Opetopes, opetopic sets and polygraphs

Thanks to

Cédric Ho Thanh (NII, Tokyo)

Polynomial Functors 2022, Topos Institute, March 14-18

Combinatorics and geometry

OF

OPETOPES

Piene-louis CURIEN

Emeritus CNRS bearancher

Picube, IRIF (CNRS, Université Paris Gité and Inrala)

FUDAN University, April 30,2024

n-opetopes (for $n \le 2$)

- There is a unique 0-dimensional opetope: the point (an operation with no input).
- There is a unique tree of 0-opetopes, yielding the unique arrow-shaped 1-opetope.
- 1-opetopes can assemble only as linear trees, and hence 2-opetopes are in one-to-one correspondence with natural numbers:

3-opetopes as trees

3-opetopes as unbiased associators

This picture features (decorated)

- 0-opetopes (unnamed)
- 1-opetopes $(f, g, h, g \circ h, ...)$
- 2-opetopes (witnesses of unbiased composition $f \circ g \circ h,...$)
- one 3-opetope (unbiased associativity)

Contrast with the biased one: $f \circ (g \circ h) = (f \circ g) \circ h$

An example of 4-opetope

(taken from the beautiful Lauda-Cheng notes)

Unbiased coherence via 4-opetopes

5-opetopes, etc. feature higher coherences (trees of trees of...)

Work in progress: Operapes as a triangular publication of (the Boardman-Vast culical publicasion of) associatedra

Identities via degenerate opetopes

This (poor) picture features

- the 2-opetope ι as a witness of the degeneracy promoting x to id_x
- the 2-opetope α as a witness of $id_x \circ f$
- the 3-opetope Unit-left as the unit law $id_x \circ f \to f$

Note that ι has no sources (tree reduced to a leaf edge).

Polynomial functors (standard presentation)

Polynomial functors are triples of maps

$$I \stackrel{\mathtt{s}}{\longleftarrow} A \stackrel{\mathtt{p}}{\longrightarrow} B \stackrel{\mathtt{t}}{\longrightarrow} J$$

We are interested in polynomial endofunctors, i.e. I = J. A morphism of polynomial endofunctors is given by maps f_1 , f_2 as below:

The pullback ensures that an operation b with arity $p^{-1}(b)$ is mapped to an operation with equipotent arity.

Polynomial functor (pictorially)

- We view B as a set of operations.
- For each operation b, we view $A(b) = p^{-1}(b)$ as the arity of b.
- We view B as a set of colours, or of sorts (set of incoming edges).

Note the difference between names and decorations: the latter can be repeated, while the former are in bijection with the number of wires going into the operation.

Polynomial monad

Polynomial monads versus operads

Polynomial monads are a version of (set) operads that are

- Σ -free (the action of the symmetric group is free)
- non-skeletal (inputs are named, rather than numbered)
- described in the partial or "circle i" style
- coloured (or multisorted)

Note that the mechanics of polynomial functors dictates that the renaming of wires after composition be specified as part of the data defining the structure (cf. map f_1 above).

Polynomial monads are exactly the version of multicategories given by Hermida, Makkai and Power.

Free polynomial monad (trees)

Let P be a polynomial endofunctor on I. We define a new polynomial endofunctor P^* on I.

The operations are P-trees, i.e. trees with leaf edges where

- nodes are decorated by operations of P,
- incoming edges of a node decorated by b are in one-to-one correspondence with A(b),
- edges are decorated by colours of I

In *P**:

- the arity of a tree T is the set of the occurrences of its leaves
- the target colour of T is the colour of the root of T

A P-tree may be reduced to a leaf (no node): we call it then degenerate.

Composition is defined by grafting.

The star multiplication (pictorially)

Another monad on trees: the + construction (Baez-Dolan)

Here we follow Kock-Joyal-Batanin-Mascari 2010.

We now suppose that P is a polynomial monad on some I. Then the same P-trees give rise to another polynomial monad P^+ , not on I, but on $B = B^P$:

- The arity of a tree is not its set of leaves anymore, but its set of nodes
- The target colour of T is $[T]^{P^*}$, where [T] is the evaluation of T according to the monad structure of P.
- Composition is by zooming in and substituting in nodes.

By iterating this construction, we shall get trees of trees of ...!

The plus multiplication (pictorially)

Opetopes

Opetopes are defined by iteration of the + construction.

• Basis = identity polynomial functor \mathcal{O}^0 on a singleton set

$$\{ullet\} \longleftarrow \{*\} \longrightarrow \{\blacksquare\} \longrightarrow \{ullet\}$$

There is only one 0-opetope \bullet , and there is only one 1-opetope \blacksquare which has only one input *, decorated by the unique 0-opetope \bullet .

• Induction: We set

$$\mathcal{O}^n = (\mathcal{O}^{n-1})^+$$

and we write \mathcal{O}^n as

$$\mathbb{O}_n \longleftarrow \mathbb{O}_{n+1}^{\bullet} \longrightarrow \mathbb{O}_{n+1} \longrightarrow \mathbb{O}_n$$

(the operations of \mathcal{O}^{n-1} become the colours of \mathcal{O}^n)

A hierarchy of shapes

An n-opetope (for $n \ge 2$) is an oriented n-dimensional volume whose boundary is divided into a pasting scheme of source (n-1)-opetopes and a single target (n-1)-opetope.

The target is determined by the pasting scheme of sources. Therefore, n-opetopes can be identified with pasting schemes of (n-1)-opetopes.

Pasting schemes of (n-1)-opetopes are described by trees whose nodes are decorated by (n-1)-opetopes and whose edges are decorated by (n-2)-opetopes.

The category Ope

It has as objects all opetopes, and morphisms by generators s_{x} (for each node of the tree) and t, and relations

(Inner)
$$s_x s_u = s_y t$$
 (all edges)

(Glob†) $t s_u = s_x s_u$ (all leaves, ω non degenerate)

(Glob‡) $s_x t = tt$ ($x = root, \omega$ non degenerate)

(Degen)
$$ts_* = tt$$
 (ω degenerate)

Opetopic sets are presheaves over Ope.

Polygraphs (a.k.a. computads)

A polygraph is (a presentation of) a strict ω -category (i.e. all truncations are strict n-categories). It is given by the following data:

- a set \mathcal{P}_0 of generating 0-cells,
- a set \mathcal{P}_1 of generating 1-cells, each coming with specified source and target in \mathcal{P}_0 . This gives rise to a free strit 1-category \mathcal{P}_1^* over these generators.

:

• a set \mathcal{P}_{n+1} of (n+1)-generating cells, each coming with a specified source and target in \mathcal{P}_n^* . This gives rise to a free strict (n+1)-category \mathcal{P}_{n+1}^* over these generators.

:

Many-to-one polygraphs

A polygraph is called many-to-one if for all n and $x \in \mathcal{P}_n$, we have $\mathfrak{t} x \in \mathcal{P}_{n-1}$ (all generating cells have as target a generating cell).

Theorem. Many-to-one polygraphs are the same thing as opetopic sets (giving rise to an equivalence of categories).

Proved indo pendontly by

- Hamb Malkai Zawadowski
- · Cédic Ho-Thanh (relying on Henry)
- · Myself (unpublished) (explicit proof!)

Henry showed that many-to-one polygraphs form a prosteaf ategory Set [?? or) without an explicit description of ??

Opetopic cardinals (Zawadowski)

One can "concatenate" aptopes, e.y.

Thus formed operation cardenals form

Theorem (Zawadowoli) This w-category is the terminal many-to-one polygraph

Popitive opetopes

Positive-to-one only
Some results below apply (for the moment) to
positive operage only

The many gruipes of spetopes Albtract definition (above) ("By construction") Epiphytes (Curien-Lector): trees of trees of ... · Dendritic face complexes (leclerc): pareto of faces patisfying some (nather simple) arcions Principal) operapic cardinale (Zawadowski): poseto of faces patis gying point (quite complicated) assisms

4 Zoom complexes (Kach-Joyal-Batanin-Marcari): Requerces of trees featuring positive 4 (ledered) pontie Le all (work in progress with I chadovic)

Definition 1.1: Rooted tree

A rooted tree T consist of:

- A *finite* set of nodes T^{\bullet} .
- For each node $a \in T^{\bullet}$, a *finite* set A(a), called the arity of a.
- A (necessarily finite) set of *triplets*, denoted a ≺_b a' for some a, a' ∈ T[•] and b ∈ A(a). Moreover we ask that for each a ∈ T[•] and b ∈ A(a), there is at most one triplet a ≺_b a'. If there is none, the pair (a, b) is said to be a *leaf* of T, and we let

$$T^{\mid} := \{(a, b) \text{ leaf of } T\}$$

We moreover ask for a distinguished element $\rho(T) \in T^{\bullet}$, called the *root* of T, satisfying the following property: for each node $a \in T^{\bullet}$, there is a unique (*descending*) path in T

$$a = a_0 >_{b_1} a_1 >_{b_1} \cdots >_{b_v} a_p = \rho(T)$$

from a to the root of T.

Definition 1.4: neat rooted tree

Let *T* be a rooted tree, *T* will be called *neat* iff the second projection

$$\operatorname{pr}_2: \quad \begin{array}{ccc} T^{|} & \to & \bigcup_{a \in T^{\bullet}} T(a) \\ (a, b) & \mapsto & b \end{array}$$

is injective. We then identify the leaf (a, b) with $b \in A(a)$, and let $\eta(b) := a$ (or $\eta_T(b) := a$ if needed). For a neat rooted tree T, the set $T^{|}$ will be replaced by its second projection.

Definition 1.6: Epiphyte

We define inductively *epiphytes* ω and their dimension dim(ω), as follows:

- There is only one epiphyte of dimension 0, which is denoted by \blacklozenge . We let \blacklozenge := \emptyset .
- Suppose that we have defined epiphytes of dimension $k \le n$ for some $n \in \mathbb{N}$, together with their targets. Then a (n+1)-epiphyte ω consists in the following data:
 - A structure of neat rooted tree, which we also denote ω .
 - For each *a* ∈ ω•, a *n*-epiphyte $s_aω$ with $(s_aω)$ = A(a), called the *source* at a.

Such that we have, for each triplet $a \prec_b a'$ of ω , the equality of epiphytes $s_b s_a \omega = t s_{a'} \omega$.

Definition 1.5: Positive-to-one poset

A positive-to-one poset consists of:

- A finite set of elements P.
- A gradation dim : $P \to \mathbb{N}$.
- Two binary relations \prec^- and \prec^+ on P, and we let $x \prec y$ iff $x \prec^- y$ or $x \prec^+ y$.

With the following properties:

- $\forall x, y \in P$, $y \prec x \rightarrow \dim(x) = \dim(y) + 1$.
- $\forall x, y \in P$, $\neg (y \prec^- x \land y \prec^+ x)$.
- $\forall x \in P$, $\dim(x) \ge 1 \to (\exists! y, y \prec^+ x) \land (\exists y, y \prec^- x)$.

In particular: \prec , \prec^- and \prec^+ are asymmetric, and the reflexive transitive closure of \prec equips *P* with a structure of partially ordered set, such that dim is an increasing map.

Following the conventions of [9], for $x \in P$, we denote

$$\delta(x) := \{ y \in P \mid y \prec^- x \}$$

and when dim(x) > 1,

$$\gamma(x) := \{ y \in P \mid y \prec^+ x \}$$

because of the third property, $\gamma(x)$ is always a singleton, hence we sometimes identify $\gamma(x)$ with its unique element, which we call the *target* of x. For $k \in \mathbb{N}$, we also denote

$$P_k := \dim^{-1}(\{k\}), \ P_{\geq k} := \bigcup_{i \geq k} P_i, \ P_{>k} := \bigcup_{i > k} P_i$$

and we let $dim(P) := max\{dim(x)\}_{x \in P}$ be the *dimension* of P.

Definition 1.7: Dendritic face complex

A dendritic face complex is a positive-to-one poset C, satisfying the following extra axioms:

(greatest element)

There is a greatest element in C, for the partial order induced by \prec .

• (oriented thinness)

For $z \prec y \prec x$ in P, there is a unique $y' \neq y$ in P such that $z \prec y' \prec x$. Hence there is a lozenge as in Figure 1.1 below. Moreover, we ask for the $sign\ rule\ \alpha\beta = -\alpha'\beta'$ to be satisfied. When finding such a u' we say that we *complete the half lozenge* $z \prec y \prec x$.

• (acyclicity)

For $x \in P_1$, $\delta(x)$ is a singleton.

Let $x \in P_{\geq 1}$, then $\delta(x) \neq \emptyset$ and there is no cycle as in Figure 1.2 below.

Figure 1.1: Lozenge

Figure 1.2: Cycle

Zoom complexes

Bibliography

- J. Baez and J. Dolan, Higher-dimensional algebra III: *n*-categories and the algebra of opetopes, Advances in Mathematics 135(2), 145–206 (1998).
- J. Kock, A. Joyal, M. Batanin, and J.-F. Mascari, Polynomial functors and opetopes, Advances in Mathematics 224(6), 2690–2737 (2010).
- C. Hermida, M. Makkai, and J. Power, On weak higher-dimensional categories
- $\verb|https://www.ncatlab.org/nlab/files/HermidaMakkaiPower01.pdf|.$
- V. Harnik, M. Makkai, and M. Zawadowski, Computads and multitopic sets, https://arxiv.org/abs/0811.3215.
- S. Henry, Non-unital polygraphs form a presheaf category, Higher Structures 3 (1), 248–291 (2019).
- C. Ho Thanh, The equivalence between opetopic sets and many-to-one polygraphs, https://arxiv.org/abs/1806.08645.

L. Leclerc² (pubmilted) A poset-like approach to positive opetopes (submitted) Two equivalent descriptions of opetopes: in terms of zoom complexes and of partial orders

P.-I. Cyrien and L. lectore

A recursive tree-shaped definition for positive opetopes.

(draft)

(under appraise to all apetapes, in collaboration with J. Chadoric)