FACETS of COHERENCE

$$
\text { on }\left\{\begin{array}{l}
C W \text {-complence } \\
\text { polyhechal complesces } \\
\text { nestohecha }
\end{array}\right.
$$

Pierre-Lowis Curien
(IRIF, Picare, CNRS, Univasite Paris Cite and INRIA) joint walk with
Guillarme La plante - An fossi
(University of Melbaince)

Bergen, Jure 2023
Belgrade, October 2023
Montpellier, Noverler 2.23

PROLOGUE

Chherence in monoicbl categovis

vARIOUS ITERATES of (Q)

- Read all vartice, as funtas $\mathbb{C}^{5} \rightarrow \mathbb{C}$
- Readr all α as instance, in contert of $d=(-\theta)=)(\theta) \equiv \rightarrow-(8)(=\theta) \equiv)$

Rentagon

Hescagon

$$
\begin{gathered}
(x \otimes y) \otimes z \\
\swarrow \\
x \otimes(y \otimes z) \\
\downarrow \\
(y \otimes 2) \otimes x \\
\vdots \\
y \otimes(z \otimes x) \otimes z \\
\vdots \\
\vdots
\end{gathered}
$$

Non-pymmetric Categorified steads (weal)

Figure 2. A fully nested planar tree.

n) 3 pentagons and 2 hexagons

Doper and Retric

Coherence for categailied operalls

How to prove cobeunce therems
Remring techniquer (Maclane 63 "revisited" by Squien-OHO - Kolayarhi It
(Mae on this later in this tolk)

- Shidefication (Joyal_Street 1993)
(bared on the exastence of a faithpul funda han a monoidal categay to an cosociated phict monoidal categong
(Not covered hare)
"Inatant tre -ptep props" (Kapanov 1993)
Tiomplate the data into geometry (tapology)
\rightarrow general coherence Hearm for
CW-capleces (C-LaplanicrAnfobi 2022)
(Coming renct)

PART I

Regular CW-complerces

The low-dimenstinal data of a CW-complex

- A pet k_{0} \&f 0 -cell (points) x, y..
- A set K_{1} of 1. calls (edges) $\alpha: x \rightarrow y$ (and fayal $\alpha^{-1}: y \rightarrow \lambda$)
\rightarrow Gree category K_{2}^{*}
(CELLAR, COMBINATORIAL)
- A net of 2 -cells A, given by attachment of 2 -balls along a closed walk of 1 -cells
(if edges are distinct $=$ path \leadsto regular) Thus mill a 2 -cell A, up to
He choice of $x \in K_{0} \cap A$ Here b an associated boundary $\gamma_{A}: x+x$ in K_{1}^{*}.
$W_{3} \ldots$

From Ronnie Boann'; Topology and graupoics.
Notation: X top. ppac, $Y \in X \sim \pi(X) Y$ bull pubcategary of the fundamertol grapoid \& X spanned by Y
Combinatioial characterisation of $\pi(N) K_{0}$ (bon K CW-complex):
Notation $\cdot F(k)=K_{1}^{*} / \alpha \alpha^{-2}=$ id (Bree groupoid)

$$
\text { - } c(k)=\pi(k) / \gamma_{A}=i d
$$

Theee ptepo in the chanacterisation

$$
\begin{aligned}
& \pi\left(K_{2}\right) K_{0} \approx \hat{F}(K) \quad \begin{array}{c}
\text { cal Fateen hom } \\
\text { BRow's book } \\
\text { Topocgy and pappoib) }
\end{array} \\
& \pi\left(K_{2}\right) K_{0} \approx C(K) \quad \\
& 11 \\
& \pi(K) K_{0}
\end{aligned}
$$

Pof: epreated use of Van Kempen
... to a general coherence theorem
Say that two parallel paths $\gamma, \gamma^{\prime} \in K_{1}^{*}(x, y)$ are comhnataially honctopic of they get equated in $C(\mathcal{K})$. Conactely, the means that one can go from γ to γ^{\prime} by repeated use of

$\alpha^{-1} \alpha$

Thecrem 1 ("instant one step coherence ") ${ }^{\gamma_{A}^{-1}}$
The following holds in a (regular) CW-complec K :(1) all parallel comhnataical paths are comininatorially homotopic.介(2) all path components are pimply connected.

Roof: (1) reformulates as $C(K)(9, y)$ is a singleton
(2) eformulatos as $\pi(K)(x, y)$ is a singleton

What goes nell without paying, goes even better when you say it!

Cherence for α and σ (non-unital pymmetric monoidal)
AQ He data decorate the virtices, the edger, and the 2-pace, of a polytope:

simple permuto-associahedion
(Barolic'-Ivanovic' - Petric 2019)

PART II
polyhedral campleses

Reghectiol complexes
We now turn to a (less) general prof of coherence in polypeanal complesces that retains most aspects of Maclaneis origichal prof.

Polyhechon = intersection of clover half spaces
Definition 5.1. A polyhedral complex \mathcal{C} is a finite collection of polyhedra in \mathbb{R}^{d} such that
(i) the empty polyhedron is in \mathcal{C},
(ii) if $P \in \mathcal{C}$, then all the faces of P are also in \mathcal{C},
(iii) the intersection $P \cap Q$ of two polyhedral $P, Q \in \mathcal{C}$ is a face both of P and of Q.

$$
U\{P \mid P \in C\}=\text { He space described }
$$

ONE CAN VIEW POLYHEDRAL COMPLEXES
AS CW-COMPLEXES

- A generic vector $\vec{v} \in \mathbb{R}^{d}$ is a vector pit. $\forall \alpha: x \rightarrow y$ edge of $C \underline{\langle\vec{v}}|x\rangle \neq\langle\vec{\sigma} \mid y\rangle$. This provides an orientation of edge: $x \rightarrow y$ if $\left\langle v^{\top} \mid x\right\rangle\langle\langle\vec{v} \mid y\rangle$.

Outgoing link of a vatece
Fa each vatex x, chore $\varepsilon>0$ mel enough po that for all outgoing edge $\alpha: x \rightarrow y$ from x x and y are separated by the hyperplane

$$
\{y \mid\langle\vec{v}, z\rangle=\langle\vec{v}, x\rangle+c\}
$$

The outgoing link of x is the intersection of the couples with that hyperplane.
Adapting from Ziegler (vertex ligure), we have

- The outgoing link is a polyhechal complex Cleo
- There is a (suffice preserving) lyective correspondence between the k-dimensional face of $C \backslash x$ and the $(k+2)$-dimenpiond faces of C that contain x and have a non-ewpty intersection with the outgoing link (for all le).

Coherence based on orientation
Thedem2 (C-Laplanter Anfoosi 2022) THEsE conditions Let Cbi a pooyhechal couplex. If 1 PoLYTDPE

- There is a unique glaal sinh (NORMAL FarM) (ie, a vertere vithout any outgoing edlge), and the 1-abdeton of the outgoing linh of erely veitec is cormected.
then evey two porallel combnatorial paths are carshnatarially homotopic.
Ploof plan AlAoure paths oriented tgo to the sink.

1) $e=e^{\prime}$ 2) $e^{\prime} e^{\prime}$ 3) othernine, l_{y} the econd asumption, there indection exlits a pequenco of face
 and we apply 2) epetitively
global pinh
b) General cur: note
(f. Maclame)

Therm 2 is strictly less general than Theorem 1

Proposition If the 1 -atdelton of the outgoing linh of crecy veter is corrected, then every path connected component of C is simply connected.
Roof idea: $\langle\vec{\sigma} \mid-\rangle$ defines a Morse function.
Let $C_{t}=\{x \in C \mid\langle\vec{v} \mid x\rangle \geqslant t\}$.
At each hp.t $\langle\vec{v} \mid x\rangle=h$ fa pore rater, we get that C_{h} is homotopically equivalent to the
pushout of $C_{h_{+}}$with the cone hon x to the outgoing $\operatorname{linh} f_{x}$ convected
pimply corrected
pimply connected (VAN HEMPEN)

PART III
"restohecha-bibe" polytopes
multiplíhedra
ithong monoidal fundous
(pinple) parmuto-associahedra pymrehic monoidal categories (non unital)

mestabedna

Operabe ora cakegorified operads (non unital, non-cynneluc)

Aosociabedra monoiclal calegarie
$($ nom 4 nitol $)$ (n-m unital)

Two, flavours of rewriting
We have peen . He "me-line proof" an accented proof, depending on the choice of an orientation rector (a Mare function), that "looks lib" Mac Lane's poof. But there is phil a distance to that proof = the ore which separates
abhact rowing from term smiling
In tam reviling, we have óvemiting sue

$$
(x \otimes y) \otimes z \rightarrow \quad x \otimes(g \otimes z)
$$

[preferably a finite number of $t \mathrm{~cm}$) which are instantiated $\quad((A \otimes B) \otimes C) \otimes D) \otimes(E \otimes F)$ 3^{3} in content $(Z \otimes(((A \otimes B) \otimes C) \otimes(D \otimes(F \otimes F)))) \otimes G$

The same remarks apply to Mac Lane'; pentagons
1 one generic coherence condition $((x \not \theta y) \otimes z) \otimes$ u CRITICAL PAIR

2 instanlided: $x \mapsto A \in B, y H \subseteq, z H \underline{D}, u \mapsto$ E\&F 3 in content

$$
(Z \otimes[(((A \otimes B) \otimes \underline{G}) \otimes D) \otimes([(B \triangle F)) \otimes G
$$

Loobing for polytopes
"deplaying instantiation and content"
DOSEN.PETRIC
We'll see that in the clas of neotoh echa, Here is a flavars of 0^{2} ard 0^{2}, lut nt of 0^{3} in gerencel.

We gre a countrescomple.
We gire a condition on restathecha, which we call the contextuality condition,

- tenat accaunts far ${ }^{3}$
- that is patcofied ly operakecha

All of this mother penoe also without rientation

Building sets

A building pet H (a.h.a as atomic and patarated hypergragh) is given by a finite pet H of vertices and a puboct
$\left(H \leq \mathcal{J}_{\substack{2 \\ \text { nam-enply }}}^{*}(H) \quad p \cdot t \cdot \forall x \in H,\{x\} \in H\right.$
It is called connected if $H \in H$.
If it is not corrected, He masumal elements of $1 H$ farm the connected components of H.
Two nation of restriction are relevant. Let $X \leq H$.
plain restriction
$H_{X}=\{E \mid E \in H$ and $E \subseteq X\}$ (we wite $H \mid X \operatorname{fon}_{H} H_{H X}$)
Fa a connected biding set, we wite $H, X \leadsto H_{2} \ldots H_{n}$ where $H_{2} \ldots, H_{n}$ are He connected con moments of HIX

$$
H_{n X}=\{E \cap X \mid E \in H\} \text { RECONNECTED RESTRICTION }
$$

Encauples: The set Conn (G) of connected subtexts of a graph is a huildung set. Let $G=x-y-z$

$$
\begin{aligned}
& \operatorname{Conn}[G)=\{\{x\},\{y\},\{z\},\{x, y\},\{y, z\},\{x, y, z\}\} \\
& \operatorname{Conn}[G)_{\{x, z\}}=\{\{x\},\{z\}\}=\operatorname{Conn}\left(\begin{array}{ll}
x & z
\end{array}\right) \\
& \operatorname{Conn}[G)_{\cap\{x, z\}}=\{\{x\},\{t\},\{x, z\}\}=\operatorname{conn}(x-z)
\end{aligned}
$$

Westohecha (ar.a bypergraph polytapes)
Let It be a conrected fiviching pet. $\neq H$ and $\{x\}$ the elements of H (hypenedges) are interpeted as instructions for tuincaling a pmplex. Specifieally, naming the facets of a puplea by the elements of H, EEH aob for truncaling He face of He pupler which is He intarection of all facets x p.t $x \in E$.

Carematavially, the faces of the resulting polytope, calded nestohechon are descubed o named by cashucts:
let $\phi \neq Y \subseteq H$:
also callen tubingis

- $(Y=H) \quad H$ is a corstruct of H
- $(Y \neq H)$ let $H_{7} \ldots H_{n}$ be the connerted compoments of H HYY If $T_{1} \ldots T_{n}$ are' conoructs of $H_{H_{2}, \ldots,}, H_{H_{n}}$, then $Y\left(T_{1}, \ldots, T_{r}\right)$ is a construct $\& H$:

Notation T:H

A contuct all of whore lobels are ingletono is called a contunction.

Sultreess of constmets
If T is a tnee whac vatices are labled ly (de joint) puhcts of same pet H, we wite Supp (T) fathe union of theor lates.

Think of Tas "T T_{1} in pone context" and of T_{1} op "an instane of T_{2} ".

Simplices

$$
\{\{1\},\{2\}, 13\},\{4\},\{1,2,3,4\}\}
$$

Let \mathcal{X} be a (finite) set. We take

$$
\boldsymbol{S}_{\mathcal{X}}=\{\{x\} \mid x \in \mathcal{X}\} \cup\{\mathcal{X}\}
$$

All of the constructs have the form $X\left(y_{1}, \ldots, y_{p}\right)$, where $\left\{y_{1}, \ldots, y_{p}\right\}=\mathcal{X} \backslash X$.
Hence they are in one-to-one correspondence with non-emply pulocts $x \subseteq \mathcal{N}_{\text {, }}$
Each x "is" a vertex, and its opposite facet is $X \backslash\{<\}$ (which we also identify os x)

Truncating pimplices in action

Let $\boldsymbol{H}=\{\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,2,3\},\{1,2,3,4\}\}$.
The vertex $4(1,2,3)$ (resp. $3(1,2,4)$) of the simplex splits into

$$
4(2(1,3)), 4(3(2(1))), 4(3(1(2))), 4(1(2,3))(\text { resp. } 3(2(1), 4), 3(1(2), 4))
$$

The other faces of the truncation of edge $\{3,4\}(1,2)$ are $4(3(\{1,2\})),\{3,4\}(1(2)), 3(\{1,2\}, 4),\{3,4\}(2(1))$, and $\{3,4\}(\{1,2\})$

WHAT WE GET HERE is the 3-COBE

Ansociatecha

Let $x=\left\{x_{1} \angle \cdots<x_{n}\right\}$. Then

$$
K_{x}=\left\{\left\{x_{1}\right\}, \ldots,\left\{x_{n}\right\},\left\{x_{1}, x_{2}\right\}, \ldots, \ldots,\left\{x_{n-1}, x_{n}\right\},\left\{x_{1}, \ldots, x_{n}\right\}\right\}
$$

(linear graph $x_{1}-x_{2}-\cdots-x_{n}$)

Recasting Mac Lane's pentagon in the language of constructs

Dictionary: $\quad{ }_{x_{1}}-x_{2}-x_{3} d$

0 - and 1-faces of nestohecha

- Ore can read the dimension of (He face arrociated to) a construct as the purr of the cordenols $|X|-1$ of all decorations X appearing in the construct. In particular
- Every construction is of dimension 0 .
- Edges have a single non-pingleton node which has condenal 2: it is obtained by contacting an edge in a construction.

The fro kinds of 2 -faces of nestohedra
the "bowing" ones with exactly two non eungleton nodes, each of cancun dol 2. Schematically,

the "interesting" ones, with exact by one noningle on note, of cardinal 3. There are fou shaper of such 2 -faces (rest trios slicer)

Tow arks chanting the 2-face of resthedra

Notation if $x, y, z \in H$, then
if $y, 7$ are in different connected components of $H_{H} H\{y\}$,
then we mite

$$
\underset{\mathbb{H}}{x \rightarrow y} y
$$othermix we polite

$$
\underset{n-1}{x}\{y, z\}
$$

elative to $K_{n\left\{n_{1}, x_{2}, x_{3}\right\}}$
(010)
(1)

$$
x_{1} \leadsto x_{2}, x_{2}
$$

$$
x_{2} \leadsto\left\{x_{1}, x_{2}\right\}
$$

$$
x_{3} \leadsto x_{1}, x_{2}
$$

$(001),(100)$ are the pame by permatation

(101), (129) aretle same by permetation
(111)
(3)

$$
\begin{aligned}
& x_{1} \leadsto\left\{x_{2}, x_{2}\right\} \\
& x_{2} \leadsto\left\{x_{1}, x_{3}\right\} \\
& x_{3} \leadsto\left\{x_{1}, x_{2}\right\}
\end{aligned}
$$

The contextuality ipule
So we have only fair shapes of 2 paces (coherence conditions)

- triangles (thunk of the suplox!)
- cuber (both as "boong" and "mterexting") (think of hypercubes
- pentagons
(which are retolecha)
heocagars
However, two 2-dimenmad constructs, with the same ob bel $\left\{x_{3}, x_{2}, x_{3}\right\}$, eng.

$$
\pi
$$

WE CALL THEM $\left\{x_{1}, x_{2}, x_{3}\right\}$-FACES

do not have He pare shape in general!

Counter-example
consiben

$$
\begin{aligned}
H & =\{\{x\},\{y\},\{z\},\{u\},\{x, y\},\{y, z\},\{x, y, z\},\{u, x, z\},\{u, x, y, z\}\} \\
& =\operatorname{Conn}\binom{x-y \backslash z}{u}
\end{aligned}
$$

Conpider the conslucts

$$
\underset{\underset{H}{M}}{\underset{\sim}{\sim}}\{x, 2\}
$$

\rightarrow hescagonal face

Contextual building pets
A building pet H is called contextual of $\forall E \in \mathbb{H}, \forall x, y, z \in E$

$$
\underset{\mathbb{H}_{E}}{\underset{\sim}{x}}\{y, z\} \Leftrightarrow \underset{\mathbb{H}^{2}}{ } \Leftrightarrow\{y, z\}
$$

(and here $\underset{H_{E}}{x(3)} y, z \underset{H}{H} \underset{H}{2 r} y, z$)
This condition ensues that for any $\{x, y, z\} \subseteq H$ all $\{x, y, 7\}$-facer are instance in context of $H_{\cap}^{\{x, y, z\}}$

Mae over, we have $x \leadsto\{y, z\}$ f and only of $H_{n\{x, y, z\}}\{y, z\}$

The beotiany of contextual nertohedra
The fan shaper of 2-face conespond to (and are determinelly)
the four comected huldung seto on three vertices (up to permetation)
paplece briange $\{\{x\},\{y\},\{z\},\{x, y, z\}\}$ cube rectangle $\{\{x,\{y\},\{z\},\{x, y\},\{x, y, z\}\}$ anociatedion pentagon $\{\{x\},\{y\},\{z\},\{x, y\},\{y, z\},\{x, y, z\}\}$ paratutichon hexcagon $\{\{x s,\{y\},(t),\{x, s\},\{y, z\},\{x, z\},\{x, y, z\}\}$

Operakechar as furiding pets
liven an gparadic tree τ, we can define a hypergraph (actually a graph) $G(T)$ as follows:

- varices of $G(T)$ are internal edge of T
- edger of $G(\tilde{\Gamma})$ vitron the incidence of those internal edges.
hoponilian. Given T, the conotucts of $G(T)$ ore in ore-torove conespondence with nesting on Γ.
Example

Remark. If τ_{1} and \tilde{T}_{2} have the parve underlying (nom planar the then $G\left(I_{1}\right)=G\left(I_{2}\right)$.

Operatedra are contextual
hoof "by procure"

The elative position of x_{2}, x_{2}, x_{3} in the pultree of Y coneppoding to IF is the same as in \tilde{y}
Moreover, with these position, we hove

$$
H_{n\left\{x_{1}, x_{2}, r_{3}\right\}}=\mathbb{K}_{n_{\left\{x_{1}, x_{2}, x_{\}}\right\}}}=G\left(\begin{array}{cc}
\infty \\
x_{2} \int_{0}^{\infty} x_{3}^{(1)} \\
0 x_{2}
\end{array}\right) \text {, cone, }
$$

He coherence condition

Another encanple of contextual nestohedra

$$
\mathbb{H}_{n}=\{\{2\} \ldots\{n\},\{1,2\},\{2,2,3\} \ldots\{1 \ldots n\}\}
$$

One pees easily that E is cameoted in H_{n} iff $E \in H_{n}$
(bollans from $e_{1}, e_{2} \in H, e_{1} \cap e_{2} \neq \emptyset \Rightarrow e_{1} \leqslant e_{2} a e_{2} \subseteq e_{2}$)
Therefore $E=\{1 \cdots m\}$ for same $m \leq n$ and $H_{E}=H_{m}$
then pic i,j, $R \leq m$. We have
for all $p \geqslant m, h_{H_{p}} \rightarrow\{i, j\}$ ff $i \angle k$ and $j<k$ and hone in particular

$$
\begin{array}{cc}
h \leadsto\{(i j) & \text { \&f } \\
H=H_{n} & k \sim E(i j\} \\
H_{E}=H H_{m}
\end{array}
$$

For the road: a generalised Ta maui order
Let H be a building set, and let $\left(H_{1} \leq\right)$ kc a total oder on H.
The Generalized Tamari Order (GTO) is the transit we clone $<$ of the relation α_{T} defined locally on castrato by For $X=X_{1} \cup X_{2} \quad$ (disjoint)

$$
\text { if } \operatorname{mar}(X) \in X_{\alpha}
$$

Rule 1

This difinilien is not as eymmetuc as it looks at fins sight If we view $S-<T$ as a rule applied to S, Re fist care above, written mae carefully, is

Restriction to vertices
The restriction of GTD on vatican is the Blip partial aden

(with pome permutation on the \mid and I edges dictated by the connectivity of H)
Thanks to this adar, we con define a confluent and terminating reviving system on constructions / for contextual nestohedra) = adding directions in the considerations

We do this next in detail la situation (1).

$x_{2}>x_{2}>x_{3}$
$x_{2}>x_{3}>x_{1}$

$$
x_{3}>x_{2}>x_{1}
$$

A question
Can we recover the generdised to max order on castructuos for any restolechon from pome orientation vector?

The answer is yes (ruillareme) fa operahedra and their Loday-type realisation.
Can we get a "Tarnari" ciestation veda fo

- He Dopen-Retric Realisation?
- He Postrihov realisation?

