),2,¥) = x
holds. Thus, applying (2.5) for the pairs P1sP; and P;:Py» respectively, we
get

Py (x,y,2) = py(p;(Py(x,¥,2)52,¥)5y,2) = pylx,y,2).
This immediately implies that (2.1) as well as the identity p(x,y,z) = p(y,x,z)

‘hold for p. To prove (2.2) we consider the quaternary operation

(2.6) p(r(p(x,y,2),2,0),u,y),
and check, using (2.5), that it is a semiprojection onto x. Cocnsequently, we
have the identity
p(p(p(x,y,2),2,u),u,y) = x.
Substituting both sides for x in p(x,y,u) and applying (2.5) we get (2.2).

Therefore, Proposition 2.2 implies the existence of an Abelian group (A;+,-,0)
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with p(x,y,z) = x - y + z, which is necessarily of exponent 2 as 2x =

p(x,0,x) = 0.

Notice that a clone generated by a semiprojection can never contain a
minority operation if the base set A has at least two elements, as every semi-
projection preserves the sets {ta,a),(a,b),(b,b)} < A2 (a ¥ b), whereas no mino-
rity operation does. So Corollary 2.3 implies the result of I. G. Rosenberg [al
mentioned in Chapter 1, which states that a minority operation p on a set A
generates a minimal clone only if p(x,y,z) = x + y + z for some Abelian group

(A;+,0) of exponent 2,

Applying Proposition 2.2 we can prove several useful characterizations

for affine algebras.

THEOREM 2.4. Fon every Mal'tsev algebra U = (A;F) the following con-

ditions are equivalent:
(i) QU 4is an affine algebra;

(ii) & has a Mal'tsev tewm operation p commuting with the basic op-

erations (hence with all term operations) of A ;
(iii) U 45 a TC-algebna;

(iv) the §inst projection is the only polynomial operation s of QR
which satisgies the identities
(2.7) s(x,y,y) = s(x,x,¥) = X;

(v) fon every natunal number n > 3, the §inust prejection 4is the only

n-ary ternm operation s of U which satisgies the identities
(2.8) SOGY,YsXgs e enX)) = S(XGX,Y5X,, 000X ) = X5

(vi) Ol has a Mal'tsev tenm operation p satisfying the identity

(2.9) p(p(x,y,2),2,y) = x,
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and p 4s the unique Mal'tsev operation among the polynomial operations of UL ;
(vii) U has a Mal'Zsev tenm operation p satisfying the identity (2.9),
and for every natural number n > 3, p with n - 3 fictitious variables added

A8 the unique n-ary term operation q of U satisgying the identities

(2.10) QXX Y%y 000X ) = QY XXXy, 00X ) =Y

PROOF. The implication (i) => (ii) is obvious, while (ii) => (i) follows easily
from Propositions 2.1, 2.2 and 1.1(a). The implication (i) => (iii), which was
mentioned earlier, can also be verified without difficulty.

We now show that (iii) => (iv). Assume (I is a TC-algebra and (2.7)

holds for some s ¢ P(Ck). Since

s(a,b,b) = a = s(a,a,b) for every a,b ¢ A,
the condition (TC) implies

s(a,b,c) = s(a,a,c) = a for every a,b,c € A,

that is, s is the first projection.

The implication (iv) = (v) is straightforward, noticing that for arbi-
trary s e T(Ul) satisfying (2.8), all operations s(x,y,z,a4,...,an) e P(UD
(a4,...,an € A) satisfy (2.7). Similarly, (vi) = (vii). It is an easy conse-
quence of Proposition 2.1 that the algebra (A;P(()) is affine with respect to
A provided (I is such. Therefore (i) => (vi). So the proof will be complete
if we show that (v) == (vii) = (1i).

Assume (v). For every n 2 3 and for arbitrary n-ary operations

;59 € T(U1) satisfying (2.10) the n-ary operation

ql(qz(x,y,z,x4,...,xn),z,y,x4,...,x )

n

satisfies (2.8), and hence the identity

ql(qz(x,y,z,x4,...,xn),z,y,x4,...,xn) = X
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holds. Applying it for the pairs ;-9 and CIRLIE respectively, we get

ql(x:)’,z,x4,---,x ) = ql(ql(qz(X,Y,Z,X4:---,Xn),Z,Y_,X4,---,Xn) :Yszxx4’---:x )

n n

Ay (X, Y5255 005X )

The ternary operation on the left hand side of (2.9) also satisfies the identities
(2.8), whence (2.9) follows. Thus (v) = (vii).

The most difficult part of the proof is to establish (vii) => (i). First
we show that (vii) implies the following property stronger than (v):

(V)" gon every natural number n > 3, the §ist projection 48 the only
n-ary term operation s of N which satisgies the identities (2.8), on

1 - -
(2.8) s(x,y,x,x4,...,xn) = s(x,x,y,x4,...,xn) = X.
Observe that for arbitrary, say k-ary, operations f,g,h e T(QU),
(2.11) p(f,g,h) = h implies f = g,

since by (2.9), g = p(h,h,g) = p(p(£f,g,h),h,g) = £. Let now s ¢ T(QL) satisfy

(2.8) or (2.8)', and consider the operation

(X, ¥52,Xg5 05X ) = P(s(X;¥52,X45+-+5X )X, P(X,¥,2))

or

)

q(X,¥Y,25Xg5 005X P(s(YsX,2,X45 005X )Y, P(X,Y52)) 5

n
respectively. It is easy to check that q satisfies (2.10), whence by assumption
we get the identity q(x,y,z,x4,...,xn) = p(x,y,z). Thus (2.11) yields that s

is the first projection.

It is easy to see that (2.1)-(2.2) hold for p. (2.1) is an immediate
consequence of the uniqueness of Mal'tsev operations. In view of (2.9) the opera-
tion (2.6) satisfies the identities (2.8), so it follows, like in the proof of
Corollary 2.3, that (2.2) holds for p. Thus, by Proposition 2.2, there exists an

Abelian group A = (A;+,-,0) such that p(x,y,z) = x -y + z. We are done if we
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prove the sufficiency part of the following claim, since the identities required

below include (2.8)'.

Claim 1. Let Or = (A;F) be an algebra and A = (A;+,-,0) an Abelian
group such that x - y + z is a term operation of (. Then Ol is affine with
respect to A if and only if for every natural number n > 3, the first projec-

tion is the only n-ary term operation s of U which satisfies the identities
s(z,xz,...,xi_l,z,xi+1,...,xn) =z for all 2 <1i < n.

The necessity is straightforward to check. Conversely, assume that the
conditions of Claim 1 hold for the term operations of £. We show that for every
natural numter k > 3, the first projection is the only k-ary term operation
u(z,Xy.00X,)  Of (U which satisfies the identities
(2.12) u(z,z,...,z,ég,z,...,z) =z for all 2 < i < k.

Suppose not, and consider an operation u e T(QX) satisfying (2.12) which is not
the first projection. Clearly, u cannot be any other projection, either. Select
a minimal subset X of {xz,...,xk} such that the operation arising from u by
substituting =z for all variables outside X is not a projection. Let, say,

X = {xz,...,xn}, and put

s(z,xz,...,xn) = u(z,xz,...,xn,z,...,z).

By construction, s is not a projection, while by our assumption on u we have

i
(2.13) s(z,z,...,z:fi,z,...,z) =z for all 2 < i < n.
Hence, in particular, n > 3. On the other hand, by the minimality of X, all op-
erations

S(Z’XZ"“’xj-l’z’xj+l""’xn)’ 2 < J < n,

are projections. In view of (2.13) they must be projections onto z. However,

this contradicts our assumption on A,
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Now it is easy to prove that (X jis affine with respect to A. For ar-

bitrary, say m-ary, operation f ¢ F the (2m+l)-ary term operation

z - f(xl—z+yl,...,xm-z+ym) + f(xl,...,xm) - f(z,...,z) + f(yl,...,ym)

of O has the property that it turns into a projection onto z whenever we
identify with 2z all but one of the variables XyseeosX YooYy - Therefore,

by the preceding paragraph, the identity
zZ - f(xl-z+y1,...,xm-z+yh) + f(xl,...,xm) - f(z,...,2) + f(yl,...,ym) =z

holds in . Substituting 0 for z we get that f is affine with respect

to A.

The equivalence (i) <=> (iii) in Theorem 2.4 was noticed independently
by J. D. H. Smith [1976] and R. McKenzie [1976], while (i) <= (vii) is a result

of G. Cz&dli and J. D. H. Smith [1981].

All characterizations of affine algebras Ul in Theorem 2.4 are based
on the assumption that Ut is a Mal'tsev algebra, which is equivalent to requir-
ing that a generates a congruence permutable variety. C. Herrmann [1979]
proved that (iii) characterizes affine algebras Ol even under the much weaker
assumption that (I generates a congruence modular variety. (New proofs were

found by H. P. Gumm [1980] and W. Taylor [1982].)

It is clear from the proof of Theorem 2.4 and Proposition 2.2 that for
every affine algebra (I , the corresponding Abelian group is determined only up
to the selection of the neutral element 0. Let p denote the (unique) Mal'tsev
operation of . 1f O is affine with respect to the Abelian groups
A = (A;+,-,00 and A' = (A;+',-',0') as well, then x - y + z = p(x,y,z) =
x-'y +'z, so

x+'y=x-0"+y and -'y =0' -y + 0",
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Conversely, given an Abelian group A = (A;+,-,0), these operations +' , -' de-
fine an Abelian group A' = (A;+',-',0') for arbitrary 0' € A; furthermore,
since x -y +z=x -'y +' z, an algebra U - (A;F) 1is affine with respect to
A if and only if it is affine with respect to A'. If so, then the operations
of (I are polynomial operations of the modules (End A)é' and (End Af)éf

well. There is an easy rule 'translating' one representation into the other. The

as

details are left as an exercise to the reader.

EXERCISE 2.5. For the Abelian groups A and A' as above we have that
(a) A->A', x»x +0' is an isomorphism;

(b)) r'x = rx + (1-r)0' is an endomorphism of A' for every r € End A;
(¢) End A> End A', rw» r' is a ring isomorphism;

n

1 1 -
(d) .Z rix; +'a =
i=1 i

End A and a € A.

e, T_ €
1’ ’“n

nes-—1s
—

n
- 1
T.X, (iél ri)O + a for all r

By definition, the operations of e&ery affine algebra are polynomial op-
erations of a module. In the rest of this section we look more closely at the
question how affine algebras are related to modules. The following useful, though
very simple, proposition describes affine algebras up to term equivalence (see

A. Szendrei £19801).

PROPOSITION 2.6. Given an algebra U = (A;F) which i8 affine with
respect to on Abelian group A = (A;+,-,0), there exists a unique unitary subring
R o0f End A and a unique submodule M of the R-modufe R x A such that
T(OL) coincides with the clone

n
i 1reeaTy € Ry (1 - .Z T, a) e M}.

n
K(gA,M) = {121 rx; tainz1,r L

PROOF. If T(U) = K(zA,M) for some R and M as claimed, then
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R

{r € End A: rx+(1-1)y € T(OD},

M

{(r,a) € (End A) x A: (1-r)x+a ¢ T (00},

implying the uniqueness of R and M. Suppose now that U is affine with re-
spect to A, and define the sets R and M as above. For arbitrary elements

r,r" ¢ R, (ri,ai) e M (i =1,2) we have

1x + 0y e T(QL),
(rx+(1-1)y) - (r'xt(1-r")y) +y e T(QN),

r(r'x+(1-r")y) + (I-t)y € T(Qr),

(r-r")x + (1-r+r")y

rr'x + (l1-rr")y

yielding that R 1is a unitary subring of End A, furthermore,

TX + (l—rl)y ((l—rl)y+a1) - ((l—rl)x+a1) +xe T(W),

((l—rl)x+a1) - ((l-rz)x+az) +xeT(Q),

(1—r1+r2)x + (al—az)

(l—rrl)x + ra; = r((l—rl)x+a1) + (1-v)x ¢ T(QQ)

showing that M S R*X A and M is a submodule of R X Réf

n
To prove the equality T((Q) = K(pAaM) assume first Z TX, tace
) i=1

n
T(A). Then () r)X +ae T(Q), and for any 1 <3j < n,

i=1
n n
r.x + (1-r.)y = (}] r.x+ta) - ()} r,xtr,y+a) +y e T(CQ),
J ) i=1 1 i=1 )
i4j
n
that is, (1 - Z ri,a) e M and TyseeesT) € R. Hence the inclusion ¢ holds.
i=1

Conversely, let T.X. + a € K(RA,M). Then, by definition,

11

noVs

i=1

n
(2.14) (} rX tae T(OD, X ¥ (l—rj)y e T(OO (G =1,...,n).
i=1

Since x -y + z € T(JL), it follows by induction on k that the (k+2)-ary op-

eration P =Xt

1 cer T Xpgg - kxk+2 belongs to T(CX) (k =1,2,...). Thus,

substituting the operations (2.14) into p, Wwe get that
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n n n
.Z TX, tas= .z (rixi+(1-ri)x1) + ((.z ri)x1+a) - nx; e T(OD,
i=1 i=1 i=1

concluding the proof.

Proposition 2.6 immediately implies that for every affine algebra /4
there is a unique subring R of the endomorphism ring of the corresponding Abe-
lian group A such that the clone K(pA,M) of QU 1lies between K(pA,{(0,00}),
the clone of the affine R-module corresponding to oA (that is, the clone of
the full idempotent reduct of RA)’ and K(RA)RXA), the clone of polynomial op-

erations of _A. In particular, it follows for instance that every subalgebra of

R—

I is a coset of a submodule of _A, or that (f has the same congruences as

R=—

R&‘ We get also

COROLLARY 2.7. Eveny affine algebra is polynomially equivalent to a
faithgul unitary module.

Interestingly, the converse of this statement is also true:
EXERCISE 2.8. Let X = (A;F) be an algebra. If there exists an
R-module gA = (A;+,-,0,R) such that x -y + z ¢ P(() € P(Ré), then

x -y +zeT((l). Consequently, every algebra which is polynomially equivalent

to a module, is affine.

Polynomial reducts of vector spaces and simple affine algebras

We now apply Proposition 2.6 to determine, up to term equivalence, all
finite algebras in the title. They will turn out to be related in the same way
as vector spaces and simple modules are by Schur's Lemma and Jacobson's Density

:

Theorem (see N. Jacobson [1956]).

Let Ké_= (A;+,-,0,K) be a vector space over a field. For a coset S
of a subspace of KA and for a subspace U of Ké define two subsets of P(KA)

as follows:
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n n
X(KA,S) = {.Z r.x; +a:nz>1, Tise-T €K, a=s - (.Z ry)s'
i=1 i=1
for some s,s' e S},
n A n
V(KA,U) = {121 r;x; tarnzl, r,...,r oK, izl r;=1, ae Ul.

It is easy to see that X(KA,S) as well as V(KA,U) are subclones in P(KAJ.

PROPOSITION 2.9. Let A be a vecton space over a finite field K. The
nonunary subclones of P(KA) are exactly the clones X(LA’S) and V(Li\-’u) whene
L 44 a subgield of K, and S 44 a coset of a subspace and U 4is a subspace of

the vecton space (A over L.

REMARK. The clones listes in the proposition are pairwise distinct.

Moreover, for any subfields Li of K, for any cosets Si of subspaces of L.A?
and for any subspaces Ui of L.é- (i =1,2) we have ’
i
X(ng_,sl) € X(Lzé,sz) iff L, < L, and S, 5 S,»
V(Llé,Ul) € y(LZA’UZ) iff L1 € L2 and U1 € U2’
V(LIA,Ul) < X(Lzé,sz) iff L, €L, and U g {s-s': s,s' € S,},

X(y, A8)) ¢ VL AU

PROOF of Proposition 2.9. We have to show that every nonunary subclone

C of P(Ké) coincides with X(LA,S) or V(LA,U) for some L, S or L, U,

respectively, as above. Using that C is nonunary, select f = _?1 S;Xg t beC

so that n > 2, s $#0 for i=1,...,n (sl,...,sn €e K, be A;T First we

show that x -y + z ¢ C. If .E 3 $+ 0 for some 1 < j < n, then the operation
. i+

ij + (izl si)y + b e C 1is a quasigroup operation. Since K is finite, the same
i$j

argument as in.the proof of Proposition 1.21 yields that the left and right divi-

sions corresponding to this operation also belong to C. Hence C contains a
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n
Mal'tsev operation, which must be x - y + z. Suppose now that ) s; = 0 for
i=1
n i4j
all 1 snj <n. Then s = ...=5s = izl s;» whence s;x ¢ C and
six1 ) s;x; + b e C. The former case applies for this operation unless
i=2 n
2 _ : _ _ - - _
s] =5, that is s, =1 (as s #0). Solet 1=s =..=5 = iél s;- If

the characteristic of K is not 2, then 2x + (-1)y = (sl+s2)x + (53+...+sn)y e C
is again a quasigroup operation, and we may repeat the above reasoning. Finally,

if K 1is of characteristic 2, then x -y + z = S1X t S,y t (53+...+$n)z e C.

Thus (A;C) is an affine algebra. Taking into account Proposition 2.6
and the fact that every unitary subring of a finite field is a subfield, we get
that there exist a subfield L of K and a subspace W of the vector space

L x LA- (over L) such that C = K(LQ,W). Set

W, = {r e L: (r,a) e W for some a e A},
Wz(r) = {a e A: (r,a) € W} (r e L).
Since W is a subspace of L x LA’ it follows that w1 = {0} or L, and Wz(r)
is a coset of a subspace of Uﬁ for every r e L.

If W, o= {0}, then W = {0} x W,(0) and, as 0« W2(0), W2(0) is a
subspace of (A. Furthermore, it is clear from the definitions that K(LA,W) =
y(Lé’WZ(O))' In the opposite case, if W1 = L, then we have K(LA,W) =

n
X((AW,(1)). Indeed, ) r.x; +ae K(AW if and only if ry,...,r ¢ L and
i=1

n n .
a - z r.,a) ¢ W. On the other hand, Z r.x. +ae X( A,w2(1)) if and only
i=1 i1t 1 L=

n
if TyseeesT € L and a =s - (igl ri)s' for some s,s' € w2(1). However,

a1 -
i

1"es-1s

n n
r.,a) = (l,a + ( z r.)s') - r.(1l,s")
1t iz1 * i§1 .

n

belongs to W for some s' e W, (1) if and only if s =a + ( ) r.)s' e Wy(1),
i=1

concluding the proof.
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To prove the remark after the proposition, observe that the constant op-
eration with value a € A belongs to X(Lé,S) if and only if a € S, while a

translation x + a (a € A) belongs to V(LA,U) if and only if a e U.

Note that in Proposition 2.9 the finiteness of the base set A is not
assumed, however the finiteness of the field K is crucial. The proof presented
here is essentially the same as in A. Szendrei [19801, although there the claim
is formulated for 1-dimensional vector spaces only. In the special case when
|A| = q (q prime), that is, we have a 1-dimensional vector space over the
prime field Zq, this result is due to A. A. Salomaa [1964]. (It was later re-

discovered by J. Bagyinszki and J. Demetrovics [1982].)

The unary subclones of P(Ké), which are not covered by Proposition 2.9,
are in one-to-one correspondence with the submonoids of P(I)CKA). These clones

will not play any role in the sequel.

We now turn to the discussion of finite simple affine algebras. Consider

a vector space A over a field K, and let End Ké denote the endomorphism ring

K—
of ,A. Clearly, A can be considered as an (End KA_)-module (End.ngéf For a
coset S of a subspace of Kﬁ and for a subspace U of KA define two subsets
of P((End KA)A) as follows:
n n
* = . - =
X (KA,S) = {izl rox; +ain2 1, TiseeesT € End KA’ (1 izl ri)s a

for all s e S},

]
(e}

n n
V*(Ké)U) = { Z TiXg +a: n=>1, rl,...,rn e End KA’ (1 - Zl ri)u
i=1 i=
for all u e U}.

It is easy to see that X*(KA’S) and V*CKA?U) are subclones in P((End A)A)’
\ K=

PROPOSITION 2.10. Let @& = (A;F) (|A] > 1) be a ginite algebra which

A8 afgine with rnespect to an Abelian group A = (A;+,-,0). Then A s simple
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Aif and only if there exist a finite field X and a vecton space A such that

T(OU) coincides with X*.(KA’S) on V*(K_A_,U) gorn some coset S 04 a subspace

04 Ao gon some subspace U of A, respectively.

K—
PROOF. Let R denote the subring of End A corresponding to U (cf. Proposi-

tion 2.6). Since (T is polynomially equivalent to the R-module RA, therefor:

Ol is simple if and only if Ré- is simple. Now we can apply a well-known resu

from ring theory: if RA is simple, then Schur's Lemma together with Wedder-

burn's Theorem on the commutativity of finite division rings yields that
K = End RA- is a finite field; moreover, by Jacobson's Density Theorem and by th
finiteness of A it follows that R = End Kéf Conversely, if R is of this

form for some vector space A, then _A is simple.

K= R
Assume that (I is simple. According to Proposition 2.6 we have

TV = K(RA,M) for some submodule M of R x Ré' As in the proof of the pre

ceding proposition, set

Ml

Mz(r)

{r € R: (r,a) ¢ M for some a € A},

{aeA: (r,a) e M} (r € R).
Clearly, Ml is a left ideal of R, so there is a subspace U of Ké such tha

M = {r e R: Tu = 0 for all u e U}. On the other hand, M,(0) is a submodule

of pA, whence Mz(O) = {0} or M2(0) = A. 1In the latter case M = M. X A, so

1

we have T(Q1) = K(RA,M) = V*(KA,U). In the first case |M2(r)l =1 for all
T € Ml' However, M1 being a left ideal of R, there exists an element
e = e2 e R with M1 = Re. Therefore, if a, is the unique element of Mz(e),

then (r,rao) = r(e,ao) e M for all r € Re (= Ml). Hence ea = aj and

M

{(r,rao): T e Ml}'

We claim that for the coset S = U + a  we have K(EQJQ = X*(KA,S). Indeed,

n
operation Z rix; ta with TiseeesT € R belongs to K(RA,M) if and only
i=1
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n n
(1 - Z ri,a) € M, that is (1 - Z ri)u = 0 for all ue U and
i=1 i=1
n
(1 - z rl)ao = a. However, this is equivalent to requiring that
i=1
n
(1 - Z ri)s = a for all s € S, which is exactly the condition defining the
i=1

elements of X*( A,S). Hence T(QU) = X*((AsS) .

Conversely, if T((t) is one of the clones X*(Ké,S) or V*(KA,U)
with K, S, U as described in the proposition, then a is polynomially equiv-

lent t i i
alent to the module (End KA)A) therefore (N is simple.

There is an intimate connection between the polynomial reducts of finite

vector spaces and the finite simple affine‘algebras.

EXERCISE 2.11. Let KA be a vector space over a field K. For arbitra-

A,S)

ry coset S of a subspace of Kﬁ’ each of the clones X(KA,S) and X*(K_

consists exactly of those operations on A which commute with every operation in
the other clone. Similarly, for arbitrary subspace U of Ké’ each of the clones

Y((A,U) and Y*(,A,U) consists exactly of those operations on A which commute

with every operation in the other clone.

This fact together with Propositions 2.9 and 2.10 shows that finite
simple affine algebras come in pairs with certain polynomial reducts of vector
spaces on their universes. 1In particular, the companion of a finite simple R-
module pA (R £ End A) 1is the corresponding vector space A with K = End pAs
R = End (A, as T(A) = X(,A,{0}) and T(RA) = X*(KA,{O}). In fact, the claim of
Exercise 2.11 for the clones T(KA) and T(Ré) is a way of rephrasing Jacobson's

Dentity Theorem. This interesting phenomenon will be discussed more generally,

and with a different approach, in the theory of para-primal algebras in Chapter 4.

If we are interested in some abstract properties of affine algetras ra-

ther than their clones, then it is sufficient to know them up to equivalence.
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Using Proposition 2.10 the finite simple affine algebras can be described, up to

equivalence, as follows:

COROLLARY 2.12. Every ginite simple afgine algebra with at Least two
elements 48 equivalent to one of the algebras
(a) (Kn; x-y+z, {rx + (l-v)y: r € Kan}’ ekx), on

n

(b) (K'; x-y+z, {rx + (1-1)y: r € Kan}’ e.x, {x+ a: ae Kn}),

k

where n>1, 0<ksn, K 48 a finite field, K xn 48 the n x n matnix ning

over K, and e K 48 the diagonal matrix

€
k nxn

with k entries equal to 1.

PROOF. Let (I be a finite simple affine algebra. If, in the notation of Propo-
sition 2.10, T((Qp) = X*(KA,S), then U ’has l-element subalgebras, so by chang-
ing the neutral element of the Abelian group corresponding to Ol we may assume
that 0 S, that is § is a subspace of A, If | A is n-dimensional and §
is k-dimensional, then Ké and K" can be identified via a vector space isomor-
phise A > K" sending S into K x {0}™ X, This identification carries the
algebra (A;X*((A,S)) into (K“;X*(K(K“),ka{o}“'k)), and the latter is easily
seen to be term equivalent to the algebra (a). The other case, when T(Ql) =
V*(KA,U), can be treated similarly (except that the Abelian group corresponding to
(& need not be changed), to conclude that U is equivalent to the algebra (b)

provided Ké is n-dimensional and U is k-dimensional.

This result was first proved by D. M. Clark and P. H. Krauss [1980] in a
roundabout manner, using a property of the universal Horn class generated by a

finite simple affine algebra.
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Semi-affine algebras

If we drop condition (a) from the definition of affine algebras, we get
the class of reducts of affine algebras, or equivalently, the class of polynomial

reducts of modules (cf. Proposition 2.1).

DEFINITION. An algebra O = (A;F) is called semi-affine iff there
exists an Abelian group A = (A;+,-,0) such that every basic operation (and

hence every polynomial operation) of QU is affine with respect to A.

In this section we deal mostly with finite algebras. Let A be a finite
set. The number of Abelian groups on A being finite, it is easily seen from
Proposition 2.6 that, up to term equivalence, there are only finitely many affine
algebras on A. If we consider semi;affine algebras instead of affine algebras,
this claim is no longer true in general. However, we still have

PROPOSITION 2.13. For every finite set A, up to tenm equivalence, there

are only countably many semi-affine algebras on A.

PROOF. Let A = (A;+,-,0) be an Abelian group. We have to show that A(A) has
only countably many subclones. The proof will be reduced to the following well-
known result on the ordered set (N%;s) of the natural numbers (with the natural
order): For every integer k 2 1, (h%;s)k has only countably many order ideals.
Let E = End A, and let m denote the exponent of A. For arbitrary
feA(A) and r ¢ E - {0} denote by ve(r) the number of occurrences of r as

a coefficient in f. Furthermore, for f,g € A(A) let
£=g iff £(0) = g(0) and ve(r) = vg(r) (mod m) for all r e E - {0}

and

f<g iff £=g and vg(r) < vg(r) for all r ¢ E - {0}.

It is clear that the number of =-blocks is finite, and every subclone of A(A)

is an order ideal with respect to <. In fact, for the latter we need only
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identification of variables. So, in order to prove that A(A) has only count-

ably many subclones, it suffices to show that every =-block contains only count-

ébly many <-ideals. However, within a fixed block we have a bijective mapping

E-{0}

f ne elﬂo

, where Vve(r) =mng(r) +u (0<u<m) forall rek - {0}.
Since this is an order isomorphism as well, an application of the claim stated at

the beginning concludes the proof.

This result is due to D. Lau [1978] although she proved a weaker state-

ment, but she credits the idea to I. A. Mal'tsev [1973].

Now it is natural to ask: When is the number of semi-affine algebras
finite; more precisely, for which finite Abelian groups A = (A;+,-,0) has the
clone A(A) only finitely many subclones? If |A| is not square free, then
End A is easily seen to contain an element r # 0 such that r2 = 0. Now the

l-generated clones

[rx1 + ...t rxk],- k=1,2,3,...,

form an w-chain, hence A(A) has infinitely many subclones. Assume now that

n = |A| 1is square free. Then A is a cyclic group and End A is isomorphic to
the ring Zn of integers modulo n. A. A. Salomaa [1964] conjectured tha; in
this case A(A) has only finitely many subclones, and he proved the conjecture

for n prime (see the previous section).

The problem can be raised more generally as follows: Determine those

finite faithful unitary R-modules LA for which P(Ré) has only finitely many

R—
subclones. By the above argument a necessary condition is that R contain no
element r % 0 with r2 = 0. Since R 1is necessarily finite (R 1is isomorphic
to a subring of End A), the Wedderburn-Artin Theorems (see N. Jacobson [19561)

and Wedderburn's Theorem on the commutativity of finite division rings imply that

R 1is isomorphic to a direct product of finitely many finite fields. It can be
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proved that this condition is already sufficient (R. Szendrei [1981b]). Clearly,
this result includes Salomaa's conjecture as a special case. Therefore Proposi-

tion 2.13 can be supplemented with the following statement :

The number of semi-affine algebras on a finite set A is finite if and

only if |A| 1is square free.

In general, one cannot expect to get a '"nice" explicit description for
all subclones of A(A) or P(RA), therefore most attention was devoted to some
special subclones. Such are, for example, the idempotent subclones, which will
be discussed in the next section, Some other results of this nature can be found

in D. Lau [a] and L. Szabd and A. Szendrei [1981].

Let us close this section with some remarks on the relation between TC-
algebras and semi-affine algebras. Clearly, every semi-affine algebra, moreover,
every subalgebra of a semi-affine algebra, is a TC-algebra. Interestingly, Prop-
osition 2.13 carries over to TC-algebras. J. Berman and R. McKenzie [1984] prov-
ed that for every finite set A, up to term equivalence, there are only countably
many TC-algebras on A. The question how close TC-algebras are to semi-affine
algebras, which is motivated also by tame congruence theory (see the remarks fol-
lowing the proof of Theorem 3.5), was not investigated until quite recently.

R. Quackenbush [a] proved that, in general, TC-algebras are very far from semi-
affine algebras. More precisely, he constructed an infinite list of more and
more complicated conditions, the simplest one among them being (TC), such that an
algebra is isomorphic to a subalgebra of a semi-affine algebra if and only if it
satisfies all these conditions. On the positive side, the most important result
is the following theorem of R. McKenzie [al] (see also D. Hobby and R. McKenzie
[al): Every finite simple TC-algebra is isomorphic to a subalgebra of a semi-

affine algebra. It is easy to see that every 2-element TC-algebra is semi-affine.
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Detailed information is available also on the 3-element TC-algebras (see

J. Berman, R. McKenzie [1984] and J. Demetrovics, I. A. Mal'tsev [al).

Idempotent semi-affine algebras

Let A = (A;+,-,0) be an Abelian group. Clearly, an operation
-§1 TiX; tace A(A) is idempotent if and only if a = 0 and 'gl r, = 1. These
;;erations form a subclone in A(A), which will be denoted by i;(é). To every
subclone C of Ai(é) we make correspond the subring RC of End A generated
by the coefficients of operations in C (RC is necessarily unitary). Put dif-
ferently, Rc is the least subring R of End A such that C ¢ P(Ré). In par-
ticular, if x -y + z ¢ C, then R» 1is exactly the ring R for which we have

C = K(RA,{(O,O)}) (cf. Proposition 2.6).

We now define some subclones of Ai(A) which will play an important role
in this section. From now on, a subring of End A will always mean a not neces-
sarily unitary subring. For a subring S of End A let

n
n=>1, TiseeesT € End A, z r, = 1, and T, ¢ S

i=1
for at most one i (1 < i < n)}.

n
1(A,S) = {izl Xy
It is straightforward to check that 1(A,S) 1is a subclone of Ai(A). If S is a
unitary subring, then I(A,S) = K(SA,{(O,O)}). The following lemma shows that

every clone C S Ai(éj has a largest subclone of the form I(A,S).
LEMMA 2.14. For arbitranry subclone C  of Ai(ég,
Ho = {r ¢ End A: x - 1y + 12 € C}
i85 an ideal of Re and I(A,Hp) < C. Furthermore, 4if r;,T} € Ro are such that

n
hy =1, - 1! e Hp fon all 1 <i<n and [} h, = 0, then the operation
1 1 1 i=1 1

n n

) r;x; belongs to C 4if and onby if rix; does.
i=1 i=1
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n n
PROOF. The last statement follows from the equality Z r.Xx. = ( z rix.) +
. ivi . i%i
n n i=1 i=1
Yy h.x., since |} h, =0 implies that
R ivi . i
i=1 i=1
n
Xo * i§1 hix; = (oon ((xg=Byxthyx)-hox +hox))..) - hox + hx e C.

The inclusion I(A’HC) € C 1is an immediate consequence of this. Finally, for
arbitrary h,h' € HC and T € RC with rx + (1-r)y ¢ C we have
X - (h-h")y + (h-h")z = (x-hy+hz) - h'z + h'y € C,

X - hry + hrz = x - h(ry+(1-r)x) + h(rz+(1-r)x) € C,

x - rhy + rhz = r(x-hy+hz) + (1-r)x € C,

showing that h - h', hr, rh e HC. This implies that HC < RC’ since the ele-

ments r with rx + (1-r)y ¢ C form a generating set in the ring RC.

It follows from Lemma 2.14 that the join of clones of the form 1I(A,S)

(in the lattice of subclones of Ai(é)) is also of this form. The same for meet

is not true.

DEFINITION. A subclone C of Ai(£Q will be called saturated iff

C= 0N I(AS)
yel Y
is saturated iff its clone is such.

for some subrings SY of RC. An idempotent semi-affine algebra

Heuristically, the saturated clones are those subclones C of Ai(éj,
for which HC is '"large'". This is made more precise in

THEOREM 2.15. Let A = (A;+,-,0) be an AbelLian grcup, and Let
F S Ai(A)‘ The §ollowing conditions are equivalent:

(i) [F] 44 saturated;

(ii) [F] = N(I(A,J): J < R FSI(AD);

[F1’
(iii) r(1l-1) € H[F] fon every coefficient r o0f each operation from F.

PROOF. Let C = [F]. The implication (ii) => (i) is trivial. Assume now (i),
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say, C= 1N I(é’SY) for some subrings SY of RC’ and let us consider an
YeT
element T ¢ RC occurring as a coefficient of some operation in F. Then

rx + (1-r)y ¢ C, hence for every Y ¢ I' we have T ¢ SY or 1 -re SY. Thus

r(l-r) = v -10 = (1) - (-0f e NS € Hy,
YeT Y

proving that (i) = (iii). The implication (iii) => (ii) is the most essential
claim of the theorem. For simplicity, it will be proved for finite F only.
Assume that F € Ai(A) is a finite set of operations satisfying (iii).

We start the proof of the equality with a few observations.

n
Claim 1. 1If izl r.x;, 1s an operation in C such that ri(l—ri) € HC
for all 1< i < n, then rirrj € Hc for all r € RC and 1 <i,j €£n, 1 % j.

It is easy to see that the set DC of coefficients of operations in C
is closed under multiplication, and hence is a generating set of the additive
group of RC. Therefore, since HC < RC’ it suffices to prove Claim 1 for r € DC'

Solet reD, and 1<i,j <n, i% j. Then rx + (1-r)y ¢ C and

C
X - rirjy + rirjz = (ri(rix+rjz+(l-ri—rj)y) + (l-ri)x) - ri(l-ri)y
+ ri(l—ri)x e C,

whence

X - rirrjy + rirrjz (ri(r(rjz+(1-rj)x)+(1—r)(rjy+(1-rj)x))+(l-ri)x)

- rirjy + rirjx e C.

By a repeated application of Claim 1 we immediately get

k
Claim 2. For every operation |} S;X; € C and for all indices
i=1
1<i,j<k, i#$j, we have 5155 € H, .

n n
Since any two idempotent operations z L z ijj generate the
i=1 j=1 "

n k
same clone as the single operation z Z riijij’ it follows that C is
i=1 j=1
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l-generated. Therefore, in view of Claim 2, we may assume that IFI = 1, say,
n

F= { Z rixi}. Then, clearly, RC is the subring of End A generated by
i=1 .

{rl,...,rn}, and

(2.15) T € Ho for all 1s<i,j<mn, i $ .

For 1< is<n denote by J, the ideal of R, generated by {rj: 1<3j<n,
n

j #1i}, and let J = N i
i=1

We show that J € Ho. Let J' denote the ideal of R, generated by
{r,r.: 1<i,j<n, i#$j}. By (2.15) we have J'E Hp, so it is enough to show
that J £ J' (the inclusion J' £ J obviously holds). Since Ji is the addi-

tive subgroup of RC generated by all products of elements from {rl,...,rn}

with at least one factor distinct from r,, we have r.J. S J' for all 1 < i < n.

1

To prove J S J' let s ¢ J be arbitrary. Then s =

nHes13 B

s where, for every
i=1
l<1ic<n,

un

r.s er.J €r.J. J'.
i i

11

Hence s ¢ J'.

The proof of (ii) will be complete if we show that

n
C= n I(AJ).
i=1

n
The inclusion € is obvious, since Z rjxj € I(A,Ji) for every 1 < i < n,
j=1

m
Conversely, consider an operation ) s.X. €

j=1 1

1 n

nos

1
m
then Ro = J < Ho» implying C = IQA,RC) and ) ijj e C. In the opposite cas
j=1

.,Jk{:Rc and J =...=J =R

let, for example, J k+1 n C

10" (1 £k £n). Then

I(Ad). If J; = ...=J =R

e
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k
J = 191 Ji and Tre1? -9y € J. Furthermore, for each i with 1< i<k
there exists exactly one coefficient sj (1

IA

j £ m) such that sj ¢ Ji. As-

sume that, say, SyseesSp ¢ J and Spe1rc oSy € J. Setting

§.={i: 1 <1

IA

K, S5 ¢ Ji} for 1<j<&,

we get that 61,...,§e is a partition of {1,...,k}. Consider the elements

Ty = iéa. r. and hj =Ty - s (1 <3j<42). Then
) _ k
hjzrj—sjeigl.]i (13 <,
i¢§.
id 3
; ] Prp- ) ;
h, = (1 - s.) - (1 - r.) = s. - r. € J,
j=1 ) j=1 j=1 7 j=b+1 T j=ke1 D
whence also
Pny- I
h. = ( h) - h e N J (1 <3<l
SRS = W ES W P2
u#j

(In all three cases above, every term of the rightmost expression belongs to the

ideal indicated.) Consequently, hj e J & HC for every 1 < j < £. Therefore

Lemma 2.14 can be applied for the operations

ness
n
>

R
r.x. + ( Tr.)X and
=1 3 ke 3TTAA j

n
of which the first one belongs to C, since it arises from Z r.X; € F by
m i=1
identification of variatles. Hence ) s.x. e C.
j=1 )
The saturated clones are relatively easy to handle, and have some nice
properties, too, for example

EXERCISE 2.16. Every saturated subclone of Ai(é) is generated by at

most ternary operations.



67

Next we want to exhibit large families of saturated idempotent semi-
affine algebras. To this end we first give a necessary and sufficient condition

for an idempotent semi-affine groupoid to be saturated.

PROPOSITION 2.17. Let A = (A;+,-,0) be an Abelian group. For
r ¢ End A the following conditions are equivalent:
(i) the groupoid T = (A;rx+(1-1)y) 4s saturated;

(ii) “there exist natuwal numberns k > 2 and ... with a; $#0,

,a
Lo i ki !

a $+ 0 such that | a.r (l-r) = 0.

k-1 i1 i

PROOF. Let C = T(CZ). Assume C 1is saturated, that is, the operation
X - r(1-r)y + r(1-r)z belongs to C. It is easy to see that every member of C
arises, for some n = 2, from the 2n-ary operation

il+...+in n—il—...-in
T (1-r) Xy

ip,e..ie{0,1} 1°°01n

by identification of variables. Thus there exist n > 2 and natural numbers

bj» ¢; (0<ismn) suchthat b, +c, < (2) for all 0 <i <n and

1 1
L i n-i th i n-i
(2.16) } b.r (l-r) =1, } c.r(1-1) = -r(l-1).
. 1 . 1
i=0 i=0
If Cy = ¢y = 0, then the second equation yields the required property:
n-1 . . n-1 . .
) (c.+(?‘f))r1(1-r)“‘1 = ¥ erta-n™t s raon = o.
izt i=1 *

Otherwise, let us multiply the two equalities in (2.16). Then we get an equality

of the form

2n i 2n-1

z cir (1-r) = -r(1-1)
. i

1=0

with ¢' =bc =0 and c!_=b

N oo o nCn = 06, as b +c¢c_. <1, b_+c_<1. There-

0 0 n n

fore the previous argument can be repeated.

Conversely, assume (ii) holds. Then for every n 2 Kk,
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k-2

) a.rn-]Wi(l-x')k-i + (a -l)rn"l(l-r) = -rn-l(l-r),
521 1 k-1
k-1 . .
(al-l)r(l-r)n-1 + ) airl(1~r)n-1 = -r(l—r)n-l.
i=2

If we let n = max{k,a } + 1, then (?) 2 2y,..0,8 for every

100081
1 < j < n-1, therefore by the remark at the beginning of the proof we get that

X - rn-l(l-r)y + rnhl(l-r)z, X - r(l-r)n-ly + r(l-r)n—lz e C,

that is, rn'l(l-r), r(l-r)n"1 € HC. If n = 2, we are done, so suppose n > 3,
Then, using the fact HC < RC we infer that

n-3

r(1-0"? = 210" e ™)+ P 0™ e ng,

and similarly rn-z(l-r) € HC. Repeating this argument we get finally that

-

r(l-r) € Hc.

EXERCISE 2.18. Let R denote the set of real numbers, and let r ¢ R.
The idempotent groupoid Clr = (R;rx+(1-r)y) 1is saturated if and only if r is
an algebraic number which is conjugate over the field Q of rationals to no

r'" e R with 0 <r' < 1.

As we shall soon see, there are a lot of rings in which condition (ii) of
Proposition 2.17 holds for every element r. Denote the class of these rings by
C. In view of Theorem 2.15 and Proposition 2.17 a ring R belongs to C if and
pA, all idempotent subclones of

T(Rﬁg are saturated. Using condition (ii) of Proposition 2.17 it is easy to

only if for arbitrary faithful unitary R-module

check that, for instance, the ring of integers, the ring of Gaussian integers, and

all rings of finite characteristic btelong to C.

EXERCISE 2.19. C 1is a local variety, that is, it is closed under tak-

ing homomorphic images, (unitary) subrings, direct products of finite families,
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and direct limits. A ring belongs to C if and only if its 1-generated sub-

rings do.

Finite idempotent semi-affine algebras are worth mentioning explicitly.
From the foregoing we immediately get

COROLLARY 2.20. Every finite idempotent semi-affine algebra is saturat-
ed. Up to term equivalence, there are only finitely many idempotent semi-afgine

algebras on a fixed universe, and thein clones are finitely generated.
An interesting application is the following.

COROLLARY 2.21. Let O = (A;F) be a {inite, simple, idempofent semi-
affine algebra. Then either X 4is a 2-element trivial algebra, on U 4is

aggine.

PROOF. Let O = (A;F) be semi-affine with respect to an Abelian group

A = (A;+,-,0). Assume ]A| >1 and A is not a 2-element trivial algebra.
Then X is nontrivial. Furthermore, the algebra at - (A;FU{x-y+z}) 1is also
finite, simple and idempotent, moreover it is affine with respect to A. By

Kﬁ such that
the clones T(C') and X*((A,A) = T(A,End (A) coincide. Clearly, RT(CR) =

Proposition 2.10 there exist a finite field K and a vector space

RT(CE+) = End KA’ By Corollary 2.20 Q! is saturated, hence by Theorem 2.15
T() = N(I(A,J): J < End KA T(OD € I(A0).

However, since the ring End ,A is simple, we get that T(C) = I(A,{0}) or

K
T(Q) = I(A,End KA). The first possibility would imply that is trivial, which is

not the case. So we have the second possibility, that is, T(QI) = T(CZ+).

Most parts of the material of this section are based on A. Szendrei

[1982a], although some results are stated there in a weaker form.
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We remark that the nice properties of saturated clones can also be used
to construct a basis for the identities of saturated idempotent semi-affine alge-
bras (see A. Szendrei [1981a]). Consider, for instance, the groupoids Ckr
(r € R) defined in Exercise 2.18. The problem whether they have finite bases
for their identities whenever r 1is algebraic was raised by S. Fajtlowicz and
J. Mycielski [1974]. 1If Clr is saturated, it follows that the answer is affir-
mative. However, as far as I know, the problem for the nonsaturated groupoids

Clr is still unsolved in general.



Chapter 3

UNARY TERM OPERATIONS IN ALGEBRAS

The question we discuss in this section is how far the unary term op-
erations determine an algebra. More precisely, given a transformation monoid
(that is a monoid of unary operations) M on a set A, the problem is to describe
all clones C with C(l) = M. In general, this task is rather hopeless even if
the base set A is finite, as for |A| > 3 there are 2 © clones on A and
only finitely many transformation monoids. However, in quite a few interesting

special cases the number of clones with unary part M turns out to be finite.

PROPOSITION 3.1. For anbitrary thansfornmation monoid M on a sel A,
the clones C on A with c1) -y gonm an interval in the clone Latitice.

PROOF. By Lemma 1.2 we have
¢™) =y if and only if [MI€CE Pol, {X}.

This interval will be denoted by Int(M). Let us mention now some ex-
amples of M for which Int(M) is known. We assume throughout that the base set

A is finite.

EXAMPLES. 1. If |A| =2, say A = {0,1}, then there are 6 transforma-
tion monoids and f(o clones on A. As the clone lattice Lat(A) is fully known

in this case (see Chapter 1), the intervals Int(M) are easy to determine. Three
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of them turn out to be finite, their diagrams are given below:

M: {id,o0,1,r} {id,0,1} - {id,r}

0
Int(M): [+,1] [v,0,1] (~n,0,1] [x+y+z+1]

From now on we assume that |A| = 3.
2. For M= Ogl) the interval Int(M) was shown by G. A. Burle [1967]

to be the (|A|+1)-element chain

[M] c Bl c BZ c ...c B|Al-1 c BlAl - OA

where B1 consists of the operations depending on at most one variable and the
operations having the form h(hl(x1)+...+hk(xk)) with hl,...,hk: A > {0,1},
h: {0,1} > A arbitrary mappings and + denoting addition modulo 2, while for
2 <j < |Al, Bj consists of the operations depending on at most one variable and
the operations taking on at most j values.

3. A slight extension of this result, observed by L. Szabo [unpublished],
is that for every transformation monoid M C 0&1) containing all non-permutations,

the interval Int(M) is the |A|-element chain
[M] c BI(M) c BZ(M) c ... c¢c BiAl'l(M)

where each B.(M), 1< i < |A|, arises from B; by omitting all operations de-
pending on at most one variable which are outside [M].
4., Let now M be the monoid of affine transformations of a finite vec-
. _ (1) . Y .
tor space, that is, M =P ((End KAJA) where Ké is a k-dimensional (k = 1)
vector space over a finite field K. It is not hard to see that in.this case we
have Pol, {XM} = P((End KAJA), so by a result of L. Szabd and A. Szendrei [1981]

the interval Int(M) is the chain



73

h = C 0 =
M=% e o Ger © %= Pligng p
n
where for each 0 < j < Kk, Qj consists of all operations ) r.x; ta
i=1

(rl,...,rn e End Ké’ a € A) such that either at most one of the endomorphisms
TyseeosTp differs from 0 or the sum of the ranges of the endomorphisms
TyseeosTy is an at most j-dimensional subspace of KA-

5. We get a similar chain for Int(M) if M is‘the monoid of linear

transformations of a k-dimensional vector space Kﬁ over a finite field K, that

is M= T(l)((End A)A)’ provided k = 2. Namely, the chain is
K=
(M) =0pcQyc .oy =T(gy KA)A)

where Q& = Q_j n T((End )

needed to ensure that Pol, {XM}

A) for every 0 < j < k. (The assumption k 2 2 is

= T((End Kﬁ)é) )

6. Let M be the monoid consisting of all the constants and the iden-
tity operation on A. It is well known, and easy to verify, that for IA] >3
every nonunary clone on A containing the constants contains a unary operation
outside M. Hence Int(M) is a 1l-element interval with [M] as its unique
member.

7. If (A;+) is a cyclic group of prime order, a ¢ A - {0} and M
is the regular permutation group on A generated by x + a, then Int(M) is a

3-element chain:
D -
[M] = [x+a] ¢ [x-y+z,x+a] C Pol, {(x+a)"} = Pol, {XM}

(see A. Szendrei [1982b]).

8. There are a lot of permutation groups M for which Int(M) is a-
l-element interval. Such are, for example, the dihedral groups of odd degree, the
general linear groups GL(k,K) (k = 2) acting on the nonzero vectors of a k-

dimensional vector space over a finite field K, moreover, every nonregular



74

transitive permutation group in which all nontrivial normal subgroups are tran-

sitive (P. P. Palfy and A. Szendrei [1983]).

The investigation of the intervals Int(M) is, as yet, a quite unex-~
plored area, although the special case to be discussed in detail in the next sec-

tion has already found important applications in other fields of universal algebra.

The topic, in general, deserves some more attention for the following
reason. As was mentioned earlier, for a finite set A with |A| 2 3 the clone
lattice Lat(A) has 2 ° elements. It is thought that Lat(A) is nice at the
top and at the bottom in the sense that the clones belonging to those two parts
can be explicitly described, while the middle of the lattice, which contains the
families of cardinality 2 ° s hopeless. Contrasted to this 'horizontal" di-
vision, the intervals 1Int(M) provide a natural "vertical" division of Lat(A).
Therefore the solution of the following problem would contribute to a better under-

standing of the structure of Lat(A).

PROBLEM. Let A be a finite set with |A| > 3. For which transforma-
tion monoids M on A is
(a) Int(M) finite,

(b) |Int(] =2 ° >

A characterization of finite vector spaces

In this section the interval Int(M) 1is determined for those monoids M
on finite sets A (]Al > 3) which contain all the constants and have the proper-
ty that every nonconstant operation in M is a permutation. The main result,
which was proved by P. P. Palfy [1984], shows that |Int(M)| < 2 for all such M,
moreover, equality holds if and only if M is the monoid of all unary polynomial

operations of a vector space.
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THEOREM 3.2. A finite algebra A= (A;F) with |A| > 3 48 polynomial-
Ly equivalent to a vector space if and only if every nonconstant unary polynomial
operation of X 48 a permutation, and at Least oné operaticn in F depends on
at Least two of its variables. |

A similar, but slightly weaker statement was proved by Th. Ihringer
[1984a]. New proofs were found by B. Jonsson [unpublished] and D. Hobby [1984].
The proof presented here combines some ideas from P. P. Palfy's and B. Jénsson's
approach. The theorem will immediately follow from Lemma 3.3 (with C = P(QU))

and Proposition 3.4 below.

LEMMA 3.3. Let C be a clone on a finite set A with |A| 23 such
that C contains all the constants, and every nonconstant unary operation in C
i85 a peumutation. 1§ an n-ary (n 2 1) operation f e C depends on its §irnst
variable, then f(x,az,...,an) is a pemutation forn anbitrarny elements

a2""’an € A,

PROOF. Since f(x,az,...,an) e C for every ay,...,8 € A, it is a permutation
or a constant. However, not all of them are constants, as f depends on its

b

first variable. Assume that, contrary to our claim, there exist C YRR

)

2’b3"" one-by-one for the corresponding a's we

get an i (2 £ i <n) such that

b2”"’bn € A such that f(x,az,...,an) is a permutation while f(x,bz,...,bn

is constant. Substituting b

f(x,bz,...,b is a permutation,

. a. . ceeyd
i-1°%i°%341° ? n)

f(x,bz,... b

. .,a. . is constant.
PR TLITL IR »a.)

Denote the binary operation f(x,bz,...,b .,an) e C by mul-

i-12Y2345410
tiplication, and let a = a;, b = bi‘ Then xa is a permutation and xb 1is
constant, say xb = c¢. For the (unique) element b' ¢ A with b'a = ¢, the unary

operation b'y takes on the value ¢ at least twice (namely for y = a and
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y = b), hence b'y is the constant c. This means that in the multiplication

table one row and one column are constant c.

a b
c
c
b'|c¢c ... ccc ... ccC ...
c

Since there also exists a column which is a permutation, it follows that the unary
operations xu and vy are permutations for all u,v ¢ A, u% b, v # b'.

Now define a new binary operation in C by

x*y=(...(xy)y)..)y.
L—r.__i

|A| ! times

Since for arbitrary element u e A, x * u is the |A|!-th power of xu, we have
that
fx if y#b,

Y [c if y =b.

Thus, for c' € A - {c} the unary operation c' » y ¢ C takes on exactly two

values (¢ and c¢'), a contradiction.

DEFINITION. We will say that an n-ary operation f on A has the con-

stant substitution property (CSP) iff f(al,...,ai_l,x,a.

. is a permuta-
i+1? ’an) permu ,

tion for every 1 < i < n and for arbitrary elements aj e A (1 <j<n, j#i).

PROPOSITION 3.4. A finite algebra U = (A;F) (|A| 2 2) 48 polynomial-
Ly equivalent to a vecton space if and only i§ F contains an operation depend-
ing on at Least two of its variables, and every polLynomial operation of X which
depends on all of its variables has the CSP.
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PROOF. The necessity of the conditions is obvious. To prove the sufficiency, let
‘0l denote the algebra arising from (X by adding thg constants as new basic op-
erations. Clearly, T((t) = P(Q) = P(UL). By our assumption on F, T(QQ) is
a nonunary clone. Let g e T(QR) be an n-ary operation depending on all of its
variables (n = 2). Since g has the CSP, every binary operation
g(x,y,az,...,an) e T(Q) (a3,...,an € A) is a quasigroup operation. Hence by
Proposition 1.21, T(—(I) contains a Mal'tsev operation.

Applying Theorem 2.4(iv) we show that O is an affine algebra. Suppose
‘not, and let s be a ternary operation in P(QU) (= P(UL)), distinct from the
first projection and satisfying the identities (2.7). It is easy to see that s
depends on all the three variables. Hence s has the CSP. On the other hand,
by (2.7), the unary operation s(a,y,b) ¢ P(OL) (a,be A, a #b) sends both a
and b to a, a contradiction.

Corollary 2.7 implies now that there exists a faithful unitary R-module
Ré- (R € End A) such that P(V) = P(RA). The CSP ensures that every element of

R - {0} 1is a permutation. Hence, by the finiteness, R is a field.

The claim of Theorem 3.2 is obviously not true for 2-element algebras;
for instance, the 2-element Boolean algebra is a counter-example. It is easy to
see from Post's lattice (see Chapter 1) that on the 2-element set {0,1} there

are exactly 7 clones containing both constants, namely the following:

[v,A,r]




78

Congruence lattices of finite algebras

The so-called abstract representation problem for congruence Lattices,
in its most general form, is the following: For which lattices L does there
exist an algebra (X such that the congruence lattice ConI of O is isomor-
phic to L? G. Gridtzer and E. T. Schmidt [1963] solved the problem by proving
that every algebraic lattice is isomorphic to the congruence lattice of some al-
gebra. In particular, it follows that for every finite lattice L there is an
algebra Ol with L= ConCl , however, the proof always yields an infinite alge-
bra OL. The simpler proof for the Grdtzer-Schmidt Theorem found by P. Pudlidk
[1976] yields, for certain finite lattices L, a finite algebra (I, however, the

answer to the following question is still unknown.

PROBLEM. 1Is it true that every finite lattice is isomorphic to the con-

gruence lattice of a finite algebra?

The results presented in this section seem to support the conjecture that
the answer is negative, but they have independent interest as well. First we
show that there are a lot of finite lattices L such that L can be represented
as the congruence lattice of a finite algebra if and only if there are a finite

set A and a permutation group G acting on A with L = Con(A;G).

DEFINITION. Let L be a lattice. A mapping ¢: L > L is called de-
cnreasing [increasingl iff xp < x [xp =2 x] for all x € L. A decreasing [in-
creasing] mapping ¢: L > L 1is said to be strnictly decreasing [strnictly increas-

angl iff xp = x holds only if x = 0 [resp. x = 1].

THEOREM 3.5. Llet L be a finite simple Lattice with |L| > 2 such that
(a) Zhe constant 0 4is the only strnictly decreasing join endomorphism
o L, or

(b) the constant 1 4is the only strnictly increasing meet endomorphism
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og L.

I§ U= (A;F) 48 a finite algebra of minimum cardinality such that
Con(l =~ L, then QU is polynomially equivalent to d vectorn space on to a unary
algebra (A;G) where G 48 a permutation group vac/tiyig on A.

REMARK. We will prove in Chapter 6 that conditions (a) and (b) are
.equivalent for every finite simple lattice L. Some other characterizations for

these lattices will also be given there. (See Corollary 6.22.)

It is easy to see that every finite lattice in which the join of atoms is
1 satisfies condition (a), and dually, every finite lattice in which the meet of
coatoms is Q satisfies condition (b). Thus we get

COROLLARY 3.6. Let L be a §inite simple Lattice with |L| > 2 4n
which

(a)' zhe join of atoms is 1, on

(b)' zthe meet of coatoms is O.
1§ QU = (A;F) 48 a §inite algebra of minimum cardinality such that ConUl =L,
then QU s polynomially equivalent to a vecton space or to a unary algebra (A;G)
where G 48 a permutation group acting on A.

PROOF of Theorem 3.5. Let Ol = (A;F) be an arbitrary finite algebra
such that ConQl = L, and let U = P(I)(CR). It is well known that the algebra
éﬁ = (A;U) has the same congruences as U, so Conéz =~ J,, Consider the family
of nonsingleton subsets of A of the form h(A) with h € U. This family being

finite and nonempty (it contains A) we can select from it a set B which is min-

imal with respect to inclusion. Now put
Up = {f ¢ U: £(A) £B}, U|; = {£]p: £ e U}

where fIB denotes the restriction of f to B, and let éﬁIB = (B;U[B).’ The

following two claims are straightforward to verify.
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Claim 1. For arbitrary congruence ¢ of CZIB' the binary relation 3
defined by

§ = {x,y) € A% (£(x),£(y)) € & for all £ e Uy
is a congruence of éi.

Moreover, we have

~

Claim 2. § contains every congruence € of .4 With the property

elg € 6.

Here elB denotes the restriction of € to B, that is, e[B =ei Bz.
Obviously, elB e Con CL[B whenever € € Conéﬁ . Now we want to prove

Claim 3. There exists an operation e € U such that e = e2 and
B =e(A).

Suppose first that (b) holds for L, and consider the'mapping

¢: Conl > con, aw alp-

[

It follows easily from the definition of =~ and - from Claim 2 that ¢ 1is an in-
creasing meet endomorphism. Since not all 9?§;ations f e UB are constant, we
have AA¢ $ VA. Thus, by (b), ¢ 1is not striptly increasing, therefore there
exists a congruence Y € Conéi such that vy # VA and ‘y¢ = Y-- Consequently
8,0° € v8% =y 4 V,, implying 4,0° c V,. By the definition of & this is equi-
valent to the existence of elements a,b € A and operations f,g € UB.«such thaf
fg(a) + fg(b). Then fg%&) is'not a singleton and fg(A) S B, whence by the min-
imality of B it follows that fg(A) = B. Since f,g e U, and B is finite,

this implies that f£f(B) = B. So by the finiteness we also get that some power e

of f satisfies the requirements of the claim.

Assume now that (a) holds for L. Let Y denote the mapping Con( »

~ ~N N
ConOl assigning to each o ¢ Con® the congruence of (I generated by
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{(fX),E)): (x,¥) e, fe UB}.

Clearly, ¥ 1is a decreasing join endomorphism. Aggin, since not all operations
f e UB are constant, we have VAY $ AA' Thus, by (a), ¥ is not strictly de-
creasing, therefore there exists B ¢ Conéz such that B # AA and RY = B.
Hence VAYZ 2 BWZ =g 4 AA’ implying VAYZ > AA. The latter is again equivalent
to the existence of elements a,b ¢ A and operations f,g € UB such that

fg(a) ¥ fg(b). So we can repeat the argument at the end of the preceding para-

graph to conclude the proof of Claim 3.

Let us fix an operation e ¢ U satisfying the requirements of Claim 3.
~o )
We want to show that Coné% ~ Con OIIB‘ Since Conl (2 L) is a simple lat-
tice, it suffices to prove

Claim 4. The restriction of congruences to B is a surjective lattice

~o [nd
: ConOl + Con CQIB.

homomorphism |,:

~ -~ o~
First we show that for every 6 e Con CllB the congruence ¢ of 01
Ao
defined in Claim 1 has the property 6|B = §. Since the operations of CQIB are

of the form fIB with f ¢ U,, the inclusion SIB 2 § follows easily from the

B,
definition of §. Conversely, if (a,b) e SIB’ then (e(a),e(b)) € §. However,
as e = e2 and a,b € B = e(A), therefore e(a) = a and e(b) = b, so that
(a,b) € §. Thus SIB € 8§ holds as well. This proves the surjectivity of IB‘

Moreover, we get that Claim 2 can be strengthened as follows: for arbitrary con-

gruences & e Con CEIB and ¢ ¢ ConOL we have € S 8 if and only if e[B € 8.
Applying this statement we prove that !B is a join homomorphism. Let
a,B € Ckﬂléi be artitrary. Since aIB € &T;/;\ETE, it follows that

/\ . 3 3
o ¢ alB v BIB. By symmetry this implies that o v B S a|, Vv BIB, which is equi-

B

valent to (avB)IB < alB v BIB. The reverse inclusion trivially holds. Thus

s

is a join homomorphism. Clearly, it is also a meet homomorphism, completing the

proof of Claim 4.



82

N ~o
In the same way as we defined [, from O, we can construct an alge-
bra CQIB from Ol where Ol is considered up to polynomial equivalence only.

Namely, let CRIB = (B;P|B) where

(3.1) Plo= {f]in21, fe PMay, £aM < 5.
Alternatively, PIB can be described as follows:
(3.2) P[B = {gIB: nx>1, ge P(n)(Cﬂ), g(Bn) € B}.

Indeed, the first set is trivially included in the second one, while if g e P(0D)
is an n-ary operation with g(Bn) € B, then for the operation f(xl,...,xn) =
gle(x;),...,e(x)) e P((}) we have £(A™ S B and f!B = g|B, so the reverse
inclusion also holds. Thus (3.2) shows that P[B = P(CKIB), and by (3.1),

UIB = P(l) (mIB)

Using the well-known fact that CﬂlB and CRIB = (B;P(l)(CaIB)) have

the same congruences, we get the isomorphisms

Con CR[B = Con ULIB’%’ ConOl = Con(t =~ L.

On the other hand, if f{B € UIB (f € Uy) is not constant, then f£(B) = fe(A)

B, that

(¢ B) 1is not a singleton, hence by the minimality of B we have £f(B)
is, f[B is a permutation. This means that every unary polynomial operation of
Ql|, 1is either constant or a permutation. The assumption |[L| > 2 implies that
.IB! > 2. Thus, by Theorem 3.2, CEIB is polynomially equivalent to a vector
space provided P[B contains an operation depending on at least two of its vari-
ables. In the opposite case C/l|B is polynomially equivalent to the algebra
(B;G) where G 1is the set of permutations from U|B. Since UIB is closed

under composition and B 1is finite, G 1is a permutation group.

Clearly, if X is assumed to be of minimum cardinality such that Con(R

= L, then we must have B = A, and the conclusion of the theorem holds for .
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Notice that we proved more than what was actually stated in Theorem 3.5,
namely the following: If L satisfies the assumptions of the theorem, then ev-
ery algebra O with Con@ = L contains a subset -B such that the so-called
induced algebra CEIB is pelynomially equivalent to a‘vector space or to a unary
algebra (B;G) with G a permutation group acting on B, and Con (l|B<= L.
This result was first observed by R. McKenzie [1983] (in fact, he drew thé same
conclusion under weaker assumptions on L), although some ideas go back to P. P.
Péify and P. Pudlak [1980]. Since then a far-reaching theory on the structure of
finite algebras and locally finite varieties has been developed from these ideas,

see D. Hobby and R. McKenzie [a].

We sketch the starting point of the theory. Observe that in the proof of
Theorem 3.5 the assumption |L| > 2 was used only to ensure |B| > 2. Therefore
the same argument as in the proof of Theorem 3.5, combined with Theorem 3.2 and
the remark at the end of the preceding section, yields that for arbitrary finite
simple algebra di, the induced algebras CQIB are polynomially equivalent to
I. a unary algebra (B;G) with G a permutation group on B, or
II. a vector space, or
III. a 2-element Boolean algebra, or
IV. a 2-element lattice, or
V. a 2-element semilattice.
Moreover, it can be shown that all these induced algebras CKIB of (U are of
the same type. So this type characterizes the simple algebra Q. In a similar
fashion, for arbitrary finite algebra (I one of the types I - V can be assign-
ed to each prime interval of the congruence lattice of Qr. It turns out that
the type of a finite simple algebra (L (or the type set of a finite algebra )
has strong implications on the structure of Q. For example, a finite simple

algebra is of type I or II if and only if it is a TC-algebra, and every finite
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simple algebra of type IV or V has a compatible ordering (see R. McKenzie [al,

D. Hobby and R. McKenzie [al).

Returning to the representation problem of finite lattices we next prove
the theorem of P. P, P4lfy and P. Pudlak [1980] relating this problem to the char-

acterization of principal filters of subgroup lattices of finite groups.

THEOREM 3.7. The following sitatements are equivalent:

(i) Every finite Lattice 48 isomorphic to the cengruence Lattice of a
ginite algebra.

(ii) Every finite Lattice 4is isomornphic to a principal gilter of the sub-
group Lattice of a ginite group.

The proof is based on a consequence of Corollary 3.6(a)'.

PROPOSITION 3.8. Let (|L| > 2) be a finite simple Lattice in which the
join of atoms 48 1, and for every element a e L - {0} such that a 4is not an
atom L contains at Least 4 atoms LeAA'ihan a. Then the following conditions
are equivalent:

(i) there exists a §inite algebra X with ConOX = L;

(1i) Zhere exists a thansitive perwmutation ghoup G acting on some §4-
nite set A such that Con(A;G) = L;

(iii) zhere exist a finite group G and a subgroup H of G such that

the principal §ilter [H,G] of the subgroup Lattice of G 4is isomorphic Zo L.

PROOF. Assuming (i) consider a finite algebra a - (A;F) of minimum cardinality
with Con@ = L. Since the congruences of U and (A;P(l)(Cﬂ)) coincide, we
may assume that Ul is a unary algebra. Hence, by Corollary 3.6(a)', it is poly-
nomially equivalent to Q' = (A;G) for some permutation group G acting on A.
Clearly, Con Cf' = Con(t = L. So it remains to show that G is transitive,

that is, (' has no proper subalgebras.
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It is easy to see that A can be decomposed into a disjoint union of
minimal subuniverses Ai (1 =i<k) of QU (the orbits of G), and every sub-
universe ‘is a union of some of them. Suppose (' has two disjoint subalgebras

;61’ Q&é with universes B;» B such that B, U B, = A and IBil 22 (i=1,2).

2

Then select an atom oy from Con d;i (i=1,2). The smallest extension

N 1
a; e Con Q' of a;

a; Vv 'oTZ contains only two atoms (namely o,

tion on L. Thus we can have only the following possibilities:

is Ei =a; UB, (i=1,2), so it is easily seen that

and EZ), contradicting our assump-

(1) k=3, [A |l = [l = 1,

(2) k=2, [A]=]A] =1,
(3) k=2, |A1] =1, |A2| > 1,
(4) k=1.
In the first two cases |G| = 1, hence Con QU is the partition lattice on a

3-element or a 2-element set, but these lattices do not satisfy the assumptions.
In case (3) the greatest congruence VA e Con Q' is join irreducible, which is
again impossible. Thus (4) holds, that is, (' has no proper subalgebras. This
completes the proof of (ii).

The implication (ii) = (iii) follows from

Claim 1. Let (I = (A;G) be a unary algebra with G a transitive per-
mutation group on A, and let a € A, Ga = {g € G: g(a) = a}. Then Conl is

isomorphic to the principal filter [Ga,G] of the subgroup lattice of G.

The mappings
d: ConA 2 [Ga,G]: 14
¢: p»p? = {g e G: (g(a),a) € p},

HY = {(gh(a),g(a)): g € G, h e H} «H: V¥

are mutually inverse lattice isomorphisms. Indeed, it is straightforward to check

that for H and p as above, HY € ConOUl, p& is a subgroup of G with
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pd 2 Ga’ and HY® = H. Furthermore, we have (b,c) € pd¥ if and only if there
exist g,h € G such that b = gh(a), c = g(a) and (h(a),a) e p. Since G is
transitive, this is equivalent to (b,c) € p. Therefore pdY = p. Finally, for

0,0 € ConCT  we have pd S 00 if and only if p € o.

Suppdse now that (iii) holds. If G has a normal subgroup N with
N € H, then ([H/N,G/N] =~ [H,G]. So we may assume that H contains no nontrivial
normal subgroup of G. Every element g e G defines a permutation g' on the
set A = {xH: x € G} of left cosets of H by multiplication: g'(xH) = gxH. It
is easy to see that the mapping g+ g' 1is an isomorphism between G and the
permutation group G' = {g': g ¢ G}. Furthermore, G' is transitive, and Gy
coincides with the subgroup H' = {h': h ¢ H} of G'. Hence, by Claim 1,

L = [H,G] ~ [H',G'] = Con(A;G'), proving (i).

PROOF of Theorem 3.7. In view of Proposition 3.8 it suffices to show
that every finite lattice can be embedded as a principal filter into a lattice L
satisfying the assumptions of the proposition. Given a finite lattice Lo we
construct a new lattice L consisting of the elements of LO, pairwise distinct

elements zg ¢ Lo (i=1,2,3,4) for every z € Lo’ and another element o0. For

X,y ¢ L let

(x = y, or
X =0, Yy arbitrary, or

X <y iff 9x

zs for some ze L, 1<1i<4, yel

o o

and z <y in Lo, or

(X,Y € LO and x <y in Lo'

It is not hard to verify that L is a lattice., The atoms of L are exactly the
elements z5 (z € Lo’ i=1,2,3,4), and the least element is 0, while the

greatest element is 1 (e Lo). Thus the condition that every element which is
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neither an atom nor the least element is greater than at least 4 atoms is clear-

ly satisfied in L. Furthermore, we have l1 2

is 1. The simplicity of L can be checked by routine computations. Obviously,

v 1, = 1, hence the join of atoms

the identity mapping embeds L0 into L as a principal filter.

In trying to solve the representation problem for particular finite lat-
tices, most investigations were concentrated on the lattices of height 2. Let

Mn denote the lattice of height 2 with n atoms:

N

If n-1 is a prime power, then the congruence lattice of the 2-dimensional vec-
tor space over the field of order n-1 is isomorphic to Mn’ therefore Mn is
representable. So the question is whether Mn is representable for n = 7,11,13,
«es . It is clear that for n > 4 the lattice Mn satisfies the assumptions of
Proposition 3.8, therefore it is representable as a congruence lattice of a finite
algebra if and only if it is isomorphic to a principal filter of the subgroup lat-
tice of a finite group. Recently, W. Feit [1983] [unpublished], found a principal
filter isomorphic to M7, and one isomorphic to M11 in the subgroup lattice of

the alternating group A of degree 31. However, these examples seem to be

31
quite accidental. It can be shown (P. P. Palfy [a]) that A31 is the only alter-
nating group of prime degree whose subgroup lattice contains a principal filter

isomorphic to some Mn with n 2 7. So, at present, the smallest lattice of

height 2 for which the problem of representability is open is M13'

By a result of P. Kohler [1983], if a finite group G has a subgroup H

not containing a nontrivial normal subgroup of G and such that [H,G] = Mn for
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some n with n-1 not a prime power, then G must be subdirectly irreducible;
as was shown by P. P. Pdlfy and P. Pudldk [1980], G has to be nonsolvable, too.
Attacking the representation problem from another direction, Th. Ihringer [1984b]
investigated some properties of the (po;sibly nonexisting) finite algebras &
with Con O = Mn’ n-1 not a prime power. R. McKenzie [1983] proved that many
lattices, including all Mn with n-1 not a prime power, cannot be isomorphic

to the congruence lattice of a finite algebra with a single basic operatioh.



Chapter 4

QUASI-PRIMAL AND PARA-PRIMAL ALGEBRAS

Recall from Chapter 1 that an algebra COF = (A;F) is called paimal iff
it is finite and every operation on A is a term operation of (L. A. L. Foster
[1953] introduced primal algebras as a natural generalization of the 2-element
Boolean algebra, and studied first of all the structure of algebras in the varie-

ty generated by a primal algebra.

EXAMPLES. Some of the most well-known primal algebras are the following:
1. the 2-element Boolean algebra,

2. every finite field of prime order (1 is considered as an operation),
3. the Post algebras lon (n > 1) defined in Chapter 1,

4. the reduct 'U\On = ({0,1,...,n-1};r(xvy)) of }Qn for every n =1

(D. Webb [19351]).

We have seen in Chapter 1 that the description of all maximal clones on
a finite set yields a necessary and sufficient condition for a finite algebra to
be primal (Corollary 1.20). For our purposes here some older and easier charac-

terizations of primal algebras will be more useful.

THEOREM 4.1. Fon a §inite algebra U= (A;F) the following conditions
are equivalent:

(1) QU s primas;
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(ii) fon each natural number k, each subuniverse B o4 Ctk, and each
set 1 containing exactly one element from each block of the equivalence ~ de-
gined on {1,...,k} by

IA

i~j 4t pr; ; B €4, (1

i,j £ X),
i j )

we have pr; B = AI;
(iii) O 48 a simple arithmetical algebra having no propen subalgebras

and no nontrivial automorphisms.

Condition (iii) characterizing primal algebras is due to A. L. Foster and
A. F. Pixley [1964], while (ii) seems to have been discovered independently by
several authors, e.g. I. G. Rosenberg [1970], P. H. Krauss [1972]. The proof of

Theorem 4.1 is delayed until Theorem 4.2 from which it will immediately follow.

A number of generalizations of primal algebras were defined by weakening
one or another of the conditions in Theorem 4.1. Here we deal only with the two
most important among them. A different kind of generalization will be discussed

in Chapter 6.

Quasi-primal algebras

How far is a finite field of order qk (q prime, k > 1) from being
primal? By all means, it has proper subfields, and every subfield of order grea-
ter than q has nontrivial automorphisms. We want to generalize primal algebras

so as to admit subalgebras and isomorphisms between subalgebras.

DEFINITION. An isomorphism between two subalgebras of an algebra Ck

is called an internal isomorphism of O,

Note that a bijection w: B - C with B,C € K" is an internal isomor-
phism of UL = (A;F) if and only if 7~ is a subuniverse of (t%. The set of

these subuniverses m- will be denoted by Iso OL.
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DEFINITION. An algebra (R = (A;F) is called quasi-primal iff it is
finite and every operation on A preserving the internal isomorphisms of I is

a term operation of (.

Note that every operation preserving the internal isomorphisms of (04
preserves the identity automorphism of each subalgebra, and hence preserves each
subalgebra as well. Quasi-primal algebras were introduced by A. F. Pixley (19701,

[1971]. We mention several examples of quasi-primal algebras.

EXAMPLES. 1. Every primal algebra is quasi-primal.
2. Finite fields are quasi-primal.

3. For a set A, the discriminator t on A is defined by

c if a=b
t(a,b,c) = (a,b,c € A).
a otherwise

The algebra (A;t) is quasi-primal for every finite set A.

The characterizations of primal algebras in Theorem 4.1 carry over nicely

to quasi-primal algebras.

THEOREM 4.2. Fon a ginite algebra U = (A;F) the following conditions
are equivalent:
(i) OO 4is quasi-primal;
(ii) for each natural number k, each subuniverse B 0f cak, and each

set 1 containing exactly one element §rom each bLock of the equivalence ~ on
{1,...,k} defined by

i~ 64 pri’jBeIsoOL (1 <1i,j <k,

we have pr. B = T pr, B;

I iel
(iii) t 48 a tenm operation of U ;

(iv) Ot s arnithmetical and every subalgebra of CL 4is simple.
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PROOF. To verify (i) = (ii) assume (X 1is quasi-primal, and consider a sub-
universe B By x ... x By of Clk. It is straightforward to check that ~ is
indeed an equivalence relation. Assume for simplicity that I = {1,...,m} con-
tains exactly one element from each block of ~. Clearly, pry B & B1 X ... X Bm.

We have to show that equality holds. Let n = lprI B| and

pry B = {(bll"”’blm): 1 <2 <n}.

Since PT; j B = {(bli’blj): 1<£<n} (1<1i,j <m), our assumption on I im-
plies that for i $ j there exists no internal isomorphism m: Bj - By of a

with bziﬂ = sz for all 1 < £ < n. Hence, for arbitrary m-tuple (al,...,am)
€ B1 X ... X Bm there is an n-ary operation f preserving the internal isomor-

phisms of (U such that

f(b .,b_.) =a, for i=1,...,m.

11’7’ ni i

However, (I being quasi-primal, f is a term operation of (I . Therefore the

subuniverse Pr{ B of (™ contains (al,...,am), proving that Pry B = B1 X
.o X Bm.

By Corollary 1.4 the implication (ii) => (iii) is clear, since t pre-
serves every set B of the form described in (ii). Clearly, t is a 2/3-min-
ority operation. So, to show (iii) => (iv), it suffices to verify that the term
operation t forces the subalgebras of (I be simple. The easy details are
left to the reader.

Finally, we prove (iv) => (i). Suppose (X has properties (iv), and let
p be a Mal'tsev operation among the term operations of (. Since (L has a
majority term operation as well, in view of Corollary 1.25 the term operations of

are determined by the subuniverses of CKZ. Now let lB:QBl x B, bea sub-

universe of Cﬂz. Clearly, B1 and B2 are subuniverses of (L. Moreover, we

have B o B'o B S B, since (bysb,), (b),b,), (b],b)) € B imply that
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(bl’bé) = p((bl’bz)’(b”bz)’(b"bé)) € B.

Hence B o BY and BY o B are congruences of the subalgebras 3?1 = (Bl;F) and
J;z = (BZ;F) of UL, respectively. Since J&l and ﬁ% are simple, there are

two possibilities. If both B o BY aﬁd B¥ ¢ B are the equality relation, then
B =7 for an isomorphism m: d}1-+ & . If BoB” =V or B o B =V

3
2 B1 B2

then Bl x 82 €SB o BYo B, yielding that B = B1 X B2. In either case, every op-
eration on A preserving the internal isomorphisms of (U preserves B. Thus

Ct  is quasi-primal, completing the proof.

Except for characterization (ii) which is due to P. H. Krauss [1973],

Theorem 4.2 was found by A. F. Pixley [1970], [1971]. Observe that Theorem 4.1

is an easy consequence of Theorem 4.2.

Condition (iii) shows an interesting feature of quasi-primal algebras:
up to term equivalence, there is a least quasi-primal algebra on every finite set
A, namely (A;t). In other words, the clones of quasi-primal algebras on a finite
set A form a principal filter in the clone lattice, the least element of the

filter being [t].

Idempotent non-quasi-primal algebras

The main result of this section, Theorem 4.3, prepares the study of para-
primal algebras as well as the description of homogeneous algebras to be discussed

in the next chapter.

Let A be a finite set, and let B< By x ... x B (k=1 be a subset
of AX. The number max{|B,|: 1 < i <k} will be called the 4ize of B and will
be denoted by ||B]l. The subset B of Ak will be termed directly indecomposable
iff BsE (pry B) x (prf B) holds for all partitions {I,T} of k = {1,...,k}.

Furthermore, B is said to be #educed iff B is directly indecomposable and no
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projection pri,j

T Bi > Bj’ (For brevity, these sets 7 will also be called bijections.)

B (l<i<js<k) of B is of the form m for a bijection

It is clear from Theorem 4.2 that a finite algebra ar = (A;F) is quasi-

primal if and only if Cﬂk has no reduced subuniverses for k 2= 2.

THEOREM 4.3. Let Ot = (A;F) be a §inite idempotent algebra. Suppose
A5 not quasi-primal, and Let B< By X ... B be a neduced subuniverse o4

T 4on some n = 2. Then either

a
(a) 0!.2 has a neduced subunivernse aé)the Aame Zx;ze as B, or
(b) .‘!J-i =z (Bi;F) (1 £ i < n) are Lsomorphic aéﬁmé subalgebras of O, .
and there exist a ginite field K and a vector space By = (Bl;+,K) such that

ofr) 48 tewm equivalent to the §ull idempotent neduct of the (End ¢B;) -module
B,.

(End B )1
First we prove a weaker statement.

LEMMA 4.4. Let QI = (A;F) be a finite idempotent algebra with |Al > 1,
and assume Q1> has no neduced subuniverse of size m for some integen

1<ms< [A]l, 14 B< B, X ... X B is a directly indecomposable subuniverse of

n
" (n =2 2) of size m, then
(b)) :G'i = (B;3sF) (1 =i <n) are isomonphic subakgebras of X, and

(by)  for arbitrary isomorphisms . : 3'1 > 55'1 (1 <1is<n) we have

(4.1)
s .

{(yls---:yu_lﬁgu(ylﬁ---:yu_l):---:gn(yls---,yu_l))- Yl,---,yu_l € Bl}

u-1)

gorn some 2 < u<n and some operations g; € Olg
1

(u<j<n).
PROOF. We start with an auxiliary observation.

Claim 1. Under the assumptions of the lemma, B has a projection

B = pr. . BB, X ...xB, ({i,,...,i,} €n) with k = 2 such that
11,...,1k 1 1k 1 k =
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(o) IBi£| =m for all 1< £ <k,
(BY pry .y B= I B, forall 1<3j <k, and
k-0) 7 pex-5) L2 «
) B(xl,bz,...,bj -1’x2’bj+1"”’bk) is a bijection Bil > Bij for all
2 <j <k and for all elements bze B, (2<L=<k, £#%3j).
L

Since B is directly indecomposable, B& Bi X (prn_{i} B) for all

i e n (consequently lBi| >1 for all iemn). Let, say, I =k (ks<n) bea

minimal subset of n such that for B = pr, B we have [Bll = m and

k

(4.2) BRe B, x (pr]:(_{i} B) for some i e k with |Bi| =m; say i = 1.
Clearly, k = 2 and by the minimality
(4.3) pr]é_{j} Bss B, X pr]é_{i,j} B for all i,j ek, i #j, with |Bi| = m.

We may assume that IBll 2 [By| 2 ... 2 [B].
For arbitrary (k-2)-tuple ¢ = (Cg...,¢) € Pry B, the nonempty set

-2
i

'l?(xl,xz,c) is a subuniverse of C°. Property (4.3) for 1, j = 2 ensures

that pT, §(x1,x2,c) =B, hence "ECXI,XZ,C)” = m. Therefore, by assumption,
E(xl,xz,c) = B, x (pr, §(x1,x2,c)) or E(xl,xz,c) is a bijection.
However, in view of (4.2) (i = 1), the former cannot hold for all c, hence

E(xl,xz,a) is a bijection for some a = (a3,...,ak) € pry

2 F
So [B| = [B,] =m, and similarly, [B,| = [By| =m for all 2s£<k. This

proves (a), whence (4.3) yields (B), too. It follows also that

pr F(xl,xz,c) = Bi for i =1,2 and for all c € BS X ... X B

K’
By symmetry, it suffices to show (y) for j = 2. Supposing it fails we

get that

-E(Xl,xz,b) = B1 X B2 for some b = (b3,...,bk) € BS X ... K
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Then the sequence ﬁtxl,x b obisa gs.00a) (L=2,3,...,k) contains two

2273 i+l?

consecutive members such that the first one is a bijection, while the second one
equals B1 X BZ' Permuting the last k-2 components of B we may assume that

aj = b, for 4 <j < k. Now, for arbitrary element d1 € B1 the subuniverse

= 2 . . - -
D = B(d;,X ,X,58y,...53) Of JL° is of size m, as pr, D = B, andr pr, D = B,.
Furthermore, [D(xl,és)l =1 and D(x,,b;) = By, so that D is reduced. This

contradiction completes the proof of Claim 1.

For simplicity of notation we assume in the sequel that the projection

B of B in Claim 1 is B = pr, B (2 <k <mn). Property (y) shows that there
exists a function g: By X ... X B, > B1 such that B = g, Moreover, for the
projection B' = P, _, B of B we have

- n- ]
(4.4) B = {(g(xz,...,xk),xz,...,xn) € A (xz,...,xn) € B'}.

The subuniverse B' of Cln'l is a direct product of directly indecomposable

projections of B', say B'w (pr, B') x ... x (pr, B') where {I.,...,I.} is
I1 Ih 1 h
a partition of n-1. Since B is directly indecomposable, (4.4) implies that

(4.5) Ij Nk#P for all 1< j

IA

h.

In particular, every indecomposable direct factor of B' is of size m. Hence

"Bk’ and

I. 2"
J

by induction on n we may suppose that for each factor pr; B' with IIjl > 2
j

each factor pr, B' of B' with IIj| = 1 is one of the sets B

the conclusions (bl)—(bz) of the lemma hold.

This implies on the one hand that for every 1 < j < h, the subalgebras
x}i = (Bi;F) (ice Ij) of (Ul are pairwise isomorphic. However, the bijections
occurring in (y) of Claim 1 are subuniverses of Clz, hence they are isomorphisms
between the corresponding subalgebras. Therefore Sﬁlﬁz el X J&k, which, toge-

ther with (4.5), concludes the proof of (bl).
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On the other hand, it follows that for arbitrary isomorphisms LFE J&i -
J}l (1 £ i < n), the subuniverse B'[nz,...,nn] of _Cknhl has the form (4.1)
(with n-1 in place of n). In fact, we get this form for the indecomposable
direct factors of B' first, and then observe that by adding fictitious variables
to the functions occurring we can get a similar form for their direct product.
Now, by (4.4), the first component of B[ﬂl,wz,...,vn] is a function of the first

k-1 components of B'[nz,...,nn], whence it follows that (bz) holds.

PROOF of Theorem 4.3. Let B be of size m, and assume (a) fails for
0Z. Then n > 2 and the conclusions of Lemma 4.4 hold for B. Therefore it re-
mains to prove the claims for J@i.
In what follows, all operations occurring are defined on Bl' Let G

denote the set of operations commuting with the basic operations of 4}1 (and

hence with every term operation of !}1). Equivalently, a k-ary operation g

belongs to G if and only if g, is a subuniverse of d¢¥+1. By Proposition 1.1
G 1is a clone on B,- Since 2;1 is idempotent, G contains all the constants.

Moreover, every operation g; (u £j £n) occurring in the representation (4.1)
of B[wl,...,vn] belongs to G, as (gj)D is a projection of B[wl,...,wn].
Since (a) fails and B 1is reduced, therefore each gj (u<j <n) depends on
at least two variables. We show that every operation g ¢ G depending on all of
its variables has the CSP. If, say, g is k-ary, then g4 is a directly inde-
composable subuniverse of Clk+1 of size m. Furthermore, no proper projection
of g, can satisfy condition (y) from Claim 1 in the proof of Lemma 4.4. Hence
(yY) holds for 8, which means that g has the CSP.

Thus Proposition 3.4 applies for the algebra (Bl;G) whose clone of po-
lynomial operations is G. Thus there exists a vector space Kgl = (B1;+,K) over
some finite field K such that G = P(Kgl). It is easy to see that the clone of

the full idempotent reduct of the (End KEl)—module coincides with

B
(End (B )=1
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the clone G* of all operations commuting with each member of G (cf. Exercise
2.11). We have to prove that T(d}l) = G*. By the definition of G the inclu-
sion £ is trivial.

Before verifying the reverse inclusion observe that the singletons are
the only proper subuniverses of J?l. Indeed, if S C Bl (S ¥+ #) 1is a proper

subuniverse of & ., then x X, € G implies that

1’ 1

2,
U= {(xl,xz) € Bl: X "X, € S}

2

2

is a subuniverse of Qf-i. Since pr, U = PT, U =8B U ¢ Bl’ and by assumption

1’
U is not reduced, therefore it follows that U is a bijection. Hence |[S| = 1.
Now let f ¢ G*, and let C be an arbitrary directly indecomposable sub-
universe of J?? for some q 2 1. Since ng has no nonsingleton proper sub-
algebras, we have either cX B?, so that C is of size m or |C| =q =1. If

q = 1, then f obviously preserves C. Suppose q = 2. Lemma-4.4 implies then

that C has the form

C "Aﬁ{(Yl,---,}’v_l,fv(yls---,Yv_l),---,fq()’l,---,}’v_l))3 Yls---,}’v_l € Bl}

for some 2 < v < q and some operations f. ¢ Ogv_l) (v<£j<q). The sets
1 i
(fj)D (v £j <q) are projections of C, yielding that fv""’f e G. Thus f

q
commutes with fv”"’fq’ implying that f preserves C as well. This means
that f preserves every directly indecomposable subuniverse of each finite power

of J;l. Hence it preserves all subuniverses of finite powers of &, that is,

1’
f e T(ﬂl). Therefore G* = T(-frl), which was to be proved.
For later use, let us state explicitly the following fact established

during the proof of Theorem 4.3.

REMARK. If, under the assumptions of Theorem 4.3, condition® (a) fails,
then in (b) for arbitrary isomorphisms m,: 1;1 -> J;i' (1 £i <n) the subuniverse

n . o
BLm,,...,m ] of 1?1_ has the form (4.1) with Byr o8y € P(¢B;)-



99

Theorem 4.3 provides an easy test for the quasi-primality of idempotent

algebras. For a set A, the subsets of A2 of the form

(A1 X Bz).U (B1 X\AZ) with [/ Bi C Ai (i=1,2)
will be called thick crosses.

COROLLARY 4.5. A finite idempotent algebra QU = (A;F) 48 quasi-primal
if and only if every subalgebra of K is simple, N has no nonsingleton af-

§ine subalgebras, and there are no thick crosses among the subunivernses of &

PROOF. The necessity of the conditions is obvious. Conversely, suppose that ([
is not quasi-primal. Then by Theorem 4.3 either Cl? has a reduced subuniverse
or Ul has a nonsingleton affine subalgebra. In the latter case we are done.

The former case can be settled by verifying the following claim.

EXERCISE 4.6. Let L = (A;F) be a finite idempotent algebra. If
D<D, xD, (|D1| 2 [D,|) is a reduced subuniverse of @% which is minimal
with respect to inclusion, then either D is a thick cross, or D o DY is a

nontrivial congruence of the subalgebra (D ;F) of a.

Para-primal algebras

Para—pfimél algebras were introduced by D. M. Clark and P. H. Krauss
[1976¢]. Their aim was to weaken condition (ii) in the characterization of quasi-
primal algebras (Theorem 4.2) so as to include also groups of prime order.

DEFINITION. Let A be a finite set and B € Ak (k 2 1). A nonvoid

subset I of k= {l,...,k} is said to be B-minimal iff it is minimal with re-

spect to the property that the projection B - PTy B is one-to-one.

DEFINITION. An algebra Ol = (A;F) is called para-primal iff it is

.. . k
finite and for every natural number k, every subuniverse B of ", and every
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B-minimal set I, we have pry B = I 2 B.
iel
The definition immediately yields two natural classes of examples.

EXAMPLES. 1. Every quasi-primal algebra is para-primal.

2. Groups of prime order are para-primal.

More generally, we will see that every finite Mal'tsev algebra in which
all subalgebras are simple is para-primal. The most remarkable fact concerning
para-primal algebras is that this quite easy sufficient condition is necessary,
too. This yields a nice characterization for para-primal algebras, closely paral-

leling Theorem 4.2(iv) for quasi-primal algebras.

THEOREM 4.7. For a §inite algebra Ol = (A;F) the following conditions
are equivalent:
(i) U is para-primal;

(ii) U 48 a Mal'tsev algebra and every subalgebra of U is simple.

The difficulty in the proof is to show that every para-primal algebra
has a Mal'tsev operation among its term operations. The original proof found by
D. M. Clark and P. H. Krauss [1976] is rather complicated. A more elegant way is
provided by a nice theorem of R. McKenzie [1982] (see also IV. §13 in [BS]). Here
we use another approach which gives more insight into the clones of para-primal
algebras. Our main tool is Theorem 4.3; however, to be able to apply it we need

several lemmas on the full idempotent reduct of para-primal algebras.

LEMMA 4.8. A {inite algebra is para-primal if and only if its gull
Adempotent reduct is para-primal.
PROOF. It is clear from the definition that an algebra is para-primal whenever a

reduct of it is para-primal. This implies the "if" part of the lemma. For the

"only if' part we first prove
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Claim 1. Let (& be a para-primal algebra. For every integer k > 2

and for arbitrary subuniverse B < B1 X ... x B, of Clk there exists a sutset

k

J of k such that [J] 22 and J - {i} is (prJ B) -minimal for every i e J.
As B # B1 X .. X Bk’ there exists a sutset J of 5 which is minimal
with respect to the property Py B % 'HJ Bi' Clearly, |J| = 2. Let, say,
J = n (n < k), and put B' = pT B. ézviously, the set n is not B'-minimal.
Cn the other hand, by the choice_of J=n we have
n
(4.6) prg_{j} B' = _H Bi for all j €

i=1
i}j

(l}=]

Thus lBll,---,anl > 1, and the B'-minimal sets have n-1 elements.

Assume that, contrary to our claim, not all (n-1)-element subsets of

=}

are B'-minimal. Suppose for instance that n - {n} is B'-minimal, while

n - {1} is not. For every integer m > 2 let

-— ml 3
Cm = {(xl,...,xm) € Bl' there exist b2 € BZ""’bn € Bn such that

(x;,b ..,bn) e B' for all 1 < i < m}.

IR
It is easy to check that Cm is a sutuniverse of (" for every m > 2. Clearly,
Ag € C,. Moreover, since n - {1} is not B'-minimal, therefore the projection
B' > prg—{l} B' = By X ... X Bn is not one-to-one. Hence B' contains two

n-tuples (bl’bz""’bn)’ (b',bz,...,bn) with b1 $ b!, irplying that (bl,bi) €

|8, |
C2' Thus AB C C2. We show that C'B | $ B1 1 .  Otherwise there would exist
=10

1
b2 € BZ”"’bn € Bn such that (x,bz,...,bn) e B' for all x € Bl' Taking into

account that n - {n} is B'-minimal, we would get that (bys-vnsby 153) ¢
' _ 1‘ . . . ,
prg_{l} B' for all a ¢ Bn {bn" which contradicts (4.6).

m

Let m (= 2) be the least natural number such that Cm $ Bi. If
m = 2, then by the foregoing remark A, < C,. If m> 2, then C , = BT~1, sc

1 &
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that Cm <5BT is totally reflexive (on Bl). Therefore, in either case, none of
the projections Cm > BT-I is one-to-one. lence m is Cm-minimal. This con-

tradicts the para-primality of CI, concluding the proof of Claim 1.

Now let €= (A;F) be a para-primal algebra and C26 = (ASF) its
full idempotent reduct. To show that CQO is para-primal, we apply Proposition

1.11. Clearly, we are done if we prove

Claim 2. Let B B1 X ... % By be a subuniverse of Cflk (k =2 1),
l<ns<l<k, ace Ak.z, and C = pr_ B(x;,...,Xp,a), |c|] > 1. Every C-minimal
set I (€ n) 1is contained in a B-minimal set and PT; c=1I Bi.

- iel

We proceed by induction on k. The claim is trivial if B = B1 X ... X

B, (in particular, if k = 1). So assume that B < By X ... X B> k 2 2, and

the claim is true for all subuniverses of Cﬂk_l. Choose a set J (£ k) accord-
ing to Claim 1. For every i e J, the (pr; B)-minimality of the set J - {i}

ensures the existence of a function g.: I B. - B. such that PTy B & (g.)D.
1 jeJ-{i} J 1
This implies that if i ¢ J N (£-n), then for the subuniverse B = PTy (i} B of

ak-1 we have
C = prg B(xl,...,xi_l,xi+1,...,xz,a).

Thus, by the induction hypothesis, I 1is contained in a BE-minimal set and

~

28 C= I B.. Obviously, this B-minimal set is B-minimal as well. Similar
jel
argument applies also if J € k-, i e J. Finally, suppose that J N (£-n) = @,

JNn#4p. Then for every i e JN n we have

- c o
prJnrzl C = prJnlzl B(xl,...,xz,a) = (fi)
for the function fi arising from g5 by substituting the components aj

(G edn (g—ﬁ)) of a for the corresponding variables of g;- Therefore

~

JNn $ I. Fixing an ieJNn with i ¢ I and putting C = PT._{i} C we get

that I is C-minimal; furthermore, |C| = |C| > 1, and for B as above we have
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C = prg-{i} B(xl""’xi-l’xi+1’""Xﬂ’a)'

As pry C = pry E, the claim follows again from the induction hypothesis. This

concludes the proof of Lemma 4.8.

Note the following important consequence of Claim 1 above, which will be
used without further reference: For a para-primal algebra X, Cr2 has no re-

duced subuniverses.

LEMMA 4.9, Let Ol = (A;F) be an idempetent para-primal algebra, and
Let L = (C;F) be a nonsingleton affine subalgebra of CU. Then there exist a

finite gfield K and a vecton space ,C = (C;+,K) such that £ 48 term equi-

K=

valent to the §ull idempotent neduct of the (End «C) -module C (that 4is,

(End KE)—-
an cperation on C 48 a tenm operation of £ if and cnly if it commutes with

every polynomial operaticn of Kg).

PROOF. By the para-primality, Clz has no'reduced subuniverses. Since
(x—y+z)D-< C4 is a reduced subuniverse of CKA, the claim follows from Theorem

4.3.

,

Now we look at the relaticn between the affine subalgebras of a para-

primal algebra and its full idempotent reduct.

LEMMA 4.10. Let = (A;F) be a para-primal algebra and ao = (A5F)
its full idempotent neduct. For a nonsingleten set C S A, (C;F) 48 an affine

subalgebra of - X if and only if (C;F)) 44 an afgine subalgebra of Cﬂg.

PROOF. The necessity being obvious suppose (C;FO) is an affine subalgebra of
([o, say (C;Fo) is affine with respect to the Abelian group C = (C;+), and let
P = (x—y+z)D. Since P 1is an irredundant subuniverse of Ckﬁ, ty Proposition
1.11 we have

P = pri-1 B(xl,...,xh,ah+1,...,an)
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for some 4 < h < n and some subuniverse B (Bl X ... X Bn of Uln. However,

B is a subuniverse of Clg as well. We may assume without loss of generality
that B i3 reduced. Hence, by Theorem 4.3 and the remark following its proof,
(Bi;Fo) (1 < 1< n) are isomorphic affine subalgebras of C%) and for arbitrary
isomorphisms w.: (B ;F)) - (Bl;Fo) (1 < i< n) the subuniverse ‘B[“I"“’“n]

has the form (4.1) with se..58_ € P(,B.) where n>u=zx2 and is the
&y &n K—1

k21

vector space corresponding to (Bl;Fo) (see Lemma 4.9). Since B 1is reduced,

gu,...,gn depend on at least two variables. It is easy to see that B1 = B2 =

B3 = B4 = C. Furthermore, at least one of the projections PT{ B (u<j<n)
j

of B with

o
o
Ty B[nl,...,wn] u.(gj)
J
has the property that there exists an index k e Ij N 4 such that the k-th com-
ponent of B corresponds -either to the values of gj or to a nonfictitious vari-

able of g5+ Hence, omitting the fictitious variables we get that for some sub-

universes C, = C, C2,...,Cm (e {Bl""’B

1 }) of U and for some (hence for

n

all) internal isomorphisms 05t Ci > C (1 <1i<m) of Cﬂo, the vector space
m-1
Kg (= Kgl) has a polynomial operation 121 rixi + ¢ (m2 3, rl,...,rm_1 e K -
{0}, c € €C) such that the set
m-1 -1.0
((izl r,(y;0;)+c)o ") < C;p X ... xCo

. . m . .
is a subuniverse of (™. Up to the order of its components, the same subuniverse

is
-1 m-1
((ry" (v,0,) - 1
) i=1
i$2

rélri(yici)-rélc)ogl)oa( C,axC xCyx ...xC ; %Cy.

Consider the function g: C x C x C, > C

2 2 defined by
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o ol -1 -1
8(yysyysYy) = (xyr(yj0) - 1,71 (y0.) + (¥,0,))0,
m-1

-1 mol -1 1 1
- 4 - - e - - -
(r2 (1Z1 ri(yici)+c) T, rl(ylol) i§3 T, ri()ioi) T, c)dz

1

(the fictitious variables YgseresY y arTe omitted). Since it arises from the

Frevious ones by superposition, therefore the set gD<§ CxCxC,x ¢, is a

subuniverse of Cl4 as well. Repeating this construction once more, we get that
-1.o 4
((-(zoy) + (2'0)) + (z"0))o; ) < C

is also a subuniverse of CK4. As o,: C = C1 -+ C can be chosen to be the iden-

1
tity, it follows that P is a subuniverse of 614, that is the subtalgebra (C;F)

of U is affine.

We now derive from Theorem 4.3 a nice description for the term operations

of idempotent para-primal algebras.

THEOREM 4.11. Let O = (A;F) be an idempotent para-primal afgebre, and
Let C”i = (A3F) (1< i<k be the nonsingleton afgine subalgebras of a, say
Czi A5 afgine with respect to A= (A Then an operation cn A 48 a temn
operation of U if and only if it preserves

(a) all internal isomonphisms of U, and

(b) the subunivense Po= (x - ¥4y 2)® o4 Cl? don all 1 < i < k.

PRCOF. Let Kiéi = (Ai;+i,Ki) be the vector space correspending to Cki
(1 £1 < k) (see Lemma 4.9). For an operation f € Ogn) (n 21) to be a term
operation of U the preservation of the subuniverses (a)-(b) is clearly neces-
sary. Conversely, assume now that f rpreserves all subuniverses (a)-(b). Then
f preserves all subuniverses of I as well, in particular, f is idempotent.
We show that for each 1 s i < k the restriction fIA- of f commutes with all
rolynomial operations of Kiéi' Indeed, f}Ai commut;s with the constants as it

is idempotent. It commutes with x -5 Yty % since f preserves Pi’
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Furthermore, flA commutes with each unary operation cx (c € Ki’ ct0) of
i

K éi’ because the mapping Ai > Ai’ X » cx 1is an internal isomorphism of a.
i
Thus fIA commutes with each member of a generating set of the clone P(K éi)’
i i
implying that it commutes with every operation in P(K éi).

i
Let BB, X ... X Bn be a reduced subuniverse of " (nz21). We

1

claim that f preserves B. This is trivial for n = 1. If n 2 2, then by
Theorem 4.3 and by the remark after its proof, the subalgebras J}j = (Bj;F)

(1 <j<n) of Ol are affine and pairwise isomorphic, moreover, for arbitrary
isomorphisms ﬂj: J§j > 1?1 (1 < j <n) the subuniverse B[ﬂl,...,ﬂn] of "
has the form (4.1) with - SPRRTS - polynomial operations of the vector space
corresponding to 1;1. Since fIB
serves B[vl,...,nn], and hence Bf too. Thus f preserves all reduced subuni-

commutes with 8yr e o8po therefore f pre-

verses of finite powers of . as it preserves the internal isomorphisms of 04
as well, it follows that f preserves all subuniverses of finite powers of .

Hence f is a term operation of (.

COROLLARY 4.12. A para-primal algebra is quasi-primal if and onky 4 4%

has no nonsingleton afgine subalgebras.

PROCF. Let (f = (A;F) be a para-primal algebra. If it has a subalgebra

& - (B;F) (|B| > 1) which is affine with respect to B = (B;+), then (x-y+z)"
is a subuniverse of Cﬂ4, whence by Theorem 4.2 (T is not quasi-primal. Con-
versely, if Ut has no nonsingleton affine subalgebra, then by Lemma 4.10 its
full idempotent reduct Cﬂo has none, either. However, by Lemma 4.8 CRO is

para-primal, therefore Theorem 4.11 implies that CRO 'is quasi-primal. Conse-

quently, Ul is also quasi-primal.

Applying Theorem 4.3 we can get a characterization for idempotent para-

primal algebras, similar to Corollary 4.5.
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COROLLARY 4.13. A ginite idempotent algebra O = (A;F) 4is para-primal
if and only if every subalgebra of U 4is simple and thene are no thick crosses

among the subuniverses: o a2,

PROOF. The necessity is obvious. Conversely, if ({ satisfies the conditions,
then by Exercise 4.6 CKZ has no reduced subuniverses. Hence the description of
the reduced subuniverses of finite powers of Ol in the remark following the

proof of Theorem 4.3 yields that (X is para-primal.

Using Lemma 4.8 and Theorem 4.11 from these preparations we can prove

Theorem 4.7.

PROOF of Theorem 4.7. In view of Lemma 4.8, in proving (i) => (ii) we
may confine ourselves to idempbtent algebras. So let (I be an idempotent para-
primal algebra. Since CRZ has no reduced subuniverses, it follows that the sub-
algebras of Ol are simple. With the notations of Theorem 4.11 define a Mal'tsev

operation p on A as follows:

a -, b ¢ if a,b,c € Ai for some 1 é}i <k

(4‘7) p(asbsc) = (a,b,c € A).
t(a,b,c) otherwise

We have ]Ai N A3| <1 for 1<1i<j <k, since C?l,...,CEk have no proper

nonsingleton subalgebras. Thus p is well defined. Making use of the fact tha;
for 1 <1i<k, x R is the unique Mal'tsev operation among the term op-
erations of Cﬂi, one can easily see that p preserves the internal isomorphisms
of CKA as well as the subuniverse Pi of Cki for every 1 <1 < k. Hence by
Theorem 4.11, p 1is a term operation of Q.

To verify the easy direction (ii) == (i) of Theorem 4.7, consider an al-

gebra Ol = (A;F) satisfying (ii) and a subuniverse 13=$4B1 X ... xB_ of Cﬂh

h
(h =2 1). Denote by Oi the kernel of the projection B + Bi (1 £1ic<h).

Clearly, & = (B;F) 1is a Mal'tsev algebra, hence it has permutable congruences.
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Furthermore, since the algebras éﬁi = (Bi;F) are simple, ei (1 £1i<h) are
maximal congruences of & . It is well known (see, e.g. [BS]) that, under these
conditions, for arbitrary subset I of g which is minimal with respect to the

property N @i = AB’ the natural mapping B > II B/0. = I Bi’ (bl,...,bh) >
iel iel iel
(bi)ieI is an isomorphism & » I Q;i. Observing now that the kernel of the
, iel
projection B » pr; B (I€h is N @i’ we get that I is B-minimal if and
- iel
only if I is minimal with respect to the property N @i = AB.
iel
is B-minimal, then the projections B - pry B and B+ I Bi are both bijec-
iel
tive, implying that pPry B=1 Bi‘ Thus U is para-primal, as claimed.
iel

Hence, if I

The question naturally arises whether there exists a characterization of
para-primal algebras in terms of '"preservation properties of term operations",
analogous to the property defining quasi-primal algebras, which can be restated
as follows: For a finite set A, let S denote the family of bijections between

the subsets of A; an algebra & = (A;F) ~is quasi-primal if and only if

(%) the term operations of (I are exactly the operations on A pre-

serving those subuniverses of finite powers of (X which belong to S.

Theorem 4.11 describes the term operations of idempotent para-primal algebras via
preservation properties, however, these properties do not characterize idempotent
para-primal algebras, because a finite idempotent algebra whose term operations
are defined by such preservation properties is not necessarily para-primal. In
fact, as was noticed by E. W. Kiss [1984], if A is a finite set with |A| = 3,
then there exists no family S of subsets of finite powers of A such that an
algebra X = (A;F) is para-primal if and only if (*) holds. Otherwise it would
follow that the intersection of clones of para-primal algebras on A is the
clone of a para-primal algebra, however, the reader can easily prove

EXERCISE 4.14. For any group (A;+) of odd prime order, the intersec-

tion of the clones of (A;t) and (A;x-y+z) is the clone of projections.
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This shows also that, unlike with quasi-primal algebras, there is no
least para-primal algebra, up to term equivalence, on a finite set A, unless
|A| < 2. However, clearly, the clones of para-primal algebras on A form an or-
der filter in the clone lattice. We now derive the fesult of R. W. Quackenbush
[1983] showing that on every finite set A, up to term equivalence, there are
only finitely many minimal para-primal algebras, and that every para-primal alge-

bra has a minimal para-primal reduct.

Let A be a finite set, and A,,...,A, a family of subsets of A with

1’ k
|A; N Ajl <1 forall 1<i<jsk and |A;] =q;, a prime power, for all

1 <ix< k. Let us fix a generating element c; of the multiplicative group of

each finite field GF(qi) so that c; = ¢ whenever q; = 4 (1 <1i,j <k).

J J
Consider a vector space GF(qi)Ai = (Ai;+i,-i,GF(qi)) for every 1 < i < k, and

define a ternary operation p on A by (4.7), and a binary operation g on A

by
cia +; (l—ci)b if a,b € Ai for some 1 <1i <k

(4.8) g(a,b) { *

a otherwise

(a,b € A).

Note that g is well defined. Making use of Theorem 4.11 we show that the alge-
bras (A;p,g) are exactly the minimal para-primal algebras with nonsingleton af-

fine subuniverses Al,...,Ak.

THEOREM 4.15. The algebra (A;p,g) constructed above is para-primal,
and has no proper para-primal reduct in which the nonsingleton affine subunivernses
Moreover, every para-primal algebra (A;F) with non-

are exactly A,,...,A

17+ K"
sdingleton affine subuniverses Apsee sl has a neduct of the form (A;p,g).
PROOF. The operation g ensures that the subalgebras (Ai;p,g) (1 <1i<k) of

(A;p,g) are simple. Since elsewhere p behaves like the discriminator, it is

easy to see that the other subalgebras are also simple. Thus, by Theorem 4.7,
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(A;p,g) is para-primal. Let X = (A;F) be a para-primal reduct of (A;p,g)
such that the nonsingleton affing subalgebras of (X are exactly the algebras
Cli = (Ai;F) (1 <1ic<k). Clearly, U is idempotent and for every 1 < i < k,
Cki is a reduct of (Ai;p,g). Since (Ai;p,g) is term equivalent to ihe full

idempotent reduct of ., which has no proper para-primal reduct, therefore

GF(q;)%
Cli is term equivalent to (A;;p,8).

In view of Theorem 4.11 the first claim will follow if we show that every
internal isomorphism of Ol is an internal isomorphism of (A;p,g) as well. Let
@: B> C be an internal isomorphism of CI. Then B and C are subuniverses
of (L, hence for each 1 <1i <k wehave A; B or [A; N B| < 1, and similar-
ly for C. Thus B and C are subuniverses of (A;p,g). Since ¢ carries af-
fine subuniverses into affine subuniverses, the restriction of ¢ to each Ai S B
(1 £1i<k) is an isomorphism Cﬁi-+ lep, and hence also an isomorphism
(Ai;p,g) > (Ai¢;p,g). Now it follows easiiy that ¢ is an isomorphism (B;p,g)

+ (C;p,2) .

In view of Lemmas 4.8 and 4.10, it suffices to prove the second statement
for idempotent para-primal algebras L= (A;F). Let I = (A;;F) (1<i<K)
be the nonsingleton affine subalgebras of at, and K.Ai = (Ai;+i,Ki) (1 <1<k
the corresponding vector spaces (see Lemma 4.9). Sinie Cll,...,Chk have no non-
singleton proper subalgebras, we have [Ai n Ajl <1 forall 1<1i<j<k.
Moreover, clearly, q; = ]Ail is a prime power for every 1 < i < k. Now we con-

struct the vector spaces Let ~ denote the equivalence on k such

GF(q;) i
that i~j (i,j € k) if and only if CﬂiéE C@i. Pick an element i from each

~-block, and fix an isomorphism xj: (ﬂi > CRj for every j ~ 1 so that X, = id.
We define GF(qi)éi so that Kiﬂﬁ be a reduct of it, otherwise arbitrarily (this
is possible, since q; = [A;| is a power of IKiI), and let (I! denote the full
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idempotent reduct of GF(q }Ai‘ An easy application of Lemma 4.9 shows that Cli
i

is a reduct of CE: For j ~i, j % i, let Clj denote the isomorphic copy of

Cli under X - Clearly, Clj is a reduct of C%. Furthermore, Lemma 4.9

yields that Clj is the full idempotent reduct of an appropriately defined vector

A.
K.= F(q.)=j°
37 ‘G(QJ)J

Observe that every isomorphism ¢: C@K -+ Clm (£,m € k) is an isomor-

A. ;i
space GF(qﬁ)—j such that A. is a reduct of

phism CZé + (! as well. Indeed, if o: CZC > Clm is an isomorphism, then

£ ~m, hence ¢ = nlexm for some automorphism mw of CKE‘ Since T, Xgs Xp
are isomorphisms between the corresponding algebras &}, Cli, Cki (i 1is the
fixed element of the ~-block of. £, m) as well, the claim follows. Now it can
be verified without difficulty that the operations p and g defined by (4.7)
and (4.8), respectively, preserve the subuniverses (a) and (b) in Theorem 4.11.

Hence p and g are term operations of Ck, that is, (A;p,g) 1is a reduct

of L.

It is clear from Theorem 4.7 that finite simple modules and, more gener-

ally, finite simple affine algebras are para-primal.

EXERCISE 4.16. Derive Proposition 2.10 as well as Jacobson's Density
Theorem (see N. Jacobson [1956]) for finite simple modules directly from the theo-

ry of para-primal algebras.



Chapter 5

HOMOGENEOUS ALGEBRAS

The least quasi-primal algebra (A;t) where t is the discriminator on
A is as "symmetric'" as an algebra can be in the sense that every permutation of

A is an automorphism of (A;t).

DEFINITION. An algebra O = (A;F) is called homogeneous iff every per-
mutation of A is an automorphism of Ol. An operation f on A is said to be

homogeneous iff the algebra (A;f) is hombgeneous.

Homogeneous algebras were first investigated by E. Marczewski [1964].
Here we study the clones of homogeneous algebras. They will turn out to be easy

to handle because homogeneous algebras have a lot of internal isomorphisms.

PROPOSITION 5.1. For a finite homogeneous algebra Ul = (A;F), every
bijection B~ C with 9 B, CS A, |[B] =|[C| £ |A] -1 4s an internal isomon-
phism of QL. Moreover, if U has an (|A]-1)-elLement subuniverse, then every

bijection B > C with P % B,C S A 4is an internal isomonphism of OU.

PROOF. Since the set of fixed points of any automorphism of I is a subuniverse
of O, we get that every subset B of A with |B| % |A] - 1 is a subuniverse
of (. Furthermore, if O has an (|A|-1)-element subuniverse, then by the

homogenity every subset B of A with |B| = |A] - 1 is also a subuniverse of



113

(U. Finally, for arbitrary subuniverses D, C of U and for every bijection
m: B> C, we have ™ = wu N (B x C) for some automorphism ¢ of Ck, hence

is an internal isomorphism.

In particular, it follows that every finite homogeneous algebra

Ul = (A;F) is idempotent, unless |A| = 2.

DEFINITION. A homogeneous operation f on a set A is called a pattern

operation iff every subset of A 1is a subuniverse of (A;f).

By the preceding proposition, if A is finite, then a homogeneous opera-
tion £ on A is a pattern operation if and only if (A;f) has (|A|-1)-element
subtuniverses. A similar argument shows that if A 1is infinite, then every homo-
geneous operation is a pattern operation. Homogeneous operations can be described

as follows (E. Marczewski [1964]).

EXERCISE 5.2. Let f be a k-ary operation on a set A. For arbitrary
" k . -
k-tuples (ays..053)), (bl”"’bk) € A° we write (al,...,ak) (bys...5b ) to

denote that for all 1 < i,j < k we have a, = aj if and only if bi = bj (that

'is, the two k-tuples have the same "pattern" of equalities among their compo-
nents). The operation f is homogeneous if and only if it satisfies the follow-
ing conditions:

(A) if |A - {al,...,ak}l +1, then f(a),...,a)) € {al,...,ak};

(B) if f(al,...,ak) = a (1 i< k) and (bl,...,bk) ~ (al,...,ak),
then f(bl,...,bk) = bi;
() if A - {al,...,ak} = {f(al,...,ak)} and (bl,...,bk) ~ (al,...,ak),

then A - {bl,...,bk} = {f(bl,...,bk)}.

Clearly, f 1is a pattern operation if and only if case (C) does not oc-

cur, that is, for every a .,ak e A there is an index 1 < i < k such that

17

f(al,...,ak) = a,, and 1 derends only on the '"pattern' of the Kk-tuple (al,...,ak).
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We list a few homogeneous operations which will play an important role in

the sequel.

EXAMPLES. Let A be a finite set, |A| = n. The following operations

on A are homogeneous:
1. the discriminator t (see Chapter 4);
2. the dual discriminator d (see Chaptér 1);

3. the so-called switching operation s defined by

¢ if a=b

s(a,b,c) = %b if a

c (a,b,c € A);

ia otherwise

in particular, on a 2-element set A, s(x,y,z) =x + y + z for any group (A;+);

4. the k-ary near-projection £k (2 < k £ n) defined by

{al if [{al,...,ak}[ <k
£o(a,,...,8,) =y , (a;,...,a, € A);
k'1 k . 1 k
(ak otherwise

5. the (n-1)-ary operation T defined by

a, if {a,,...,a_ ;}| < n-1
1 i > > _
rn(al""’an_l) = \( . 1 " 1 . (als-t-)an-l € A);
\a, with {an} = A—{al,...,an_l} otherwise

for n = 2, T, is the unique nonidentity permutation on A, while for n = 3,
fs(x,y) = 2x + 2y for arbitrary group (A;+);

6. the (n-1)-ary operation dn defined by

( s -
i ,d(al,az,as) if I{al,...,an_l}l < n-1

A dn(al,...,a _1)

n (a;5...,a

n-1 € A)

1an with {a } = A-{a;,...,a ;} otherwise
provided n 2 4;

7. the operation x + y + z 1if (A;+) is a 4-element group of expo-

nent 2.
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In this chapter we determine, up to term equivalence, all finite homo-
geneous algebras O = (A;F) with |A| 2 5. Two types will be distinguished.
First we consider the dual discriminator algebras, that is, those algebras in

which d is a term operation, and then the remaining ones.

Homogeneous dual discriminator algebras

The homogeneous dual discriminator algebras were described by B. Csakany
and T. Gavalcovd [1980] (although one algebra is missing by mistake). The pre-

sentation here closely follows their ideas.

Let A be a set and k,£ = 2 arbitrary integers. A k x £ 1048 on

A 1is a subset of A2 of the form
(B x {ch U ({b} x ¢) with B,CS A, beB, ceC

such that |B| = k, |C| = £. Clearly, the size of a k x £ cross is max{k,£4}.

Crosses are significant in the study of discriminator algebras for the following

reason.

PROPOSITION 5.3. For a finite set A, the reduced subunivernses of

(A;d)z are exactly the crosses.

PROOF. It is easy to check thaf every cross on A 1is indeed a subuniverse of-
(A;d)z. Conversely, let B< B1 X B2 be a subuniverse of (A;d)z. Then B has
the following properties:

if (a,b),(a',b),(a",c) ¢ B with a # a', then (a",t) € B,
as (a",b) = d((a,b),(a',b),(a",c)); similarly,

if (b,a),(b,a'),(c,a") ¢ B with a ¥ a', then (b,a") € B.
Now it can be verified without difficulty that either B = 7  for a bijection

™ B1 -+ BZ’ or B is a cross, or B = B, x B

1 2°
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PROPOSITION 5.4. Let X = (A;F) be a ginite homogeneous algebra such
that there is a cross of size m (2 < m < |A]) among the subunivernses of &

(a) 1§ m< |Al, o0 m=|A] and X has (|A]|-1)-element subuniver-
ses, then every cross of size at most m 48 a subunivernse of aZ.

() 1§ m=|A] and A has no (|A]-1)-element subuniverses, then

every k x £ cross with k,L 4 |A| - 1 48 a subuniverse of 2.
PROOF. Assume first |A| # 3. Let B = (B x {uz}) §] ({ul} x B,) (u; € By,

u, € B2) be an mx n cross (m > n) among the subuniverses of CKZ. What we

2
have to show is that every k x £ cross with k,£ <m such that Ul has both

k-element and {-element subuniverses is a subuniverse of Cﬂz. A k X 2 cross

C can be constructed from B as follows: C = BN (C1 X C2) where C1 is a

k-element subset of B with u, € C, while C is a 2-element subset of B2

1 1 1 2

with u, € C2. Furthermore, every k x 2 cross is of the form C[nl,wzl for

appropriate bijections Ty W between k-element, resp. 2-element subsets of

2
A. Hence, by Proposition 5.1, we get that every k x 2 cross is a subuniverse
of Cﬂz. The same holds for £ x 2 crosses, too. Finally, for arbitrary k x £

Cross

D = {(ak’bl) ERL L ] (azﬁbl) ’(al’bl) ’(al’bz) E LRI ’(al’bﬂ)}

1"
o

N ~
we have D o DY, where D = {(ak,c),...,(az,c),(al,c),(al,c')} isa kx2

&
D

cross and {(bz,c'),...,(bz,c'),(bl,c'),(bl,c)} isan £ x 2 cross (c, c'
are arbitrary distinct elements of A). Hence D 1is a subuniverse of CKZ as
well.

Now let |A| = 3. If B isa 3 x 3 cross, then every 3 x 3 cross

is of the form B[wl,wzj for some permutations “1’ ™ of A. If in turn, B

2

isa 3x2 or 2x 2 cross, then (U has 2-element subuniverses, and the

same argument applies as in the preceding paragraph.
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REMARK. It is easy to see that for a 3-element homogeneous algetra

r = (A;F) the existence of a 3 X 3 cross among the subuniverses of o im-

plies that UL has 2-element subuniverses.

. . . 0
We can now describe the homogeneous dual discriminator algebras. Let Di

[resp. Di] denote the clone of all pattern [resp. homogeneous] operations on A

which preserve all crosses of size i (1 < i < |A]).

THEOREM 5.5. Every finite homogenecus dual discriminaton algebra

QL = (A;F) with |A| 24 4is term equivalent to one of the algebras (A;Di) with

j e {0,1}, 1 <i =< |A] and (i,j) # (|A|-1,1). These clones Di ane paimcise

distinct. The Lattice theu fonm, together with a generating set of each clone 44
shoun in Figure 2.

P! - [e,r ]
1 n
[(t1 = 0°
! ol - ra,0,,r ]
2 73 n
0
[d,%s] = DZ )
D, = [d,%,,r ]
o 3 4’ n
[d,24] = D3
1 _ .
0 Dhos = by oo Ty
[d’zn—ZJ - Dn-S
1 _ .
o ) Dn_z = [d’rn] (—[d,%n_l,lnj)
[d,ln_l] = Dn-z
0
(4,81 =02 1
Dn = [dn]
o)
[d] = Dn



118

PROOF. Let (X = (A;F) be a finite homogeneous algebra, n = |A| 2 4, and let

C =T(X), de C. Since d 1is a majority operation, Corollary 1.25 shows that

C is determined by the Subuniverses of CKZ. Hence Proposition 5.3 implies that
C consists exactly of those operations which preserve the internal isomorphisms
of Ul and the crosses among the subuniverses of CQz. Taking into account Prop-
ositions 5.1 and 5.4 we get that if i denotes the maximum of the sizes of cros-
ses among the subuniverses of CRZ, then C = Di with j = 0 or 1 according

to whether I has (n-1)-element subuniverses or not. Obviously, i % n-1 if
j=1.

Clearly, t, d, Kk (3 < k < n) are pattern operations, while T, and
dn are not. Furthermore, it is easy to see that dn preserves the n x n cros-
ses, 1T preserves the (n-2) x (n-2) crosses, and Kk (3 < k £ n) preserves
the (k-1) x (k-1) crosses, but does not preserve the crosses of size k. There-
fore for each pair (i,j) ¢ n x {0,1}, (i,j) # (n-1,1), the set claimed to be a
generating set of Dg is contained in Dﬁ '((k,ﬂ) e nx {0,1}, (k,8) # (n-1,1))
if and only if k < i and £ 2 j. This shows that the clones Dz are pairwise

distinct, and the sets indicated are indeed generating sets.

The remaining homogeneous algebras

The description of finite homogeneous algebras was completed by S. S.
Marchenkov [1982al. The proof presented hefe is different from his; it makes use
of Theorem 4.3, and is similar in spirit to the above discussion of homogeneous
dual discriminator algebras, in-spite of the essential difference that Corollary

1.25 cannot be applied.

First we give a necessary and sufficient condition for a homogeneous al-

gebra not to be a dual discriminator algebra.



119

LEMMA 5.6. For a ginite homogeneous algebra R = (A;F) with [A| =2 5,
the following conditions are equivalent:

(i) d 48 not a term operation of A ;

(ii) fgor anbitrany distinet elements a,b e A, the set

La b = {(a,a,a),(a,b,b),(b,a,b),(b,b,a)}

is a subuniverse of OO,

PROOF. Since d((a,b,b),(b,a,b),(b,b,a)) = (b,b,b), the operation d does not
preserve La,b if a+b (a,be A). Thus (ii) == (i). We start the proof of
the reverse implication with

Claim 1. If d ¢ T(OL), then for arbitrary distinct elements a,b € A,

and for every operation f ¢ T(S)(CH), the restriction fl{a b} of f 1is not a

majority operation.

Suppose that O has a term operation f with fl{a,b} a majority op-
eration for some a,b e A, a ¥ b. Then by the homogeneity of f, f[B is a majo-
rity operation for every 2-element subset B of A. Thus f itself is a majo-
rity operation. However, since [A| 2 5, f is a pattern operation. Hence, up

~
to a permutation of its yariables, f coincides with d.

We will need a fact concerning clones of homogeneous operations on a

2-element set.

Claim 2. The clone H of all idempotent homogeneous operations on a

2-element set A has exactly 4 subclones, namely

Ld] s]
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Indeed, making use of Proposition 1.12 it is easy to see that every non-
trivial subclone C of #H contains either d, the unique majority operation on

A, or s, the unique minority operation on A. If d e C, then a simple applica-

tion of Corollary 1.25 yields that C = [d] or C H, while if s € C, then
(A;C) 1is an idempotent para-primal algebra and C = [s] or C = H follows from
Theorem 4.11. Since [d] and [s] are incomparable, the proof is complete. (Of
course, the claim can also be checked by referring to Post's lattice, see Chapter
1. Recall that on {0,1} the operation s coincides with p.)

Now the implication (i) => (ii) follows quite easily. If d ¢ T(QR),
then by Claim 1 the restriction T(Cﬂ)[{a’b} of T((t) to each 2-element sub-
universe {a,b} of I contains no majority operation. On the other hand,
clearly, T(Cﬂ)[{a,b} is a clone of idempotent homogeneous operations on {a,b}.

Hence by Claim 2 it is contained in the clone generated by the minority operation

s on {a,b}. Since s preserves La b’ it follows that La is a subuniverse
’ .

,b
of 6”3.

The preceding lemma shows that on every finite set A with |[A| 2 5,
there is, up to term equivalence, a largest homogeneous algebra = (A;F) such
that d ¢ T((N). Surprisingly, crosses turn out to play an important role in the

description of homogeneous non-dual-discriminator algebras as well.

LEMMA 5.7. Let U= (A;F) be a ginite homogeneous algebra with

|A| =2 5. 1§ % has a neduced subuniverse 0§ size m (2 <m < |A]), then there

v

A5 an m x 2 cnoss among the subuniverses of nz.

PROOF. Let B—=<B, x B, be a reduced subuniverse of A2 such that m = |B,| 2
|B2| (2 2). First we show that there is a 2 x 2 cross among the subuniverses

of Ot%. since B is reduced and |B,| = [le, the subuniverses B(x,b) (b e B,)

1l 2

of (U are neither all equal, nor all singletons. If there are two distinct sets
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B(x,b) and B(x,b') (b,b' € BZ) which are not disjoint, say a e B(x,b) N

B(x,b') and a' e B(x,b) - B(x,b'), then the subuniverse
BN ({a,a'} x {b,b'})

of Cﬂz is a 2x 2 cross. Otherwise, that is, if any two distinct sets of the

form B(x,b) (b e B are disjoint, then select b',b'" ¢ B, so that B(x,b') N

2) 2
B(x,b") = § and |B(x,b')| = 2. Let, say, a,a' e B(x,b') with a # a',

a" ¢ B(x,b"), and consider the subuniverse
C=BN ({a,a',a"} x {b',b"}H)

of Clz. Clearly, C = {(a,b'),(a',b'),(a",b")}, so E = C o C¥Y is the equiva-
lence relation with blocks {a,a'}, {a"} on {a,a',a"}. Using the cycle

m = (a a' a"), which is an internal isomorphism of U, we get the subuniverse
E[m,m] o E = {a,a',a"}2 - {(a,a")}

of Cﬂz. The first case settled above applies for this subuniverse, so we again

conclude that there is a 2 x 2 cross among the subuniverses of CKZ.

From now on we proceed by induction. Suppose 2 < k <m and there is a
k x 2 cross among the subuniverses of Cﬂz. We prove that for some n, k <n <

m, there is also an n X 2 cross among the subuniverses of Cﬂz. Since B is

not a bijection and |B;| =m > k, therefore there exist pairwise distinct ele-
ments al,...,ak € B2 such that
k
| U B(x,a,)| > k.
. 1
i=1

Moreover, since B % Bl X B2, we can select a .sa so that not all sets

1277727k

B(x,ai) (1 £1i < k) are equal, say
k

(5.1) U B(x,a.) > B(x,a,).
i=1 1 1

Let C1 [resp. Co] denote the left [resy. right] hand side of (5.1), and let
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n-= ]cl[. Then we have n > k, furthermore, by assumption and by Proposition 5.4,
the cross

K = {(alsv'),(alsv):(azsv):- “’(ak’v)}

is a subuniverse of Clz for arbitrary elements v,v' € A, v % v'. In particu-

lar, it follows that {al,. } is a subuniverse of 0. Thus

Loy

C=BN (B1 X {al,...,ak}) and D=Coe K
are subuniverses of Cﬂz. It is easy to see that
D= (C, X {(vih u (cy x v},

so for arbitrary cyclic permutation o = (c1 Coy oven cn) of C1 with Co =
{cl,...,cz} L = [Col), the subuniverse
£-1 .
n plo?,id]
j=1

2 .
of I“ is an n x 2 cross.

LEMMA 5.8. Llet & = (B;F) be a finite idempotent homogeneous algebna.

14 a set of the foam L, (a,beB, a$b) aswell as a |B| x 2 cross 4is

b
’
among the subuniverses of X3 and 2?2, nespectively, then & is trivial.
PROOF. By proposition 1.12 it suffices to prove that no operation listed there is
a term operation of L. Idempotency immediately excludes unary operations. As-

sume f e T(X) 1is binary. Since L is a subuniverse of 1?3, {a,b} is a

a,b
subuniverse of or. Hence f(a,b) € {a,b}, say f(a,b) = a. Thus homogeneity and
idempotency yield that f is the first projection. Majority operations do not
preserve La b therefore T(¥r) contains no majority operation. Suppose now

’

that f ¢ T(¥{) is a k-ary, say first, semiprojection. By assumption and by

Proposition 5.4 every |B| x 2 cross

K= (Bx {b}) U {(a,b")} (a,b,b' ¢ B, b % b")



123

is a subuniverse of 452. Hence for arbitrary elements a € B,

s e esBy

(f(a’aZ’---’ak)’b') = f((a:b')9(32’b),'-3:(ak’b)) € K,

implying that f(a,az,...,ak) = a, Thus f 1is a projection. Finally, if f
were a minority operation, then for the cross K above and for arbitrary element
c eB, c#% a, we would get that

Y

(c,b') = £((c,b),(a,b),(a,b")) € K,
a contradiction. The proof of the lemma is complete.

After these preparations we can describe those hompgeneous algebras in
which d is not a term operation. Let Ei [resp. E}] denote the clone of all
pattern [resp. homogeneous] operations on A which preserve La,b for all
a,be A, at+b. For 2<ic<|A]l, let Ez [resp. Ei] denote the clone of all
pattern [;esp. homogeneous] operations £ such that f|B is a projection for

every i-element subset B of A. It is easy to see that E% c Ei (2 <1< |Al,

j e {0,1}).

THEOREM 5.9. Every nontrivial finite homogenéoub algebra L = (A;F)
with |A] 2 5 such that d 4is not a term operation of CU is term equivalent to
one 0§ the algebras (A;Ei) with j e {0,1} and 1 < i< |A] - - 1. These
clones Eg are nentrnivial and pairise distinet. The Lattice they goam, toge-

ther with a generating set of each clone is shoun in Figure 3.

PROOF. Let I = (A;F) be a finite homogeneous algebra such that n = IAI 25
and d ¢ T((X). Set C=T(). Let j =0 if O has (n-lj-element subalge-
bras and j = 1 otherwise. By Lemma 5.€ we have C S E{. Assume first that ‘Cﬂz
has no reduced subuniverses. Since OUI is idempotent, Corollary 4.13 shows that
o

(! is para-primal: Each subuniverse La b (a,b e A, a $b) of CRS is +

for a group operation + on {a,b}. Therefore it follows that for every
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1 _
. E1 = [s,rn]
$=
1
1 _
g E2 = [ls,rn]
37772
el e ,r ]
(2,1 = E° 3 4n
4~ " "3
1 _
(e .7 =E° En-3 - [ln-Z’rn]
n-2- ~ "n-3
1 _
En—2 = [rn]
_ 0
(o, 1=E,
_ L0
[ln] = En—l
(n= |A]l 25)
Figure 3

a,be A, a%b,

Pop°= (x+y+2)" = {w € {a,b}4: an even number of components of w equal b}

is a subuniverse of Cl4. This implies that each 2-element subset of A 1is an
affine subuniverse of L, Moreover, (N has no other affine subuniverses, as
an affine subalgebra of a para-primal algebra has no nonsingleton proper subalge-
bras. Hence Theorem 4.11 can be applied to conclude that Ei ¢ C. Thus in this
case C = Ei.

Assume now that Cﬂz has reduced subuniverses, and let i denote the
maximum of the sizes of reduced subuniverses of Ckz. Obviously, 2 <1 < n. By
Lemma 5.7 and by Proposition 5.4, every i x 2 cross is a subuniverse of CRz.
Thus, for every i-element subset B of A, the subalgebra (B;F) of U satis-
fies the assumptions of Lemma 5.8. Hence its clone, the restriction of C to B,

contains projections only, implying that C S E%. As Ol was assumed to be
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nontrivial, we have i < n. We prove that C = Eg. The algebras I and (A;Ei)
are easily seen to have the same internal isomorphisms. Therefore it remains to
show that every operation f € Ei preserves the reduced subuniverses of finite
powers of a.

Let CI-((H_X ce. X Ck be a reduced subuniverse of ok (k 2 2). Ob-
serve that C is of size at most i. Indeed, otherwise Theorem 4.3 and the max-

imality of i would imply that |C,| = ... = lel (>i22) and (C;F) is an

.|
affine subalgebra of (I without nonsingleton proper subalgebras. However, this
is impossible, because by Proposition 5.1 every 2-element subset of A is a sub-
universe of (K. Hence ICzl <i for all 1< £ < k. Select a fixed i-element
subset B of A and arbitrary bijections ﬂL: C£ - BL with BE €B (1c4<X).
Since f!B is a projection, f clearly preserves C[ﬂl,...,wa. However,

ﬂl,...,vk are internal isomorphisms of C?, therefore f preserves C, too.

Thus C = Ei, as stated. Obviously, j =0 if i = n-1.

The rest of the proof can be finished as in Theorem 5.5. The details are

left to the reader.

Summarizing Theorems 5.5 and 5.9 we get the lattice of clones of homoge-

neous algebras on a finite set A of n (2 5) elements:
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The clones D; and Ei do not exist on a 3-element set because every 3-element
homogeneous algebra A = (A;F) which is not term equivalent to (A;D}) or
(A;rs) has 2-element subuniverses. This can be proved by making use of Theorem
4.3 and the remark after Proposition 5.4. The lattice of clones of homogeneous

algebras on a 2-element set A is

~
=
n
~
m
ct
—
n

(ol

[=%

(]
n

This follows from Claim 2 in the proof of Lemma 5.6 and from the fact that every
nonidempotent clone C of homogeneous operations on A 1is generated by T, and
the idempotent operations from C. (Cf. also Figure 1 where r,=r, s=p, and

Di is the clone determined by r".)

A way to understand the structure of the lattice of clones of finite ho-
mogeneous algebras is as follows. For each homogeneous quasi-primal algebra OL*
on A (up to term equivalence, there are only two of them), the reducts X of
¢t* having the same internal isomorphisms as (Z* form a '"'ladder' (some vertices.
at the bottom may be missing); the two sides of the ladder consist of those X
with d e T((Ql) and of those with d ¢ T((t), respectively; furthermore, the
rungs of the ladder correspond to the maximal size of crdsses among the subuniver-
ses of Cﬂz. The approach presented here yields that tﬁis holds also under weaker
symmetry conditions than homogeneity. A special case is, for instance, the result
announced by S. S. Marchenkov [1982b] on the finite algebras = (A;F) with

|A| = 4 such that every even permutation of A is an automorphism of O,



128

Interestingly, the infinite homogeneous algebras CX = (A;F) are less
complicated than the finite ones. As we mentioned earlier, all operations of (R
are pattern operations. On the other hand, it can be seen that U is determined
b} its finite subalgebras. So, making use of the above results on finite homo-
geneous algebras, the reader can easily verify

EXERCISE 5.10. For arbitrary infinite-set A, the lattice of clones of

homogeneous algebras on A is

v‘l’ )
p° 1
2
£,
o°
1
e
Eg+1

where the clones Dg and EY (i =1,2,...) are defined as in the finite case,

m R
o

and DZ =N Dz, E: =
i=1 i

n O 8



Chapter 6

FUNCTIONALLY COMPLETE ALGEBRAS

We now consider a property which parallels primality in other respects

than the concepts introduced in Chapter 4.

DEFINITION. A finite algebra O = (A;F) 1is called gunctionally com-
pLete iff every operation on A is a polynomial operation of Cl. Otherwise L

is called gunctionally incomplete.

EXAMPLES. The following algebras are functionally complete:

1. finite fields;

2. every finite algebra (A;m,o,{xa: a ¢ A}) containing two elements
0, 1 suchthat a®#0=a=0®a, ao0=0, ao1l=a, and

fl if b=a

a® = (b e A)

0 otherwise

for all a € A;

3. (A;t) with A an arbitrary finite set and t the discriminator on
A (H. Werner [19701);

4. (A;d) where A is a finite set with |A| # 2, and d 4is the dual

discriminator on A (E. Fried and A. F. Pixley [1979]).
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Clearly, a finite algebra (¥ is functionally complete if and only if
the algebra (f arising from O by adding all constants as basic operationms is
primal. This simple observation, combined with some earlier results, yields the
foliowing criteria for the functional completeness of majority algebras and

Mal'tsev algebras.

EXERCISE 6.1. A finite majority algebra (I = (A;F) is functionally

. 2
complete if and only if A, and V, are the only reflexive subuniverses of a-.
P A

A
(Hint: wuse Corollary 1.25.)
EXERCISE 6.2. A finite arithmetical algebra is functionally complete if

and only if it is simple. (Apply Exercises 6.1 and 1.27.)

EXERCISE 6.3. A finite Mal'tsev algebra containing at least two elements
is functionally complete if and only if it is simple and non-affine. (Make use

of Theorem 4.7 and Corollary 4.12.)

The latter result is due to R. McKenzie [1976], and generalizes the cor-
responding theorems for groups (A. V. Kuznetsov [unpublished]l, W. D. Maurer and
J. L. Rhodes [1965]) and rings (L. Rédei and T. Szele [1947] in the commutative

case, A. V. Kuznetsov [unpublished]' in general).

The most general criterion for functional completeness can be derived

from Corollary 1.20.

We want to extend the concept of functional completeness to infinite al-
gebras as well. For cardinality reasons, like in the case of primality, it seems

natural to consider local polynomial operations instead of polynomial operations.
DEFINITION. An algebra Ol = (A;F) is called Locally functionally com-

plete iff every operation on A is a local polynomial operation of (.

! See p. 106 in: Mathematics in the USSR during the forty years 1917-1957, vol. I,
Fizmatgiz, Moscow, 1959.



131

Obviously, for finite algebras local functional completeness is equiva-
lent to functional completeness. Interestingly, all results mentioned so far car-
ry over to infinite algebras, we have only to replaée functional completeness
with local functional completeness. This is straighfforward for the examples, for
Exercise 6.1 (use Corollary 1.24 in the proof) and for Exercise 6.2. More diffi-
cult is the generalization of Exercise 6.3, which was done by H. P. Cumm [1979].
In the next section we prove a general theofem from which all these results can

be derived.

An elementary interpolation theorem

Given a finite algebra Ol = (A;F), how can we decide whether I is
functionally complete if we do not know much about the structure of OI? For ev-
ery operation g on A, we can try to construct, step by step, polynomial opera-
tions of agreeing with g on two, three, etc., elements of its domain. The

same idea may work also in establishing local functional completeness.

DEFINITION. Let Ol = (A;F) bte an algebra and n > 2 a natural number.
We say that Ol has the n-inteapolation property iff for every integer k 2 1,
for arbitrary pairwise distinct k-tuples ays--.58 € Ak, and for arbitrary ele-

ments b .,bn € A there exists a k-ary polynomial operation f of Ul such

10"
that f(a;) = b, for all 1 <i <n. The algebra (t is said to have the 1}-
intenpolation propenty iff for arbitrary elements a,b,c ¢ A with a ¥ c there

exists a unary polynomial operation f of U such that f(a) = b and f(c) = c.

Clearly, an algebra Ol = (A;F) is loéally functionally complete, or a
finite algebra Ul = (A;F) is functionally complete, if and only if it has the
n-interpolation property for all n > 2. The 1lj-interpolation property is easier
to handle than the 2-interpolation property, and, though apparently weaker, is

equivalent to it if |A| > 2.
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LEMMA 6.4. An algebra CX = (A;F) with |A| > 2 has the 2-interpola-
tion property ig and only 45 it has the 1}-interpolation property.

PROOF. The necessity being trivial, suppose that OU has the 1}-interpolation
property. First we show that (@ "has the 2-interpolation property for unary op-
erations, that is, for arbitrary elements a,b,c,d ¢ A with a $ ¢ there exists
“an fe P (r) such that £(a) = b and f£(c) = d. If b+ c, then by the 1i-
interpolation property there are fl,f2 € P(l)(ca) such that fl(a) = b, fl(c)
¢, £,(b) =b, £,(c) =d. Hence f = £,f e Pty is as required. The
case a 4+ d is symmetric. Assume finally that b = c, a =d. Since |A| > 2,
there exists an element u ¢ A - {a,b}. Now the 1l}-interpolation property yields
the existence of f fz,f P(l)(cn) such that fl(a) = a, fl(b) = u, fz(a) =
b, £,(w =u, £,(b) =b, £.(uw) =a. Thus £=£5f ¢ P () is the opera-

- tion we were after.

To prove the 2-interpolation property in general, consider for k 21
arbitrary distinct k-tuples a, = (ail""’aik) € Ak (i =1,2) and arbitrary
elements b b2 e A. Since a $ a g We have a, # a, for some 1 < 3j < k.
Furthermore, by the preceding paragraph, there is an operation fo € P(l)(Ck)
such that fo(aij) = bi for i =1,2. Let f be the k-ary operation arising

from fo by adding k-1 fictitious variables so that the original variable be

the j-th one. Then obviously f(ai) = bi for i =’1,2, completing the proof.

The main result of this section is a general interpolation theorem esta-
blishing some fairly mild conditions under which the step-by-step interpolation

can be carried out. The idea goes back to E. Fried, H. K. Kaiser and L. Marki

{19821,

THEOREM 6.5. An afgebra = (A;F) 4is Locally functionally complete if
and only if it has the 2-intenpolation property and has a family {£,: X e A}
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(f)\ A4 n}\-any) of Local polynomial operations such that
(a) the identity f)\(x,x,xs,...,xn ) = x holds forn all X € A;
A B
(b) fon every X e A, there 44 a mapping 0% {XS""’xn} + {x,y} such

that the identity £, (X,Y,Xolys...,X_ 1,) = X A4 satisfdied;
A 3A ny A
(¢) gorn anbitrany distincet elements a,b € A, thete exist X e A and
CpsevnsC € A Auch that fA(a’CZ""’Cn ) = b.
A A
REMARK. Notice that if n, < 2 for some X € A, then by (b) fA is
the first projection, so it cannot play a role in (¢). Therefore there is no

loss of generality in assuming that every fA (A € A) 1is at least ternary.

PROOF of Theorem 6.5. The necessity of the conditions follows easily.
For example, any majority operation f alone forms a family satisfying (a)-(c),
as the identities f(x,x,y) = x and f(x,y,x) = x hold for f and £(a,b,b) = b
for arbitrary elements a,b € A.

Conversely, assume now that (X = (A;F) has the 2-interpolation proper-
ty, and has a family {fk: X € A} of local polynomial operations satisfying (a)-
(c). We prove by induction on n that (& has the n-interpolation property
for all n > 2, too. Suppose that I has the n-interpolation property for some
n 2 2, and consider for arbitrary k 2 1 pairwise distinct k-tuples
a,58y5.-.58 € Ak and arbitrary elements bo’bl""’bn € A. ‘We are done if we-
find a k-ary local polynomial operation g of ¢ such that g(ai) = bi for
all 0 < i <n. The table below helps to follow the construction. By the n-
interpolation property U has a k-ary polynomial operation gy with gl(ai) =
bi for all 1 <1i<n. If gl(ao) = bo’ then g, is the operation we wanted to
find. Otherwise, by condition (c¢), there exist A ¢ A and c2,...,cnk e A such
) =b_. As it was remarked, n, 2 3. Using again the

A o
n-interpolation property we get that U has a k-ary polynomial operation g,

that fA(gl(ao)’CZ""’cn

such that gz(ao) = ¢, and gz(ai) = bi for all 1 <i<n - 1. Now condition
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o 1 2 : n-1 n
g1 gl(ao) b1 b2 bn-l bn
g <, b, by b1 g(3)
g3 (:3 u3
g“x c“x u“x
fk bo b1 b2 bn-l bn

(b) ensures that there exist elements Ugyooosll € {b_,g,(a_)} such that
ny n’®2% n

fA(bn,gz(an),us,...,unA) = bn' Using the 2-interpolation property, select for

J

gj(an) = uj. In view of (a) it follows that for the operation g = fl(gl,...,g

we have g(ai) = bi for all 0 <i <n. Clearly, g is a local polynomial op-

every 3 <j < n, a polynomial operation gj of & so that gj(ao) = c¢. and
)

ny

eration of OI. Thus QU is locally functionally complete.

Condition (c) in Theorem 6.5 can be replaced by a stronger condition
which implies the 1j-interpolation property. Thus we get a variant of the inter-

polation theorem of E. Fried, H. K. Kaiser and L. Marki [1982].

COROLLARY 6.6. An algebra (r = (A3;F) with |A] > 2 48 Locally func-
tionally complete if and only if it has a family ‘{fxz A edA} (£, 48 ny-ary)
of Local polynomial operations such that (a) and (b) o4 Theorem 6.5 hold, more-
over,

(c") fgor anbithany distinet elements al,az,b € A, there exist X e A

and c3,...,cnx € A such that fx(al,az,cs,..-,cnx) = b.

PROOF. The necessity is again easy, as the dual discriminator on A alone forms

a family satisfying (a), (b) and (c'); Conversely, suppose (I has a family
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{sz X € A} of local polynomial operations such that (a), (b) and (c') hold.
Since |A| > 2, (c') implies (c), therefore by Theorem 6.5 and Lemma 6.4 it re-
mains to show that O has the 1}-interpolation proberty. Let al,az,b € A,
a; 2 a,. If we find a local polynomial operation f .of Cx with f(al) =a;

and f(az) = b, we are done. Assume first b $ a;,3,. Then selecting fk and

CgsevesC € A by (c') and putting f(x) = fA(al,x,cs,...,cnl), we get the re-

A

quired operation. Otherwise, if b = a1 or b= a2, then f can be chosen to

be the constant operation with value b or the identity, respectively. F

As an application we derive the infinite versions of Exercises 6.1-6.3
from Theorem 6.5. Observe first how the 2-interpolation property is related to

the subuniverses of the square of the algebra.

LEMMA 6.7. An algebra Ol = (A;F) has the 2-interpolation property if

and only if Ay and \7A are the only nreglexive subunivernses of a?,

PROOF. For every pair (a,b) € Az, the reflexive subuniverse of Ckz generated

by (a,b) 1is the set
{(g(a),g): g « PPy}

Therefore (I has the 2-interpolation property for unary operations if and only
if AA and VA = A2 are the only reflexive subuniverses of Cﬂz. However, as
we have seen in the proof of Lemma 6.4, the 2-interpolation property for unary

operations implies the 2-interpolation property for operations of arbitrary arity.

As was observed in the proof of Theorem 6.5, a majority operation alone
satisfies conditions (a)-(c). Combined with the preceding lemma this immediately
yields

PROPOSITION 6.8. A majornity algebra (U= (A;F) 4is Locally functionally

complete if and only if Ay and Vy, are the only neflexive subuniverses of o2,

Taking into account Exercise 1.27 we get
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COROLLARY 6.9. An arnithmetical algebra is Locally gunctionally complLete
i§ and only if 4t 48 simple.

The same is almost true for the more general class of Mal'tsev algebras

as well, only the affine algebras have to be excluded.

THEOREM 6.10. A Mal'tsev algebra containing at Least two elements is
Locally functionally complete if and only if i% i simple and nonafgine.

PROOF. The necessity of the conditions is obvious. Conversély, assume Cl::(A;F)
is a simple Mal'tsev algebra which is not affine. In view of Lemma 6.7 and Exer-
cise 1.27, the simplicity implies that (X has the 2-interpolation property.
We construct a family of polynomial operations of (I so that they satisfy con-
ditions (a)-(c) of Theorem 6.5.

Let us fix a Mal'tsev operation p € T((l), and consider the family of

ternary polynomial operations of Ul of the form

(6.1) P(x},a,8(p(s(8" (x;),8" (x,) 18" (x;)),8" (x;),")))

where a,a' ¢ A, {i,j} = {1,3}, g,g' € P(l)(Ck) with g(a') = a, and

S € P(S)(Ck) satisfies the identities
(6.2) s(x,x,y) = s(x,y,y) = x.

It is easy to check that for every such operation f ¢ P(S)(CR) the identities
f(x,x,y) = £f(x,y,y) = x hold. Hence (a) and (b) of Theorem 6.5 are satisfied.
It remains to show that (c) also holds.

Let a,b e A, a +b. Since I is not affine, Theorem 2.4 yields that
I has a ternary polynomial operation s satisfying the identities (6.2), and
distinct from the first projectiop. If there exists such an s with the stronger
property that s(x,y,a) is.not the first projection, say s(cl,cz,a) $ ¢y

(cl,c2 € A), then let f be the polynomial operation (6.1) where a' = Cys
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(1,j) = (3,1), g' 1is the identity, and g is a unary polynomial operation with
g(cl) = a, g(s(cl,cz,a)) = b. (Such a g exists by the 2-interpolation proper-
ty.) Thus

f(a,cz,cl) = g(p(s(cl{cz,a),cl,cl)) = g(s(cl,cz,a)) = b.
In the opposite case we have
p(p(x,y,a),a,y) = x for all x,y € A,

as the ternary polynomial operation p(p(x,y,z),z,y) of OI satisfies the iden-
tities (6.2). Now select arbitrary operation s € P(S)(Ck) satisfying (6.2) so

that s is not the first projection; say s(cl,cz,cs) $ < (cl,cz,c € A). Let

3
(1,3, g'(x) =

f be the operation of the form (6.1) with a' = Cys (i,3)

p(x,a,cl), and g a unary polynomial operation with g(cl) a, g(s(°1’°2’°3))
=b. Then g'(a) = c; and g'(ci) = for the elements ci = p(ck,cl,a)

(k = 2,3). Hence

f(a,c),cz) = g(p(s(g'(a),g'(c)),g"(c)),g'(a),c )

g(s(cyscy5c5)) = b,
completing the proof.

COROLLARY 6.11. The Locally functionally complete groups are exactly
the nonabelian simple ghoups and the 1-element group. The Locally gunctionally
complete nings are exactly the simple nonzero nings and the 1-element ning.

As we mentioned earlier, Theorem 6.10 is a result of H. P. Gumm [1979].
The special cases in Corollary 6.11 were proved in H. K. Kaiser [1975a], [1975b],
respectively. The idea of the proof presented here comes from the paper by E.
Fried, H. K. Kaiser and L. Miarki [1982], where Corollary 6.11 is derived from

their version of Corollary 6.6.

Further applications of Theorem 6.5 will be given in the next section.
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Symmetric algebras and functional completeness

As we mentioned at the beginning of this chapter, the finite homogeneous
algebras (A;t) and (A;d), the latter provided |A| $ 2, are functionally com-
plete. B. Csdkany [1980] proved that functional completeness is a property shared
by almost all finite homogeneous algebras; in fact, up to equivalence, there are
only six finite homogeneous algebras which are not functionally complete, four of
which are 2-element, one 3-element and one 4-element. The same remains true
with local functional completeness for arbitrary homogeneous algebras. Loosely
speaking, we may say that with a "few" exceptions, highly symmetric algebras are
locally functionally complete. We show that this statement remains true even if

""highly symmetric' means a much weaker symmetry than homogeneity.

Recall that a permutation group G on A is said to be k-transitive
(doubly transitive for k = 2, trniply trhansitive for k = 3) iff for any k-tuples
(al,...,ak), (bl,...,bk) € Ak with pairwise distinct components there exists a
permutation w € G such that a,m = bi for all 1 < i < k. The automorphism

group of an algebra X will be denoted by Aut 0.

Let Kﬁ = (A;+,K) be a vector space over a field K. The aﬁﬂiné Apace

corresponding to Kﬁ (cf. p. 14) is the algebra
(A;x-y+z,{rx + (1-1)y: r € K}),

which is term equivalent to the full idempotent reduct of Kﬁ’ Its automorphism
group,

G(A) = {ux + a: u € Aut A, ae A},

is doubly transitive. Moreover, for |A| = 4, G(KA) is triply transitive if

and only if |K| = 2, that is, gA is term equivalent to an Abelian group of ex-

ponent 2. On the other hand, clearly, affine spaces are not functionally complete.
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The following theorem shows that among the algebras with triply transi-
tive -automorphism groups the affine spaces over the 2-element field are essential-

ly the only ones which are not locally functionally complete.

THEOREM 6.12. An at Least 4-element nontrivial afgebra with triply
trhansitive automonphism group is either Locally functionally complete, orn 48 team
equivalent to an agfine space over the 2-element gield.

PROOF. Let a - (A;F) be a nontrivial algebra such that |A| 24 and Aut (X
is triply transitive. Observe that every binary term operation f of O] is a
projection. Indeed, fbr arbitrary elements a,b e.A and for every automorphism
m of (U fixing a and b we have f(a,b)m = f(am,bw) = f(a,b), that is T
fixes fta,b). ~Since [A] = 4 and Aut U is triply transitivé, this implies
that f(a,b) e {a,b}. In particular, it follows that f is idempotent. Further-
more, if, say, f(a,b) = a fbr‘some a,be A, a % b, then the double transitiv-
ity of Aut & yields that f(x;y) = x for all distinct x,y ¢ A. Hence f is
the first projection.

As O is nontrivial, we get fiom Proposition 1.12 and Corollary 2.3
tﬁat either T haé a term operation f which is a majority operation or a k-
ary- (k 2 3) first semibrojection distinct from the first projection, or there
exists.anvaelian gréup A = (A;+,0) of exponent é such that x +y + z is a
term operatibn of I, ‘Moreéver, in the latter case, if U is not affine with
respect to A, then Claim 1 in the proof of Theorem 2.4 shows that (Ol has, for
some n é 3, an n-ar& term operation g diséinct from thé first projection and

satisfying the identities

(6.3) g(z,xz,...,xi_l,z,x ..?xn) =z for all 2 <1i<n.

i+l’”
Clearly, every majority operation and every first semiprojection distinct from the

first projection also has these properties.
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We prove that the algebra (A;g) with g as above is locally function-
ally complete. Suppose first that there exist elements 31585500058 € A such
that not all of ay,...,a ~are equal and g(al,az,...,an) $ a;. By (6.3) we

have a, ta Clearly, g(al,az,...,an) $ a; for some 2 < i < n. Since the

9
identities (6.3) are symmetric in the second up to the n-th variables, inter-
changing those variables of g we may assume that g(al,az,...,an) $ a,. Thus

a;, 2, and g(al,az,...,an) are pairwise distinct. Since Aut O is triply
transitive, these elements can be sent into any three distinct elements a,b,c € A,
respectively, by an automorphism. This implies that condition (c') in Corollary
6.6 holds for the 1l-element family {g}. The other two conditions (a), (b) en-
suring the local functional completeness of (A;g) are immediate consequences of
(6.3).

Suppose now that g(al,az,...,an) = a whenever 31585500058 € A are

27
such that I{az,...,an}| > 2. As g 1is not the first projection, we have
g(a,b,...,b) ¥ a for some a,be A, a % b.l However, then the binary term opera-
tion g(xl,xz,...,xz) of (X must be the second projection. Thus g(X5,X,0,X;,
.,xl) is the dual discriminator on A, for which the foregoing argument applies.
So far we established that either I is locally functionally complete
or (U is affine with respect to an Abelian group A of exponent 2. Taking into
account Proposition 2.6 and the fact that CI is idempotent, in the latter case
we get T(UI) = K(Ré,{(O,O)}) for a subring R of End A. Then every binary op-
eration rx + (l-r)y (r € R) is a term operation of Q. since every binary

term operation of O is a projection, it follows that R = {0,1}. Hence X is

term equivalent to the affine space corresponding to Eﬁ'

The result in Theorem 6.12 was proved, somewhat differently, by H. K.
Kaiser and L. Marki [1980], following the finite version of the theorem in L.

Szabé and A. Szendrei [1979]. However, for finite algebras this result can be
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considerably improved. The following theorem of P. P. P4dlfy, L. Szabd and A.
Szendrei [1981] is an analogue of Theorem 6.12 for finite algebras with doubly

transitive automorphism groups.

THEOREM 6.13. An at Least 3-element nontrivial f§inite algebra with
doubly trhansitive automorphism group 4is either functionally complete, orn 44 term
equivalent Lo an affine space over a finite field.

PROOF. Let X = (A;F) be a nontrivial finite algebra such that |[A| 2 3 and
Aut (X is doubly transitive. For arbitrary operation f € F and element a € A,
every automorphism of (¥ fixing a must fix f(a,...,a), too. Since Aut(l
is doubly transitive and |A| > 3, it follows that f(a,...,a) = a. Hence the al-
gebra 04 idempotent. As (I is nontrivial, Proposition 1.12 yields that 04

has a term operation of one of the types (II)-(V).

Claim 1. Every binary term operation of N is a projection or a quasi-

group operation,.

Let + be a binary term operation of Ol, which is not a projection.
Fix an element a e¢ A arbitrarily and consider the unary operation ax. Since -
is not the first projection, therefore there exist elements ao,bo,co € A such

that a, $ < and aobo =c The double transitivity implies that for arbitrary

0"
element c € A, c % a, there exists a T ¢ AutZ  such that am = a and coﬂ
= c. Hence a(boﬂ) = ¢. This, together with the idempotency of (I, shows that
the unary operation ax 1is surjective. As A is finite, it is a permutation.

Similarly, xa 1is also a permutation for every a ¢ A. Thus =+ 1is a quasigroup

operation.

By Proposition 1.21 and Claim 1 we get that (I is a Mal'tsev algebra
whenever it has a binary term operation distinct from the projections. Accordin-

gly, we will distinguish three cases:
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(1) Ot is a Mal'tsev algebra (this includes types (II) and (IV)),
(2) Ot is a majority algebra (type (III)), and
(3) for some k > 3, (I has a k-ary semiprojection among its term op-

erations, which is not a projection (type (V)).

(1) Suppose ([ is a Mal'tsev algebra, and let © be a maximal con-
gruence of (I. For any m e AutQl 1let OTT = O[m,m]. It is easy to see that
@TT is again a maximal congruence of (I. We show that ﬂ(@": Te AutU ) = AA'
Indeed, select c,d ¢ A so that (c,d) ¢ ©, and consider arbitrary distinct el-
ements a,b € A. Then there exists a m ¢ AutOl such that cr = a and dm = b,
whence (a,b) ¢ @ﬂ, proving the claim. This implies that (X is isomorphic to a
subdirect product of the algebras Ul/@Tr (m € AutJU ). These algebras are all
isomorphic to & = Ol/0 which, by the maximality of O, is simple. We can now
apply the following well-known theorem (see e.g. [BS]): Every algebra with per-
muting congruence relations, which is a subdirect product of finitely many simple
algebras, is isomorphic to the direct product of some of those factors. Hence we

immediately get that (I is isomorphic to &"  for a natural number n > 1.

Next we prove that Ol is either functionally complete or affine. This
holds true for oJr by Theorem 6.10 (or Exercise 6.3), establishing the claim if
n =1. Assume now that n > 2. We show that & is not functionally complete.
Let © denote the kernel of the projection of £" onto its first factor. Since

n
n 2 2, we can select elements a,a' ¢ B

so that a $# a' and (a,a') ¢ ©. Fur-
thermore, let b,b' ¢ B, b 4 b', and set b = (b,...,b), b' = (b',...,b") e B".
As U is isomorphic to ¥" and AutC? is doubly transitive, Aut %" is

also doubly transitive. Therefore there exists a T e Aut i}n such that am = b
and a'm = b'. Consequently (b,b') € Gw. Viewing Gﬂ as a subset of B" x B"

we have that
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(b "’bn’b .,bn) € Gn for all bl”"’b € B

1’ 1’ n

(6.4) ‘ : (reflexivity of ©),

(b,...,b,b',...;b") € O, and ©_+# g™ x B™.

On the other hand, G)1r is a subuniverse of EEQD where & is the algebra aris-
ing from & by adding the constants as basic operations. Since by (6.4) Oﬂ
fails to satisfy the condition required in Theorem 4.1(ii), we conclude that X
is not primal, that is; & is not functibnally complete. Theorem 6.10 (or Ex-
ercise 6.3) implies then that & is affine with respect to an Abelian group' B.
Hence o&" 1is affine with respect to En. However, affineness is preserved by

isomorphisms, so we get that (! is also affine.

What rémains to show is that if OU is affine with respect to an Abeiian
"group A, then X is term equivalenf to an affine space. Since f is idem;
potent, Proposition 2.6 yields that there is a subring R of End A such that
T(A) = K(zA,{(0,0)}), that is, (1 is term equivalent to the full idempotent re-
duct of A. If r'eR, r % 0,1, then by Claim 1 the binary term operation |

rx + (1-1)y of X is a quasigroup operation. Thus evéiy element of R - {0}

is a permutation, that is an automorphism of A. Since R is finite, it must be

a field. Hence I is term equivalent to the affine space corresponding to ‘Rﬁ'

(2) Suppose now that O is a majority algebra, and let f be a majo-
rity term operation of (Z. Making use of Theorem 6.5 we prove that o is
functionally complete. As was mentioned earlier, a majority operation alone sa-
tisfies conditions (a)-(c) in Theorem 6.5. Therefore, in view of Lemma 6.4, the
only thing to be verified is the 1}-interpolation property. For arbitrary dis-

tinct elements a,b € A put

C(a,b) = {c € A: there exists g ¢ P(l)((R) such that

g(a) =a and g(b) = c}.
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Clearly, OI has the li-interpolation property if and only if C(a,b) = A for
all a,be A, a#$b. Let us call a nonvoid subset I of A an ideal of QR

iff f(ul,uz,us) € I whenever at least two of the elements UpsUy,Ug € A Dbelong

3
to I. Obviously, the intersection of ideals of X is again an ideal provided
it is not empty. Thus, for arbitrary elements a,b € A there exists a least
ideal in X containing {a,b}, called the ideal generated by {a,b}. It will be
denoted by I(a,b). Observe that C(a,b) 1is an ideal of Xt  for all a,b € A,

a $b. Indeed, if, say, Upsuy € C(a,b), that is gi(b) =uy for some

g; € P(l)(Cl)v with gi(a) =a (i=1,2), then for g(x) = f(gl(x),gz(x),us) €
P () we have g(a) =a and g(b) = £(uj,u,,u,), inplying that £(u ,u,,u;)

€ C(a,b). Furthermore, choosing g the constant with value a or the identity,

respectively, we get that a,b ¢ C(a,b). Hence I(a,b) € C(a,b).

The 1j}-interpolation property follows if we show that I(a,b) = A for
arbitrary distinct elements a,b € A. Assume there exists an element c € A -
I(a,b). Then 1I(a,c) % I(a,b). However, since Aut X is doubly transitive, the
2-generated ideals of X are of the same cardinality. Hence the ideal 1I(a,b)

N I(a,c) of T has at most one element, so that 1I(a,b) N I(a,c) = {a}. Simi-

larly, 1I(a,b) N I(b,c) = {b}. Consequently
I(a,b) N I(a,c) N I(b,c) = @.
On the other hand, by definition,
f(a,b,c) € I(a,b) N I(a,c) N I(b,c).
This contradiction proves that 1I(a,b) = A.

(3) Suppose finally that I has a k-ary (k = 3), say first, semi-
projection f among its term operations, which is not the first projection.
Again we apply Theorem 6.5 to prove that (I is functionally complete. Observe

first that f alone forms a family satisfying conditions (a)-(c) in Theorem 6.5.
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In fact, (a) and (b) are obvious. To verify (c) let a,be A, a $b. Since f

1,...,ak € A such that

f(al,...,ak) $ a,. Choosing now m ¢ AutXX  so that a,m=a and f(al,...,ak)n

is not the first projection, there exist elements a

= b, we get that f(a,azw,...,akn) = b.

By Theorem 6.5 and Lemma 6.4 it remains to show that (I has the 11i-
interpolation property. For arbitrary distinct elements a,b € A define the sets
C(a,b) as in the previous case. In this context we introduce the concept of an
ideal as follows: a nonvoid subset I of A is an ideal of X iff
f(ul,uz,...,uk) e I holds for the elements UpsUp,-esly € A whenever there ex-
ists an index 1 < i < k such that Up,uy € I. Again, we denote by. I(a,b) the
ideal of (X generated by {a,b} (a,b € A). Since AutUl is doubly transitive,
the 2-generated ideals of O have the same cardinality. Hence, if a',b' €
I(a,b) and a' # b', then I(a',b') = I(a,b). Furthermore, for arbitrary ele-

ments a,b,a',b' ¢ A, if I(a,b) % I(a',b'), then |I(a,b) N I(a',b')| =< 1.

Claim 2. For arbitrary elements a .,a, € A we have f(al,...,ak) =

1277727k

a; unless I(al,az) = ... = I(al,ak).

Indeed, suppose that I(al,az) ¥ I(al,ai) for some 2 < i < k. Then
II(al,az) n I(al,ai)l < 1, implying that I(a;,a,) N I(a;,a;) = {al}. However,

by definition, f(al,...,ak) € I(al,az) n I(al,ai).

As in the previous case, it follows that for arbitrary distinct elements
a,b ¢ A we have a,b € C(a,b). Furthermore, C(a,b) is an ideal of U, for if
UpsUps...5uy € A are such that uj,u; e C(a,b) (1 < i <Kk), that is g,(b) = u;
and gz(b) = uy for appropriate operations g1:8 € Pcl)(Cl) with gl(a) = a,

gz(a) = a, then for

g(X) = f(gl(x),uz,...,ui_l,gz(x),u "’uk) € P(]-) (Ul)

i+1’°

we have g(a) = a and g(b) = f(ul’uZ""’uk)’ implying f(ul,uz,...,uk) € C(a,b).
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Thus I(a,b) € C(a,b).

To establish the 1j-interpolation property, we have to show that
A - I(a,b) € C(a,b) also holds for arbitrary distinct elements a,b € A. Let
c e A- I(a,b). Clearly, a, b, ¢ are pairwise distinct. As we proved above,
condition (¢) from Theorem 6.5 holds for the 1l-element family {f}. Therefore

there exist elements v v, € A such that f(b,vz,...,vk) = ¢c. Since f is

2,--.,k

a semiprojection, the elements Vosee.sVy are pairwise distinct. By Claim 2 we
have I(b,vy) = ... = I(b,vk). Thus any two of the elements b,v,,...,v, gener-
ate the same ideal of C”, which, by definition, contains c¢ = f(b,vz,.--,Vk)-

In particular, it follows that I(b,c) = I(v,,V We show that I(a,v,) ¥

3)'

I(a,vs). Suppose the contrary. Then a # VoV and any two elements of the

3
ideal I(a,vz) = I(a,vs), in particular, any two of the elements a, Vos Vz» b,
generate the same ideal. This implies that c¢ € I(a,b), contradicting our assump-
tion on c¢. Thus I(a,vz) ¥ I(a,vs), which yields by Claim 2 that f(a,vz,...,vk)
= a. Hence for g(x) = f(x,vz,...,vk) we ha&e g(b) = c an& g(a) = a, so that

c € C(a,b). This completes the proof.

REMARK. The infinite version of Theorem 6.13 is not true. For example,
if 0<r <1 (r €eR), then the (nontrivial) algebra CI; defined in Exercise
2.18 is a nonaffine idempotent reduct of the vector space RF!, hence Aut C?r
(2 G(RIR)) is doubly transitive while (Z} is neither locally functionally com-

plete nor term equivalent to an affine space.

The question arises how far the transitivity degree of Aut Ul can be
weakened so that we still have only a '"few'" functionally incomplete finite alge-
bras with such automorphism groups. To make more precise what '"few'" should mean,
it is natural to require that not all permutation groups of that degree of tran-

sitivity occur as automorphism groups of functionally incomplete algebras. Recall
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that a permutation group G on A is said to be primitive iff the unary algebra
(A;G) 1is simple and |G| > 1 provided |A| = 2. One can easily see that primi-
tivity is stronger than transitivity and weaker thanAdouble transitivity. It is
not difficult to show that, if a permutation group G on a finite set A is not
primitive, then there always exists a functionally incomplete algebra X =‘(A;F)
with Aut I = G. Thus the widgst class of finite symmetric algebras to be con-
sidered from the point of view of functional completeness is the class of finite
algebras with primitive automorphism groups. The functionally incomplete members
of this class are described in P. P. PAlfy, L. Szabé and A. Szendrei [1982]. The
proof makes use of Corollary 1.20. (A special case was settled earlier by J.
Demetrovics, L. Hanndk and L. Ronyai [1981].) Concerning infinite algebras, a

slight improvement of Theorem 6.12 was found by L. Szabo [1983al.

Order functionally complete algebras

A finite lattice can never be functionally complete, as its polynomial
operations preserve the natural order of the lattice. However, it may be ''as com-
plete as possible' in the sense that every operation on its base set preserving
the natural order is a polynomial operation of the lattice. The infinite case,
with local polynomial operations instead of polynomial operations, is similar.
More generally, the same holds for arbitrary partially ordered algebras. For an
algebra I = (A;F) and for a partial order < on A we say that < is a com-
patible partial onder of X, or (A;F;<) is a pantially orndered algebra, iff the

basic operations’(and hence all local polynomial operations) of (L preserve <.

DEFINITION. Let (A;F;<) be a partially ordered algebra. The algebra
(A;F) is called oader gunctionally complete [Locally order functionally complete]
with respect to <, or the partially ordered algebra (A;F;<) 1is called order

functionally complete [resp. locally order functionally completel, iff every
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operation on A preserving < is a polynomial operation [resp. local polynomial

operation] of (A;F).

Clearly, for finite aléebras order functional completeness is the same
as local order funétional completeness. However, let us mention in passing that,
unlike with functional completeness, there is no obvious reason p?eventing an in-
finite, partially ordered algebra of finite type from being order functionally

complete. For example, the following problem is still open.

PROBLEM. Does there exist an infinite, order functionally complete lat-

tice?

E. Fried [a] proved that no countably infinite modular lattice can be

order functionally complete. \

Corollaries 1.24 and 1.25 can be applied to find some interesting ex-

amples of (locally) order functionally complete lattices.

EXAMPLES. 1. The 2-element lattice is order functionally complete;

2. for every natural number n > 2 the lattice Mn of height 2 with n
atoms is order functionally complete;

3. for every infinite cardinal a the lattice Ma of height 2 with «a

atoms is locally order functionally complete.

Most iﬁvestigations on (local) order functional completeness were done
for majority algebras, in particular for lattices. As regards the partial orders
to be considered, if we want a finite, order functionally complete algebra to have
a large clone of po;ynomial operations, then it is natural to confine ourselves
to bounded partial orders, because they are those determining maximal clones. The
infinite counterpart of finite bounded partial order is the so-called locally
bounded partial order: a partial order on a set A is termed Locally bounded iff

any two elements of A have an upper bound as well as a lower bound in A (that
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is the partial order is directed and down directed simultaneously). The follow-
ing proposition shows that with these restrictions we do not get very far from

lattices.

PROPOSITION 6.14. I§ (A;F;<) 48 a partially ornderned majonity algebra
such that < Jis Locally bounded, then < 4is a Lattice onden, moreover, meet and

join with nespect to < arne Local polynomial operations of (A;F).

PROOF.. Let f be a majority term operation of (A;F). Since < 1is locally
bounded, every nonvoid finite subset B of A has a lower bound a and an upper
tound b (a,be A, a <b). Thus B is contained in the interval [a,t]. We
show that the polynomial operations f(x,y,a), f(x,y,b) of (A;F) yield the
greatest lower bound, resp. least upper bound of x, y for every x,y € [a,b].
Indeed, f(x,y,a) 1is a lower bound ¢f x,y ¢ [a,bl, as f(x,y,a) < f(x,y,x) = x
and f(x,y,a) < f(x,y,y) = y. Furthermore, if =z < x,y (z € A), then

z = f(z,z,a) < f£(x,y,a), therefore f(x,y,a) is the greatest lower bound of

X,y € [a,b]. The proof for the least upper bound is similar. This fact implies
on the one hand that < is a lattice order (the special case |[B| = 2 is enough
for this purpose) and on the other hand that meet and join are local polynomial

operations of (A;F).

Thus, in the sequel, we consider lattice ordered majority algebras. In
fact, Proposition 6.14 also shows that if we do not distinguish algebras with the
same clone of local polynomial operations, as it is natural in studying local or-
der functional completeness, then lattice ordered majority algebras are essential-

ly lattices with some additional monotone operations.

In view of Corollary 1.24 the local poclynomial operations of a lattice
ordered majority algebra are determined by the reflexive subuniverses of the square

of the algebra. A considerable improvement was found by H. J. Bandelt [198la]
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(cf. also D. Schweigert [1975] in the finite case), in which tolerances play an
important role. For a set A, a reflexive, symmetric subset of A2 is called a
tolerance on A. In particular, A

and V, are tolerances on A; they are cal-

A A
led tuivial tolernances. Let (K = (A;F) be an algebra. A tolerance B on A
is said to be a tolerance of the algebra (f iff the tasic operations of (T

preserve B. Obviously, the congruences of (1 -are tolerances of I as well.
PROPOSITION 6.15. For a Lattice ordered majornity algebra OU = (A;F;<),

an operation on A 4is a Local polynomial operation of X if and only if 4t
preserves < and the tolLerances of O. )
PROOF. Take an arbitrary reflexive subuniverse C of CRZ, and put

D1 =CN<, D,=CN<=, B, =D, D
Clearly, Di is reflexive, Bi is a tolerance of (X, and D. S Bi _(i = 1,2).

We show that
(6.5) C = (Bl N <)o (B2 n =).

We will make use of the fact that by Proposition 6.14, meet and join of the lat-

tice (A;<), denoted by A, v, are local polynomial operations of U, therefore

IA

they preserve C, <, D.

i’ Bi (i=1,2). Let (x,y) € C. Then (x,xVy) € B1 n

IA

since x <x vy, (x,xvy) = (x,x) vV (x,y) € C, and hence (x,xVy) e D; € B, N

1
Similarly, (xvy,y) € B2 N 2. Thus (x,y) € (B1 N <)o (82 N =2). Assume now that
(x,y) € (B1 N <)o (82 N =), that is there exist U,Vy,V,y € A such that x < u <
vy, (x,vl) e C, (u,vl) eC and uz=y =2 Vs (u,vz) e C, (y,vz) e C. Then
(x,u) = (x,v) A (u,u) € C, (u,¥) = (u,vy) v (¥,¥) € C, whence (x,¥) = (x,u) A

(u,y) € C. This concludes the proof of (6.5).

Clearly, if an operation on A preserves B., B, and <, then it pre-

12 72
serves C. Thus every operation f on A preserving < and the tolerances of
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Ot preserves all reflexive subuniverses of CEZ, hence by Corollary 1.24 f is -

a local polynomial operation of CI. The converse is trivial.

This result immediately yields a criterion for the local order functional
completeness of lattice ordered majority algebras. Let us call an algebra fofer-

ance gree iff it has no nontrivial tolerances.

COROLLARY 6.16. A Lattice ordered majority algebra is Locally onden
gunctionally complete if and only if it is Lolerance free.

PROOF. The sufficiency of the condition follows from Proposition 6.15. To prove
the necessity we have to verify that for arbitrary lattice (A;<), the algebra

U = (A;Pol{<}) is tolerance free. In fact, this is true also for every locally
bounded partial order <. Consider a tolerance B of U such that B # AA’
and let (a,b) ¢ B, a ¥ b. It is easy to check that for arbitrary elemenfs
u;,u, € A and for any upper bound v and lower bound w of Ups U, the opera-
tion

v if x

v
v

b, (x,y) # (a,b)

a, (x,y) # (b,a)
£(x,¥) =3y, if (x,y) = (a,b) (x,y € A)

u2 if (x,y) = (b,a)

a Yy

or X

v
v

b, ¥y

W otherwise

belongs to Pol{<}. Since (a,b),(b,a) ¢ B, we get that (ul,uz) = f((a,b),(b,a))

€ B. Thus B = VA’ completing the proof.

For finite lattices this result was found by M. Kindermann [1979]. The
infinite version is due to H. J. Bandelt [198la]. D. Schweigert [a] (cf. also
D. Schweigert, M. Szymafiska [1982]) observed that tolerance freeness has strong
implications on finite majority algebras even if they are not assumed to be lat-

tice ordered. The corresponding result for infinite algebras was proved by
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L. Szabd [1983].

PROPOSITION 6.17. Every tolerance §ree majornity algebra is either Local-
Ly functionally complete, or Locally ornder functionally complete with respect to
a Lattice onrden.

PROOF. Let OI = (A;F) be a tolerance free majority algebra and f a majority
term operation of CI. Suppose CE is not locally functionally complete. Then
by Proposition 6.8 CRZ has a reflexive subuniverse B such that B % AA,VA.

Since BN BY (cV and B o BY, BB [ AA) are tolerances of U, we

A

b Y- BRYo =
have BN B" = AA and B o B” = B B VA.

is antisymmetric. We prove that B is transitive, too. Let (a,b),(b,c) € B.

The first equality means that B

Using (a,c) e V, =B o BY select an element u e A so that (a,u),(c,u) € B.
Then

(¢,£f(u,b,c))

m
o]

£((c,u), (b,b), (c,c))

and

(£(u,b,c),c)

f((u,u), (b,c), (c,c))

m
[o°]
-

implying by the antisymmetry that f(u,b,c) = c¢. Hence
(a,c) = £((a,u),(a,b),(b,c)) € B.

Thus B is a partial order on A. Now B o BY = BY o B = Vv, implies that any
two elements have an upper bound and a lower bound, hence B is locally bounded.
In view of Proposition 6.14, B is a lattice order, and by Corollary 6.16 I

is locally order functionally complete with respect to B.

It is not hard to see that for two lattice orders <., and
the clones Pol{sl} and Pol{sz} coincide if and only if <, = <, or <, = 2,.
Therefore in Proposition 6.17 the lattice order is uniquely determined up to dua-
lization. This proposition also provides an improvement of the local functional

completeness criterion in Proposition 6.8.
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COROLLARY 6.18. A majornity algebra is Locally functionally complete if

and only if it is tolerance gree and has no compatible Lattice orden.

After this small detour we return to order functional completeness. R.
Wille [1977] characterized finite, order functionally complete lattices in terms
of certain join homomorphisms. His theorem was extended by B. A. Davey and I. Ri-
val [1982] to finite lattices with additional monotone operations. As we remarked
after Proposition 6.14, up to polynomial equivalence, the latter class of algebras
is the same as the class of finite, lattice ordered majority algebras. We now
look at how the join homomorphisms occurring in these characterizations are re-

lated to the tolerances of the algebra.

Let (X = (A;F;<) be a finite, lattice ordered majority algebra. Meet,
join, the greatest element, and the least element with respect to < will be de-
noted by A, v, 1 and 0, respectively. We know that A and Vv are polynomial
operations of (X, As in Chapter 3, a mapping ¢: A > A is called decreasing
[increasingl iff xp < x [xp = x] for all x e A. A decreasing [increasing] map-
ping ¢: A > A is said to be strnictly decreasing [strnictly increasingl iff

xp = x holds only if x = 0 [resp. x = 11.
For a set B £ A2 let ¢g denote the mapping
opt A > A, xw AMy: (x,y) € B},
and for a mapping ¢: A+ A set

Bw = {(x,y) € Az: xp <y and yp < x}.

LEMMA 6.19. Fon every finite, Lattice ordered majornity algebra
QU = (A;F;<) the mappings B » Pp - and ¢ » Bq) define mutually inverse bijec-
tions between the tolerances of Ol and the decreasing mappings o¢: A +~ A such

that fon every basic operation:-g of X (say. g 4is n-ary) .
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(6.6) g(xl,...,xn)¢ < g(x1¢,...,xn@) for all XpseeeaX € AL

REMARK. Let ¢: A> A bea decreasing)mapping. It is easy to check
that if (6.6) holds for all basic operationé'of CE, then it holds for all poly-
nomial operations as well. In particular, (6.6) for A shows that ¢ is mono-
tone with respect to <, and hence (6.6) for v implies that ¢ is a join homo-

morphism.

PROOF of Lemma 6.19. Let B be a,tolérance 6f U. As B is closed

under A, assigns to every element x the least element y in A with

¢B A
(x,¥) € B. Thus ¢p is clearly decreasing, as (x,x) e B. Furthermore, if g

is an n-ary basic operation of A and x cesX € A, then (Xi,xin) e B for

1’
all 1 < i < n, hence (g(xl,...,xn),g(xl¢B,...;xn¢B)) € B, implying (6.6) for
¢ = @p- Now let ¢ be a decreasing mapping satisfying (6.6). Then B¢ is ob-

viously reflexive and symmetric. If g is an n-ary basic operation of U and

and Y@ < x4 for all

(xi,yi) € B¢ for all 1 < i < n, then X;0 £ Y5

1 <1< n. Hence

g(xl:---:xn)‘p < g(x1¢:-‘-,xn¢)5 g(yl""’yn)’

and symmetrically g(yl,...,yn)w < g(xl,...,xn), which means fhat (g(xl,...,xn),
g(yys-. ooy )) € Bw. Thus B¢ is a tolerance of W.

To show that the mappings B » ¢p and ¢ » B¢ are inverse of each
other, let first B be a tolerance of (I , and put .B' = BwB. The inclusion
B € B' is clear. If (x,y) € B', then Xpp <Y and Yop < X, whence (x,y) =
(x,ow) v (wa,y) € B. Thus B = B'. Secondly, let ¢: A > A be a decreasing
mapping satisfying (6.6), and put ¢' = ®p - Then for every x € A we have
xp' = A{y: xp <y and yp < x}. Obviousli, xp < x¢p' for all x e€ A. On the
other hand, since x¢ is among the y's occurring on the right hand side, we get
that x¢' < x¢ also holds for every x € A. Therefore ¢ = o', concluding the °

proof.
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LEMMA 6.20. Let (R = (A;F;<) be a finite, Lattice ondened majornity al-.
gebra. Fon a tolerance B of N the following conditions are equivalent:
(1) the thansitive closure of B A8 Vo |
(ii) Zzhere exist elements 0 = a < a < ....s a, =1 4n A $uch that
(a;,3;,,) € B for all 0 <i<Kk;
(iii) o¢p 44 stnictly decreasing.

PROOF. If (i) holds, then there exist elements 0

"
o
(]
o
[
o
=
n
—
e
=]
>
[7/]
e
Q
=

that (bj,bj+1) € B for all 0<3j <k, Then

(bov...vbj,bov...vijbj+1) = (bov...vbj,bov...vbj) v (bj,b ) € B

j+1
for all 0 < j < k, therefore

0=b,<b vb <...sb Vv ...Vvb ,

IA

b v...vb, =1
(o]

is a sequence required in (ii). Assume now that (ii) holds, and consider arbi-

trary element x € A - {0}. Again, in the sequence

every pair of consecutive members belongs to B. Hence for the greatest index
0 < i< k such that a; AXx + x we have (x,aiAx) €eB and x > a; Ax. Thus

Xpp < 85 A X <X, implying (iii). Finally, if (iii) holds, then the sequence

2
1> 1¢B > le > ...
. .. i i+
reaches 0 in a finite number of steps. Furthermore, (1¢§,1¢g 1) € B¢ = B for
B
all i =2 0. Thus the pair (0,1) belongs to the transitive closure of B. How-

ever, the latter is a congruence of L, therefore equals VA, as stated in (i).

Lemmas 6.19 and 6.20, combined with Corollary 6.16, yield some nice char-

acterizations of finite, order functionally complete majority algebras.

THEOREM 6.21. Fon a finite, Lattice orndered majority algebra
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X = (A;F;<) the following conditions are equivalent:
| (i) QU 4is onder functionally complete;
(ii) Ot 4is Zolerance gree;
(iii) the identity and the constant 0 anre the only decreasing mappings
o: A > A satisfying (6.6) fon all basic operations g of A;
(iii)' zhe .identity and the constant 1 are the only increasing mappings

¥: A+ A such that for every basic operation g of U (say g 44 n-ary)

(6.6)"' g(xl,...,xn)w > g(xlw,...,xnw) for all XpseeesX € A;

(iv) Ol 4is simple and the constant 0 4is the only strnictly decreasing
mapping ¢: A > A Asatisfying (6.6) for all basic operations g of OU
(iv)' U s simple and the constant 1 48 the only strhictly incheasing
mapping Y: A~ A satisfying (6.6)' for all basic operations g of OT.

PROOF. The equivalence of (i) and (ii) is established in Corollary 6.16. The
equivalence of (ii) and (iii) follows from Lemma 6.19, as the mappings ¢p cor-
responding to B = AA, VA are exactly the identity and the constant 0, respec-
tively. Clearly, (ii) and (iii) imply (iv). Suppose now that (iv) holds, and
let B # AA be a tolerance of . The transitive closure of B equals VA, as
it is a congruence of Ul and (Ul is simple. Therefore, by Lemmas 6.19 and
6.20, ¢p is a strictly decreasing mapping satisfying (6.6). Our assumption im-

pliés that ¢p is the constant 0, that is, B =V Hence (ii) holds. Thus

A
(1) <= (i1) <= (iii) <= (iv).

The conditions (iii)' and (iv)' are dual to (iii) and (iv), respectively,
that is, (iii)' for (A;F;<) is the same as condition (iii) for the algebra
(A;F;2), and similarly with (iv)' and (iv). Since (i) and (ii) are self-dual,
that is, (A;F;<) satisfies (i), resp. (ii), if and only if (A;F;2) does,

therefore the equivalences (i) <= (ii) <> (iii)' <= (iv)' also follow.
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The characterization (iii) above is the result of B. A. Davey and I. Ri-
val [1982] mentioned earlier. By the remark after Lemma 6.19, Theorem 6.21 spe-

cializes for lattices as follows.

COROLLARY 6.22. Fon a finite Lattice L tLhe following conditions are
equivalent:
(1) L 48 onder functionally complete;
(ii) L 44 Zolerance free;
(iii) Zzhe identity and the constant 0 ane the only decreasing join en-
domonphisms of L;
(iii)' zhe identity and the constant 1 are the only increasing meet en-
domorphisms of L;
(iv) L 44 sdimple and zthe constant 0 4is the only Atrnictly decreasing
jodn endomonphism of L;
(iv)' L 44 simple and the constant 1 4is the only strictly increasing

meet endomonphism of L.

Characterization (iii) and the corollary below, which is an immediate

consequence of (iv) and (iv)', are due to R. Wille [19771].

COROLLARY 6.23. Every finite simple Lattice L 4n which
(a) zhe join of atoms is 1, on
(b) the meet of coatoms is O

48 ondern functionally complete.

Recall that precisely those lattices satisfying the equivalent conditions
of Corollary 6.22 occurred in Theorem 3.5. For more details on the connection
between the tolerances of L and Theorem 3.5 the reader is referred to D. Hobby
and R. McKenzie [a]. Lemma 6.20, which paves the way to characterization (iv) for

finite, order functionally complete lattices, also comes from this paper.
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It follows from Corollary 6.23 that every finite, simple, complemented
lattice is order functionally complete.  R. Wille:[1977] proved that for finite

modular lattices the converse also holds. We state his result without proof.

COROLLARY 6.24. A finite modulan Lattice is ondern gfunctionally complete
if and only if it is simplLe and complLemented.

A part of the above results on finite algebras can be extended to infi-
nite algebras. For example, infinite versions of Corollary 6.24 can be found in
D. Schweigert [1981] and E. Fried [a]. Various extensions of Lemma 6.19 to infi-
nite lattices are discussed by H. J. Bandelt [1981b] and I. G. Rosenberg, D.
Schweigert [1984]. The latter is a survey paper containing an exfensivé biblio-

graphy on the topic.

Further characterizations of (localj order fﬁnctionél completeness, in-
cluding some improvements of Corollary 6.16, can be found in the papers H. J.
Bandelt [1981a], B. A. Davey and I. Rival [1982], I. G. Rosenberg, D. Schweigert
[1984]1. Recently, K. Denecke and L. Szabd [a] considered order primélity for fi-
nite majority algebras without proper subalgebras, and proved a generalization of
Proposition 6.17, which was extended by L. Szabd [1985] to infinite algebras as

well.
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