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“&m\i"‘ 1. TREE DECOMPOSITIONS

Definition 1.1 ([HM22, b( 1.20]). A non planar, rooted tree T is the data of a finite set V(T) of
vertices, a nonempty finite set E(T) of edges, a distinguished element r € E(T) called the root,
together with:

(1) a function t: E(T) \ {r} — V(T), which we think of as assigning to an edge e the vertex
t(e) of which it is an input;
(2) a function O: V(T') — E(T), assigning to each vertex v its output edge O(v [(\?tc(' \W’/ vat Y"lalt)
such that for any edge e € E(T), e # r, there exists a number k such that (O ot)¥(e) = r.

The edges in the complement of the image of O are called the leaves of the tree T. The vertices

t in the complement of the image O@are called stumps, or nullary vertices. An outer edge is an
edge that is either the root or a leal. Anfinner¥dge is any other edge of T' , i.e., an edge in the
image of O that is not the root. Such an edge 15Wn output edge and an input edge of some
other vertex.

Danenire—
Add some pictures. —\,

For a tree T, we denote by E™ (T) the set of its internal edges. Since f}( any(interna )edge e
writes as e = O(x) for some other edge z, and we define s(e) € V(T') as the vertex obtained as

s(e) = t(x). We/Wﬁ\ll refer to the two vertices {s(e),t(e)} as the two external vertices of the inner
/ edge e. (\a\&m\\{ ed'

Add some pictures.

o—
O‘\ \"’l( efinition 1.2. For a given tree T', the partial order on its set of edges E(T) is defined as follows:
P w‘-’o—for any two edges e, f € E(T), we say that e < f if and only if there exists a number k£ € N such

that (O ot)*(f) =e.
Aw l‘\ \

In particular, the root is the minimal element of F(T'), while the leaves are the maximal elements.

Definition 1.3 (The dendroidal category €.). add definition

We have four subcategories of €2 which are of interest: ’ i 7%

e Lol ertoanl fag
Jbhoe
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4% =3 ) n ury
o 2 is the full subcategory of@whose objects are Op[gl and reduced trees;
e Ob(B) = Ob(A) = Ob(C) = (22) , and e —

— morphisms in B are root preserving;
— morphisms in A preserve root and induce a bijection on the set of leaves;
— morphisms in C preserve the root and induce the identitity on the set of leaves.

. . . 4l
Observe that in 2 there are no degeneracy morphisms, since they would add a%unary vertex
and starting from A we no longer have outer faces, as they don’t preserve the set of leaves. T

Remark 1.1. Fi d reduced tree T, the slice categories N
emar or any open and reduced tree T, the slice categories PM AR Cé”.f\ N
2
C/T, A/T, B/T DAL = -
are finite, and the coslice categories /
L]

T/C, T/A s <y
are finite as well. However, the coslice category T/B is not finite. € ° z
Definition 1.4. An orthogonal factorization system on a category ¥ is the data of two wide
subcategories .2, % C €, identified with the two classes of morphisms they determine,

(1) Iso(¥¢) C L N%;
(2) every morphism f: x — y in ¥ factors as f =lor, where l € £ and r € %,
(3) the factorization is functorial: any commutative diagram such as

o —“ oo

ll’ef
1

[ ] 4)'1) [ ]
admits a unique morphism (dotted) making the two squares commute.

Remark 1.2. Point (3) implies that the factorization of a morphism as f = r o is unique up to a)(
unique isomorphism.

Remark 1.3. By [HM22, Proposition 3.10], each of the four subcategories of trees are equipped

with a factorization system (&, %). Indeed:
Ba o~

e In C there are no isomorphisms q}dt identities. The only nontrivial class of morphisms in
the factorization system is the left one: we have (£, %) = (Inner Faces, {idr}r).

e Any map in A factors as an inner face map followed by an isomorphism, i.e. we have
(Z, %) = (C,Iso(A)). In particular, for any tree T in C, we have mo(A/T) = Ob(C/T).

e Any morphism in B factors as a morphism in A followed by a root-preserving external face
map:

(&, %) = (A, Ext Faces).

e Any morphism in Q¢ factors as a morphism in A followed by an external face map
(non-necessarily root preserving):

(Z, %) = (A, Ext Faces).

Notation 1.4. For any vertex v € T, we call C,, the subcorolla of T" determined by v. We denote
the corresponding subtree inclusion by v: C,, — T. The map ¢ is an external face: it is hence a
morphism in ¢, and it is a morphism in B if an only if v is the root vertex.

We denote by v,., or sometimes by r when no ambiguity arise, the root vertex.

w“

Definition 1.5. Consider a tree T € Q2. A decomposition of T' of degree at most 2 is pushout
square



T fuk peion
7, leot
MODEL STI%ZEURE N oco-PREOPER. 3

S A
L
"\oa\/ \__) g
i f
inside €27. We loosely write \/
T=5JR

for the pushout T'= S U, R, where e is the inner edge of T defined as e = f(rg), where rg is the
root of R. Observe that necessarily e = g(I), where [ is a leaf of S.

N<+—Wn

The decomposition is trivial whenever one between f or g is an isomorphism.

Remark 1.5. If the above diagram is cocartesian in €29, then the two maps S — T, R — T have to
be inclusions of subtrees, namely external face maps, so in particular they are not morphisms in A.
This means that T can no-longer be expressed as a colimit of S — T and R — T when we move to
the category A. For this reason, from now on we will say that T is the grafting of R onto the leaf | mopaco/m;j_

of S. (f/a‘("

(1) a decomposition of degree at most 2 of T, for which we write 7' = S®|J S, and n
(2) decompositions of S® and S* of degree at most k — 1, fu\ % &ﬁ W,

Definition 1.6. A decomposition of a tree T of degree at most k is given by:

such that overall there is at most one trivial decomposition of a tree appearing in the sequence.

Remark 1.6. An isomorphism of decomposition is an isomorphism of pushout diagrams. Unravelling
the definition, we see that classes of isomorphisms : ositions of a tree T are in bijection
with the subsets of the set of internal edges of T(E C E™(T),

From now on, whenever we talk about uniqueness of objects and arrows in A we will always
mean uniqueness up to isomorphism.

?
cbfAni
Construction 1.7. Let a: S — T be a morphism in A. For any vertex v of S, there exists a(subtre
T(a), = T, which we call the blow-up of v by a. The tree T'(a), is uniquely determined e
(A, Ext Faces)-factorization system in Q2: it is the essentially unique\t}/ée making the following

diagram commute: \V

Equivalently, the subtrees T'(«),’s can be cara fiterized as the connected components of the
planar graph that we obtain if we embed the tree 7" in the plane and we cut it along the edges in

int . - - ak \\l’\
M). oqligen o P A Mﬂ‘&‘”“* ondud- 2 f"(’CNv T /Awa\),) £ fod ul)
Remark 1.8. Although decompositions of a tree cannot be expressed as colimits inside the category
A, we can parametrize them via morphisms into the tree.

Indeed, any morphism «: S — T induces a decomposition of T into the grafting of all the
subtrees T'(«),’s, and we loosely write

T= [J T(a).
veV (a)

We call the trees T'(«), the blocks of the decomposition induced by «. We can go the other way
round as well:

e If we are given a binary decomposition of T" as T' = S' U, R, then we can construct an inner
face map inducing that decomposition. Indeed, we can construct a tree T.) by contracting
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all inner edges of T' except the edge e. Then there exists an essentially unique inner face
map

Qe : T{E} — T,

inducing a decomposition T = T'(cve)¢(e) | T'(te) s(e), and by direct inspection we see that
we recover the original subtrees S and R precisely as S = T'(cw)¢(e) and R = T'(ae)s(e)-
When there is no ambiguity, we write

Ts(ey = T(ae)s(e) and T, = Tyey = T(ae)i(e)s

where we identify the vertices ¢(e) and s(e) with the unique two vertices of 7.y = domlo.
e More generally, for any set of inner edges £ C Eint(T), we call T the tree obtained from T
by contracting all the inner edges in E™(T') \ E; there exists a face map ap: T — T, and
ap determines a decomposition of T' into the subtrees obtained by cutting along the edges
in E. Observe that in the category C there is a)% unique such ag, while in A uniqueness is
up to isomorphism.
Pir 42 hanrear d'ditine, e were
blle | fate PO an f4eh et wn
e For any natural number n, there is an essentially”unique n-corolla C,,. There exists a r/h/\mhq
morphism C,, — T in A if and only if n is thefiumper of leaves of T', in which case the
morphism is essentially unique. For this redson w¢ write Cp — T for such a morphism
and corolla. The corolla Cp correspondsto the tr¢e Tj obtained by contracting all inner
edges in 7', and the map

FExample 1.9.

5 TP{‘M' unNg
represents the trivial decomposition of 7', wher¢ the only block is T itself.
w\\}u\,\cf e The identity map idr: T =T correspopds to the W decor.nposition of T', where for
\)a}’\ any vertex v of T there is the block T'(idr), =|CY, S0 v,e can write

T= W2, = ( g
()g/) L\mc\\'ﬂw €o gelr . veE/J(T) r ¥ D\h U Cv “ [”-),

Definition 1.7. The category of dendroidal necklaces dNec has:

e as objects dendroidal necklaces, i.e. the data of (T, a), where T is a treein A and a: S = T

is a morphism in A;
e as morphisms, maps F = (¢, f): (T, «a) = AQ, ) where ¢, f are morphisms in A ar}bée
followine-sequare tess Y on
commutes+ &\H "’y _—y
doma —%— T

ahe

d p_ & Pio na¥urel comne eymibde ol
dom —5 Q) =

o conpomlim .. .

Definition 1.8. We say that a morphism F = (¢, f): (T, a) — (Q, B) is inert if f: T = @Q is an

isomorphism, while a morphism is called active if ¢: dom 8 =+ dom « is an isomorphism. We say

that the morphism is strictly inert (resp. strictly active) when the isomorphism is the identity.
Remark 1.10. There is a forgetful functor
U: dNec — A.

It sends a dendroidal necklace (7', &) to its underlying tree T, and a morphism (f, ¢): (T, a) — (S, 5)
to its active part ¢: T — S. On the other hand, A can be embedded into dNec via a functor

o

j: A — dNect
which sends a tree T to the trivial decomposition (T, (% — T') and a morphism f: T — S to the [( J'
active morphism (id, f): (T, & — T') — (S,% — S). We have that U o j = id. Lo XY
—

. % Lo Se _
[Do/ ondeak P o {a &ch_ on\Ne \¢€\—S¢ fW\l'lMAFt (f”\’\&
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1.9. Tree decompositions and active-inert morphisms. We study some proper}y of active
and inert morphisms with respect to tree decompositions. Le
Construction 1.11. Consider a strictly active morphism between two dendroidal necklaces o{

(d, £): (S,a) — (T,~). dov g — &

vedom « vEdom 7y

[
In other words, it is a factorization v = fo«. In particular, T" and S can be written as the graftings 095../67 ~ \
\V4

For any vertex v in dom o« = dom+y, the map f induces a morphism
foi S(@)y —> T(7)w.

he morphism f, is determined by the (A, Ext Faces)-factorization system in £22. Indeed, the map
Bdaov: C, — T can be factored in two ways:

/ c, —* s R_°“.g C, —* s p—2 .5 P,
| N = 1
| SNUA e ext 7
1A B8 N s 7
-~ ~ 0 7
T(Ba), -ty T S(a), A5 T

By uniqueness we have T ~ T()v, hence we get a map f,,: S(a)y, = T(7)s-
The original map f: S — T can be recovered as the grafting of the f;s, and we write f =J, fo-

Proposition 1.12. For any two composable strictly active morphisms
(8,0) L205 (1, fo) L12s (1, )
and any vertex v € V(doma), it holds that (go f)y, = gv o fo-

Proof. Both morphisms (g o f), and g, o f, can be obtained as left maps in the factorization of
the same map, and therefore they need to coincide.

Indeed, recall that 8 = g o f o «; the morphism (g o f), is uniquely determined by the diagram:

O

Definition 1.10. Consider a tree T' € A and two decompositions a, § € A/T. We say that («, )
is a nested decomposition of T if every block determined by f is a subtree of a block determined by
«. We say that « is the first level of the decomposition, while § is the second level.

In other words, (o, 3) is a nested decomposition if for any w € dom 8 there exists a unique
vertex v, € dom « such that T(8), C T(a)y,, -
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If we call V,, the subset of V(dom ) formed by those vertices w for which v = wv,,, then
V(dom ) = | ],cqom o Vo and for any v € dom o we have

T(a)y = U T(3)w-

weVy,

Proposition 1.13. For any tree T, a pair (a, 3) € (A/T)? is a nested decomposition if and only if
there exists an inert morphism of necklaces (f,id): (T, 8) — (T, «). Moreover, such inert morphism
s unique up to isomorphism.

Proof. Suppose it exists an inert morphism (f,id): (T, 8) — (T, «) and let S denote the domain of \'L
(. For any vertex v € «, there is an induced decomposition morphism / T
£

Bv: S(f)v — T(a)m

and we have that for any vertex w € S(f), there is a natural isomorphism

(e)o(B))w = TBu hy, [a/g) y a4 yeled dacgvf)gmum/

For the reverse implication, suppo\;bx(a,ﬁ) is a nested decomposition, gnd select a vertex
v € dom a. The decomposition of T'(«), as the grafting of the T'(3),,, for w E@ corresponds to a
morphism S, — T'(«),, and these assemble to a morphism of trees
" ﬂj{\ﬂﬂ& " o\
S = U Sy —> U T(a), =T (%). . ! Pd/ awn €

vedom « vedom a P‘u\‘ \V\»\Udﬂix‘ .

By the correspondence between decomposition of trees and morphisms in the slice category A/T,
the map (*) has to coincide (up to isomorphism) with 3, and it is immediate to check that the
assignment

V(doma) 3 v — S, € Subtrees(5)

uniquely extends to a leaves-preserving morphism of trees f: doma — S which is injective on
edges. This means that f is an inner face map, and by construction we have (up to isomorphism)
the factorization @ = 8o f, as wanted. O

From uniqueness of left maps in the factorization system for A we also deduce the following.
Proposition 1.14. Consider a sequence of two inert morphisms
¥id) (id) - .

Denote by R the domain of B and by S the domain of . For any vertex v € domy, there are
induced morphisms

Bu: R(g)o — T(X)w, Yo S(gf)e — T(X)w, fo: R(9)v — S(9f)w,
and we have that B, = vy, o f.

2. THE TREE COMONAD
We denote by Ch(A) the category of functors Fun(A°P, Ch). In this section we construct a
comonad on Ch(A) which describes linear co-preoperads. g, e M_ tﬁ o@t’)"“ 2
Notation 2.1. To a tree T € € and a morphism «: S —¥ T we can associate the following numbers:

Ir = #Leaves(T);

dim(T) = #E™(T);

dim(a) = #a(E™(S)));
codim(a) = dim(7T) — dim(«).

Observe that, if « : S — T is a morphism in A, then dim(a) = dim(S5).
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Construction 2.2. Given M|e Ch(A) and a tree T' € A, define the chain complex KM (T') as:

0= ] ® M@,

a€A/T veEdom o

where invariants are taken under the action of isomorphisms of A/T. Observe that the product is
finite, so the above expression may as well be written by using direct sums since Ch(R) is abelian.
We can get rid of invariants by taking representatives of classes of morphisms, and in this case we
write KM (T') as the finite product

KMT) ~ [[ & MT(a)).

a€C/T veEdom a

Observe that we can equivalently describe KM (T') via dendroidal necklaces: the first product
ranges over dendroidal necklaces X with underlying tree T', i.e. of the form (7', ), while the second
product can be seen as parametrized by those X € mo(dNec) having T' as underlying tree.

In particular, for any o € A/T, the a-component of KM(T) is, by definition, the chain complex

given by given by
[proia o K@m = Q@ M(T(a)). X

vedom a

For a tree morphism 8: T — T" in A, we define the map KM (8): KM(T') — KM(T) via its
components proj, o KM (S), for any a: S — T in A: n {_
@ ot
e ho dux e &
proj, o KM(B) = ( ® M(ﬁv)> O Proj, -

vedom «

For ¢: M — N morphism in Ch(A), the map K(¢): KM — KN is defined, for any tree T' € A,
as:

inv

Eor=| [ & vrw.

a€A/T vEdom a
In particular, the map (K¢ )r sends the a-component of KM (T) to the a-component of KN (T).

Proposition 2.3. The assignments just defined determine a functor

K: Ch(A) — Ch(A).

Proof. First of all, we need to check that for any M € Ch(A), KM is functorial on tree morphisms.
It is clear that K M (idr) = id g az(r) for any tree T', so we need to check that, for any two morphisms

RLTL T', we have KM (Bovy) = KM(vy)o KM(B). Fix a € A/R, then we have the equalities

proj, o KM(8y) =

= < ® M((B7)v) o proj,@w> naturality of projection

vedom a

_< ® M((7)v) © ® M(ﬂv)opr0j57a> Proposition 1.12

vEdom o vedom

= ® M (~y) o proj.,, o KM(f3) naturality of projection
v

= proj, o KM(y) o KM(B). naturality of projection

Since this holds for any « € A/R, the desired equality holds.
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Secondly, we need to verify that K is functorial with respect to morphisms in Ch(A). Consider

two composable maps M Yo N 2 L since K1) sends the a-component of KM (T) to the
a-component of KN (T) for any S € A, one needs to check that, for any v € dom «, we have

® (Yo d)r), = ® V(ay) © PT(a)y

vedom a vedom «
which is true since ¥ and ¢ are natural transformations.
O

2.1. The comonad structure. We now extend K to a comonad by defining comultiplication and
counit.

Recall that, for any M € Ch(A) and any tree T, we can write KM (T) by using dendroidal
necklaces as

inv

EMT) = | ] & MT(a))

(T o) vEdom

As pointed out in Proposition 1.13, isomorphism classes of inert morphisms into a fixed
dendroidal necklace (T, ) represent refinements of the partition of T' given by «. Indeed, a couple
of partitions of T' («a, ) forms a nested partition if and only if the(class 25 isomorphism of inert
maps (T, 8) — (T, «) is non-empty, and this happens if and only 1 is orization
a = B o f. In particular, f is (essentially) uniquely determined by « and §.

We use this formalism to express the iterated functor K?2.

Indeed, for any M € Ch(A) and any tree T, the object K?M(T) is, by definition, the chain

complex

inv mv

KZM(T) = H ® H ® M((T(O‘)v(/@v))w) 5

(T,a) vEdoma \ (T ()y,B,) wEdom By,

As observed in Proposition 1.13, (T'(«)y(84)))w = T(8)w, and since finite product commutes with
tensor product we can rewrite the above as
M@= I II M@ =11 1] MT®. | .
(T,Ot) (T,ﬂ)H(T,(}) (T,Oé) (a,ﬁ)nested

where invariants are taken with respect to isomorphism classes of dendroidal necklaces (T, ) with
underlying tree T and of inert morphisms into (7, «) (or, equivalently, of dendroidal necklaces
(T, &) with underlying tree T and of nested decompositions («, 3)).

In particular, we can get rid of invariants if we consider (T, ) € mo(dNec) and strictly inert
maps (f,id): (T, ) — (T’ ).
Ezample 2.4. For any (T, ) € mo(dNec), the pair (a, «) corresponds to the trivial inert morphism
(id,id): (T,a) — (T,a). In particular, for any vertex v of domc, there is an isomorphism
(dom &) (id), ~ C, (the subcorolla of T determined by v), and the induced map «,, is just the
trivial decomposition of T'(«),, i.e.

Oy - Cv = CT(a)q, — T(Oé)v.

In conclusion, we have
Proj(g.q 0 K2M(T) = Q) M(T(a)y).

vEdom «
Construction 2.5. We define the comultiplication Ay r: KM(T) — K?M(T) by defining its
(a, B)-components as
proj(aﬁ) oA = projB.
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In other words, Ays r is the unique map making the following triangles commute, for any nested
decomposition (a, 3):

I ® MT(a)) S non ® M(T(8)w)

(T,a) vEdom « %) wedom
projg Proj, s
Q@ M(T(B)w
weV(R)

Define eprr: KM(T) — M(T) as the projection on the component relative to the trivial decompo-
sition Cp — T.
It is clear that €: K — lcy(a) is a natural transformation. The same holds for A.

Proposition 2.6. The map A: K — K? is a natural transformation.

Proof. Fix M € Ch(A) and a tree morphism a: S — T, we want to check that

Proj(y ) © K*M(a)o Ayt = Proj(y g © Ans o KM(a) (%)
for any nested decomposition (, 3) determining a component in K2M(S). The left hand side in
expression (*) fits into the commutative diagram

KM(T) —227  geeppry — MO gopy(s)

PIOj(ax,a PTOj(y,
Pmm l (ax,aB) l (x.8)

M(T(ef)w) — & M(S(B)w)

wGV(R) weV (R)

while the right hand side fits in the commutative diagram

KM(T) —SM gea(s) Bars K2M(S)

projj .
prm \ J{prokx’ﬁ)
M(T(af)w)

M(S(B)w))

wedomﬂ wedom B

where in both diagrams the bottom horizontal arrow is given by &, cqom g M (w)-

In particular, the equality () holds, as wanted.

Consider now a morphism ¢: M — N in Ch(A), we need to check that, for any tree S € A, we
have the equality

7 (K*Y)s 0 Aps = An.s 0 (Ki)s.
Fix at@air (x, 8)- The following two diagrams commute:
o dw\~e—

oh .
o yt K%) Dhws | peapggy — 0T e

roj roj
n m lp J(x.8) lp J(x,8)
L 4

o
(:\Q/CWFC” ? deomBM(S(B)w) 7 wG%mﬁN(S(ﬁ)w)
KM(S) —595 4 gN@s) — 2% KIN(S)
w) w) lprOJ'(x,e)
N(S(B)w)

wEdomB wEdomﬂ
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where the lower horizontal arrow of both diagrams is given by &  ¥p(g),, -
weV(R)

This proves that proj, g o (K2Y)soAp s = Proj(y 5 © AN,s © (K1)gs, and since this holds for
any nested decomposition (x,8) the statement is proven. O

We need to prove the comonadic identities.
Proposition 2.7. The following diagram commutes:

K -2, K2

N

K2 NG K3

Proof. Fix M € Ch(A) and a tree T € A. Observe that we can write K3M (T') as the product

I &

(x,B,y) vedom~y

where (x5, ) ranges over the isomorphism classes of composable inert morphisms, represented by
strictly iner'Ynaps

A (f,id) (9 id)
oW (T,y) = (T.8) — (T.x).
We check the coassociativity condition by proving that

B 0
proj(xﬁﬂ)((Kx [e] A)M,T = proj(x,ﬂ,’y)(AK (e] A)M,T (*)

for any such triple. Denote by U = dom y, R = dom 8 and S = dom~. Consider the LHS in (%),
then we can build the commutative diagram:

Apn,T (KAM)T

KM(T) —=% K2M(T) K3M(T)

[
& Am. 10w

)u) ® K2M(T(x)u)
l@ Proj(g,, ,v,)
S M(T(X)u (Vo )w)

uEU wES(fg)u

QM

prOJ(xn)

®

=
2
g

0Ag™ [5 u\J»"” por

=
=
2
g

@
o §
>
<

S
IS
&

where the composition of the vertical arrows on the right hand side of the diagram gives precisely

PIOj(x8,7)-
Oun the other hand, by considering the RHS in (*), we obtain the following commutative diagram:

KX
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KM(T) 225 K20M(T) K3M(T)
m} lproj(x,m

Q@ KM(T(5))

TER

l@ proj,,.
Q® & MTPB)r(vr)w)

reRweS(f),

N\ Proigs,y
proj,

Q@ & MTMH)w)

reERweS(f)r

1

Q@ M(T(7)w)

weS

Since here as well the composition of the vertical arrows on the right hand side gives proj, s

)
the thesis is proved. O

Proposition 2.8. The following diagram commutes:
K+ K> — K

Proof. Fix M € Ch(A) and a tree T € A. We check commutativity of the above triangles
component-wise. Choose o € A/T. The triangle on the left hand side commutes because of the
commutative diagram

Am,T EKM T
K2M
DFOJ(CT—>T a)
Proj, Proj,
vEdoma

proving that proj, o (eKA)y,r = proj,,, as wanted.

For the right hand side, a similar argument applies, in the form of the commutative diagram:

An,T (Kenm)r

KM(T) —=2T 5 K2M(T) KM(T)
l . Proj(a,a) l .
Proj, Proj,

® KM(T(a),)" 25" " ® M(T(a),)

veEdom a vEdom «
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3. COALGEBRAS OVER K ARE co-PREOPERADS

Here we assume to work with reduced presheaves, namely M € Ch(A) such that M(n) = R,
where R is the ground ring. In particular, for co-preoperads we take 6, = id. Otherwise, need
to understand how to obtain canonically/meaningfully a map M (n) — R.

When we drop units from the definitions it means that our operads are equivalent to the
augmentation ideal of augmented operads, whereas the cobar or bar constructions are equivalent
to the augmentation ideal of the classical unital gelarTonsitsgion.

In this section, we use notation introduced inl Remark 1.8.

M\?\”\W A K-coalgebra is (M,0), where M € Ch(A) and 6: M — KM is a natural

transformation making the following two diagrams commute:
M —2 5 KM M
b e BN
KM X% k2M KM — M
Definition 3.2. A linear co-preoperad is a functor M € Ch(A) together with structure maps
Or.c: M(T) — M(Ty(e)) @ M(Tye))
for any tree T and any internal edge e € E™(T'), which have to satisfy:

e Coassociativity: for any two edges a,b € E™(T),
— if @ and b are not comparable in the poset E™ (T'),then

(07, 0y b ® 1M (T,(0)) © 07,0 = (Lar(Tyhy) ® OT,,0) © O
— if @ > b in E™(T), then
(lM(T_s(a)) ® eTt(a)vb) obra = (OTS(b),a ® 1M(Tt(b))) 0 b1

e Naturality: whenever a morphism «: T — T” is obtained as the grafting of two morphisms
x: R— R and 8: S — S along a leaf a of R, namely

Y=xXUgB: T = RUS—>R’ Us =7
x(a)
then the following diagram has to commute:
01
M(T') =% M(R') @ M(S")
M(v)J( J(M(x)®M(B)

T) 45— M(R)® M(9).

Here some pictures

Remark 3.1. In other words, naturality and coassociativity conditions are equivalent to asking
that (M, {07}, is a lax monoidal functor with respect to the operadic composition in A and the
tensor product in Ch 4

Remark 3.2.
e The coassociativity condition deals with the fact that, for any two different internal edges
a,b € E™(T), the decomposition morphism Qfq,p} can be written as ayqpy = y0qy,y Or as
Qfqpy =7 0 agpy. Whether @ and b are comparable or not in the poset E™(T) determines

different blocks in the decompositions of 7. In particular:
— For any two non-comparable internal edges a,b € E™(T'), we have that

Ts(a) = T(aa)s(a) = T(a{a,b})s(a)

el
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and
Towy = T(w)sv) = T(fap})s(v)-
— If a > b in E™(T), then

Ts(a) = T(@a)s(a) = T(fa,b})s(a))
but
Towy = T(aw)sv) # T(ga,p})s(v)-
Or here some picture
e Any morphism of trees v: T'— T can be written as a grafting of two morphisms. Indeed,

if one considers an internal edge a € E™ (T') and defines x = 74(q) and f = v4(q), We get
that v = x U, 5.

3.3. K-coalg § are oco-preoperads.

Proposition 3.3. Let (M,0) be a K-coalgebra. Then (M, HT,e)TeA@eEm(T) 18 an oo-preoperad,
where O . = proj o fOr.

houvoween purtal dp vai? dgel

Proof. We need to check naturality and coassociativity.

{e}

For the naturality condition, consider a morphism v = x U, 3 as in Definition 3.2. The naturality
diagram can be factored as:

O PrOJas (a)

M(T) T KM(T') —2 M(R) ® M(S')
M('y)l KM(W)J lea)>®M(75<a>>:M(x>®M<ﬁ>

M(T) —— KM(T) —— M(R) ® M(S)

Or projaa

The square on the left commutes because of naturality of 8, while the right one commutes because
of the definition of the action of KM on tree morphisms. As a consequence, the naturality diagram
commutes as a whole, as wanted.

We are left to check the coassociativity condition. First of all, we reformulate it as follows. PM CQI,(W

Proposition 3.4. The coassociativity condition for a presheaf M € Ch(A) with maps {01 ¢}r.e is 'p
eqy/iv\al/ent to the following: for any choice of two different internal edges a,b € E™(T), it holds oM

that (“\[‘(“‘L )26 ,uw& [e(- cch ou’uJ& faw.' ) oWonlee .
PIOj(a,aqasy) © (KO O)T = DProj(ay ay, ,y, © (KOO (%) 4 /("L

A
Now, if Proposition 3.4 is true we can conclude our proof, since O—r (1]

Moo 4
proj(aa’a{avb}) o(Kfol)p = ﬂﬁ[ P(_LNTKL

= PIO0j (0, aqqpy) © (a0 0)r comonadic identities

= PrOj(ay,aay) © Aprr o007 naturality Q\)\ u\k‘&()w

= pI‘Oja{ayb} o 9T 9 C@_ Pd/
T

= proj(ama{a wy) © Aprrofrp naturality of projection (

= PIOj(ay.a.4y) © (K6o0)r. comonadic identities M},QQV““{— éz’(—/&

Therefore we are left with proving the claim.

Proof (of Proposition 3.4) . Suppose that ¢ and b are incomparable internal edges in T and consider

the following diagram: .
%@M Cmg(/ﬁ @});? CDWOCE('AU}’}.



(07, 0y b @ 1M1 (T,(0yy) © 07,0 = (Lar(Tugny) @ 0T, y,0) © OT -
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Ko
— % KM(T o K2M(T)
\ lprmaa lproj aa
014 a)

®07, (a)
— KM(Tt(a)) ® KM<Ts(a))

lpmJ“{a,b} t(a)®pmja{a,b} s(a)

M(T,) ® M(Ty)) @ M(Ty(a))

))@M( sa))

where the t)Xe composition of the two vertical arrows on the right is precisely PrOj (o, o (any)’ By )(

Remark 3.2, agq, b} s(a) : Cr,,y = Ts(a) is the trivial decomposition morphism, and by the coalgebra

s(a)
identities, we have that

PXOJar, 1y, 0y © OTow) = EM o) © OTu0) = L (T
so the diagram commutes, proving that
projéma{ayb}\o (Ko 8)pr = (0Tt(a)vb ® 1M(Ts<a>>> 007.,4.
Mutatis mutandis, the same diagram and the same arguments prove that
pm%” *{a b}\ (EO 0 O)r = (Lar(r,)) ® 01,0,0) © 010, DW
so the proposition is proven for a and b independent internal edges. @ 744 e (L%(W"
By similar arguments we conclude also in the case where a > b in E™(T"). Should I specify how

to do the equalitv in the RHS. eiven that it is what is different from the non-comparable case? [

proj(ama{a,b}) o(KfOol)r = proj(ab’a{a’b” o(K6@o0)r 0

3.4. co-preoperads are K-coalgebras. We prove that the structure maps of an co-preoperad
M assemble into a K-coalgebra map M — K M. (on i pdich ¢ Re @ -

Recall that, whenever we fix a tree T' € A, isomorphjém classes of dendroidal necklaces with
underlying tree T are parametrized by sisets of the inner edges of T: a subset E C E™(T)
corresponds to the dendroidal necklace (T, ag: Tr — T), and with this notation we can write the

comonad as
KMy = ] &) M(T(ap)).

ECE™(T)vedom ag

Construction 3.5. Consider an oo-preoperad (M,{fr.}). For any tree T, we define a map
Or: M(T) — KM(T) by specifying its components

O0r.0p: M(T) — Q) M(T(ag),)
veEdom ag
for any E C E™(T). We do this by double induction, on the cardinality of E™(T) and on that of
E. \I;e\c,a\ll);hat FE inherits a partial order from that on E™ (7).

N \e o #FE =0, then Ty = Cp — T is the discrete decomposition morphism and we define
]

S Or.c.—1 = idp (1)
o #FE =1, F = {e}, then
HT’QE = 9T,e'
o #FE > 2. Choose e € E a maximal element in F; we call such an edge an E-admissible
edge. In other words, an F-admissible edge is either not comparable with any other edge in
FE or is a maximal element in a connected component of E. For such an edge e, the subtree
T(ey induced by the binary decomposition ay.y is isomorphic to the subtree T'(ag)s() in
the mutti-bloek decomposition induced by ag.
We define

OT,0p = (1M(Ts(e)) ® eTt(e)v(aE)t(e)> 00



!
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Observe that the induction step is legitimate, since (ag)ie) = ap\fe}: (Tie)) B\{e} = Ti(e)
and #E™(Ty()) = #E™(T) — 1
Proposition 3.6. The definition of 01, does not depend on the choice of the admissible edge e.

Proof. We prove this by induction on #F. Consider another admissible edge m € E, then
necessarily m and e are not comparable.

If #F = 2, then the thesis is equivalent to the coassociativity of the structure maps {07} 5 of
the co-preoperad M.

Suppose now #FE > 3. Observe that e € Ty(,,,) and m € Ty, and that T,y = T(OE)s(m),
(m) (e) (m) (m)
Tsey = T'(ap)se). We want to prove that

(IIVI(TS(E) ® 0Tt(e)7(aE)t(e)> ° eTae = (IM(Ts(m) ® aTt(m,)v(aE)t(m)> 0 aTﬂﬂ (*)
Recall that the definition of € is inductive, so for example we can write
eTt(e))(aE)t(e) = <1M((Tt(e))s(7n)) ® G(Tt(c))f,(m)x((OéE)f,(e))t(m)) °© 0Tt(e)vm
and similarly for 9Tt(m)7(aE)
Observe that
(Ty(e)) s(m) = Ts(m)s (Tym))ste) = Ts(e)s T = (Tyey)tim) = Toom)ice)

t(m) "

((a:)t(e))t(m) = (AB)t(m))t(e) = AB\{e;m}

In light of this, we observe that in (x) we can write:

LHS = {1M(Ts(e))® <1M(T5(m>) ® 9T",aE\{m,c}> O9Tt<e>,m] }O"T,e =
= <1M<TS(E>> @ a1, (y) @ 0T7aE\{m)e}> ° <1M<TS<C>> ® 9Tt<e>,m> 001
RHS = {1M(Ts(m))® <1M(Ts(e)) X efvaE\{m,e}> OeTt(m)75‘| }OeT,m =
= <1M(Ts(7n)) ® 1M(Ts(e)) ® QT,OLE\{'m,e}> © (1A[(Ts‘(m)) ® 9Tt(m,)~,6> o HT)m.
By inductive hypothesis, the thesis holds for 6 OB e} and the coassociativity property for
the collection of the 67, implies that the two blue blocks in the LHS and RHS are equal, and
therefore the thesis. O

This definition allows to prove that 6 can be defined without having to worry about admissible
edges.

Proposition 3.7. For any tree T and any E C Emt(T), for any edge e € E, we can write
0T7<XE = <0Ts(e),(aE)S(e) ® oTt(e))(aE)t(c)) © GT&'
Proof. 1f e € E is admissible, the decomposition map (ag)(e) is the trivial decomposition morphism

of T', hence 07, = 9Ts(e)aCT3(e) STy = EMTyey = 1M(Ts<e))’ as in the original definition.

Consider a non admissible edge e € E; then there exists m € E with m > e, and we can choose
m to be maximal. In particular, m is admissible. Proving the thesis then boils down to proving
that

() (ap)s(e)

(GTS(Q),(QE)S(&) ® 0Tt<e),(0¢E)t,(e)) © eT’e = (ers(m,),(er)‘sOn) ® HTr,(m),(OéE)t(e)) o 9T7m (*)

If #F = 2, equality in (*) corresponds to coassociativity.

({d(f\\a éw\é.uc\'(ﬂ“\ \A\&(\b\?{»
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Suppose that #E > 3. Since m > e, we have m € T(), and therefore by definition

9T§(e),(o¢E)3(€) = (1M((Ts(e))s(n1)) ® a(Ts(e))s(n'L)v(O‘Es(e))t(nl)) o 9T§(e)7m7

and we can plug this inside the LHS of (*). On the other hand, we can apply the inductive

hypothesis on 07, (mys(@m)e (m)> and by observing that and we
have:
LHS = |:<1M(Ts(7n)) ® ) ® eTt(e)v(aE)t(e):| ° (HTG(F:),m, ® 1M(Ts(e))) 001,
RHS = |:1M(Ts(m)) ® ( ® 0Tt(c)7(aE)t(c)):| © (IM(Ts(m)) ® 0Tt(m,),e> 0 b7 ;-
We conclude that the two expressions are equal thanks to coassociativity. O

Corollary 3.8. More generally, for any two nested decompositions of T represented by the inert
morphism (v,4d): (T,8) = (T, «), we have

Or,5 = ( X 9T(v)v,ﬁv> 0 0r,a

veEdom o

Proposition 3.9. Consider an co-preoperad (M € Ch(A), {07 c} 1 ccpmi(r)). Then the assignment
0: M — KM just constructed is a natural transformation endowing (M, ) %the structure of a
K -coalgebra. Wik

Proof. We check naturality. Given 5: S — T in A, we want to see that KM(8) o 67 = 05 o M(5).
Consider a morphism a: R — S, then

proj, o KM(f) o 0r =

= ® M(B,) o 01 sa naturality of projection
vER
=0g.q 0 M( U Bv) Corollary 3.8
veV(R)
= 05,00 M(B) B= 1 B
veV(R)
= proj, o 0s o M(p). definition

Since this is true for any o € A/S, naturality of the 07’s is proven.
Consider now the comonadic identities. By the very definition of 6, it is clear that 8 o ey = id ;.
We need to check compatibility of 8 with the comultiplication of the comonad, namely that
Aprof =K60o80, and we do this tree-wise and component-wise. Fix a tree T'€ A and a: R —> T
factoring as @ = S o, B: S — T, so that (a, ) determines a component of K2M (T). By the
definition of the comtyfplication,
Wik Proj, g © Ay 0 0 = projg o Or.

On the other hand, commutativity of

(KO)T

M(T) —2=— KM(T) K2M(T)
proj{ & orio. Jproja
@RM(T(Q)J — (}Eg)RKM(T(a)u) proj. »

: P eike~ &
®,s M(T(B)y) Drevaademek
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tells us that proving the thesis reduces to proving

Projﬂ ofr = ® (Projgu © 9T(a)u) 0 07,
ueER

which is precisely the content of Corollary 3.8. O

Proposition 3.10. The functors

ocopreOperads — K -coalgebras K -coalgebras — ocopreOperads

are o?é f?é inverse of the other.
endn

Proof. Tt is clear that the composition
oopreOperads — K-coalgebras — copreOperads
is the identity. On the other hand, proving that the composition
K-coalgebras — ocopreOperads — K-coalgebras

equals the identity amounts to proving that, given (M,0) a K-coalgebra, a: S — T and an
admissible edge e € a(E™(S)) € E™(T), one has that 07,0 = (1a1(7(a)...,) © 0T(a),e) o)) © O c-
This is true thanks to the comonadic identity K6 o8 = Ay 0 6.

O

Definition 3.5 (linear oo-operad). A linear co-operad is a linear co-preoperad (M,0: M — K M)
for which the structure maps for binary decompositions are quasi-isomorphisms. In other words,
(M, 0) is a linear occ-operad if, for any tree 7" and any inner edge e € E™(T), the map Ore =
proj,, o fr is a quasi-isomorphism.

Corollary 3.11. Suppose that the gro
Then M is an oc-operad if and only i

d ring R is a field, and consider (M,0) a K-coalgebra.
is a quasi-isomorphism for any T and any a: S — T.

Proof. Of course if every component of  is a quasi-isomorphism, then in particular the structural
maps 87 = 01, are quasi-isomorphisms.

For the reverse implication, recall that we can recursively write

07,0 = (1M(T(Oé)s(e)) ® oT(a)t(e)aat(e)) 007

We can then proceed by an inductive argument, observing that by hypothesis 7. is a quasi-
isomorphism and, thanks to the Kiinneth theorem, the functor — ® A preserves quasi-isomorphisms
for any chain complex A.

O

Remark 3.12. If R is not a field, then Corollary 3.11 holds for any linear oo-preoperad M having
the property that M (T) is flat for any tree T'.

tree-wise quasi-isomorphism. Indeed, by the @i property this would be equivalent to stating

Remark 3.13. Being an oo-operad does not imply that the coalgebra map 6: M — KM is a
that for any a: S — T, the projection proj, : ! iB (T) = @ M(T(a),) is a quasi-isomorphism,

veS
which in turn implies, since homology commutes with direct sum, that all the homologies of the

complexes M (R) are trivial for any R € A. gut 06/

Proposition 3.14. The category co-PreOps is symmetric monoidal closed. In other words, the

tensor product
— ® —: 00-PreOps x co-PreOps — co-PreOps
1s cocontinuous in each variable. t@ 6“”\— Leaz W\ e P’MM \'&\"/m/&

Proof. & Coiﬁfgf\-(, . O

Oaron F Aot 2n CQ(:&\M‘A\ 61‘/9{-2 F"’J‘da ér

mere
aaPM+ Co

/)u,,,zfz,‘)
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4. PROPERTIES OF o0o-PreOps

Since (Ch(R),®) is a monoidal category, the functor category Ch(A) becomes a symmetric
monoidal category with the tree-wise tensor product of chain complexes, namely

for every M, N € Ch(A) and every T € A we define (M @ N)(T) := M(T) @ N(T) .
We denote by 7 the swap map which establishes the isomorphism A ® B = B ® A for any two
chain complexes A, B. Explicitly, 7(a ® b) = (—1)!’lb @ a, where |a| = k if and only if a € Ay.

We can extend 7 to a natural isomorphism M ® N = N ® M for all functors M, N € Ch(A)
(and similarly when we consider the functor category Fun(A, Ch(R))).

Remark 4.1. We point out that there is generally not an isomorphism

K(M®N) % KM®KN. Nkt NoVL
\Vlh J M\\:L—

Indeed, we see that

K(M @ N)(T) =
(T,c)
while the tensor product of KM with KN gives
KM(T)® KN(T) =/ M(T,a| Q)P N(T.8)|~ &Q M(T.a)@N(T,B).
(T,e) (T,8) (T,e),(T',B)

In particular, we only have a diagonal inclusion

M )
K(M®N)— KM ® KN, U@'é‘ 1M~
which means that K is a colax monoidal functor. 3,2 f AUA CM Ar[,(\f, P

Proposition 4.2. There exists a symmetric monoidal structure on the categories of linear co-
pre(co)operads such that the forgetful functors

V': 0o-PreCoops — Ch(A) and U: co-PreOps — Ch(A)

are monoidal.

If the ground ring is a field, then the subcategories of linear co-operads and linear co-cooperads
are symmetric monoidal as well.

Proof. Consider (M, 0), (N,~) linear co-preoperads. The functor M @ N € Ch(A) has a natural
structure of linear co-preoperad: for any tree T'= R U, S, the structure map

dr.a: M(T)@ N(T) — M(R) @ N(R) @ M(S)® N(S)

is given by the tensor product of the structure maps of M and N followed by a twist that puts the
factors in the correct order:

010 = (107®1) 0 (01,0 ®V1,0)-

Naturality and coassociativity of the structure map are easy to check, hence we omit it. With this
tensor product, the forgetful functor U: co-PreOps — Ch(A) is a monoidal functor.

If the ground ring is a field, the tensor product of quasi-isomorphisms is again a quasi-isomorphism;
since moreover 7 is an isomorphism, it follows that if (M, 6) and (N,~) are oc-operads, (M ® N, 0)
is an oo-operad as well.

The same definitions yield the symmetric monoidal structure on the category of linear co-
precooperads, which restricts to a symmetric monoidal structure on oo-cooperads when the ground
ring is a field.

O
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5. THE MODEL STRUCTURE

In this section we endow the category of linear oco-preoperads of a Quillen model category
structure. Thi i

We start by collecting some observations. We refer to Appendix A for the model categorical
background (definitions, references and proofs) needed for this section.

Remark 5.1.

e There is a model category structure on Ch(R) where cofibrations are monomorphisms and
weak equivalences are quasi-isomorphisms. If the ground ring R is a field, then fibrations
are precisely the surjections. We call this model structure the standard model structure on
chain complexes.

e The standard model structure on Ch(R) is combinatorial and the category A is small: as a
consequence the functor category Ch(A) admits the injective model structure, where weak
equivalences and cofibrations are defined objectwise. This means that weak equivalences
(resp. cofibrations) are those maps f: X — Y such that for any tree T' the map of chain
fr: X(T) — Y(T) is a quasi-isomorphism (resp. monomorphism). This model structure is
again combinatorial.

e The tree category A is a dualizable Reedy category with trivial left class of morphisms
(see Example A.5). By Pr%})ﬁt/i\c{n A8, the injective model structure on Ch(A) coincides
with the injective Reedy model structure.

In particular, there is an explicit characterization of (trivial) fibrations as those mor-
phisms f: Y — X in Ch(A) such that for any tree T' € A, the Aut(7)-equivariant map

Y(T) — MTY XMrX X(T)

is a (trivial) fibration in Ch(R)A"(T) with the injective model structure. We recall that
the object MrY is defined as the limit of Y'(S) over all face maps S — T which are not
i rphisms, i.e.

is
- MrY = lim Y(S5)

M(A&a’\’r / 55T

The main theorem of this section is the following.

Theorem 5.2. Suppose that the ground ring is a field. There exists a left proper, accessible monoidal
model structure on the category of linear co-preoperads left transferred along the forgetful-cofree
adjunction

U: 0o-PreOpds = Ch(A) : F¢,
where on Ch(A) we consider the injective model structure with respect to the standard model
structure on Ch(R).

To prove Theorem 5.2, we will make use of the following results. To do: merge the following
two theorems into one.

Theorem 5.3 ([Hes+17, Proposition 2.1.4, Corollary 3.3.4]).

Suppose that (M ,C, W ,F) is an accessible model category, A is a bicomplete, locally presentable
category and there exists an adjunction

‘W{
U: ¥ = # :F°. \//ﬂ(ﬁ

If the left induced factorization system exists on J , then (he left-induced model structure on &

exists if and only if /-/—\\
U ABEE U (9. mhoduie & poptet,

If it is the case, the model structure on J£ is again accessible.

Condition (x) is called the acyclicity condition.
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Theorem 5.4 ([Hes+17, Theorem 2.2.1]).

Consider an adjunction between locally presentable categories
U: H = M:F
where A is an accessible model category. If

(1) for every object X in J, there emsf&ﬂf:rphzsm ex: QX — X such that Uex is a weak
equivalence and U(QX) is cofibrant in M,

(2) for each morphism f: X — Y in A there exists a morphism Qf: QX — QY satisfying
ey oQf = foex, and

(8) for every object X in JH there exists a factorization

Qx| Jox L ol@x) 25 @x f X Ty magsn

of the fold map such that Uj is a cofibration and Up is a weak equivalence, &Cbﬁ{‘e T

then the acyclicity condition holds foMeft-mduced weak factorization systems on JE and_thus the
left-induced model structure on JZ exists. s

We need to show that the hypotheses of both theorems are satisfied in the case of the adjunction
U: co-PreOps = Ch(A) : #°.
We start with checking the hypotheses of Theorem 5.3.
Lemma 5.5. If the ground ring is a field, the category of co-PreOps is bicomplete.
Proof. Cocompleteness holds because the forgetful functor creates colimits and Ch(A) is cocomplete.

By [Ad4T7T7], if € is a well-powered category (namely, the subobjects of any object form a set) and
H is a comonad on %, then the category of H-coalgebras is complete if the comonad H on &

preserves monomorphisms. Since any locally prese le category is in particular well-powered
A (see [AR94]), (e 0 ¢ = Ch(A) and H = K)If the ground ring is a field, the
~ o ————

\ . comonad K preserves monomorphisms, hence the thesis. O
? A Tka\ ‘ p P L)—

Lemma 5.6. The category oco-PreOps is locally presentable.

Proof. By precise ref of the theorem in [Bir84], the category of coalgebras over an accessible
comonad on a locally presentable category is again locally presentable.

Since Ch(A) is locally presentable, it remains to observe that K is accessible, namely that it
preserves filtered colimits. This is true, since finite products and finite tensor products of chain
complexes over a field do.

Cft t{uc«(
As a consequence, we obtain the following. U [[ O [ I(# aw ))
Corollary 5.7. The%ists the left induced weak factorization syst on the cadegory of lz ear /

oo-preoperads.

4/“,&-@ qe ca yauf die efarf‘(/nf\uf' eph-te lf“" pm W}P ()

Proof. Since both Ch(A) and oo- PreOps are locally presentable categories, we can apply |[GKR19,
Therem 2.6]. O
SO~

At this point, existence of the left induced model structure on co-PreOps is equivalent to the
acyclicity condition, and Theorem 5.4 states that the existence of U-cofibrant replacement objects
(points (1) and (2)) and of U-cylinder objects (point (3)) are sufficient for the acyclicity condition
to hold. We devote the next subsection to the construction of such objects.
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5.1. U-cofibrant replacements and U-cylinder objects. The construction of the required
objects of Theorem 5.4 relies on the cobar-bar adjunction between linear co-(pre)cooperads and
linear oo-(pre)operads,

B : co-PreCoops —— oo-PreOps :B,
for which we refer to [HM21]. More precisely:
(1) For any linear oo-preoperad X, we set
OX = B'BX,

and we define ex : QX — X as the counit of the cobar-bar adjunction.

(2) Given a map of linear oo- operads I a)fl—) Y, we set Qf = BVBSf.
AN

Since all objects in Ch(A) are coﬁbrant (QX) is cofibrant as=well, and ex is a weak equivalence
(i.e. tree-wise quasi-isomorphisms) by [HMQI, Theorem 8.1]. Moreover, by naturality of the counit,
it holds that ey o BVBf = f o ex, so this shows points (1) and (2) of Theorem 5.4.

Observe that Theorem 5.4 does not require the U-cofibrant replacement to be functorial, but it
is the case here, since @ is given by a functor Q = BYB: oco-PreOps — oco-PreOps.

We now proceed to prove point (3) of Theorem 5.4. What we want is:

e for any linear co-preoperad X, a linear co-preoperad Cyl(BVBX), and
e morphisms of linear oo-preoperads ig,i;: BYBX — Cyl(BVBX), h: Cyl(BVBX) — BVBX
such that:
hig = hiy = id,
U(ig), U (i1) are cofibrations, and

Uh is a weak equivalence.

We now proceed to the construction ef the constrrretion of the cylinder object efgpoint{3}-in
‘Theezenr.4. What we actually construct is a cylinder functor (see Definition A.4)

I ® —: oco-PreCoops — co-PreCoops.

We then restrict it to the co-precooperads in the image of the bar construction, and by applying
the cobar functor we get a cylinder object for co-preoperads of the form QX.

Let I be the model for the interval on chain complexes, namely it is the graded module
Iy = Ro’ ® Ro'
= Ro""
I, =0 fork+#0,1
with differential d(0%!) = o' — ¢°. I may be thought of as the oriented interval.

The chain complex I comes equipped with a diagonal map

diag: [ = I 1 VS | 22| W&T‘“
defined as C’Am Clalé', VN“*\

diag, (™! {@O’) 01®U (‘[@,\\‘0'\"}‘"

diagy(c?) = 0’ ® o

diagy(c') = o' @ ot

The chain complex I may be considered as ant functor /: A — Ch(R), and diag: [ = I ®1 o 4

as a natural transformation of fu

Proposition 5.8. a linear oo-cooperad.

RMPELSE & dy & & [Wcacpomé@o
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Proof. Consider the map j: I — I ® I defined by j(0°) = 0® ® 0, j(0!) = 0! ® 0°. It is known
reference that j is a quasi-isomorphism, and we show that diag is homotopic to j. The homotopy
is given by the degree —1 morphism ¢: I — (I ® I) defined as:

q(c”) =0
q(Ul) _ 0,1 ®001
q(O'Ol) — _0_01 ®0_01.

It is easy to check that diag — j = djgr 0 q+ qody. HU\Q &Mg N A qAM <20 ~ "' o

Consider now a linear co-precooperad (M : A — Ch(R),0). We define two morphisms of linear

oo-precooperads
Z'o,ill (M, 9) — (I,diag) ® (M, 9)
as follows: for any tree T' € A, any integer number n, any x € M(T),,, we define
(i0)1,n(z) = o’ ®2x and (i) (z) = o' @ .

If we fix T € A, the maps (ig)T, (i1)7: M(T) — M(T) ® I coincide with the usual maps of chains
in the cylinder object for the projective? model structure on chain complexes, so in particular
they are cofibrations (see precise reference in Weibel for this). It is immediate to check that
i, 71 are natural in tree morphisms, therefore we are left to proving that they are morphisms of
oo-precooperads.

Lemma 5.9. Let (M,0) be a linear co-precooperad and T = S U, R, then the following diagram
commutes:

M(T) o)r I® M(T)
GT,GJ J{(1®T®1)o(diag®9Tﬁa)
M(S) ® M(R) I®M(S)®I® M(R)

(i0)s®(i0) r
The same holds for i.

Proof. We check the condition for iy, and we omit the subscripts to avoid cluttering. We use
the Sweedler notation for the decomposition map: for € M(T),,, we write f(z) = (M) @ z(2),
Consider hence x € M(T),,, then we have

(io ® 0)(8(2)) = io @ io(a® ® 2@ = (—1)lolle™ 50 @ 1z © 50 @ 2 = 6% © 2D ® 0° @ 2P,

where last equality holds because i is a morphism of chain complexeschence of degree 0. On the
other hand, we have: M‘

(1@T®1)o(diag®d)(c®®zr) =107 1)((—1)'9”"0|00 @z @z?®) =
= (_1)|00Hm(1)\0_0 ® .’L‘(l) ® oY ® x(Q) =0 ® .13(1) ® oY ® x(Q)’
where signs disappear because the degree of 6 is 0, and that of ¢° as well. (]
We now define the map h: I ® M — M. Observe that, for any integer n, we have
(I ® M)(T)n =1 ® M(T)n L ® M(T)n—lv
so a general element in (I ® M)(T), is given by a finite sum of elements of the form 0 @ z + o' ®
y 4+ 0% ® 2. For this element, we define
hrn(c® @+t @y+oct ®@2)=z+y.

Again, we observe that, if we fix a tree T' € A, the map hr is the one for cylinder objects of chain
complexes, and in particular, it is a quasi-isomorphism (see reference??). It is also evident that the
hr’s are natural in tree-morphisms, check that h is a map of linear co-precooperads.

0 a
Lemma 5.10. Let (M,0) be a linear oco-precooperad and T = S U, R, then the following diagram
commutes:
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hr

I®M(T) M(T)
(1®7—®1)o(diag®0T,a)l lem
IeM(S)®I® M(R) BT M(S) ® M(R)

Proof. Again, we omit the subscripts to avoid cluttering. Moreover, call § the structure map
(1®7®1)o (diag ® 6). So on the one hand we have
Oh(c® @z + o' @y+or ®@2)=0(x+1y) =0(z) +0(y) = M @22 4y gy,
On the other hand, we compute:
hh(6((c°@z40t@y+0"®2)) = 2V @2® +yV ey 4+ V00040023 = 2M@z® D ey®,
O

Summing up, what we have proven so far is the following proposition.
Proposition 5.11. For any linear co-precooperad (M, 9), there exist maps of linear oco-precooperads
(M, 0)|_|(M,0) 2= (1, diag) @ (M, 0) = (M, 0)
which factor the fold map and such that ig,i1 are tree-wiseww and h is a tree-wise
quasi-isomorphism. k_‘k e pes 4 pour 9“‘;’ @ /0_‘*\ (G’ Povas

If we apply the cobar functor BY to the diagram in Proposition 5.11, we obtain a diagram of
linear oo-preoperads of the form

BY(M,0)| |BY(M,0) 20250, BY (1, diag) © (M, 6)) 20 BY (M, 6),

where the first factor is still a coproduct because the cobar functor is a left adjoint.
When (M, 0) is of the form (M, ) = B(X, d), for (X, d) a linear co-preoperad,the above diagram
can be written as
QX UQX Y% cyl(X) 2 QX,
where
Cyl(QX) =B ((I,diag) ® B(X,J)).

If the cobar construction preserves tree-wise monomorphisms and quasi-isomorphisms, we have
constructed a cylinder object with properties as in (3) of Theorem 5.4, as wanted. This is actually
the case, as we show in the next propositions. O

Proposition 5.12. The cobar construction preserves quc@norphisms.

Proof. We make use of the following.

Proposition 5.13 ([Brol2, p. 2.6]). Let C,C" be two chain complexes and let C,C’ have bounded
finite increasing filtrations, where aﬂltmtion {FkCy Y om of C is bounded if, for any m, there exists
s <t such that 0 = FC,, C --- C F*C,, = Cy,. Let f: C — C' be a filtration-preserving chain
map. If the induced map o spectml sequences Er(f): E¢ o(C) — E"(C")e.e is an isomorphism for
some r, then f is a qua orphzsm

<
So consider f: M — V a qu orphlsm between covariant functor M, N € Fun(A, Ch), w
want to prove that BY(f) is a qua 1som0rphlsm (o pertq Sha RAR. Q/J, Ca vewsi~ (_‘)uf&é{

Fix a tree S € A. In analogy with [LV12, Propositﬁ)n we define the filtration of BY M (S)
by setting
FPBYM(S)) = {(a: S =T, |e € s 'M,(T)) | dimT < p},
where recall that dim 7' = [E™(T")|. w’bw

We observe (write explicit verification?) that @ﬁy element in an equivalence class of BY M (S)
are in the same stage of the filtration, so it is legit to work with representatives.

This filtration satisfies the hypothesis of Proposition 5.13:
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FP(BYM(S)) C FPHi(BYM(S));

the filtration is finite. Indeed, for any a: S — T morphism in A, since « preserves the set
of leaves and T has no nullary nor unary vertices, we get dim7T < {(T) —2=1(S) — 2. In
particular, the filtration is bounded.

The filtration is exhaustive, since BV M (S) = FISBY M (S), where g5 = I(S) — 2.

For any p, the module FPBY M (S) is a subchain complex of BY M (S), since

Oext: FPBY M(S) — FPBY, | M(S)
Ome: FPBY, M(S) — FP7'BY _ M(S) C FFBY,_,M(S).
By the convergence theorem for spectral sequences, there exists a converging spectral sequence
such that

M(S)/FP~'BY, M(S)

0 _ PRV
Ep,q—F]B pt+q

p+q
and

Ezlhq = HPJNI(FPBZWM(S)/Fpilﬁ;/nLqM(S)) = Herq(BvM(S))'
Observe that

Eg,q = {(a,dle,z € 5_1M2p+q+1(T)) | dimT = p}

and when we consider the differential dj: Eg’q — Eg,q—1 we have that

Ker(dy: Equ — qufl) = @ Ker(s_lﬁM(T)2p+q+1)
(a: S—=T,de)
and
Imm(dy: E° ., = E°,) = @ Imm(s~ 10 )
0- Hpg+1 P.q M(T)2p+yq+2/
a: S—T,d|e

and therefore we can compute

Ey, = @ Hypyo(s™1M(T)).
(a: S—=T,dle)

Now, for any morphism f: M — N inside Fun(A, Ch) and any tree S, the map of chain complexes
BY(f)s: BYM(S) — BYN(S) respects the filtration, since

B fsm= P . (f1)n

m=n—dimS—q a: S—T,d|e,codima=gq

BY M(S) = B &y sTIML(T) — P $H sTIN,(T) = BY,N(S).

m=n—dim S—q a: S—T,d|e,codima=q m=n—dim S—q a: S—T,d|e,codima=q
Denote by h the map BY fg, and consider the map induced on the first page E;ﬁq(h)'\{e see that
1 —1
Ep,q(h) = @ Hapiq(s fTQj\
a: S—T,dle

But since fr is a quasisgmorphism for every T', we get that E;,q is an isomorphism, as wanted. [J

Remark 5.14. By a similar filtration argument, one can prove that, if the ground ring is a field, the
bar construction preservers tree-wise quasi-isomorphisms.

Proposition 5.15. If the groundring is a field, the cobar functor preserves tree-wise monomor-
phisms.

Proof. Being a monomorphism of chain complexes does not depend on differentials, so we can just
observe that over a field direct sums and finite tensor products preserves monomorphisms. O
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5.2. (Semi)simplicial model category structure ? As pointed out in [HA, Warning 1.3.5.4]
and explained in more details in Appendix A.5, the category of chain complexes is enriched in
simplicial sets but does not have the structure of a simplicial model category. However, it is a weak
simplicial model category, in the sense of [Hin15]. We recall the definition below, and then we ask
ourselves whether the category of oo-preoperads is a weak simplicial model category as well.

Definition 5.3. Consider a model category % enriched over simplicial sets, with mapping spaces
denoted by Mapg,(—, —). Then it is a weak simplicial model category if the following two conditions
are satisfied:

(1) Existence of weak path functors: for any n > 0 and any X,Y € €, the functor
Y — Homggets(A™, Map (Y, X))

is representable;
(2) Dual of the pushout-product axiom: for any cofibration i: A — B and any fibration
p: X — Y in €, the map of simplicial sets

Mapy (B, X) — Mapg (A4, X) XMap,.(4,y) Mapg (B, Y)

is a Kan fibration, trivial whenever i or p is. N
e oofawzl !

Consider the functor of normalized chains on simplicial sets
Ne: sSets — Ch(R)>o — Ch(R).

For any simplicial set X, the complex A44(X) is a coalgebra on the surjection operad (ref?). In
particular it is a dg coalgebra,/iere the coalgebra map 1S gf i ollowed by the
Alexander-Whitney map:

Ha(X) — (X % X) — Ha(X) @ Ha(X).

As a consequence, if we consider A¢(X) as a constant contravariant functor on trees, we have the
structure of an co-preoperad on Ae(X): A°? — Ch(R). We define the simplicial enrichment of
00-PreOps as

Mapoo-PreOps(X7 Y)n = Homoo-PreOps(X ® ,/V.(An), Y)

Now, since the functor — ® A (A™) is cocontinuops itf admits a right adjoint, which we denote by
(=) (A") | In particular, we see that

Mapoo_Preops(X, Y), ~ Homy_PreOps(X, Y‘/V()),

so the functor Map., preops(—> Y )n: 00-PreOps® — Sets is represented by the oo-preoperad Y0,
We are left with checking the dual of the pushout-product axiom.

APPENDIX A.

A.1. Accessible model structures, left-induced factorization systems. For a precise account
on accessible model categories, we suggest [Ros15].

Definition A.2. A model category (A4, €, % ,.F) is accessible if it is locally presentable and its
factorizations into the classes (¢, % N#') and (¢ N ¥, %) can be realized by accessible functors,
namely functors preserving A-filtered colimits for some regular cardinal A.

In particular, any combinatorial model category (locally presentable and cofibrantly generated)
is accessible ([Hes+17, Corollary 3.1.7]).

o "
Definition A.3 (Left induced factorization syste(L{
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Definition A.4. A cylinder functor on a category % is a functor

equipped with natural transformations 9
ig,11:1de = ¢ and h:c=idg

such that hig = hi; = ide.

A.5. Model category struct n chain complexes. We recall some properties of different
model category structures on Ch{E), where R is an associative unital ring. We rely on [Hov07].

Theorem A.1 ([Hov07][2.3.11]). There exists a finitely generated model category structure on
Ch(R), called the projective model structure, where weak equivalences are quasi-isomorphisms, fi-
brations are surjections and trivial cofibrations and cofibrations are generated by I = {0 — D"(R)},,
and J = {S™(R) — D"™(R)},, respectively. Here S™(R) has R in degree n and O elsewhere, while

D™(R) has R in degrees n and n — 1, with differential the identity, and zero elsewhere. K(f/\aﬂ{—

Theorem A.2 ([Hov07][2.3.13]). There exists a cofibrantly generated model category structure W""‘

on Ch(R), called the injective model structure, where weak equivalences are quasi-isomorphisms, i h

cofibrations are injections and fibrations can be characterized as those surjections having fibrant

kte’v\"ﬁel, e Nhoﬁ—— oﬁ .
1

Remark A.3. If R is a field, then the projective and injective model structure coincide. TO DO: %&M"\ AN

recollect the informations needed to prove this.

The category of chain comple}%’is enriched over itself, hence via the Dold-Kan correspondence it
is enriched in simplicial sets. Indeed, the enrichment is obtained by using the functor given by the
composite

Ch(R) s Ch(Ab) =2 Ch(Ab)so 255 Fun(AP, Ab) — Fun(AP, Set) = sSets,
which is right-lax monoidal thanks to the Alexander Whitney construction. X

Following [HA, Warning 1.3.5.4], we observe that this simplicial enrichment does not make
Ch(R) a simplicial model category, because it is not tensored over sSets. This is essentially due
to the fact that the Alexander-Whitney map is not in general an isomorphism. Indeed, for every

simplicial set K and any pair of complexes M, M’ € Ch(R), therg is a canonical bijection ( 02 / on (h di @ (}
HomCh(R) (JV.(K) ® M, M’) ~ HomsSets(K,Q/

M‘M[A)

h(R)(M, M')),
and this bijection extends to a map of simplicial sets

Mapc (R)(Ae(K) @ M, M") — Mapggeis (K, Mapc, (R) (M, M')).  (+)
Since the AW map (K x K') = A(K) ® A4(K') is not in general an isomorphism, the map

%) is not in general an isomorphism. .
a : ’ f\ov eQQAp\Nr( S NAfpencel pay  dane L<]

A.6. Reedy model category structure.
Definition A.7 ((Dualizable) generalized Reedy category).

Remark A 4. I@s a generalized Reedy category, then not necessarily R°P is as well. However, it

. . . o r
is the case if R 1s\duahzab1§. ot d‘mwh we 60*\( &%M_‘ PaM @._. N '
Example A.5. (L r(/\d*\' P 2 (5—6(!/"[1,&1{) &Qd//
e A is a strict Reedy category, where positive morphisms are face maps, negative morphisms
are degeneracies and the degree function is given by d([n]) = n.
e By [HM22, Proposition 3.9], the dendroidal category € is a dualizable generalized Reedy
category. The degree function assigns to a tree T the number of its vertices, namely
d(T) = |V(T)|. Positive morphisms are generated by face maps and isomorphisms, while
negative morphisms are generated by degeneracies and isomorphisms. It generalizes the
Reedy structure on A.

o
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e The categories 022,B, A, C inherit from € the structure of dualizable generalized Reedy
categories. In particular, the category C is a strict Reedy category, and all these four
categories have a trivial left class?i of morphisms.

Definition A.8 (Matching and latching objects). Consider R a generalized Reedy category and
r € R. We form the categories R(r)™ and R(r)~ as follows:

e R(r)* is the full subcategory of the arrow category R/r spanned by those morphisms
y — r which are positive and not isomorphisms.

e R(r)~ is the full subcategory of the arrow category r/R spanned by those morphisms
r — x which are negative and not isomorphisms.

For any model category ¢ and any X € Fun(R, %),
e the latching object of X at r is the colimit:
L, X = colimyecp(r)+ X (dom(¢)).
e The matching object of X ar r is the limit
M, X = limge gy~ X (cod(¢)).

Definition A.9. Let R be a generalized Reedy category. A model category & is called R-projective
if, for any r € R, the category &4%*(") admits the projective model structure. Dually, & is said to
be R-injective if &4**(") admits the injective model structure for any r € R.

For instance, any cofibrantly generated model category is R-projective; if it is moreover combi-
natorial, then it is also R-injective.

Definition A.10. Let R be a Reedy category and € a R-projective (dually R-injective) model
category. A map f: X — Y in €% is called:

e p-Reedy cofibration if, for each r, the relative latching map
XT ULV,«X LTY — Y;‘

is a cofibration in €A"(") with the projective model structure.
Dually, it is called i-Reedy cofibration if it is a cofibration in €A"(") with the injective
model structure.
e p-Reedy fibration if, for each r, the relative matching map

X, — MT(X) XM (Y) Y,

is a fibration in €A"(") with the projective model structure.
Dually, we call it a i-Reedy fibration if it is a fibration in €A"(") with the injective
model structure.

Theorem A.6 (Theorem 1.6, [BM10]). Let R be a generalized Reedy category and let & be an R-
projective Quillen model category. Then the classes of p-Reedy cofibrations, Reedy weak equivalences
and p-Reedy fibrations endow the functor category Fun(R, &) & a Quillen model category structure.
We call this model structure the projective Reedy model stru(\:kl\ucrﬁ.\

Theorem A.7 (Corollary 8.6, [Riel7]). Let R be a dualizable generalized Reedy category and & a
R-injective Quillen model category. Then the functor category Fun(R, &) admits a Quillen model
structure where cofibrations, weak equivalences and fibrations are, respectively, i-Reedy cofibrations,
Reedy weak equivalences, i-Reedy fibrations. We call this above model structure the injective Reedy
model structure.

Proposition A.8.

(1) If the right (positive) class of maps in R is trivial, then the injective Reedy model structure
on Fun(R,€) coincides with the injective model structure.

(2) Dually, if the left (negative) class of maps in R is trivial, then the projective Reedy model
structure on Fun(R, %) coincides with the projective model structure.
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