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n-opetopes (for n < 2)

- There is a unique 0-dimensional opetope: the point (an operation
with no input).

- There is a unique tree of 0-opetopes, yielding the unique
arrow-shaped 1-opetope.

- l-opetopes can assemble only as linear trees, and hence 2-opetopes
are in one-to-one correspondence with natural numbers:

(n-1) )

e/ N T




AN




An example of 4-opetope

(taken from the beautiful notes)
SN =
= Y
L=
=
- S



Preamble Polynomial Opetopes Posets

? From biased to unbiased composition
/oh fo(g\ / fogoh
f
fo(goh) fogoh

This picture features

0-opetopes (unnamed)
1-opetopes (f, g, h,goh,...)
2-opetopes (witnesses of unbiased composition f o go h,...)

e one 3-opetope (unbiased associativity)
Contrast with the biased one: fo(goh)=(fog)oh



Preamble Polynomial Opetopes Posets

¢ Unbiased coherence via 4-opetopes
g(hk)
f(ghk)
coh
fogohok . g
k f
AST f(g(hk))

fo(gohok) As

k

fo(go(hok))

5-opetopes, etc. feature higher coherences (trees of trees of...)
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(t |dentities via degenerate opetopes

Unit-left

This (poor) picture features
e 2-opetope ¢ as a witness of the degeneracy promoting x to idy
e 2-opetope « as a witness of idy o f = f
e 3-opetope Unit-left as the unit law idy o f — f

Note that ¢ has no source (tree reduced to a leaf edge).

Just like monoidal categories have many more morphisms than the

canonical ones, opetopic categories will have cells with opetopic shapes,
and some of them will be canonical, or universal.
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20 A formalism of finite rooted trees with leaf edges

A rooted tree T is given by the following data:
e a non-empty finite set T*® of nodes, containing a distinguished
element, called the root node (or simply root), and denoted by p(T)
e for each node x € T®, a finite set A(x), called the arity of x
e a collection of triples of the form x —,, y (called internal edges),
where x,y € T® and u € A(x)

e such that each node x in T*\ {p(T)} is related to the root via a
unique path of the form p(T) <y, ... —u, X

1

Note that our trees have at least one node, and may have leaf edges.
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1" Remarks and notation

e We define the set T! of leaf edges (or simply leaves) of T as follows:
Th={(x,v) [x € T*,v e A(x)\ {u| Ty x =u y}}.

We write more visually x —, for a leaf (x,v), and we often call it u, and to
x as y(v).

e The unique path requirement entails in particular that if x —,, y and

X —u, ¥, then u; = up, so that T stripped of its leaf edges is really a tree
in the usual sense of graph theory.

e We consider trees modulo renamings of their nodes and arities
respecting triples.
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"2 Representatives of positive opetopes as iterated trees

There exists a unique positive 0-opetope, denoted by ¢.
A representative of a positive opetope w of dimension n > 1 is given by

e a non-empty set w® of nodes
e the assignment of a representative of a positive (n — 1)-opetope sy w
for each x € w* (the x-source of w)
e a tree spanning w® such that
- A(x) = (sxw)* (for all x € w*), and
- sy (sxw) = tsyw, for all triples x <,y
where ts, w is the target of s, w
(a derived notion defined below)
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1), Positive opetopes

Positive opetopes are equivalence classes of representatives of positive

opetopes.
We say that two representatives w; and w» are two witnesses of the same

opetope via a bijection ¢ : w] — w3 if there exists a bijection

b Guw) = U (e

ur€wy u2€wr

such that, for each u; € wy,
e 1) restricts and corestricts to a bijection from (sy, w1)® to (Sg(u;) w2)*®,

and
® s, wi and Sgp(uy) W2 are two witnesses of the same opetope via this

restriction of 1.
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Ak An example of 3-opetope

Ny an
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1¢  Target computation as composition (+ monad)

R
<3

¥
<>




Preamble
000000

Af

(Inner)

(leaf /node)
(Glob1)

(Glob )

Polynomial Opetopes Posets
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Properties of targets

LN N

su(sxw) =tsyw  (all triples)

wl = (tw)®

. . ‘___+
Sutw = Sy Syw(y) W (uewl ,//u “\, - / ! \
LN/

tspwyw=1ttw
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A+ Target computation in terms of triplets

The target tw of an n-opetope w = x{z <~ w, | z € Z} (which is needed
for defining (n + 1)-opetopes) is defined as follows by induction:

(tw)* = ((sxw)*\ 2) U (| (tw)*);
ze”Z

the assignment of (n — 2)-opetopes to the nodes of tw is defined as
follows:

if 2 € (sxw)® \ Z, we set s, tw = sy sy w;

if 27 € (tw;)®, we set s,» tw = s, tw,.
The triplets are those of the tw,'s for z ranging over Z, plus “glueing
triplets” induced by the triplets z; —, z2 in s, w as follows:

Z1 —u Z2 if21,22€2
Ytn (u) =, p(twy,) ifz1,22€Z
Yt (u) =, 22 ifzye€Z,z0¢Z

71 —u p(twy,) ifzy €Z,2z0€Z



1Y

Pl

LinEivE OF Vo
OPQK‘GM ~ Eo_
- Lo
BN OKCQTWp/k( O\CZ/}) AWJ&
Y\oUtC/




Preamble Polynomial Opetopes Posets
000000 000000000 000000000000 0000000000 0000@000000000000000

23 Oriented graded posets (Hadzihasanovic)

Let (P, <) be a finite partial order. We say that y covers x if
x#y and (x<z<y=z=xorz=y)

We impose the following structure + property.
e Grading. Every x € P comes with a dimension dim(x), such that
- minimal elements have dimension 0
- whenever y covers x we have dim(y) = dim(x) + 1
e Orientation. Every pair s.t. y covers x is given an orientation + or —
e Oriented thinness. Whenever we have that y covers z and z covers x,
there exists a unique z' # z filling the following lozenge

and moreover a131 = —an s
(up to symmetry, four configurations; we shall discard a3 = + = )
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B From iterated trees to posets (preparations)

Given an opetope w, we define the following set recursively. The sloppy
definition is
w'=w*U U (sxw)*
xEw*®

The more careful definition is that w* \ {w} is the colimit of the diagram
(in Set) formed by all pairs of inclusions

(suw)® C (sxw)* and (syw)* C (sxw)”

for each triple x — y.

This ensures that all elements in w* name different (iterated faces) of w.
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Y From iterated trees to posets (step 1)
Step 1.

We endow w* with a structure of graded oriented poset
where all edges have a negative orientation:
u<~x when ué€(sxw)*
Then we define the partial order as the reflexive transitive closure of <.

We shall complete this partial order in three more steps.
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(8 Example

VAR
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2% Example (step 1)

a

NEVAY
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% From iterated trees to posets (steps 2 and 3)

Step 2. We add n + 1 elements to w*, which are named
witw, ttw. . t"w, e,

P,=w'U{tw|0<i<n},

and we associate an opetope with each of the elements of P, as follows

f,w=-sw (z € w")
fow=w
fiow=1tfi1, ,w

Step 3. We add the following oriented edges to the Hasse diagram of our
partial order:

tw<ttlw (1<i<n)

X<~ .w (x € w*)
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% Example

g
y —X - s
// a\ N / tw \
z ttw

tt.tw
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o Example (steps 2 and 3)

X z y t.t.tw
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2 From iterated trees to posets (step 4)

Step 4 (oriented thinness).

(Inner) For z € P, if x <%y, then we add u < y to the oriented
poset:

(Globl) For z € P, if u <™ x <t z and if y = p(f,w), then we add
u<ty:

(GlobT) Forze P, ifu<~ x <~ zand u € (f,w)!, and if y <% z,
then we add u <~ y

z z z
/7N N N

X N .“vxy target >r(oot X y
u u’ leaf
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2 Example (step 4 — Innner)

Ttw
_'_
|
|
\
f t.tw
f
|
|
) |
X t.t.t.w
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%0 Example (step 4 — Glob )
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W Example (step 4 — Glob1)

x z y ‘ t.ttw
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I Positive opetopes in this framework

This gives a bijection between positive opetopes and oriented graded
posets P s.t.
- P has a maximum element
- for every x in P of dimension > 1 there exists exactly one element u
such that u <™ x. We write u = t.x; we also use the following
notation (cl(.) = downward closure):

AT(x)={tx} A () ={yly< x} 0%x)=cl(A*(x))
- P satisfies oriented thinness

- for each x in P, {y |y <™ x}, can be organised as a tree with leaf
edges, as follows: A(y) = {u|u <™ y}, and y1 —u y2 whenever
X
VRN
¥1 y2

N
u

- For all such y; =, y2, we have cl(y1) Ncl(y2) = cl(u).
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¥ From positive opetopes to opetopes (a snapshot)

Each (n — 2)-opetope v gives rise to a degenerate n- opetope {{V
We set dnown ay v wtw_ | o Ha

t {{v = shift(r) ‘e hot b wued b ove &xf)
(the (n — 2) tree reduced to one node *, such that s, (shift(v)) = v).
Source opetopes are allowed to be degenerate:
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% Target computation upgraded

Fore general opetopes, the definition of target above in terms of triplets
needs to be adjusted as follows. The description is exactly the same as
given above for positive opetopes, except for the specification of the
triplets inducing the glueing triplets in the target (the definition of those
being also unchanged). Instead of all triplets z; —,, z2 in syw, we now
consider all sequences (p > 0)

/ /
Z1 —uZy up -+ Zp Supog Sup 22

such that
Sz SxW =t =Sy Sxw = {{susz sxw
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e An abstract machine for target computation

The machine produces complete branches of tw.
Machine states are of four forms:

(P rsie . pirse o K@ [S]h and  (P),
where

e Pu=c¢|(Pf —=x)

e S is a stack of pairs (f,a), with a € w® and f € (sjow)°.

The initial state is

[(€) | (p(sp(e) @), P()]T

The respective kinds of state have the following meaning:

[(P) ]| S]?  going up the tree of w searching for the next opetope
in the explored branch of tw

[(Pg) | S]! the machine has just found one

[(P) | S]?  going down the tree of w to find the next branch of w
in which to go up again (if any)

(P)! final state (branch completed)
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000000 000000000 0000000000000 e00000000 0000000000000 0000000
w® The rules
a—=¢{{x , f=shift(x)

[(P) | (f.a)-S]T— [(P) | (f,a)-S]? degenerate

oa—=¢ B

[(P) | (F,a) - SIT—[(P) | (p(sp(s) B), B) - (f, ) - SIT )

p

fewl

[(P) | (Fra)-SI1— [(PF) | (F.a)- )1 ‘&
X € (5150 )" explore
[(Q) | (Fa)- S|l — [(Q =) | (Fa)-S7 &P
X € (sqw)! ;
(@ =0 | (fa)-S]? — [(@ =) | S]7 “"
f —<‘°;“°J g next

(@ =) | (f,)-S]7 — [(Q =) | (g,0)-S]T
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28 Example execution (steps 1-2)
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la Example execution (steps 3-6)

[(0 =w) | (0,7)-(h,a)]? (explore)
[(0 =w) | (n,7) - (ha)]T (next)
[(0 =w) | (p,d)-(n,7)-(h,a)]T (up)

[(0 =w p) | (p,8)-(n,)-(h,a)]l (leaf)
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000000000

Example execution (steps 7-10)

Op
[o]e]

etopes
00000000000000800000

Posets
000000000000 00000000

L

[(
[(
[(
[(

0 —w P —v)
0 —w P —v)
0 —=w p —v)
O —=wp—=3ym

(p0) - (n,7) - (h,@)]? (explore)

(n,7) - (h,@)]?
(m, ) - (h, )11
m) | (m.7)- (h,a)!

(down)
(next)
(leaf)
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> Example execution (steps 11-13)

— [(0 =w p =v m—=z) | (m~)-(h,a)]? (explore)
— [(0 =w p =v m—=) | (h, a)]7 (down)
— [(o=wp—=vm—=z) | (g, )T (next)
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kb Example execution (steps 14-18)
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L Example execution (steps 19-22)

— [0 =wp=vm—=1=,k=)| (k,5) (g, a)]? (explore)
— [0 =wp=vm—=1=,k—=) | (g0a)] (down)
— [0 =wp=vm—=1=,k=)| (f,a)]t (next)
— [0 =wp=vm=1=,k=,f)]| (fa)] (leaf)
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Example execution (steps 23-25)

— [o=wp—=ym—=1=y,k—=,f=|(f,a)]? (explore)
— [o=wp—=vm—=1—=,k—=,f—= |07 (down)
— (0 =wp=vm—=z1 =y k=, =) (final)
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L Invariants of the machine

e Two successives items (f, «), (g, ) in the stack are always such that
g is the target of a.
e The sequence of states of the machine between two successive (leaf)
moves is always of the form
(explore) (down)™ ! (next) (up)™!

with m, n > 1. Graphically:

v

Toup

(More on this picture at the end of the talk)
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s The category Ope

It has as objects all opetopes, and morphisms by generators s, (for each
node of the tree) and t, and relations

(Inner)  sysy =syt (all edges)
LN N

(Glob1) tsy, =s«sy (all leaves,w non degenerate)
TN LN

(Globl) s¢t =tt (x=root,w non degenerate)

LN - 0N

U
(Degen) ts, =tt (w degenerate) &

Opetopic sets are presheaves over Ope.
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14 Polygraphs (a_k.a. computadS)

A polygraph is (a presentation of) a strict w-category (i.e. all truncations
are strict n-categories). It is given by the following data:

e a set Py of generating 0-cells,

e a set P of generating 1-cells, each coming with specified source and
target in Pp. This gives rise to a free strit 1-category P; over these
generators.

e a set Ppy1 of (n+1)-generating cells, each coming with a specified
source and target in P}. This gives rise to a free strict
(n+1)-category Py ; over these generators.



= Polygraphic syntax

The n cells (or n-morphims) of P} are equivalence classes of n-terms built

via the following rules: /m nid o, - oorhicl
< = ]
o If x € P,, then x is an n—term. "

e If tis an (n—1)-term, then id(t) is an n-term. %+ Baizmbl
e If t1,tr are n-terms and / < n, then t; o; tp is an n-term, provided
s"'s and "'t are provably equal as (n—1)-terms.
Sources and targets are derived information:

s(id(t)) =t t(id(t)) =1t
s(tiojty) =stojst t(tiojto) =ttioith (i<n-1)
5(t1 Op_1 t2) =s5b f(tl Op_1 t2) =t (i <n-— 1).

Equational theory (for n-terms)
(tl o; tz) Oj t3 = t1 0; (t2 o; t3) (category)
id"(s"t)o;t =1t to;id™ (1" t) =t (category)
(s10is2)0j (t10j t2) = (s19jt1) oi (s205 t2) (i #j) (exchange law)
id(tl) o;id t2) = id(tl o; tz) (i < n-— 1) (2-category)



ko
Occurrences of generating n-cells in an n-cell
Let t be an n-term. We say that
e if x € Py, then x has one occurrence (of a generating n-cell) (labelled
by x),
e id(t) has no occurrence,

e the set of occurrences of t; o; tp is the (disjoint) union of the sets of
occurrences of t; and ts.

This notion is invariant under the choice of representatives of t.
It can be formulated using the language of contexts.

An n-context is a term with one occurrence of a special n-term [], with
specified source and target, called the hole.

We use the notation C[] for the context, and C[s] for the result of
replacing [] with some actual n-term s with the same source and target as
the hole. This is called filling the hole.

Then occurrences (with their labelling generating n-cell) of ¢ are in
bijection with the pairs (C[], x) such that x € P, and t = C[x].
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5 Many-to-one polygraphs

A polygraph is called many-to-one if for all n and x € P,,, we have
tx € Pn_1 (all generating cells have as target a generating cell).

Theorem. Many-to-one polygraphs are the same thing as opetopic sets
(giving rise to an equivalence of categories).

e The theorem has been proved by
, replacing “opetopic” with “multitopic”.
(On the other hand, has proved the equivalence
between multitopic sets and opetopic sets.)

° has a more direct proof, relying in part on notions
and results of

e Here, we offer a “plug-in" in Cédric’s proof, making it entirely
self-contained.

Remark. It follows from 's work that many-to-one polygraphs form
a presheaf category Set(??)op(without an explicit description of 77).




& The key lemma

A many-to-one polygraph gives rise naturally to a family of polynomial
endofunctors V,P (for n > 1):

s P t
Pn—l — An — Pn — Pn—l

where A,(t) is the set of occurrences of (n—1)-generating cells of 5 t, and
where s is the corresponding labelling (or filling).

Let P be a many-to-one polygraph. We write P/ for the set of
many-to-one n-cells, i.e. the cells whose target is a generating cell.

Lemma. For all n, there exists a bijective correspondence
between P and the set TrV,P of (V,P)-trees.

e There exists a composition map (_)° : TrV,P — PI"° based on a
notion of placed composition defined by

. proves that (_)° is bijective using some machinery
developped by

e We provide here an explicit inverse to ()°.
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« Sketch of the proof of the theorem from the lemma

Here is the skeleton of the rest of 's proof.

e One defines a realisation functor |_| : Ope — Pol™° (idea: name all
sources and targets of an opetope). The goal is then to show that the
induced adjunction

((left Kan extension of |_|) - nerve)
is actually an equivalence.
e The key lemma

- allows to define a shape function from P, to @, (hereditarily use
the key lemma, stripping the decorations by generating cells, and
retaining only the underlying opetope),

- and to establish a bijection

between P, and ¥,cq,Pol™°(|w|, P) = Lweo,(NP.)

over O, (restoring the decorations!).
- This allows to prove that the unit and counit of the adjunction
are isos.
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Rest of the talk: proof of key lemma

(1) Recall the placed composition of and define the composition
map (-)° : TrV,P — P'°. For this we need a tool /notation that we
call context lifting.

{(2) Define an invariant associated to evey cell (not only the many-to-one
ones) = a forest, i.e. a (possibly empty) set of non-degenerate trees.

(3) Look more closely at this invariant when the cell is many-to-one: it
provides the inverse of (_)°.

J ()meﬁ conti Lut ¢on |



[t
Placed composition (back to many-to-one polygraphs)

n-
Consider two many—to—one\c/ells s and t such that s s = C[tt] for some
context C[]. Then the term
so CM[t]

is well-defined and called the placed composition of s, t at C[].

T dim .

/Q:v - s C_)_[_—-) Z

/b po C’.\“J



Y Composition of (V,P)-trees

e It T is degenerate, i.e., reduced to a leaf decorated with a
(n—1)-generating cell y, then we set T° = id(y).

e If T is non degenerate, i.e. has at least one node, we fix an
admissible (i.e. ancestor respecting) enumeration of the nodes of T.
This induces a sequence of trees: the i-th tree has the first / nodes of
T, and the first one is just a single node tree decorated with
generating cell x; (the root of T). We set x{ = x and define T ; as
a placed composition of T° and x;1 (the decoration of the (i 4+ 1)-th
node) guided by the edge connecting the (i 4+ 1)-th node to T;, which
itself reads as a context by the definition of (V,P).

That this definition is independent of the choice of admissible enumeration
is a consequence of the following property, for (n—1)-contexts with two
holes C[]1[]2 and generating n-cells x1, x such that tx; can fit in [];
(i=1,2)( rule!) :

ICTl Paliftxe]2 o1 CR[sx]1[x]2 = CT2[txi]1[xo]2 o1 CT[x1]1[5 x2]2 I
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¥
The other way around: the forest of a cell (setting the scene)

We shall associate with every representative t of a cell in P} a forest #(t)
whose nodes are decorated by elements of P, and whose edges are
decorated by elements of P,_1, in such a way that the following properties
hold.

e The set of leaf edges (resp. of root edges) of #(t) is in bijective
correspondence with a subset L (resp. R) of nodes of the forest
recursively associated with the source of t (resp. the target of t), and
the bijection preserves the decorations.

e The set of nodes of #(s t) that are not in L is in bijective
correspondence with the set of nodes of #(tt) that are not in R. We
abuse notation by writing this as

#(st)\ leaves(#(t)) = #(tt) \ roots(#(t)).



= The forest of a cell (definition)

(the polygraph is many-to-one, the cell is arbitrary)

e If t = x is a generating n-cell, then #(t) is forest consisting of one
tree reduced to one node, decorated by x. The leaf edges of the
forest are in one-to-one correspondence with the nodes of #(s x) and
receive the corresponding decorations, and the root edge is decorated
with tx.

e If t =id(t’), then we set #(t) to be the empty forest (whatever t’ is).

o If t =t oj tp, with i < n— 1, then #(t) is the disjoint union of the
forests #(t1) and #(t2).

o If t =t 0p_1 tp, then #(t) is obtained by grafting some trees of

#(t) above #(t1): if a root u of #(t2) is such that u € L (L relative
to t1), we graft the tree of root u of #(t2) on the corresponding tree

of #(1.’1).
This definition does not depend on the choice of a representative of an
n-cell.



BN S \
[renenic Lﬂ/&p\”ﬂqhaw fon #/ﬁoﬂ_}ﬁ)

O\CMMH/O@LL% )ba;/\w{{w/) = Eaxy%ﬁ[h)
\ %

[3 &/\Lmi\) Cly]

/mgcl {V\Jﬁk



ga

MQ/\A‘C— L)MLLP\"MHWI /m #/toi ‘LEL> Z{iv\ﬂ,)

" 56“"
¢ :
8~ ey NEAE
b ety e
B P
(A
~ o/
W
£ L

Hlpmal)) = €699 key b iy g, 3
A (tong )" < 6, 6 &) m) R=zh m3

Rewmand — Tle c'jawpaﬂc} Lerween  Lavey [#//J)) ot
Yol of #H(paz(p])

e W\Pg fon He cmposihay _ O — cen-1

[xfm p o ?nk) .




g Canonical forms for many-to-one cells

Proposition. Any many-to-one n-cell has a representative t that has one
of the following shapes:

o t = x for x € P,
e t =id(y) for y € Pp_1,
e t=1t 0y 1t...05_1t, (n>2), where
- t1 = x1 € Py, and
- each t; (i > 1) is of the form C,T[x,-], where x; € P, and
sti_1 = C[’tX,'].

In plain words, t is a placed composition of the generating n-cells
occurring in it.
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The tree associated with a many to one cell

Corollary. If t is many-to-one, then we have
o #(t) is empty < t =id(y) for some y € Pp_1.
e #(t) is not-empty < #(t) consists of a single (non-degenerate) tree.

Moreover the set of leaves of #(t) is in one-to-one correspondence
with the set of nodes of #(st) (i.e. #(st)\ L=10).

This allows us to define # : P — TrV,P by

e #(id(y)) is the degenerate tree whose unique leaf is decorated with y,
o #(t) = #(t) otherwise.

Morale. Even in the canonical forms of many-to-one cells, t; for (i > 1) is
not many-to-one in general. This is why we had to define a wider invariant
(forests) working for all cells, and only then narrow it down to the
many-to-one cells.



H (-)° and # are inverse

o (L)°o# =id. Clear for t = x.
- If t =id(y), then #(x) is the degenerate tree decorated with y,

hence (#(x)) =id(y) = t.

- Ift=x1 0, 1t...0n 1 t,, the inductive definition of #(t)
provides an admissible enumeration for #(t), composing along
which yields exactly the same representative t we started from.

e #0(.)°=id. Clear for degenerate T. If T =x{z <+ T, |z € Z},
then we fix an order Z = {z; < --- < zp}, take adm. enum. on each

T,,: this determines an adm. enum. of T. One shows that
composing along it gives (for suitable lifted contexts C,T[]) N2
T° =xo0p1 C{[Tg]on-1...0n-1 CH[TE] <k 2}
#(T°) = x{z « #(C [T |i=1,...,p} o
and we conclude by induction, thanks to the following easy —

Lemma. If C'[] is a lifted context, then
#(CM[t]) = #(t) (for all ¢ fitting in the hole)
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