
Game semantics and friends

Pierre-Louis Curien (CNRS – Université Paris Cité – Inria)

OPLSS 2022, Eugene, OR, 20-23/6/2022

Main source for the course: my

Notes on game semantics (2006), available from curien.galene.org/papers

and bibliography therein

Some dual pairs in the world of programming

• memory cell (or location or register) versus its actual contents
or value; in object-oriented style, record field names versus their
values, method names versus their actual definition.

• input and output, or (in the language of proof theory) hypothe-
ses and conclusions;

• sending and receiving messages (in process calculi);

• a program and its context (the libraries of your program en-
vironment – or the larger program of which the program under
focus is a subpart, or a module); the programmer and the com-
puter; two programs that call each other;

• call-by-name (CBN) and call-by-value (CBV).

1

Proofs as strategies

Proofs can be given a dialogue-game interpretation:a formula

is tested through a dialogue between an opponent who doubts

some formulas, and the player who justifies his proof step-by-step

by exhibiting the rules he has used.

t1+SSt2 = S(t1+St2)

t1+St2 = S(t1+t2)

S(t1+St2) = SS(t1+t2)

t1+SSt2 = SS(t1+t2)

2

Untyped λ-calculus

The syntax of the untyped λ-calculus (λ-calculus for short) is

given by:

M ::= x ||MM || λx.M,

where x is called a variable, M1M2 is called an application, and

λx.M is called an abstraction.

β-reduction:

(λx.M)N →M [x← N]

M →M ′

MN →M ′N

N → N ′

MN →MN ′
M →M ′

λx.M → λx.M ′

3

Normal forms in the λ-calculus

Any λ-term has exactly one of the following two forms:

• head normal form (n ≥ 1, p ≥ 1):

λx1 · · ·xn.xM1 · · ·Mp

• head redex (n ≥ 0, p ≥ 1):

λx1 · · ·xn.(λx.M)M1 · · ·Mp

Note that a normal form can be only of the first form, and

recursively so.

4

Böhm trees

ω(M)=

{
Ω ifM = λx1 · · ·xn.(λx.P)M1 · · ·Mp

λx1 · · ·xn.xω(M1) · · ·ω(Mp) ifM = λx1 · · ·xn.xM1 · · ·Mp ,

Ω ≤M
M1 ≤ N1 · · ·Mp ≤ Np

λx1 · · ·xn.xM1 · · ·Mp ≤ λx1 · · ·xn.xN1 · · ·Np

Then the Böhm tree of a term is the (possibly infinite) least

upper bound of all ω(N), for all N such that M →∗ N .

The Böhm tree of a normalisable term is its normal form.

5

Böhm trees as strategies

M1 . . .

N1 . . . Np

λy1 · · · yp.y . . . Mn

λx1 · · ·xn.x

λx1 · · ·xn.xM1 . . . (λy1 · · · yp.yN1 . . . Np) . . .Mn

6

Simply typed λ-calculus

A ::= C || A→ A (C base type)

Thus every type write s uniquely as A1→ · · · → An→ C.

x : A ∈ Γ

Γ ` x : A

Γ, x : A `M : B

Γ ` λx : A.M : A→ B

Γ `M : A→ B Γ ` N : A
Γ `MN : B

Böhm trees associated to simply typable terms are finite (see
Silvia’s lectures!).

7

η-long Böhm trees

We restrict ourselves to the simply typed setting, and impose

that

• each occurrence of a variable must appear in a context where

it is applied to all its arguments,

• and in each sequence of abstractions λ~x.M the number of pa-

rameters x1, . . . , xn is exactly the number of arguments N1, . . . , Nn

which the term λ~x.M can accept according to its type.

8

Executing Böhm trees (the abstract machine)

Terms M ::= (λ~x.W) Environments e ::= nil || B•e
Code W ::= y ~M Frames B ::= 〈~z ← ~M〉[e].

We split M in this way even if ~x is empty: in this case we write

M = (W) and W = y ~N . We also call W a body.

(K) (x ~M)[e]→W [〈~z ← ~M〉[e]•ei]

where

 e = B0• · · · •Bn Bi = 〈~xi← ~Ni〉[ei]
x = xij Nij = (λ~z.W)

9

Executing Böhm trees (illustration)

2′ u(λx.u(λy.x)) 〈u 2← (λr.r(r(z)))〉[] = ρ0

3′ r(r(z)) 〈r 3← (λx.u(λy.x))〉[ρ0] = ρ1

4′ u(λy.x) 〈x← (r(z))〉[ρ1]•(ρ0 = 〈u 4← (λr.r(r(z)))〉[]) = ρ2

5′ r(r(z)) 〈r 5← (λy.x)〉[ρ2] = ρ3

6′ x 〈y ← (r(z))〉[ρ3]•(ρ2 = 〈x 6← (r(z))〉[ρ1]•ρ0) = ρ4

7′ r(z) 〈〉[ρ4]•(ρ1 = 〈r 7← (λx.u(λy.x))〉[ρ0]) = ρ5

8′ u(λy.x) 〈x← (z)〉[ρ5]•(ρ0 = 〈u 8← (λr.r(r(z)))〉[]) = ρ6

9′ r(r(z)) 〈r 9← (λy.x)〉[ρ6] = ρ7

10′ x 〈y ← (r(z))〉[ρ7]•(ρ6 = 〈x 10← (z)〉[ρ5]•ρ0) = ρ8
11′ z 〈〉[ρ8]•ρ5

10

The language PCF

PCF is simply typed λ-calculus, with the following constants

n : Nat (n ∈ ω)
T, F : Bool
succ, pred : Nat→ Nat
zero? : Nat→ Bool
if then else : Bool→ Nat→ Nat→ Nat
if then else : Bool→ Bool→ Bool→ Bool

Ω : A for all A
Y : (A→ A)→ A for all A

11

Operational semantics of PCF

(λx.M)N →M [x← N] YM →M(YM)
zero?(0)→ T zero?(n+ 1)→ F
succ(n)→ n+ 1 pred(n+ 1)→ n
if T then N else P → N if F then N else P → P

M →M ′

MN →M ′N
M →M ′

if M then N else P → if M ′ then N else P

M →M ′

f(M)→ f(M ′)
(for f ∈ {succ, pred, zero?})

12

PCF Böhm trees

M ::= λ~x : ~A.W W ::= v || case yM1 · · ·Mn [v1 →W1, . . . , vk →Wk]

v : C

Γ ` v : C

Γ•y = A1 → · · · → An → C v1, . . . , vk : C
Γ `M1 : A1 · · · Γ `Mn : An Γ `W1 : C1 · · · Γ `Wk : C1

Γ ` case yM1 · · ·Mn [v1 →W1, . . . , vk →Wk] : C1

Γ, ~x : ~A `W : C

Γ ` (λ~x : ~A.W) : ~A→ C

Note that a body W is always of base type C.

13

PCF Böhm trees as strategies

M1 · · · Mp v1 →W1 · · · vk →Wk

λ~x.case y

14

HO games

Game semantics arose as such in the early 1990’s from parallel

works of

• Abramsky, Jagadeesan, Malacaria (AJM)

• Hyland and Ong (HO)

A fore-runner was sequential algorithms (Berry-Curien) (late

1970’s).

In this course, we focus on HO.

15

Entering the arena!

We start with the simplest kind of data type. The arena nat for

natural numbers has the following moves: one (initial) O move

denoted q, and a P move n for each natural number n.

{
{ε}
{ε, qn}

{
⊥
n

16

Product of arenas

The arena nat × nat is made of two disjoints copies of nat.
{ε}
{ε, q1m1}
{ε, q2n2}
{ε, q1m1, q2n2}


(⊥,⊥)
(m,⊥)
(⊥, n)
(m,n)

17

Function types (nat1 →natε)

qεq1

{
013ε
316ε

λx. case x

{
0→ 3
3→ 6

Note the inversion of polarity for nat1. Also, qε ` q1.

Interaction with {q10} converges, interaction with {q12} diverges.

18

Plays and (deterministic) strategies

The tree qεq1

{
013ε
114ε

can equivalently be descirbed by the set of

its even-length branches, which are called plays:

{ε, qεq1, qεq1013ε, qεq1114ε}

A strategy is a set of even-length plays. Note that plays start

with O and alternate between O and P.

Here we deal with deterministic strategies σ:

if pv, pw ∈ σ, then v = w.

The player knows how to react to each opponent’s move: “my

head variable is”.
19

Just a paraphrase of syntax?

Mathematics is full of useful equivalent presentations: descriptive

/ analytical geometry, matrices / linear maps, etc...

Sign of good syntax: Böhm trees!

In fact, the correspondence is an injection: games offer a wider

picture (cf. IA).

20

Stuttering

λx. case x [4→ case x [3→ 2]] as strategy contains qεq141q1312ε.

Stuttering strategies do not exist in the earlier model of sequen-

tial algorithms of PCF (Berry-Curien, late 1970).

21

A higher-order type

(nat11 →nat1)→natε

h = λf. case f(3)[4→ 7,6→ 9]

As a strategy:

λf. case f


(3)
4→ 7
6→ 9

qεq1


q11311
417ε
619ε

22

Pointers

Kierstead1 = λf.case f(λx.case f(λy.case x))

Kierstead2 = λf.case f(λx.case f(λy.case y))

qεq1



q11q1


q11q111

 T111T11
F111F11

T1T11
F1F11

T1Tε
F1Fε

(type ((bool111 →bool11)→ bool1)→ boolε) AMBIGUOUS!

23

de Bruijn

The solution to this ambiguity is to import the de Bruijn tech-

nology of pointers! Recall that in de Bruijn notation, bound

variables are replaced by numbers recording “how far they are

bound”, e.g.

λx.x(λy.yx) λ.0(λ.01)

We do the same here to disambiguate q111 (next slide).

24

Kierstead1 = qε[q1,
0←↩]



q11[q1,
1←↩]


q11[q111,

1←↩]

 T111[T11,
1←↩]

F111[F11,
1←↩]

T1[T11,
1←↩]

F1[F11,
1←↩]

T1[Tε,
1←↩]

F1[Fε,
1←↩]

Kierstead2 = qε[q1,
0←↩]



q11[q1,
1←↩]


q11[q111,

0←↩]

 T111[T11,
1←↩]

F111[F11,
1←↩]

T1[T11,
1←↩]

F1[F11,
1←↩]

T1[Tε,
1←↩]

F1[Fε,
1←↩]

25

Inserting the implicit pointers in our previous examples

h = λf. case f(3)[4→ 7,6→ 9] λx. case x[0→ 3,3→ 6]

qεq1


q11311
417ε
619ε

q1q11

{
01131
31161

qε[q1,
0←↩]


q11[311,

0←↩]
41[7ε,

1←↩]
61[9ε,

1←↩]

q1[q11,
0←↩]

 011[31,
1←↩]

311[61,
1←↩]

26

Game abstract machine (GAM) for PCF Böhm trees

The machine takes as input a strategy σ of type, say, A→ C and

a strategy τ of type A (which we call the counter-strategy), and

returns a strategy of type C (that is, a value of base type).

The machine explores both σ and τ , alternatively. The successive

steps are 1, 2′, 2, 3′, 3, . . ., with n, (n + 1)′ pointing in σ for n odd

and in τ for n even. The machine has two rules:

• Rule 1. At step 1, the machine points to the root of σ. At

each step n, the machine is pointing to an O move in either σ

or τ , and the next step (n + 1)′ is played according to what σ or

τ (both deterministic) prescribes.

• Rule 2. Once a (Player) step (q′ has been performed, the next

step q is performed on the other side as described next slide (so

the machine goes back and forth between σ and τ).

27

The GAM, pictorially

• If q′ points to p, then the next step q is played over p′. The
name m of the move played at time q′ dictates which branch to
choose from p′. If p is 1, then play q at the root of τ .

28

GAM: an example of execution

qε[q1,
0←↩]


q11[311,

0←↩]
41[7ε,

1←↩]
61[9ε,

1←↩]

q1[q11,
0←↩]

 011[31,
1←↩]

311[61,
1←↩]

interaction

〈qε, 1〉
2′

[q1,
0←↩]


〈q11, 3〉

4′

[311,
0←↩]

〈61, 5〉
6′

[9ε,
1←↩]

〈q1, 2〉
3′

[q11,
0←↩]

 〈311, 4〉
5′

[61,
1←↩]

29

Executing Kierstead against

λg.case g(case gT [T → T, F → F]) [T → F, F → T]

q1[q11,
0
←↩]


q111[q11,

1
←↩]


q111[F111,

0
←↩]

T11[T111,
1
←↩]

F11[F111,
1
←↩]

T11[F1,
1
←↩]

F11[T1,
1
←↩]

Kierstead1 = qε[q1,
0
←↩]



q11[q1,
1
←↩]


q11[q111,

1
←↩]

{
T111[T11,

1
←↩]

F111[F11,
1
←↩]

T1[T11,
1
←↩]

F1[F11,
1
←↩]

T1[Tε,
1
←↩]

F1[Fε,
1
←↩]

30

〈qε, 1〉[q1,
0←↩]



〈q11, 3〉[q1,
1←↩]

 〈q11, 5〉[q111,
1←↩]

{
〈T111, 15〉[T11,

1←↩]
〈F1, 17〉[F11,

1←↩]

〈q11, 7〉[q1,
1←↩]

 〈q11, 9〉[q111,
1←↩]

{
〈F111, 11〉[F11,

1←↩]
〈T1, 13〉[T11,

1←↩]

〈T1, 19〉[Tε,
1←↩]

〈q1, 2〉[q11,
0←↩]


〈q111, 6〉[q11,

1←↩]

 〈q111, 10〉[F111,
0←↩]

〈T11, 14〉[T111,
1←↩]

〈F11, 18〉[T1,
1←↩]

〈q1, 4〉[q11,
0←↩]

{
〈T11, 16〉[F1,

1←↩]
〈q1, 8〉[q11,

0←↩]
{
〈F11, 12〉[T1,

1←↩]
31

Compare with the stack-free environment machine

(

〈qε, 1〉

u

[q1,
0
←↩]



(λx

〈q11, 3〉

u

[q1,
1
←↩]

{
(λy

〈q11, 5〉

x

[q111,
1
←↩]

(λx

〈q11, 7〉

u

[q1,
1
←↩]

{
(λy

〈q11, 9〉

x

[q111,
1
←↩]



(λr

〈q1, 2〉

r

[q11,
0
←↩]

 (

〈q111, 6〉

r

[q11,
0
←↩]

{
(

〈q111, 10〉 [z,←↩]
(λr

〈q1, 4〉

r

[q11,
0
←↩]

(λr

〈q1, 8〉

r

[q11,
0
←↩]

32

Non-linearity

The last two examples feature non-linear terms (multiple occur-

rences of f , and multiple occurrences of u, r).

Each time the machine revisits a node that was already visited,

it has to open a new copy of the strategy. (In the last example,

see steps 2, 4 and 8, and 3 and 7.)

33

Steps versus nodes versus moves

One should not confuse

- the successive steps of the machine (in bold), that are num-
bers n or n′,

- the nodes (or positions, or occurrences) in the trees of the
strategy and counter-strategy,

- the moves of the relevant arenas.

• In a strategy, nodes are decorated by moves. The same move
can decorate several nodes (cf. stuttering), but locally all the
moves decorating the children of a P move are labelled by dif-
ferent moves.

• In a GAM execution, there are additionally decorations on nodes
by numbers and primed numbers, that act as time stamps (and
may induce copy creation, cf. previous slide).

34

Spelling out Rule 2 of the GAM in full detail

“If q′ points to p, then the next step q is played over p′” means,

slowly:

At step q′, the machine has visited a P node, labelled by a move

m in, say, σ. This node is equipped with a pointer to an O

node in (a copy of a subtree of) σ, which was visited at time p.

Then, at the next step q, the machine will visit a node β which

is among the children of the node α of (a copy ... of) τ visited

by the machine at time p′. The name m of the move played at

time q′ dictates which child to choose: the one which is labelled

by m!

35

Well-bracketing

This strategy of (nat11×nat12 →nat1)→natε is not the interpre-

tation of a PCF term:

qεq1


q110ε
q121ε
n1(n+ 2)ε

The initial question qε may be answered while q1 and q11 are

still open.

In the well-bracketed discipline, along any play questions must

be answered obeying a stack discipline.

36

Strong (or partial) evaluation

If we want now to let σ : A → B and τ : A to interact (with B

not of base type), then we need to relaunch (but not reboot)

the machine again and again.

qεq2


62q1

{
418ε
211ε

32q1

{
415ε
116ε

against q141 yields qεq2

{
628ε
325ε

(λxy.case y [6→ case x [. . .], . . .])4 → λy.case y [. . .]

To produce the branch qεq2628ε, “we” (= the Opponent in B)

have to provide 62 and then the machine can continue.

Lazy, stream-like loop of evaluation.

37

On the form of the plays involved in PCF Böhm trees

They are alternating sequences of moves OPO. . . , equipped with

backward pointers from P moves to some previous O move.

Such plays are called views.

General plays (that will feature in a more synthetic definition of

composition of strategies) will also have pointers from the O

moves (to some previous P move).

38

Arenas

An arena A is given by a set of moves M , which have a polarity

O or P (formally, there is function λA : M → {O,P}).

and by an enabling relation `, which is the disjoint union of a

subset of M ×M (one writes m ` n) and of M (one writes ` m).

If m ` n, then m and n have opposite polarities, and 6` n. If ` m,

then m is an opponent move.

39

The arena nat for natural numbers

The set of moves is {q} ∪ N, with λ(q) = O and λ(n) = P , and

we set

` q
q ` n

Similarly for bool.

40

Product of two arenas

Let A and B be arenas. The arena A × B has as moves all m1

such that m is a move of A and all moves n2 such that n is a

move of B. Polarities of these moves are as in A and B. Enabling

is defined as follows:

`A m
` m1

`B n

` n2

m `A a
m1 ` a1

n `B b

n2 ` b2

41

Function space of two arenas

Let A and B be arenas. The arena A → B has as moves all m1

such that m is a move of A, with polarity opposite to that in

A, and all moves n2 such that n is a move of B, with the same

polarity as in B. Enabling is defined as follows:

`B n

` n2

`A m `B n

n2 ` m1

m `A a
m1 ` a1

n `B b

n2 ` b2

42

Plays and strategies

A legal play, or play for short, is a (possibly empty) sequence of
moves of alternating polarity which is such that every occurrence
of non-initial move is equipped with a pointer to a previous oc-
currence of a move justifying it. The set of legal plays over an
arena A is written LA. (A play starts with Opponent, since only
opponent moves can be initial.) A legal play looks like this:

A strategy on an arena A is a non-empty set of even-length legal
plays, which is closed under even-length prefixes.

Other conditions, like determinism and innocence, can be added.

43

Strategies as trees

We note that any set of words over any alphabet can be organised

as a forest (each word is a branch): try! It is a forest, in general.

Now, for the arenas interpreting PCF types, we note that they

all have a unique intial move: this is because the initial move

of the arena interpreting A1 → . . . → An → C has as only initial

move the unique initial move of (the arena interpreting) C. So

we have trees.

44

An automaton for LA→B

Convention: O and P moves of A (B) are written q, v (q′, v′). Le-
gal plays are among the even-length words read by the following
automaton (initial state OO):

(If one insists on final states, then taking OO and PP as final
states implements the even-length constraint!)

Additionally, the word must be equipped with pointers respecting
enablings!

45

Legal interactions

Let A,B,C be three arenas. A legal interaction, or interaction

for short, over these arenas is a sequence u of moves from the

three arenas such that

u �A,B∈ LA→B , u �B,C∈ LB→C , u �A,C∈ LA→C

We write int(A,B,C) for the set of legal interactions over A,B,C.

In this definition, say, u �A,B denotes the subsequence of u con-

sisting only of the moves of A,B. One takes care of maintaining

the moves of A,B,C all distinct by tagging them if needed.

46

An automaton for legal interactions

These automata play a central role in the recent template games

of Melliès (Categorical combinatorics of scheduling and synchronization in

game semantics, POPL’19).

47

Composition of strategies

Let A,B,C be three arenas, and let σ (resp. τ) be a strategy

of A → B (resp. B → C). The following defines a strategy of

A→ C, called the composition of σ and τ :

τ ◦ σ = {v | ∃u ∈ int(A,B,C) v = u �A,C, u �A,B∈ σ, v �B,C∈ τ} .

(we say that u is a witness of v).

In the vocabulary of concurrency theory:

(|| composition) + hiding

48

Associativity of composition

Lemma. If u ∈ int(A,C,D) and v ∈ int(A,B,C) are such that

u �A,C= v �A,C, then there is a unique w ∈ int(A,B,C,D) such

that w �A,C,D= u and w �A,B,C= v.

(Here, int(A,B,C,D) is defined in a similar way as int(A,B,C),

by taking restrictions to A→ B, B → C, C → D, and A→ D.)

Proposition. If σ, τ, υ are strategies of A → B,B → C, and

C → D, respectively, then υ ◦ (τ ◦ σ) = (υ ◦ τ) ◦ σ.

49

Identity strategy

We define

id ′ = {u ∈ LA→A | v �1= v �2 for all even prefixes v of u}

We define id ′′ as the smallest set of plays closed under the fol-

lowing rules:

ε ∈ id ′′
v ∈ id ′′, a O move

va2a1 ∈ id ′′
v ∈ id ′′, a P move

va1a2 ∈ id ′′

We have id ′ = id ′′ (id for short), and id is a strategy.

50

The identity strategy is an identity

Let A,B,C be three arenas and let u ∈ int(A,B,C). Then u

is a sequence of blocks of the form mb1 . . . bkn where m is an O

(A→ C) move, the bi’s are B moves, and n is a P (A→ C) move.

Moreover, if u is a witness for τ ◦ σ (i.e., u �A,B∈ σ, u �B,C∈ τ),

and if u = u′mb1 . . . bkn where mb1 . . . bkn is as above, then u′ is

also a witness.

We have always id ◦ σ = σ and σ ◦ id = σ.

51

Determinism, innocence

• Recall that a strategy σ is called deterministic when

smn1, smn2 ∈ σ ⇒ n1 = n2

• The P view psq of a play s is defined as follows:

pεq = ε
psnq = psq n (n P move)
psmq = m (m initial)
psns′mq = psnqm (m O move,m points to n)

A deterministic strategy is called innocent if

s ∈ σ ⇔ psq ∈ σ

Arenas and strategies form a category. It contains as subcate-
gories the categories of arenas and deterministic strategies, and
of arenas and innocent strategies (idem for well-bracketed).

52

Visibility

In fact, the definition of view just given is sloppy: what to do

with the pointers?

Hyland and Ong further impose a visibility condition on plays,

which guarantees that you do not lose your (remaining) pointers

while defining the view recursively (details omitted).

53

Innocence, logically

In a view, O, unlike P, has to play in the immediate subtype:

λx. . . . λy.xM1M2

• P = head variable x : A1 → A2 → B can be bound far away

• O = initial move of M1 (or M2) has to be in type A1 (or A2)

54

Fat versus meager

In the official HO semantics, the meaning of a PCF Böhm tree

(or term) is made of all plays whose view is in (the transcription

of the) tree (as strategy), as stressed in this course. We call

the resulting set of plays the fat version. In contrast, we call our

preferred version, consisting of views only, the meager version.

Theorem. The composition defined on the fat versions through

(|| composition) + hiding is the fat version of the composition

of the meager versions via the game abstract machine.

55

Illustrating (|| composition) + hiding

The (unique) legal interaction witnessing the interaction

qε[q1,
0←↩]


q11[311,

0←↩]
41[7ε,

1←↩]
61[9ε,

1←↩]

q1[q11,
0←↩]

 011[31,
1←↩]

311[61,
1←↩]

is

which belongs to the fat version of the strategy on the left:

puq = qε[q1,
0←↩]61[9ε,

1←↩]

56

The key result of Hyland and Ong

The properties characterising (the injective interpretation of)

PCF Böhm trees are

determinism, innocence and well-bracketing

(For AJM, characterisation via history-freeness)

57

A cartesian closed category

• For products, we need

(A→ B1)× (A→ B2)

A→ (B1 ×B2)

indeed, a meager strategy in A → (B1 × B2) is a forest which
can be split in two forests (according to where the roots of the
views come from). (In the non-innocent setting, we have a priori only a

monoidal and not a cartesian structure.)

• We get the canonical currying isos “for free” (the moves are
the same, up to retagging):

(A×B)→ C

A→ (B → C)

• Moreover, one can interpret fixpoints (since we were able to
read infinite Böhm trees as strategies).
Therefore, we have a model of PCF.

58

Full abstraction

We write M =op N iff for all C s.t. C[M] and C[N] are closed
and of base type, we have:

C[M] −→? c iff C[N] −→? c

.

A model is fully abstract when

[[M]] = [[N]] iff M =op N

• The “only if” direction is a consequence of computational
adequacy. If ` P : C (closed term of basic type), then

[[P]] = c iff P −→? c

• The “if” direction is the difficult one.
59

The full abstraction problem for PCF

In the late 1970’s arose the question of finding a fully abstract
model of PCF.

• Milner built one as a “term model quotiented by the opera-
tional equivalence”. The question was then: can we describe
this model by other means, as functions of some sorts between
suitable domains?

• Candidate 1. Scott continuous functions f (any single piece
of the output f(x) may be computed using a finite part of the
input x, which one can take be minimal). But Scott pointed out
the problematic parallel disjunction satisfying

por(⊥, T) = T por(T,⊥) = T

which is not definable in PCF. But adding it to the syntax,
Plotkin showed that Scott model “becomes” fullly abstract.

60

A witness of non full abstrraction of the continuous model

Plotkin first proved that the continuous model is not fully ab-

stract. He gave the following terms, both of type

(Bool→ Bool→ Bool)→ Bool

M1 = λg.if P1 then if P2 then if P3 then Ω else T else Ω else Ω
M2 = λg.if P1 then if P2 then if P3 then Ω else F else Ω else Ω

where P1 = g T Ω, P2 = gΩT , and P3 = g F F . These terms are

designed in such a way that:

T = [[M1]](por) 6= [[M2]](por) = F .

On the other hand M1 =op M2.

61

The stable model of PCF

• Candidate 2. Gérard Berry “killed” por by introducing stable

functions (for a fixed x and a fixed piece of f(x), such a minimal

input is unique, and thus minimum).

But he noticed the problematic character of the function Gustave

satisfying

Gustave(T, F,⊥) = T
Gustave(F,⊥, T) = T
Gustave(⊥, T, F) = T

• The next candidates in the list were sequential algorithms, and

then HO/AJM.

62

Definable separability

If the model is such that for every distinct f, g of the same type

A (interpreting some syntactic type) there exists a definable h

of type A→ bool such that hf 6= hg, then it is fully abstract.

Proof. If [[M]] 6= [[N]], let h be given by our assumption, and let

P be such that [[P]] = h, v1 = h([[M]]), v2 = h([[N]]), and C = P [].

Then C[M]→∗ v1 and C[M]→∗ v2, and hence M 6=op N .

Compact definability + extensionality imply definable separabil-

ity.

63

Some full abstraction results and some non-results

Language Model Def. FA

PCF+por Cont Yes Yes
PCF+catch SA ≈ (Ginn/=op) Yes Yes

PCF (PCFBT/=op) ≈ (GAJM /=op) ≈ (GHO/=op) Yes Yes

PCF GAJM ,GHO ,PCFBT Yes No
PCF+control Ginn Yes No
IA Gwb Yes Yes

64

HO games vs sequential algorithms

Interpret exponential differently:

• HO games are repetitive, bool→bool infinite

• Sequential algorithms have memory, bool→bool finite

For the linear logicians: cf. two exponentials of coherence spaces

(multiset and set)

65

Around full abstraction

• Stable model (Berry, reinvented by Girard) 7→ linear logic.

• Sequential algorithms led ... to the categorical abstract ma-

chine, and then to explicit substitutions.

• The full abstraction problem boosted also the study of logical

relations (Sieber, O’Hearn and Ricky, Bucciarelli), and motivated

Bucciarelli-Ehrhard’s and Longley’s extensional accounts of se-

quentiality.

66

The game semantics program

• references (Abramsky, McCusker, Honda)

• control (Laird)

• subtyping (Chroboczek)

• nondeterminism (Harmer), probabilistic choice (Danos and Harmer)

• call-by-value (Honda and Yoshida)

• concurrency (Ghica and Murawski, Laird)

67

Imperative arenas

• The arena comm: run and done

• The arena var:

read write(n) (n ∈ ω)
OK n (n ∈ ω)

The strategy cell :

write(0) OK read 0
write(0) OK write(2) OK read 2

reads last written value (not innocent)

68

Idealised Algol

Idealised Algol (as defined by Abramsky and McCusker) is PCF

augmented with the types comm and var, assignment, and se-

quencing (and dereferencing).

To keep a cartesian category (cf. previous slide where our proof

relied on views), Abramsky and McCusker introduce a new com-

ponent in the definition of an arena A: in addition to moves,

polarity and enabling, one specifies a set PA of authorized plays,

called valid plays (hence a subset of the set of legal plays). We

omit the details.

69

Cell discipline enforced by interaction

[[(x := 0); (x := x+ 1)]] =

runε write(0)1 OK1 read1


...
n1 write(n+ 1)1 OK1 doneε
...

Interaction play with cell:

runε write(0)1 OK1 read1 01 write(1)1 OK1 doneε

70

Definability through factorisation

Every strategy σ : A can be written as (τ cell) for some innocent

strategy τ : var→ A

Other such results:

• catch for non well-bracketing (Laird)

• a dice strategy for nondeterminism / probabilistic games (Danos,

Harmer)

• a form of case for non-rigidity (a condition dual to well-bracketing)

(Danos, Harmer, Laurent)

71

Definable separability

Essentially the same argument for sequential algorithms, and for

the IA model

Let σ1, σ2 : A, let m1 . . . m2n ∈ σ1 \ σ2. We define τ : A→ nat as

the minimal strategy that contains

q m1 . . . m2n 0

72

Game semantics for verification

Up to second-order:

• pointers are useless, i.e., can be reconstructed uniquely

(Ghica and McCusker)

• the strategies interpreting second-order IA terms (as

sets of words) are regular languages.

Applications to decidability results. More results have
been obtained for larger fragments (third order: Ong
and others)

73

Abstract interpretation

For decidability, we need finiteness of alphabets. A finite ap-

proximation of nat or var is specified by a finite partition π of

N.

n, write(n) are now [n]π, write([n]π).

Now, strategies interpreting terms with abstracted types can be

nondeterministic!

74

Example of non-determinism arising from abstract

interpretation

Suppose that = receives the type natπ1 × natπ2 → bool. Then

its interpretation contains all the plays qq1[n]π1q2[n]π2T and all

the plays qq1[n]π1q2[m]π2F (for m 6= n). Then, say, as soon as

the equivalence class of n is not a singleton in either π1 or π2,

then n = n may execute nondeterministically to T or F . To be

completely specific, suppose that [2]π1 = {2} and [2]π2 = {0,2},
then = contains both qq1[2]π1q2[2]π2T and qq1[2]π1q2[2]π2F .

75

A model checking loop (Ghica et al)

For checking a safety property (add a P move abort):

1. Evaluate [[M]]π with respect to some abstract interpretation

2. If [[M]]π does not contain the move abort, conclude that M
is safe.

a. if all the occurrences of abort have been reached nondeter-
ministically, then refine the abstract interpretation accord-
ingly, and go back to step 1.

b. Otherwise, conclude that M is unsafe.

76

