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n-opetopes (for n < 2)

- There is a unique 0-dimensional opetope: the point (an operation
with no input).

- There is a unique tree of 0-opetopes, yielding the unique
arrow-shaped 1-opetope.

- l-opetopes can assemble only as linear trees, and hence 2-opetopes
are in one-to-one correspondence with natural numbers:

(n-1) )
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3-opetopes as trees




3-opetopes as unbiased associators

g
_—
goh fo(goh) fogoh
h As h 1 f
fo(goh) fogoh

This picture features (decorated)
e 0-opetopes (unnamed)

1-opetopes (f, g, h,goh,...)

2-opetopes (witnesses of unbiased composition f o g o h,...)
e one 3-opetope (unbiased associativity)
Contrast with the biased one: fo(goh)=(fog)oh
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An example of 4-opetope

(taken from the beautiful notes)
SN =
= Y
L=
=
- S
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Unbiased coherence via 4-opetopes

g(hk)

f(ghk)

coh

fogohok 9

k f
As flg(hk)

fo(gohok) N
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fo(go(hok))

5-opetopes, etc. feature higher coherences (trees of trees of...)
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|dentities via degenerate opetopes

Unit-left

This (poor) picture features
e the 2-opetope ¢ as a witness of the degeneracy promoting x to idy
e the 2-opetope « as a witness of idy o f
e the 3-opetope Unit-left as the unit law idy o f — f

Note that ¢ has no sources (tree reduced to a leaf edge).
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Polynomial functors (standard presentation)

Polynomial functors are triples of maps
1< a2 B 5y

We are interested in polynomial endofunctors, i.e. | = J. A morphism of
polynomial endofunctors is given by maps fi, f» as below:

The pullback ensures that an operation b with arity p~*(b) is mapped to
an operation with equipotent arity.
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Polynomial functor (pictorially)

e We view B as a set of operations.
e For each operation b, we view A(b) = ) as the arity of b.

pH(b
e We view B as a set of colours, or of sorts (set of incoming edges).

Note the difference between names and decorations: the latter can be
repeated, while the former are in bijection with the number of wires going

into the operation.
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Polynomial monad
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Polynomial monads versus operads

Polynomial monads are a version of (set) operads that are

e > -free (the action of the symmetric group is free)

non-skeletal (inputs are named, rather than numbered)

described in the partial or “circle /" style

coloured (or multisorted)

Note that the mechanics of polynomial functors dictates that the renaming
of wires after composition be specified as part of the data defining the
structure (cf. map f; above).

Polynomial monads are exactly the version of multicategories given by
Hermida, Makkai and Power.
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Free polynomial monad (trees)

Let P be a polynomial endofunctor on /. We define a new polynomial
endofunctor P* on /.
The operations are P-trees, i.e. trees with leaf edges where

e nodes are decorated by operations of P,

e incoming edges of a node decorated by b are in one-to-one
correspondence with A(b),

e edges are decorated by colours of /
In P*:
- the arity of a tree T is the set of the occurrences of its leaves

- the target colour of T is the colour of the root of T
A P-tree may be reduced to a leaf (no node): we call it then degenerate.

Composition is defined by grafting.
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The star multiplication (pictorially)

e
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Another monad on trees: the + construction ( )

Here we follow Kock-Joyal-Batanin-Mascari 2010.

We now suppose that P is a polynomial monad on some /. Then the same
P-trees give rise to another polynomial monad P*, not on /, but on
B = BF:
- The arity of a tree is not its set of leaves anymore, but its set of
nodes
- The target colour of T is [T]”", where [T] is the evaluation of T
according to the monad structure of P.

- Composition is by zooming in and substituting in nodes.

By iterating this construction, we shall get trees of trees of ...!
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The plus multiplication (pictorially)
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Opetopes
Opetopes are defined by iteration of the + construction.
e Basis = identity polynomial functor ©@%n a singleton set
{o} —{s} — {m} — {¢}

There is only one 0-opetope ¢, and there is only one 1-opetope ®

which has only one input *, decorated by the unique 0-opetope ¢.

e Induction: We set
On _ (On—l)—l—

and we write O" as
On+— O} — Opp1 — O,

(the operations of O"~1 become the colours of O")
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A hierarchy of shapes

An n-opetope (for n > 2) is an oriented n-dimensional volume whose
boundary is divided into a pasting scheme of source (n—1)-opetopes and a
single target (n—1)-opetope.

The target is determined by the pasting scheme of sources. Therefore,
n-opetopes can be identified with pasting schemes of (n—1)-opetopes.

Pasting schemes of (n—1)-opetopes are described by trees whose nodes
are decorated by (n—1)-opetopes and whose edges are decorated by
(n — 2)-opetopes.
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The category Ope

It has as objects all opetopes, and morphisms by generators s, (for each
node of the tree) and t, and relations

(Inner)  sysy =syt (all edges)
LN N

(Glob1) tsy, =s«sy (all leaves,w non degenerate)
TN LN

(Globl) s¢t =tt (x=root,w non degenerate)

LN - 0N

U
(Degen) ts, =tt (w degenerate) &

Opetopic sets are presheaves over Ope.
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Polygraphs (a.k.a. computads)

A polygraph is (a presentation of) a strict w-category (i.e. all truncations
are strict n-categories). It is given by the following data:

e a set Py of generating 0-cells,

e a set P of generating 1-cells, each coming with specified source and
target in Pp. This gives rise to a free strit 1-category P; over these
generators.

e a set Ppy1 of (n+1)-generating cells, each coming with a specified
source and target in P}. This gives rise to a free strict
(n+1)-category Py ; over these generators.
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Many-to-one polygraphs

A polygraph is called many-to-one if for all n and x € P,, we have
tx € Pp_1 (all generating cells have as target a generating cell).

Theorem. Many-to-one polygraphs are the same thing as opetopic sets
(giving rise to an equivalence of categories).
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f—{ Definition 1.1: Rooted tree }

A rooted tree T consist of:
* A finite set of nodes T*.
e For each node a € T*, a finite set A(a), called the arity of a.

* A (necessarily finite) set of triplets, denoted a —, a’ for some a, a’ € T* and b € A(a). Moreover
we ask that for each a € T* and b € A(a), there is at most one triplet a —; a’. If there is none,
the pair (a, b) is said to be a leaf of T, and we let

Tl := {(a, b) leaf of T}

We moreover ask for a distinguished element p(T) € T*, called the root of T, satisfying the following
property: for eachnode a € T®, there is a unique (descending) pathin T

a=ag>y, ay>p, - >, ap = p(T)

from a to the root of T.




r—[ Definition 1.4 : neat rooted tree }

Let T be a rooted tree, T will be called neat iff the second projection

pry: T = Ugere T(a)
(a,b) — b

is injective. We then identify the leaf (a, b) with b € A(a), and let #(b) := a (or #7(b) := a if needed).
For a neat rooted tree T, the set T! will be replaced by its second projection.

,—[ Definition 1.6 : Epiphyte }

We define inductively epiphytes w and their dimension dim(w), as follows:

* There is only one epiphyte of dimension 0, which is denoted by 4. We let 4° := @.

their targets. Then a (n + 1)-epiphyte w consists in the following data:

— A structure of neat rooted tree, which we also denote w.

- For each a € w*, a n-epiphyte s,w with (s,w)® = A(a), called the source at a.

Such that we have, for each triplet 2 —;, a’ of w, the equality of epiphytes sps,w = tsyw.

® Suppose that we have defined epiphytes of dimension k < n for some n € N, together with




,—I Definition 1.5: Positive-to-one poset ]'

A positive-to-one poset consists of:
¢ A finite set of elements P.
e A gradation dim: P — IN.
¢ Two binary relations <~ and <™ on P, and welet x < yiff x <~ yorx <" y.
With the following properties:
e Vx,y€ P, y=<x—dim(x)=dim(y)+1
e Vx,yeP, -(y<"xAy=<tx).
e VxeP, dim(x)>1— (3ly,y <" x)A(3y, y <" x).
In particular: <, <~ and <t are asymmetric, and the reflexive transitive closure of < equips P with
a structure of partially ordered set, such that dim is an increasing map.
Following the conventions of [9], for x € P, we denote
S(x):={yeP|y=< x}
and when dim(x) > 1,
Y(x):={yeP|y=<*a}
because of the third property, y(x) is always a singleton, hence we sometimes identify y(x) with its
unique element, which we call the target of x. For k € IN, we also denote
P :=dim ' ({k}), Pox:= P, Pox:=J P,
i~k i>k

and we let dim(P) := max{dim(x)} ycp be the dimension of P.




,—[ Definition 1.7 : Dendritic face complex }

A dendritic face complex is a positive-to-one poset C, satisfying the following extra axioms:

o (greatest element)
There is a greatest element in C, for the partial order induced by <.

(oriented thinness)

Forz < y < xin P, there is a unique y’ # y in P such that z < ¥’ < x. Hence there is a lozenge
as in Figure 1.1 below. Moreover, we ask for the sign rule ap = —a’p’ to be satisfied. When
finding such a y’ we say that we complete the half lozenge z < y < x.

(acyclicity)
For x € Py, 6(x) is a singleton.
Let x € P>y, then §(x) # @ and there is no cycle as in Figure 1.2 below.

b o X
/A/ \“,\ // | \
N P Y y=un y2 3 Yp "
b | A S
2 7(y2) vys) (v v(y1)

Figure 1.1: Lozenge .
Figure 1.2: Cycle
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A poset-like approach to positive opetopes ( Pu-g"m t ’ltﬂ—d)

Two equivalent descriptions of opetopes: [ }\'-l-e m ; h’ gd ]
in terms of zoom complexes and of partial orders

and.

A recursive tree-shaped definition for positive opetopes. ( én %(’J
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